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In 1966, Cummins introduced the “tree graph”: the tree graph T(G)30

of a graph G (possibly infinite) has all its spanning trees as vertices, and31

distinct such trees correspond to adjacent vertices if they differ in just one32

edge, i.e., two spanning trees T1 and T2 are adjacent if T2 = T1 − e+ f for33

some edges e ∈ T1 and f /∈ T1. The tree graph of a connected graph need34

not be connected. To obviate this difficulty we define the “forest graph”:35

let G be a labeled graph of order α, finite or infinite, and let N(G) be the36

set of all labeled maximal forests of G. The forest graph of G, denoted by37

F(G), is the graph with vertex set N(G) in which two maximal forests F1,38

F2 of G form an edge if and only if they differ exactly by one edge, i.e.,39

F2 = F1 − e+ f for some edges e ∈ F1 and f /∈ F1.40

Using the theory of cardinal numbers, Zorn’s lemma, transfinite induc-41

tion, the axiom of choice and the well-ordering principle, we determine the42

F-convergence, F-divergence, F-depth and F-stability of any graph G. In43

particular it is shown that a graph G (finite or infinite) is F-convergent if44

and only if G has at most one cycle of length 3. The F-stable graphs are45

precisely K3 and K1. The F-depth of any graph G different from K3 and46

K1 is finite. We also determine various parameters of F(G) for an infinite47

graph G, including the number, order, size, and degree of its components.48

Keywords: Forest graph operator, Graph dynamics.49

2010 Mathematics Subject Classification: Primary 05C76; Secondary50

05C05, 05C63.51

1. Introduction52

A graph dynamical system is a set X of graphs together with a mapping φ : X →53

X (see Prisner [12]). We investigate the graph dynamical system on finite and54

infinite graphs defined by the forest graph operator F, which transforms G to its55

graph of maximal forests.56

Let G be a labeled graph of order α, finite or infinite. (All our graphs are57

labeled.) A spanning tree of G is a connected, acyclic, spanning subgraph of G;58

it exists if and only if G is connected. Any acyclic subgraph of G, connected or59

not, is called a forest of G. A forest F of G is said to be maximal if there is no60

forest F ′ of G such that F is a proper subgraph of F ′. The tree graph T(G) of61

G has all the spanning trees of G as vertices, and distinct such trees are adjacent62

vertices if they differ in just one edge [12, 15]; i.e., two spanning trees T1 and T263

are adjacent if T2 = T1 − e + f for some edges e ∈ T1 and f /∈ T1. The iterated64

tree graphs of G are defined by T0(G) = G and Tn(G) = T(Tn−1(G)) for n > 0.65

There are several results on tree graphs. See [1, 18, 11] for connectivity of the66

tree graph, [8, 13, 16, 19, 4, 7, 10, 3, 6] for bounds on the order of T(G) (that67

is, on the number of spanning trees of G), [2, 14] for Hamilton circuits in a tree68

graph.69
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There is one difficulty with iterating the tree graph operator. The tree graph70

of an infinite connected graph need not be connected [2, 14], so T2(G) may be71

undefined. For example, T(Kℵ0) is disconnected (see Corollary 2.5 in this paper;72

ℵ0 denotes the cardinality of the set N of natural numbers); therefore T2(Kℵ0)73

is not defined. To obviate this difficulty with iterated tree graphs, and inspired74

by the tree graph operator T, we define a forest graph operator. Let N(G) be75

the set of all maximal forests of G. The forest graph of G, denoted by F(G), is76

the graph with vertex set N(G) in which two maximal forests F1, F2 form an77

edge if and only if they differ by exactly one edge. The forest graph operator78

(or maximal forest operator) on graphs, G 7→ F(G), is denoted by F. Zorn’s79

lemma implies that every connected graph contains a spanning tree (see [5]);80

similarly, every graph has a maximal forest. Hence, the forest graph always81

exists. Since, when G is connected, maximal forests are the same as spanning82

trees, then F(G) = T(G); that is, the tree graph is a special case of the forest83

graph. We write F2(G) to denote F(F(G)), and in general Fn(G) = F(Fn−1(G))84

for n ≥ 1, with F0(G) = G.85

Definition 1.1. A graph G is said to be F-convergent if {Fn(G) : n ∈ N} is86

finite; otherwise it is F-divergent.87

A graph H is said to be an F-root of G if F(H) is isomorphic to G, F(H) ∼= G.
The F-depth of G is

sup{n ∈ N : G ∼= Fn(H) for some graph H}.

The F-depth of a graph G that has no F-root is said to be zero.88

The graph G is said to be F-periodic if there exists a positive integer n such89

that Fn(G) = G. The least such integer is called the F-periodicity of G. If n = 1,90

G is called F-stable.91

This paper is organized as follows. In Section 2 we give some basic results.92

In later sections, using Zorn’s lemma, transfinite induction, the well ordering93

principle and the theory of cardinal numbers, we study the number of F-roots94

and determine the F-convergence, F-divergence, F-depth and F-stability of any95

graph G. In particular we show that: i) A graph G is F-convergent if and only96

if G has at most one cycle of length 3. ii) The F-depth of any graph G different97

from K3 and K1 is finite. iii) The F-stable graphs are precisely K3 and K1. iv)98

A graph that has one F-root has innumerably many, but only some F-roots are99

important.100

2. Preliminaries101

For standard notation and terminology in graph theory we follow Diestel [5] and102

Prisner [12].103
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Some elementary properties of infinite cardinal numbers that we use are (see,104

e.g., Kamke [9]):105

(1) α+ β = α.β = max(α, β) if α, β are cardinal numbers and β is infinite. In106

particular, 2.β = ℵ0.β = β.107

(2) βn = β if β is an infinite cardinal and n is a positive integer.108

(3) β < 2β for every cardinal number.109

(4) The number of finite subsets of an infinite set of cardinality β is equal to110

β.111

We consider finite and infinite labeled graphs without multiple edges or loops.112

An isthmus of a graph G is an edge e such that deleting e divides one component113

of G into two of G − e. Equivalently, an isthmus is an edge that belongs to no114

cycle. Each isthmus is in every maximal forest, but no non-isthmus is.115

Let C(G) and N(G) denote the set of all possible cycles and the set of all116

maximal forests of a graph G, respectively. Note that a maximal forest of G117

consists of a spanning tree in each component of G. A fundamental fact, whose118

proof is similar to that of the existence of a maximal forest, is the following forest119

extension lemma:120

Lemma 2.1. In any graph G, every forest is contained in a maximal forest.121

Lemma 2.2. If G is a complete graph of infinite order α, then |N(G)| = 2α.122

Proof. Let G = (V,E) be a complete graph of order α (α infinite), i.e., G = Kα.123

Let v1, v2 be two vertices of G and V ′ = V \ {v1, v2}. Then for every A ⊆ V ′124

there is a spanning tree TA such that every vertex of A is adjacent only to v1125

and every vertex of V ′ \A is adjacent only to v2. It is easy to see that TA 6= TB126

whenever A 6= B. As the cardinality of the power set of V ′ is 2α, there are at127

least 2α spanning trees of G. Since G is connected, the maximal forests are the128

spanning trees; therefore |N(G)| ≥ 2α. Since the degree of each vertex is α and129

G contains α vertices, the total number of edges in G is α.α = α. The edge set of130

a maximal forest of G is a subset of E and the number of all possible subsets of131

E is 2α. Therefore, G has at most 2α maximal forests, i.e., |N(G)| ≤ 2α. Hence132

|N(G)| = 2α.133

For two maximal forests of G, F1 and F2, let d(F1, F2) denote the distance134

between them in F(G). We connect this distance to the number of edges by which135

F1, F2 differ; the result is elementary but we could not find it anywhere in the136

literature. We say F1, F2 differ by l edges if |E(F1)\E(F2)| = |E(F2)\E(F1)| = l.137
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Lemma 2.3. Let l be a natural number. For two maximal forests F1, F2 of a138

graph G, if |E(F1) \ E(F2)| = l, then |E(F2) \ E(F1)| = l. Furthermore, F1 and139

F2 differ by exactly l edges if and only if d(F1, F2) = l.140

We cannot apply to an infinite graph the simple proof for finite graphs, in141

which the number of edges in a maximal forest is given by a formula. Therefore,142

we prove the lemma by edge exchange.143

Proof. We prove the first part by induction on l. Let F1, F2 be maximal forests144

of G and let E(F1) \ E(F2) = {e′1, e′2, . . . , e′k}, E(F2) \ E(F1) = {e1, e2, . . . , el}.145

If l = 0 then k = 0 = l because F2 = F1. Suppose l > 0; then k > 0 also.146

Deleting el from F2 divides a tree of F2 into two trees. Since these trees are in147

the same component of G, there is an edge of F1 that connects them; this edge148

is not e1 so it is not in F2; therefore, it is an e′i, say e′k. Let F ′2 = F2 − el + e′k.149

Then E(F1) \ E(F ′2) = {e′1, e′2, . . . , e′k−1}, E(F2) \ E(F1) = {e1, e2, . . . , el−1}. By150

induction, k − 1 = l − 1.151

We also prove the second part by induction on l. Assume F1, F2 differ by152

exactly l edges and define F ′2 as above. If l = 0, 1, clearly d(F1, F2) = l. Suppose153

l > 1. In a shortest path from F1 to F2, whose length is d(F1, F2), each successive154

edge of the path can increase the number of edges not in F1 by at most 1.155

Therefore, F1 and F2 differ by at most d(F1, F2) edges. That is, l ≤ d(F1, F2).156

Conversely, d(F1, F
′
2) = l − 1 by induction and there is a path in F(G) from F1157

to F ′2 of length l − 1, then continuing to F2 and having total length l. Thus,158

d(F1, F2) ≤ l.159

From the above lemma we have two corollaries.160

Corollary 2.4. For any graph G, F(G) is connected if and only if any two161

maximal forests of G differ by at most a finite number of edges.162

Corollary 2.5. If G = Kα, α infinite, then F(G) is disconnected.163

Lemma 2.6. Let G be a graph with α vertices and β edges and with no isolated164

vertices. If either α or β is infinite, then α = β.165

Proof. We know that |E(G)| ≤ |V (G)|2, i.e., β ≤ α2 so if β is infinite, α must166

also be infinite. We also know, since each edge has two endpoints, that |V (G)| ≤167

2|E(G)|, i.e., α ≤ 2.β so if α is infinite, then β must be infinite. Now assuming168

both are infinite, α2 = α and 2.β = β, hence α = β.169

The following lemmas are needed in connection with F-convergence and F-170

divergence in Section 5 and F-depth in Section 6.171

Lemma 2.7. Let G be a graph. If Kn (for finite n ≥ 2) is a subgraph of G, then172

Kbn2/4c is a subgraph of F(G).173
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Proof. Let G be a graph such that Kn (n ≥ 2, finite) is a subgraph of G with174

vertex labels v1, v2, . . . , vn. Then there is a path L = v1, v2, . . . , vn of order n in175

G. Let F be a maximal forest of G such that F contains the path L. In F if we176

replace the edge vbn/2cvbn/2c+1 by any other edge vivj where i = 1, . . . , bn/2c and177

j = bn/2c + 1, . . . , n, we get a maximal forest Fij . Since there are bn2/4c such178

edges vivj , there are bn2/4c maximal forests Fij (of which one is F ). Any two179

forests Fij differ by one edge. It follows that they form a complete subgraph in180

F(G). Therefore Kbn2/4c is a subgraph of F(G).181

Lemma 2.8. If G has a cycle of (finite) length n with n ≥ 3, then F(G) contains182

Kn.183

Proof. Suppose that G has a cycle Cn of length n with edge set {e1, e2, . . . , en}.184

Let Pi = Cn−ei for i = 1, 2, . . . , n and let F1 be a maximal forest of G containing185

the path P1. Define Fi = F1 \ P1 ∪ Pi for i = 2, 3, . . . , n. These Fi’s are maximal186

forests of G and any two of them differ by exactly one edge, so they form a187

complete graph Kn in F(G).188

In particular, F(Cn) = Kn.189

Lemma 2.9. Suppose that G contains Kn, where n ≥ 3. Then F2(G) contains190

Knn−2.191

Proof. Cayley’s formula states that Kn has nn−2 spanning trees. Cummins [2]192

proved that the tree graph of a finite connected graph is Hamiltonian. Therefore,193

F(Kn) contains Cnn−2 . Let FT0 be a spanning tree of G that extends one of194

the spanning trees T0 of the Kn subgraph. Replacing the edges of T0 in FT0 by195

the edges of any other spanning tree T of Kn, we have a spanning tree FT that196

contains T . The FT ’s for all spanning trees T of Kn are nn−2 spanning trees of G197

that differ only within Kn; thus, the graph of the FT ’s is the same as the graph198

of the T ’s, which is Hamiltonian. That is, F(G) contains Cnn−2 . By Lemma 2.8,199

F2(G) contains Knn−2 .200

We do not know exactly what graphs F(Kn) and F2(Kn) are.201

Lemma 2.10. If G has two edge disjoint triangles, then F2(G) contains K9.202

Proof. Suppose that G has two edge disjoint triangles whose edges are e1, e2, e3203

and f1, f2, f3, respectively. The union of the triangles has exactly 9 maximal204

forests F ′ij , obtained by deleting one ei and one fj from the triangles. Extend F ′11205

to a maximal forest F11 and let Fij be the maximal forest F11 \E(F ′11)∪ Fij , for206

each i, j = 1, 2, 3. The nine maximal forests F ′ij , and consequently the maximal207

forests Fij in F(G), form a Cartesian product graph C3 × C3, which contains a208

cycle of length 9. By Lemma 2.8, F2(G) contains K9.209
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We now show that repeated application of the forest graph operator to many210

graphs creates larger and larger complete subgraphs.211

Lemma 2.11. If G has a cycle of (finite) length n with n ≥ 4 or it has two edge212

disjoint triangles, then for any finite m ≥ 1, Fm(G) contains Km2.213

Proof. We prove this lemma by induction on m.214

Case 1: Suppose that G has a cycle Cn of length n (n ≥ 4, n finite). By215

Lemma 2.8, F(G) contains Kn as a subgraph, which implies that F(G) contains216

K4. By Lemma 2.9, F3(G) contains K16 and in particular it contains K32 .217

Case 2: Suppose that G has two edge disjoint triangles. By Lemma 2.10218

F2(G) contains K9 as a subgraph. It follows by Lemma 2.7 that F3(G) con-219

tains Kb92/4c = K20 as a subgraph. This implies that F3(G) contains K32 as a220

subgraph.221

By Cases 1 and 2 it follows that the result is true for m = 1, 2, 3. Let us222

assume that the result is true for m = l ≥ 3, i.e., that Fl(G) contains Kl2 as a223

subgraph. By Lemma 2.7 it follows that F(Fl(G)) has a subgraph Kbl4/4c. Since224

bl4/4c > (l + 1)2, it follows that Fl+1(G) contains K(l+1)2 . By the induction225

hypothesis Fm(G) contains Km2 for any finite m ≥ 1.226

With Lemma 2.9 it is clearly possible to prove a much stronger lower bound227

on complete subgraphs of iterated forest graphs, but Lemma 2.11 is good enough228

for our purposes.229

Lemma 2.12. A forest graph that is not K1 has no isolated vertices and no230

isthmi.231

Proof. Let G = F(H) for some graph H. Consider a vertex F of G, that is, a232

maximal forest in H. Let e be an edge of F that belongs to a cycle C in H. Then233

there is an edge f in C that is not in F and F ′ = F − e+ f is a second maximal234

forest that is adjacent to F in G. Since C has length at least 3, it has a third235

edge g. If g is not in F , let F ′′ = F − e+ g. If g is in F , let F ′′ = F − g + f . In236

both cases F ′′ is a maximal forest that is adjacent to F and F ′. Thus, F is not237

isolated and the edge FF ′ in G is not an isthmus.238

Suppose F, F ′ ∈ N(H) are adjacent in G. That means there are edges e ∈239

E(F ) and e′ ∈ E(F ′) such that F ′ = F − e + e′. Thus, e belongs to the unique240

cycle in F + e′. As shown above, there is an F ′′ ∈ N(H) that forms a cycle with241

F and F ′. Therefore the edge FF ′ of G is not an isthmus.242

Let F ∈ N(H) be an isolated vertex in G. If H has an edge e not in F ,243

then F + e contains a cycle so F has a neighboring vertex in G, as shown above.244

Therefore, no such e can exist; in other words, H = F and G is K1.245
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3. Basic Properties of an Infinite Forest Graph246

We now present a crucial foundation for the proof of the main theorem in Section247

5. The cyclomatic number β1(G) of a graph G can be defined as the cardinality248

|E(G) \ E(F )| where F is a maximal forest of G.249

Proposition 3.1. Let G be a graph such that |C(G)| = β, an infinite cardinal250

number. Then:251

i) β1(G) = β and β1(F(G)) = 2β.252

ii) Both the order of F(G) and its number of edges equal 2β. Both the order and253

the number of edges of G equal β, provided that G has no isolated vertices254

and no isthmi.255

iii) F(G) is β-regular.256

iv) The order of any connected component of F(G) is β, and it has exactly β257

edges.258

v) F(G) has exactly 2β components.259

vi) Every component of F(G) has exactly β cycles.260

vii) |C(F(G))| = 2β.261

Proof. Let G be a graph with |C(G)| = β (β infinite).262

i) Let F be a maximal forest of G. The number of cycles in G is not more than263

the number of finite subsets of E(G)\E(F ). This number is finite if E(G)\E(F )264

is finite, but it cannot be finite because |C(G)| is infinite. Therefore E(G) \E(F )265

is infinite and the number of its finite subsets equals |E(G) \ E(F )| = β1(G).266

Thus, β1(G) ≥ |C(G)|. The number of cycles is at least as large as the number of267

edges not in F , because every such edge makes a different cycle with F . Thus,268

|C(G)| ≥ β1(G). It follows that β1(G) = |C(G)| = β. Note that this proves β1(G)269

does not depend on the choice of F .270

The value of β1(F(G)) follows from this and part (vii).271

ii) For the first part, let F be a maximal forest of G and let F0 be a maximal272

forest of G \ E(F ). As G \ E(F ) has β1(G) = β edges by part (i), it has β273

non-isolated vertices by Lemma 2.6. F0 has the same non-isolated vertices, so it274

too has β edges.275

Any edge set A ⊆ F0 extends to a maximal forest FA in F ∪ A. Since276

FA \ F = A, the FA’s are distinct. Therefore, there are at least 2β maximal277

forests in F0 ∪ F . The maximal forest F consists of a spanning tree in each278

component of G; therefore, the vertex sets of components of F are the same as279

those of G, and so are those of F0 ∪ F . Therefore, a maximal forest in F0 ∪ F ,280
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which consists of a spanning tree in each component of F0∪F , contains a spanning281

tree of each component of G.282

We conclude that a maximal forest in F0 ∪ F is a maximal forest of G and283

hence that there are at least 2β maximal forests in G, i.e., |N(G)| ≥ 2β. Since G is284

a subgraph of Kβ, and since |N(Kβ)| = 2β by Lemma 2.2, we have |N(G)| ≤ 2β.285

Therefore |N(G)| = 2β. That is, the order of F(G) is 2β. By Lemmas 2.12 and286

2.6, that is also the number of edges of F(G).287

For the second part, note that G has infinite order or else β1(G) would be288

finite. If G has no isolated vertices and no isthmi, then |V (G)| = |E(G)| by289

Lemma 2.6. By part (i) there are β edges of G outside a maximal forest; hence290

β ≤ |E(G)|.291

Since every edge of G is in a cycle, by the axiom of choice we can choose292

a cycle C(e) containing e for each edge e of G. Let C = {C(e) : e ∈ E(G)}.293

The total number of pairs (f, C) such that f ∈ C ∈ C is no more than ℵ0.|C| ≤294

ℵ0.|C(G)| = ℵ0.β = β. This number of pairs is not less than the number of edges,295

so |E(G)| ≤ β. It follows that G has exactly β edges.296

iii) Let F be a maximal forest of G. By part (i), |E(G) \ E(F )| = β. By297

adding any edge e from E(G) \E(F ) to F we get a cycle C. Removing any edge298

other than e from the cycle C gives a new maximal forest which differs by exactly299

one edge with F . The number of maximal forests we get in this way is β1(G)300

because there are β1(G) ways to choose e and a finite number of edges of C to301

choose to remove, and β1(G) is infinite. Thus we get β maximal forests of G,302

each of which differs by exactly one edge with F . Every such maximal forest is303

generated by this construction. Therefore, the degree of any vertex in F(G) is β.304

iv) Let A be a connected component of F(G). As F(G) is β-regular by305

part (iii), it follows that |V (A)| ≥ β. Fix a vertex v in A and define the nth306

neighborhood Dn = {v′ : d(v, v′) = n} for each n in N. Since every vertex has307

degree β, |D0| = 1, |D1| = β and |Dk| ≤ β|Dk−1|. Thus, by induction on n,308

|Dn| ≤ β for n > 0.309

Since A is connected, it follows that V (A) =
⋃
i∈N∪{0}Di, i.e., V (A) is the310

countable union of sets of order β. Therefore |A| = β, as |N|.β′ = β′. Hence any311

connected component of F(G) has β vertices. By Lemma 2.6 it has β edges.312

v) By parts (ii, iv) the order of F(G) is 2β and the order of each component313

of F(G) is β. Since |F(G)| = 2β, F(G) has at most 2β components. Suppose that314

F(G) has β′ components where β′ < 2β. As each component has β vertices, it315

follows that F(G) has order at most β′.β = max{β′, β}. This is a contradiction316

to part (ii). Therefore F(G) has exactly 2β components.317

vi) Let A be a component of F(G). Since it is infinite, by part (iv) it has318

exactly β edges. Suppose that |C(A)| = β′. Then β′ is at most the number of319

finite subsets of E(A), which is β since |E(A)| = β is infinite; that is, β′ ≤ β.320

By the argument in part (iii) every edge of F(G) lies on a cycle. The length of321



10 Suresh Dara, S.M. Hegde, V. Deva, S.B. Rao and T. Zaslavsky

each cycle is finite. Thus A has at most ℵ0.β′ = max{β′,ℵ0} = β′ edges if β′ is322

infinite and it has a finite number of edges if β′ is finite. Since |E(A)| = β, which323

is infinite, β′ ≥ β. We conclude that β′ = β.324

vii) By parts (v, vi) F(G) has 2β components and each component has β325

cycles. Since every cycle is contained in a component, |C(F(G))| = β.2β = 2β.326

From the above proposition it follows that an infinite graph cannot be a327

forest graph unless every component has the same infinite order β and there are328

2β components. A consequence is that the infinite graph itself must have order329

2β. Hence,330

Corollary 3.2. Any infinite graph whose order is not a power of 2, including ℵ0331

and all other limit cardinals, is not a forest graph.332

Corollary 3.3. For a graph G the following statements are equivalent.333

i) F(G) is connected.334

ii) F(G) is finite.335

iii) The union of all cycles in G is a finite graph.336

Proof. (i) =⇒ (iii). Suppose that F(G) is connected. If G has infinitely many337

cycles then by Proposition 3.1(v) F(G) is disconnected. Therefore G has finitely338

many cycles. Let A = {e ∈ E(G) : edge e lies on a cycle in G}. Then |A| is finite339

because the length of each cycle is finite. That proves (iii).340

(iii) =⇒ (ii). As every maximal forest of G consists of a maximal forest of341

A and all the edges of G which are not in A, G has at most 2n maximal forests342

where n = |A|. Hence F(G) has a finite number of vertices and consequently is343

finite.344

(ii) =⇒ (i). By identifying vertices in different components (Whitney vertex345

identification; see Section 4) we can assume G is connected so F(G) = T(G).346

Cummins [2] proved that the tree graph of a finite graph is Hamiltonian; therefore347

it is connected.348

4. F-Roots349

In this section we establish properties of F-roots of graphs. We begin with the350

question of what an F-root should be.351

Since any graph H ′ that is isomorphic to an F-root H of G is immediately352

also an F-root, the number of non-isomorphic F-roots is a better question than353

the number of labeled F-roots. We now show in some detail that a still better354

question is the number of non-isomorphic F-roots without isthmi.355
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Let tβ be the number of non-isomorphic rooted trees of order β. We note356

that tℵ0 ≥ 2ℵ0 , by a construction of Reinhard Diestel (personal communication,357

July 10, 2015). (We do not know a corresponding lower bound on tβ for β > ℵ0.)358

Let P be a one-way infinite path whose vertices are labelled by natural numbers,359

with root 1; choose any subset S of N and attach two edges at every vertex in360

S, forming a rooted tree TS (rooted at 1). Then S is determined by TS because361

the vertices in S are those of degree at least 3 in TS . (If 2 ∈ S but 1 /∈ S, then362

vertex 1 is determined only up to isomorphism by TS , but S itself is determined363

uniquely.) The number of sets S is 2ℵ0 , hence tℵ0 ≥ 2ℵ0 .364

Proposition 4.1. Let G be a graph with an F-root of order α. If α is finite, then365

G has infinitely many non-isomorphic finite F-roots. If α is finite or infinite, then366

G has at least tβ non-isomorphic F-roots of order β for every infinite β ≥ α.367

Proof. Let G be a graph which has an F-root H, i.e., F(H) ∼= G, and let α be368

the order of H. We may assume H has no isthmi and no isolated vertices unless369

it is K1.370

Suppose α is finite; then let T be a tree, disjoint from H, of any finite order371

n. Identify any vertex v of H with any vertex w of T . The resulting graph HT372

also has G as its forest graph since T is contained in every maximal forest of HT .373

As the order of HT is α + n − 1 and n can be any natural number, the graphs374

HT are an infinite number of non-isomorphic finite graphs with the same forest375

graph up to isomorphism.376

Suppose α is finite or infinite and β ≥ α is infinite. Let T be a rooted tree of377

order β with root vertex w; for instance, T can be a star rooted at the star center.378

Attach T to a vertex v of H by identifying v with the root vertex w. Denote379

the resulting graph by HT ; it is an F-root of G and it has order β because it380

has order α + β, which equals β because β is infinite and β ≥ α. As H has no381

isthmi, T and w are determined by HT ; therefore, if we have a non-isomorphic382

rooted tree T ′ with root w′ (that means there is no isomorphism of T with T ′ in383

which w corresponds to w′), HT ′ is not isomorphic to HT . (The one exception is384

when H = K1, which is easy to treat separately.) The number of non-isomorphic385

F-roots of G of order β is therefore at least the number of non-isomorphic rooted386

trees of order β, i.e., tβ.387

Proposition 4.1 still does not capture the essence of the number of F-roots.388

Whitney’s 2-operations on a graph G are the following [17]:389

(1) Whitney vertex identification. Identify a vertex in one component of G390

with a vertex in a another component of G, thereby reducing the number391

of components by 1. For an infinite graph we modify this by allowing392

an infinite number of vertex identifications; specifically, let W be a set of393

vertices with at most one from each component of G, and let {Wi : i ∈ I}394
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be a partition of W into |I| sets (where I is any index set); then for each395

i ∈ I we identify all the vertices in Wi with each other.396

(2) Whitney vertex splitting. The reverse of vertex identification.397

(3) Whitney twist. If u, v are two vertices that separate G—that is, G =398

G1∪G2 where G1∩G2 = {u, v} and |V (G1)|, |V (G2)| > 2, then reverse the399

names u and v in G2 and then take the union G1∪G2 (so vertex u in G1 is400

identified with the former vertex v in G2 and v with the former vertex u).401

Call the new graph G′. For an infinite graph we allow an infinite number402

of Whitney twists.403

It is easy to see that the edge sets of maximal forests in G and G′ are identical,404

hence F(G) and F(G′) are naturally isomorphic. It follows by Whitney vertex405

identification that every graph with an F-root has a connected F-root, and it406

follows from Whitney vertex splitting that every graph with an F -root has an407

F-root without cut vertices.408

We may conclude from Proposition 4.1 that the most interesting question409

about the number of F-roots of a graph G that has an F-root is not the total410

number of non-isomorphic F-roots (which by Proposition 4.1 cannot be assigned411

any cardinality); it is not the number of a given order; it is not even the number412

that have no isthmi; it is the number of non-2-isomorphic, connected F-roots413

with no isthmi and (except when G = K1) no isolated vertices.414

We do not know which graphs have F-roots, but we do know two large classes415

that cannot have F-roots.416

Theorem 4.2. No infinite connected graph has an F-root.417

Proof. This follows by Corollary 3.3.418

Theorem 4.3. No bipartite graph G has an F-root.419

Proof. Let G be a bipartite graph of order p (p ≥ 2) and let H be a root420

of G, i.e., F(H) ∼= G. Suppose H has no cycle; then F(H) is K1, which is a421

contradiction. Therefore H has a cycle of length ≥ 3. It follows by Lemma 2.8422

that F(H) contains K3, a contradiction. Hence no bipartite graph G has a root.423

424

5. F-Convergence and F-Divergence425

In this section we establish the necessary and sufficient conditions for F-convergence426

of a graph.427
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Lemma 5.1. Let G be a finite graph that contains a Cn (for n ≥ 4) or at least428

two edge disjoint triangles; then G is F-divergent.429

Proof. Let G be a finite graph. By Lemma 2.11, Fm(G) contains Km2 as a430

subgraph. Therefore, as m increases the clique size of Fm(G) increases. Hence431

G is F-divergent.432

Lemma 5.2. If |C(G)| = β where β is infinite, then G is F-divergent.433

Proof. Assume |C(G)| = β (β infinite). By Proposition 3.1(vii), as 2β < 22
β
<434

22
2β

< · · · , it follows that |C(F(G))| < |C(F2(G))| < |C(F3(G))| < · · · . There-435

fore, as n increases |C(Fn(G))| increases. Hence G is F-divergent.436

Theorem 5.3. Let G be a graph. Then,437

i) G is F-convergent if and only if either G is acyclic or G has only one cycle,438

which is of length 3.439

ii) If G is F-convergent, then it converges in at most two steps.440

Proof. i) If G has no cycle, then it is a forest and F(G) is K1. If G has only one441

cycle and that cycle has length 3, then F(G) is K3. Therefore in each case G is442

F-convergent.443

Conversely, suppose that G has a cycle of length greater than 3 or has at444

least two triangles. If G has infinitely many cycles, then it follows by Lemma 5.2445

that G is F-divergent. Therefore we may assume that G has a finite number of446

cycles. If G has a finite number of vertices, then it is finite and by Lemma 5.1447

it is F-divergent. Therefore G has an infinite number of vertices. However, it448

can have only a finite number of edges that are not isthmi, because each cycle449

is finite. Thus G consists of a finite graph G0 and any number of isthmi and450

isolated vertices. Since F(G) depends only on the edges that are not isthmi and451

the vertices that are not isolated, F(G) = F(G0) (under the natural identification452

of maximal forests in G0 with their extensions in G by adding all isthmi of G).453

Therefore, G is F-divergent.454

ii) If G has no cycle, then G is a forest and F(G) ∼= F2(G) ∼= K1. If G has455

only one cycle, which is of length 3, then F(G) ∼= F2(G) ∼= K3. Therefore G456

converges in at most 2 steps.457

Corollary 5.4. A graph G is F-stable if and only if G = K1 or K3.458

6. F-Depth459

In this section we establish results about the F-depth of a graph.460
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Theorem 6.1. Let G be a finite graph. The F-depth of G is infinite if and only461

if G is K1 or K3.462

Proof. Let G be a finite graph. Suppose that G is K1 or K3. Then by Corollary463

5.4, it follows that G is F-stable. Therefore, the F-depth of G is infinite.464

Conversely, suppose that G is different from K1 and K3.465

Case 1: Let |V | < 4. Then G has no F-root so its F-depth is zero.466

Case 2: Let |V | = 4. Suppose G has an F-root H (i.e., F(H) ∼= G). Then467

H should have exactly 4 maximal forests. That is possible only when H has only468

one cycle, which is of length 4. By Lemma 2.8 it follows that F(H) contains K4,469

hence it is K4. Therefore G has an F-root if and only if it is K4. Hence the470

F-depth of G is zero, except that the depth of K4 is 1.471

Case 3: Let |V | = n where n > 4. Suppose that G has infinite F-depth.472

Then for every m there is a graph Hm such that Fm(Hm) = G. If Hm does not473

have two triangles or a cycle of length greater than 3, then Hm has only one474

cycle which is of length 3, or no cycle and Hm converges to K1 or K3 in at most475

two steps, a contradiction. Therefore Hm has two triangles or a cycle of length476

greater than 3. By Lemma 2.11 it follows that Fm(Hm) contains Km2 for each477

m ≥ 2, so that in particular Fn(Hn) contains Kn2 . That is, G contains Kn2 .478

This is impossible as G has order n. Hence the F-depth of G is finite.479

Theorem 6.2. The F-depth of any infinite graph is finite.480

Proof. Let G be a graph of infinite order α. If G has an F-root, then G is481

without isthmi or isolated vertices.482

If G is connected, Theorem 4.2 implies that G has no root. Therefore its483

F-depth is zero.484

If G is disconnected, assume it has infinite depth. Then for each natural485

number n there exists a graph Hn such that G ∼= Fn(Hn). Let βn denote the486

order of Hn. Since F(H1) ∼= G, by Proposition 3.1(ii) α = 2β1 , from which we487

infer that β1 < α. This is independent of which root H1 is, so in particular we can488

take H1 = F(H2) and conclude that β1 = 2β2 , hence that β2 < β1. Continuing in489

like manner we get an infinite decreasing sequence of cardinal numbers starting490

with α. The cardinal numbers are well ordered [9], so they cannot contain such491

an infinite sequence. It follows that the F-depth of G must be finite.492
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