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2 SURESH DARA, S.M. HEGDE, V. DEvA, S.B. RAO AND T. ZASLAVSKY

In 1966, Cummins introduced the “tree graph”: the tree graph T(G)
of a graph G (possibly infinite) has all its spanning trees as vertices, and
distinct such trees correspond to adjacent vertices if they differ in just one
edge, i.e., two spanning trees 17 and T, are adjacent if T, =T7 — e+ f for
some edges e € Ty and f ¢ Ty. The tree graph of a connected graph need
not be connected. To obviate this difficulty we define the “forest graph”:
let G be a labeled graph of order «, finite or infinite, and let 91(G) be the
set of all labeled maximal forests of G. The forest graph of GG, denoted by
F(G), is the graph with vertex set 91(G) in which two maximal forests Fy,
F5 of G form an edge if and only if they differ exactly by one edge, i.e.,
Fy =F, —e+ f for some edges e € F} and f ¢ F;.

Using the theory of cardinal numbers, Zorn’s lemma, transfinite induc-
tion, the axiom of choice and the well-ordering principle, we determine the
F-convergence, F-divergence, F-depth and F-stability of any graph G. In
particular it is shown that a graph G (finite or infinite) is F-convergent if
and only if G has at most one cycle of length 3. The F-stable graphs are
precisely K3 and K;. The F-depth of any graph G different from K3 and
K is finite. We also determine various parameters of F(G) for an infinite
graph G, including the number, order, size, and degree of its components.
Keywords: Forest graph operator, Graph dynamics.

2010 Mathematics Subject Classification: Primary 05C76; Secondary
05C05, 05C63.

1. INTRODUCTION

A graph dynamical system is a set X of graphs together with a mapping ¢ : X —
X (see Prisner [12]). We investigate the graph dynamical system on finite and
infinite graphs defined by the forest graph operator F, which transforms G to its
graph of maximal forests.

Let G be a labeled graph of order «, finite or infinite. (All our graphs are
labeled.) A spanning tree of G is a connected, acyclic, spanning subgraph of G;
it exists if and only if G is connected. Any acyclic subgraph of G, connected or
not, is called a forest of G. A forest F' of GG is said to be mazimal if there is no
forest F’ of G such that F' is a proper subgraph of F’. The tree graph T(G) of
G has all the spanning trees of G as vertices, and distinct such trees are adjacent
vertices if they differ in just one edge [12, 15]; i.e., two spanning trees 77 and T5
are adjacent if 7o = T7 — e + f for some edges e € T} and f ¢ T,. The iterated
tree graphs of G are defined by T(G) = G and T"(G) = T(T" }(Q)) for n > 0.
There are several results on tree graphs. See [1, 18, 11] for connectivity of the
tree graph, [8, 13, 16, 19, 4, 7, 10, 3, 6] for bounds on the order of T(G) (that
is, on the number of spanning trees of &), [2, 14] for Hamilton circuits in a tree
graph.
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THE DYNAMICS OF THE FOREST GRAPH OPERATOR 3

There is one difficulty with iterating the tree graph operator. The tree graph
of an infinite connected graph need not be connected [2, 14], so T?(G) may be
undefined. For example, T(Ky,) is disconnected (see Corollary 2.5 in this paper;
Ny denotes the cardinality of the set N of natural numbers); therefore T?(Ky,)
is not defined. To obviate this difficulty with iterated tree graphs, and inspired
by the tree graph operator T, we define a forest graph operator. Let DM(G) be
the set of all maximal forests of G. The forest graph of G, denoted by F(G), is
the graph with vertex set (&) in which two maximal forests F;, Fy form an
edge if and only if they differ by exactly one edge. The forest graph operator
(or mazximal forest operator) on graphs, G — F(G), is denoted by F. Zorn’s
lemma implies that every connected graph contains a spanning tree (see [5]);
similarly, every graph has a maximal forest. Hence, the forest graph always
exists. Since, when G is connected, maximal forests are the same as spanning
trees, then F(G) = T(G); that is, the tree graph is a special case of the forest
graph. We write F2(G) to denote F(F(G)), and in general F*(G) = F(F"}(G))
for n > 1, with FO(G) = G.

Definition 1.1. A graph G is said to be F-convergent if {F"(G) : n € N} is
finite; otherwise it is F-divergent.

A graph H is said to be an F-root of G if F(H ) is isomorphic to G, F(H) = G.
The F-depth of G is

sup{n € N: G = F"(H) for some graph H}.

The F-depth of a graph G that has no F-root is said to be zero.

The graph G is said to be F-periodic if there exists a positive integer n such
that F"(G) = G. The least such integer is called the F-periodicity of G. If n =1,
G is called F-stable.

This paper is organized as follows. In Section 2 we give some basic results.
In later sections, using Zorn’s lemma, transfinite induction, the well ordering
principle and the theory of cardinal numbers, we study the number of F-roots
and determine the F-convergence, F-divergence, F-depth and F-stability of any
graph G. In particular we show that: i) A graph G is F-convergent if and only
if G has at most one cycle of length 3. ii) The F-depth of any graph G different
from K3 and K is finite. iii) The F-stable graphs are precisely K3 and Kj. iv)
A graph that has one F-root has innumerably many, but only some F-roots are
important.

2. PRELIMINARIES

For standard notation and terminology in graph theory we follow Diestel [5] and
Prisner [12].



104

1

o
5]

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137
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Some elementary properties of infinite cardinal numbers that we use are (see,
e.g., Kamke [9]):

(1) a+ B = a.f = max(q, B) if «, f are cardinal numbers and f is infinite. In
particular, 2.8 = Ng.8 = .

(2) p™ = B if B is an infinite cardinal and n is a positive integer.
(3) B < 27 for every cardinal number.

(4) The number of finite subsets of an infinite set of cardinality § is equal to

8.

We consider finite and infinite labeled graphs without multiple edges or loops.
An isthmus of a graph G is an edge e such that deleting e divides one component
of G into two of G — e. Equivalently, an isthmus is an edge that belongs to no
cycle. Each isthmus is in every maximal forest, but no non-isthmus is.

Let €(G) and 9(G) denote the set of all possible cycles and the set of all
maximal forests of a graph G, respectively. Note that a maximal forest of G
consists of a spanning tree in each component of G. A fundamental fact, whose
proof is similar to that of the existence of a maximal forest, is the following forest
extension lemma:

Lemma 2.1. In any graph G, every forest is contained in a mazximal forest.
Lemma 2.2. If G is a complete graph of infinite order «, then |N(G)| = 2.

Proof. Let G = (V, E) be a complete graph of order « (« infinite), i.e., G = K.
Let vy, vy be two vertices of G and V' = V \ {v1,v2}. Then for every A C V'
there is a spanning tree T4 such that every vertex of A is adjacent only to v;
and every vertex of V'\ A is adjacent only to vy. It is easy to see that Ty # T
whenever A # B. As the cardinality of the power set of V' is 2%, there are at
least 2% spanning trees of G. Since G is connected, the maximal forests are the
spanning trees; therefore |9(G)| > 2%. Since the degree of each vertex is o and
G contains « vertices, the total number of edges in G is a.a = «. The edge set of
a maximal forest of G is a subset of E' and the number of all possible subsets of
E is 2%. Therefore, G has at most 2% maximal forests, i.e., |JU(G)| < 2%. Hence
IN(G)| =2« [ ]

For two maximal forests of G, F; and Fj, let d(Fy, F>) denote the distance
between them in F(G). We connect this distance to the number of edges by which

I, F, differ; the result is elementary but we could not find it anywhere in the
literature. We say Fy, Fy differ byl edges if |E(F1)\ E(F2)| = |E(F2)\E(Fy)| = 1.
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Lemma 2.3. Let | be a natural number. For two mazimal forests Fi, Fo of a
graph G, if |E(F1) \ E(F2)| =1, then |E(F2) \ E(F1)| = 1. Furthermore, F; and
Fy differ by exactly | edges if and only if d(Fy, Fy) = 1.

We cannot apply to an infinite graph the simple proof for finite graphs, in
which the number of edges in a maximal forest is given by a formula. Therefore,
we prove the lemma by edge exchange.

Proof. We prove the first part by induction on [. Let Fi, F5> be maximal forests
of G and let E(Fy) \ E(F») = {€},¢e5,...,€e.}, E(F2) \ E(F1) = {e1,e2,...,¢e}.
If ] = 0 then £k = 0 = [ because Fy, = F;. Suppose [ > 0; then &£ > 0 also.
Deleting e; from F5 divides a tree of F5 into two trees. Since these trees are in
the same component of G, there is an edge of F} that connects them; this edge
is not ey so it is not in Fy; therefore, it is an €}, say e). Let F = I —¢; + €}
Then E(F1)\ E(F3) = {e},e5,...,e,_ 1}, E(F2) \ E(F1) = {e1,e2,...,e_1}. By
induction, k —1=1—-1.

We also prove the second part by induction on I. Assume Fi, Fy differ by
exactly [ edges and define F} as above. If [ = 0, 1, clearly d(Fy, F») = I. Suppose
[ > 1. In a shortest path from F; to F», whose length is d(F}, F»), each successive
edge of the path can increase the number of edges not in F; by at most 1.
Therefore, F} and F, differ by at most d(Fy, F») edges. That is, I < d(F1, F»).
Conversely, d(F1, Fy) =1 — 1 by induction and there is a path in F(G) from F;
to F} of length [ — 1, then continuing to F, and having total length . Thus,
d(Fl, Fg) <. |

From the above lemma we have two corollaries.

Corollary 2.4. For any graph G, F(G) is connected if and only if any two
mazximal forests of G differ by at most a finite number of edges.

Corollary 2.5. If G = K,, « infinite, then F(G) is disconnected.

Lemma 2.6. Let G be a graph with o vertices and B edges and with no isolated
vertices. If either a or B is infinite, then o = (3.

Proof. We know that |E(G)| < |V(G)]?, ie., B < a? so if 3 is infinite, o must
also be infinite. We also know, since each edge has two endpoints, that |V (G)| <
2|E(G)], i.e., a < 2.0 so if « is infinite, then 8 must be infinite. Now assuming
both are infinite, &> = o and 2.8 = f3, hence a = f3. [

The following lemmas are needed in connection with F-convergence and F-
divergence in Section 5 and F-depth in Section 6.

Lemma 2.7. Let G be a graph. If K, (for finite n > 2) is a subgraph of G, then
K |,2/4) is a subgraph of F(G).
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Proof. Let G be a graph such that K,, (n > 2, finite) is a subgraph of G with
vertex labels v, v9,...,v,. Then there is a path L = v{,v9,...,v, of order n in
G. Let F' be a maximal forest of G such that F' contains the path L. In F' if we
replace the edge v|,,/2|V|,/2)41 by any other edge v;v; where i =1,..., |n/2] and
j=|n/2] +1,...,n, we get a maximal forest F;;. Since there are [n?/4| such
edges v;v;, there are |n?/4| maximal forests Fj; (of which one is F). Any two
forests Fj; differ by one edge. It follows that they form a complete subgraph in
F(G). Therefore K|,2/4) is a subgraph of F(G). ]

Lemma 2.8. If G has a cycle of (finite) length n with n > 3, then F(G) contains
K,.

Proof. Suppose that G has a cycle C,, of length n with edge set {e1,ea,...,e,}.
Let P, =C,,—e¢; fori=1,2,...,n and let F] be a maximal forest of G containing
the path P;. Define F; = Fy \ PLUP, for i = 2,3,...,n. These F;’s are maximal
forests of G and any two of them differ by exactly one edge, so they form a
complete graph K, in F(G). ]

In particular, F(Cy) = K.

Lemma 2.9. Suppose that G contains K,,, where n > 3. Then F%(G) contains
Knn72.

Proof. Cayley’s formula states that K, has n"~2 spanning trees. Cummins [2]
proved that the tree graph of a finite connected graph is Hamiltonian. Therefore,
F(K,) contains C,n-2. Let Fr, be a spanning tree of G that extends one of
the spanning trees Ty of the K, subgraph. Replacing the edges of Tj in Fr, by
the edges of any other spanning tree T' of K,,, we have a spanning tree Fp that
contains T. The Fp’s for all spanning trees T of K,, are n"~2 spanning trees of G
that differ only within K, ; thus, the graph of the F7p’s is the same as the graph
of the T”s, which is Hamiltonian. That is, F(G) contains C,;n-2. By Lemma 2.8,
F2(Q) contains K,n2. [ ]

We do not know exactly what graphs F(K,) and F?(K,) are.
Lemma 2.10. If G has two edge disjoint triangles, then F2(G) contains Ky.

Proof. Suppose that G has two edge disjoint triangles whose edges are eq, es, e3
and fi, fo, fa, respectively. The union of the triangles has exactly 9 maximal
forests Fl'], obtained by deleting one e; and one f; from the triangles. Extend FY;
to a maximal forest F1; and let Fj; be the maximal forest Fy; \ E(F];) U Fj;, for
each i,j = 1,2,3. The nine maximal forests Fl’], and consequently the maximal
forests Fj; in F(G), form a Cartesian product graph C3 x C3, which contains a
cycle of length 9. By Lemma 2.8, F2(G) contains Kj. [
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We now show that repeated application of the forest graph operator to many
graphs creates larger and larger complete subgraphs.

Lemma 2.11. If G has a cycle of (finite) length n with n > 4 or it has two edge
disjoint triangles, then for any finite m > 1, F"™(G) contains K,,2.

Proof. We prove this lemma by induction on m.

Case 1: Suppose that G has a cycle C,, of length n (n > 4, n finite). By
Lemma 2.8, F(G) contains K, as a subgraph, which implies that F(G) contains
K,. By Lemma 2.9, F3(G) contains K1 and in particular it contains Ks».

Case 2: Suppose that G has two edge disjoint triangles. By Lemma 2.10
F2(G) contains Ko as a subgraph. It follows by Lemma 2.7 that F3(G) con-
tains Kg2/4) = Ky as a subgraph. This implies that F3(G) contains K32 as a
subgraph.

By Cases 1 and 2 it follows that the result is true for m = 1,2,3. Let us
assume that the result is true for m = [ > 3, i.e., that F/(G) contains K> as a
subgraph. By Lemma 2.7 it follows that F(F!(G)) has a subgraph K|ja;4). Since
[14/4] > (1 + 1)2, it follows that F!*'(G) contains K(1)2. By the induction
hypothesis F*(G) contains K,,2 for any finite m > 1. ]

With Lemma 2.9 it is clearly possible to prove a much stronger lower bound
on complete subgraphs of iterated forest graphs, but Lemma 2.11 is good enough
for our purposes.

Lemma 2.12. A forest graph that is not Ky has no isolated vertices and no
isthmi.

Proof. Let G = F(H) for some graph H. Consider a vertex F' of G, that is, a
maximal forest in H. Let e be an edge of F' that belongs to a cycle C'in H. Then
there is an edge f in C that is not in F' and F' = F — e + f is a second maximal
forest that is adjacent to F' in (G. Since C' has length at least 3, it has a third
edge g. If gisnotin F,let F" =F —e+g. If gisin F,let " =F —g+ f. In
both cases F” is a maximal forest that is adjacent to F' and F’. Thus, F is not
isolated and the edge F'F’ in G is not an isthmus.

Suppose F, F' € M(H) are adjacent in G. That means there are edges e €
E(F) and ¢ € E(F’) such that F/ = F — e + ¢’. Thus, e belongs to the unique
cycle in F' +¢/. As shown above, there is an F” € 91(H) that forms a cycle with
F and F’. Therefore the edge F'F' of G is not an isthmus.

Let F' € 9M(H) be an isolated vertex in G. If H has an edge e not in F,
then F' + e contains a cycle so F' has a neighboring vertex in G, as shown above.
Therefore, no such e can exist; in other words, H = F and G is K. [ |
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3. BAsIC PROPERTIES OF AN INFINITE FOREST GRAPH

We now present a crucial foundation for the proof of the main theorem in Section
5. The cyclomatic number [31(G) of a graph G can be defined as the cardinality
|E(G) \ E(F)| where F' is a maximal forest of G.

Proposition 3.1. Let G be a graph such that |€(G)| = B, an infinite cardinal
number. Then:

) B1(G) = B and By (F(G)) = 2.

ii) Both the order of F(G) and its number of edges equal 2°. Both the order and
the number of edges of G equal 3, provided that G has no isolated vertices
and no isthmi.

iii) F(G) is B-regular.

iv) The order of any connected component of ¥(G) is 3, and it has exactly
edges.

v) F(G) has ezactly 2° components.
vi) Every component of F(G) has exactly 5 cycles.
vii) |¢(F(Q))| = 2°.

Proof. Let G be a graph with |€(G)| = £ (8 infinite).

i) Let F' be a maximal forest of G. The number of cycles in G is not more than
the number of finite subsets of E(G)\ E(F). This number is finite if E(G)\ E(F)
is finite, but it cannot be finite because |€(G)| is infinite. Therefore E(G)\ E(F)
is infinite and the number of its finite subsets equals |E(G) \ E(F)| = p1(G).
Thus, $1(G) > |€(G)|. The number of cycles is at least as large as the number of
edges not in F', because every such edge makes a different cycle with /. Thus,
|€(G)| > B1(G). Tt follows that 51(G) = |€(G)| = . Note that this proves £1(G)
does not depend on the choice of F.

The value of 51 (F(G)) follows from this and part (vii).

ii) For the first part, let F' be a maximal forest of G and let Fyy be a maximal
forest of G\ E(F). As G\ E(F) has $1(G) = f edges by part (i), it has
non-isolated vertices by Lemma 2.6. Fy has the same non-isolated vertices, so it
too has 3 edges.

Any edge set A C Fj extends to a maximal forest Fy in F' U A. Since
Fqa\ F = A, the Fy’s are distinct. Therefore, there are at least 28 maximal
forests in Fy U F. The maximal forest F' consists of a spanning tree in each
component of G; therefore, the vertex sets of components of F' are the same as
those of GG, and so are those of Fy U F. Therefore, a maximal forest in Fy U F,
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which consists of a spanning tree in each component of FyUF', contains a spanning
tree of each component of G.

We conclude that a maximal forest in Fy U F' is a maximal forest of G and
hence that there are at least 2% maximal forests in G, i.e., [D(G)| > 27. Since G is
a subgraph of Kjg, and since |[M(Kj)| = 2° by Lemma 2.2, we have |N(G)| < 2°.
Therefore [91(G)| = 2°. That is, the order of F(G) is 2°. By Lemmas 2.12 and
2.6, that is also the number of edges of F(G).

For the second part, note that G has infinite order or else 51(G) would be
finite. If G has no isolated vertices and no isthmi, then |V(G)| = |E(G)| by
Lemma 2.6. By part (i) there are 8 edges of G outside a maximal forest; hence
B < |E(G)].

Since every edge of GG is in a cycle, by the axiom of choice we can choose
a cycle C(e) containing e for each edge e of G. Let € = {C(e) : e € E(G)}.
The total number of pairs (f,C) such that f € C' € € is no more than N.|€| <
Ro.|€(G)| = Np.5 = B. This number of pairs is not less than the number of edges,
so |[E(G)| < . It follows that G has exactly 8 edges.

iii) Let F' be a maximal forest of G. By part (i), |E(G) \ E(F)| = 8. By
adding any edge e from E(G)\ E(F) to F we get a cycle C. Removing any edge
other than e from the cycle C gives a new maximal forest which differs by exactly
one edge with F. The number of maximal forests we get in this way is £1(G)
because there are §1(G) ways to choose e and a finite number of edges of C' to
choose to remove, and £;(G) is infinite. Thus we get S maximal forests of G,
each of which differs by exactly one edge with F. Every such maximal forest is
generated by this construction. Therefore, the degree of any vertex in F(G) is f.

iv) Let A be a connected component of F(G). As F(G) is f-regular by
part (iii), it follows that [V (A)] > B. Fix a vertex v in A and define the n'®
neighborhood D,, = {v' : d(v,v") = n} for each n in N. Since every vertex has
degree 8, |Do| = 1, |Di1| = B and |Dg| < B|Dg—_1|. Thus, by induction on n,
|Dy| < B for n > 0.

Since A is connected, it follows that V(A) = U;enuqoy Dis i-e., V(A) is the
countable union of sets of order 3. Therefore |A| = 3, as [N|.3’ = . Hence any
connected component of F(G) has 8 vertices. By Lemma 2.6 it has 8 edges.

v) By parts (ii, iv) the order of F(G) is 2° and the order of each component
of F(G) is B. Since |F(G)| = 2%, F(G) has at most 2° components. Suppose that
F(G) has ' components where 3/ < 2%, As each component has § vertices, it
follows that F(G) has order at most 8'.8 = max{f’, 3}. This is a contradiction
to part (ii). Therefore F(G) has exactly 2° components.

vi) Let A be a component of F(G). Since it is infinite, by part (iv) it has
exactly 8 edges. Suppose that |€(A)| = f’. Then ' is at most the number of
finite subsets of E(A), which is g since |E(A)| = [ is infinite; that is, ' < 3.
By the argument in part (iii) every edge of F(G) lies on a cycle. The length of
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each cycle is finite. Thus A has at most No." = max{f’,Rg} = ' edges if ' is
infinite and it has a finite number of edges if 4’ is finite. Since |F(A)| = 8, which
is infinite, 3’ > 3. We conclude that 3’ = .

vii) By parts (v, vi) F(G) has 2° components and each component has j3
cycles. Since every cycle is contained in a component, |€(F(G))| = 3.2° =2°. =

From the above proposition it follows that an infinite graph cannot be a
forest graph unless every component has the same infinite order 8 and there are
28 components. A consequence is that the infinite graph itself must have order
28 Hence,

Corollary 3.2. Any infinite graph whose order is not a power of 2, including Ng
and all other limit cardinals, is not a forest graph.

Corollary 3.3. For a graph G the following statements are equivalent.
i) F(G) is connected.

ii) F(QG) is finite.

iii) The union of all cycles in G is a finite graph.

Proof. (i) = (iii). Suppose that F(G) is connected. If G has infinitely many
cycles then by Proposition 3.1(v) F(G) is disconnected. Therefore G has finitely
many cycles. Let A = {e € E(G) : edge e lies on a cycle in G}. Then |A] is finite
because the length of each cycle is finite. That proves (iii).

(ili) = (ii). As every maximal forest of G consists of a maximal forest of
A and all the edges of G which are not in A, G has at most 2" maximal forests
where n = |A|. Hence F(G) has a finite number of vertices and consequently is
finite.

(ii) = (i). By identifying vertices in different components (Whitney vertex
identification; see Section 4) we can assume G is connected so F(G) = T(G).
Cummins [2] proved that the tree graph of a finite graph is Hamiltonian; therefore
it is connected. ]

4. F-RooTts

In this section we establish properties of F-roots of graphs. We begin with the
question of what an F-root should be.

Since any graph H’ that is isomorphic to an F-root H of G is immediately
also an F-root, the number of non-isomorphic F-roots is a better question than
the number of labeled F-roots. We now show in some detail that a still better
question is the number of non-isomorphic F-roots without isthmi.
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Let tg be the number of non-isomorphic rooted trees of order 5. We note
that tx, > 2% by a construction of Reinhard Diestel (personal communication,
July 10, 2015). (We do not know a corresponding lower bound on g for 5 > Ry.)
Let P be a one-way infinite path whose vertices are labelled by natural numbers,
with root 1; choose any subset S of N and attach two edges at every vertex in
S, forming a rooted tree Tg (rooted at 1). Then S is determined by Ts because
the vertices in S are those of degree at least 3 in Ts. (If 2 € S but 1 ¢ S, then
vertex 1 is determined only up to isomorphism by T, but S itself is determined
uniquely.) The number of sets S is 2%, hence ty, > 2%°.

Proposition 4.1. Let G be a graph with an F-root of order .. If o is finite, then
G has infinitely many non-isomorphic finite F-roots. If a is finite or infinite, then
G has at least tg non-isomorphic F-roots of order B for every infinite 8 > «.

Proof. Let G be a graph which has an F-root H, i.e., F(H) = G, and let « be
the order of H. We may assume H has no isthmi and no isolated vertices unless
it is Kl.

Suppose « is finite; then let T" be a tree, disjoint from H, of any finite order
n. ldentify any vertex v of H with any vertex w of T. The resulting graph Hr
also has G as its forest graph since T is contained in every maximal forest of Hrp.
As the order of Hy is @« +n — 1 and n can be any natural number, the graphs
Hrp are an infinite number of non-isomorphic finite graphs with the same forest
graph up to isomorphism.

Suppose « is finite or infinite and 8 > « is infinite. Let T" be a rooted tree of
order 8 with root vertex w; for instance, T' can be a star rooted at the star center.
Attach T to a vertex v of H by identifying v with the root vertex w. Denote
the resulting graph by Hr; it is an F-root of G and it has order 8 because it
has order « + 3, which equals 8 because  is infinite and 8 > «. As H has no
isthmi, 7" and w are determined by Hrp; therefore, if we have a non-isomorphic
rooted tree T" with root w’ (that means there is no isomorphism of 7' with 7" in
which w corresponds to w'), Hyv is not isomorphic to Hp. (The one exception is
when H = K7, which is easy to treat separately.) The number of non-isomorphic
F-roots of G of order 3 is therefore at least the number of non-isomorphic rooted
trees of order 3, i.e., tg. [ |

Proposition 4.1 still does not capture the essence of the number of F-roots.
Whitney’s 2-operations on a graph G are the following [17]:

(1) Whitney vertex identification. ldentify a vertex in one component of G
with a vertex in a another component of GG, thereby reducing the number
of components by 1. For an infinite graph we modify this by allowing
an infinite number of vertex identifications; specifically, let W be a set of
vertices with at most one from each component of G, and let {W; : i € I}
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305 be a partition of W into |I| sets (where I is any index set); then for each
396 1 € I we identify all the vertices in W, with each other.
307 (2) Whitney vertex splitting. The reverse of vertex identification.

308 (3) Whitney twist. If u,v are two vertices that separate G—that is, G =

399 G1UGy where G1NGy = {u,v} and |V(G1)|, |[V(G2)| > 2, then reverse the
400 names u and v in G and then take the union G; UG5 (so vertex u in Gy is
a01 identified with the former vertex v in G2 and v with the former vertex u).
402 Call the new graph G’. For an infinite graph we allow an infinite number
403 of Whitney twists.

ss It is easy to see that the edge sets of maximal forests in G and G’ are identical,
w5 hence F(G) and F(G') are naturally isomorphic. It follows by Whitney vertex
w06 identification that every graph with an F-root has a connected F-root, and it
a7 follows from Whitney vertex splitting that every graph with an F-root has an
as  F-root without cut vertices.

400 We may conclude from Proposition 4.1 that the most interesting question
a0 about the number of F-roots of a graph G that has an F-root is not the total
a1 number of non-isomorphic F-roots (which by Proposition 4.1 cannot be assigned
a2 any cardinality); it is not the number of a given order; it is not even the number
a3 that have no isthmi; it is the number of non-2-isomorphic, connected F-roots
s1a - with no isthmi and (except when G = K7) no isolated vertices.

415 We do not know which graphs have F-roots, but we do know two large classes
a6 that cannot have F-roots.

a7 Theorem 4.2. No infinite connected graph has an F-root.

a5 Proof. This follows by Corollary 3.3. ]

a9 Theorem 4.3. No bipartite graph G has an F-root.

20 Proof. Let G be a bipartite graph of order p (p > 2) and let H be a root
w21 of G, ie., F(H) = G. Suppose H has no cycle; then F(H) is K;, which is a
42 contradiction. Therefore H has a cycle of length > 3. It follows by Lemma 2.8
23 that F(H) contains K3, a contradiction. Hence no bipartite graph G has a root.
24 N

425 5. F-CONVERGENCE AND F-DIVERGENCE

426 In this section we establish the necessary and sufficient conditions for F-convergence
427 of a graph.
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Lemma 5.1. Let G be a finite graph that contains a Cy, (for n > 4) or at least
two edge disjoint triangles; then G is F-divergent.

Proof. Let G be a finite graph. By Lemma 2.11, F"(G) contains K,,2 as a
subgraph. Therefore, as m increases the clique size of F"(G) increases. Hence
G is F-divergent. [

Lemma 5.2. If |€(G)| = B where (3 is infinite, then G is F-divergent.

Proof. Assume |€(G)| = 8 (B infinite). By Proposition 3.1(vii), as 2% < 227 <

2

227 < ... it follows that [€(F(GQ))| < |€(F*(Q))| < |€(F3(Q))| < ---. There-
fore, as n increases |€(F"(G))| increases. Hence G is F-divergent. [ ]

Theorem 5.3. Let G be a graph. Then,

i) G is F-convergent if and only if either G is acyclic or G has only one cycle,
which is of length 3.

ii) If G is F-convergent, then it converges in at most two steps.

Proof. i) If G has no cycle, then it is a forest and F(G) is K;. If G has only one
cycle and that cycle has length 3, then F(G) is K3. Therefore in each case G is
F-convergent.

Conversely, suppose that G has a cycle of length greater than 3 or has at
least two triangles. If G has infinitely many cycles, then it follows by Lemma 5.2
that G is F-divergent. Therefore we may assume that G has a finite number of
cycles. If G has a finite number of vertices, then it is finite and by Lemma 5.1
it is F-divergent. Therefore G has an infinite number of vertices. However, it
can have only a finite number of edges that are not isthmi, because each cycle
is finite. Thus G consists of a finite graph G and any number of isthmi and
isolated vertices. Since F(G) depends only on the edges that are not isthmi and
the vertices that are not isolated, F(G) = F(Gy) (under the natural identification
of maximal forests in Gy with their extensions in G by adding all isthmi of G).
Therefore, G is F-divergent.

ii) If G has no cycle, then G is a forest and F(G) = F?(G) = K;. If G has
only one cycle, which is of length 3, then F(G) = F?(G) = Kj. Therefore G
converges in at most 2 steps. ]

Corollary 5.4. A graph G is F-stable if and only if G = K1 or Ks.

6. F-DEPTH

In this section we establish results about the F-depth of a graph.
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Theorem 6.1. Let G be a finite graph. The F-depth of G is infinite if and only
if G is K1 or Ks.

Proof. Let G be a finite graph. Suppose that G is K1 or K3. Then by Corollary
5.4, it follows that G is F-stable. Therefore, the F-depth of G is infinite.

Conversely, suppose that G is different from Ky and Kj.

Case 1: Let |[V| < 4. Then G has no F-root so its F-depth is zero.

Case 2: Let |V| = 4. Suppose G has an F-root H (i.e., F(H) = G). Then
H should have exactly 4 maximal forests. That is possible only when H has only
one cycle, which is of length 4. By Lemma 2.8 it follows that F(H) contains Ky,
hence it is K4. Therefore G has an F-root if and only if it is K4. Hence the
F-depth of G is zero, except that the depth of Ky is 1.

Case 3: Let |[V| = n where n > 4. Suppose that G has infinite F-depth.
Then for every m there is a graph H,, such that ¥ (H,,) = G. If H,, does not
have two triangles or a cycle of length greater than 3, then H,, has only one
cycle which is of length 3, or no cycle and H,, converges to K; or K3 in at most
two steps, a contradiction. Therefore H,, has two triangles or a cycle of length
greater than 3. By Lemma 2.11 it follows that F™(H,,) contains K,,2 for each
m > 2, so that in particular F"(H,,) contains K,2. That is, G contains K.
This is impossible as G has order n. Hence the F-depth of G is finite. [

Theorem 6.2. The F-depth of any infinite graph is finite.

Proof. Let G be a graph of infinite order a. If G has an F-root, then G is
without isthmi or isolated vertices.

If G is connected, Theorem 4.2 implies that G has no root. Therefore its
F-depth is zero.

If G is disconnected, assume it has infinite depth. Then for each natural
number n there exists a graph H, such that G = F"(H,,). Let (3, denote the
order of H,. Since F(H;) = G, by Proposition 3.1(ii) a = 2%, from which we
infer that 51 < «. This is independent of which root Hj is, so in particular we can
take H; = F(Hz) and conclude that 8; = 262 hence that 8y < B;. Continuing in
like manner we get an infinite decreasing sequence of cardinal numbers starting
with a. The cardinal numbers are well ordered [9], so they cannot contain such
an infinite sequence. It follows that the F-depth of G must be finite. [ |
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