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Abstract. A magic labelling of a set system is a labelling of its points by distinct positive integers so
that every set of the system has the same sum, the magic sum. Examples are magic squares (the sets are the
rows, columns, and diagonals) and semimagic squares (the same, but without the diagonals). A magilatin
labelling is like a magic labelling but the values need be distinct only within each set. We show that the
number of n × n magic or magilatin labellings is a quasipolynomial function of the magic sum, and also
of an upper bound on the entries in the square. Our results differ from previous ones because we require
that the entries in the square all be different from each other, and because we derive our results not by ad
hoc reasoning but from a general theory of counting lattice points in rational inside-out polytopes. We also
generalize from set systems to rational linear forms.
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1. It’s all kinds of magic

We offer a theory for counting magic squares and their innumerable relatives: semimagic
and pandiagonal magic squares, magic cubes and hypercubes, magic graphs, and magical
oddities like circles, spheres, and stars [1, 2].

A magic square is an n × n array of distinct positive integers whose sum along any line
(row, column, or main diagonal) is the same number, the magic sum. Magic squares date
back to China in the first millenium B.C.E. [7], came in the first millenium C.E. to the Islamic
world and India [8], and passed to Europe in the later Middle Ages [8] and to sub-Saharan
Africa not much after [18]. The contents of a magic square have varied with time and writer;

1The research of the first author was partially supported by a San Francisco State University summer
stipend.
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usually they have been the first n2 consecutive positive integers (standard squares), but often
any arithmetic sequence and sometimes fairly arbitrary numbers. The fixed ideas are that
they are integers, positive (or rarely, nonnegative), and distinct. Even the mathematical
treatises [1, 2, 6] take positivity and distinctness so much for granted as never to mention
them.

In the last century mathematicians took an interest in results about the number of squares
with a fixed magic sum, but with simplifications. Thus diagonal sums were usually omitted
and, most significantly, the fundamental requirement of distinctness was almost invariably
neglected. Our work, however, follows tradition by adhering to the distinctness requirement.
We shall call a square magic (or strongly magic) if its entries are distinct and weakly magic
if they need not be distinct; and strongly or weakly semimagic if the diagonals are ignored.

The literature on exact formulas examines the functions W (t) and W0(t) that count posi-
tive and nonnegative weak semimagic or magic squares with magic sum t. These functions are
amenable to analysis in terms of Ehrhart theory [9]. (See for example [10, 14] for semimagic
squares; for magic squares see [3].) One treats a square with upper bound or magic sum t

as an integer vector x ∈ t · [0, 1]n
2
, confined to the subspace ts, where t = 1, 2, 3, . . . and

s := {x ∈ Rn2

: all line sums equal 1},

the magic subspace. (Exactly which subspace this is depends on whether we treat squares
that are semimagic, magic, pandiagonal magic [where we include among the line sums the
wrapped diagonals], or of another type.) Thus a square x is an integer lattice point in the

t-dilate tP of the magic polytope P := [0, 1]n
2 ∩ s; moreover, x ∈ tP ◦, the relative interior of

P , if and only if the square is positive.
Ehrhart’s fundamental results on integer-point enumeration in polytopes [9] give much

insight. Ehrhart theory implies that W and W0 are quasipolynomials in t. (A quasipoly-

nomial is a function Q(t) =
∑d

0 cit
i with coefficients ci that are periodic functions of t, so

that Q is a polynomial on each residue class modulo some integer, called the period ; these
polynomials are the constituents of Q.) The quasipolynomials are polynomials (that is, the
periods are 1) in the semimagic case, because the matrix that defines s is totally unimodular
so the vertices of P are all integral. In the magic case this is unfortunately not so and the
period is not easy to calculate.

Still there were no exact (theoretical) formulas for strong squares (not even in the com-
prehensive tome [13]), with the exception of Stanley’s [16, Exercise 4.10]. With the theory
of inside-out polytopes [4] we can attack this and related counting problems in a systematic
way, obtaining a general result about magic counting functions and an interpretation of reci-
procity that leads to a new kind of question about permutations. In inside-out theory we
supplement the polytope P = [0, 1]n

2 ∩ s with the pair-equality hyperplane arrangement

H := H[Kn2 ]s = {hij ∩ s : i < j ≤ n2},

where hij is the hyperplane xi = xj, H[Γ] := {hij : ij ∈ E} is the hyperplane arrangement
of the graph Γ with edge set E, and Kd denotes the complete graph on d nodes. The
number of n × n squares corresponding to s with magic sum t is the number of integer
points in t (P ◦ \

⋃
H). This is a quasipolynomial in t by the general theory of inside-out

polytopes. Then inside-out reciprocity [4] gives the enumeration of weak nonnegative squares
with multiplicity; this is reminiscent of Stanley’s theorem on acylic orientations [15].
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Another famous kind of square is latin squares and their relatives. Here each line has n
different numbers. In a latin square these n numbers are the same in every line and are
normally taken to be the first n positive integers. In any latin square in this broad meaning,
every line has the same sum. Suppose we add this property to the definition of a latin square
but we loosen the restriction on the entries, so that the square is filled with positive integers
having equal row and column sums. We call such squares magilatin. Then a magilatin square
is a point in Zn2

; the only difference between a semimagic and a magilatin strong square is
that we assume fewer nonequalities between the entries; while in a semimagic square each
entry must differ from every other, in a magilatin square it must differ only from those
that are collinear with it, a line being a row or column. As with magic and semimagic
squares, inside-out polytope theory yields theorems about the number of magilatin squares
as a function either of the magic sum or of the largest allowed value of an entry in the square.

There is a parallel generalization of latin rectangles. A latin rectangle is an m× n rectan-
gular array filled by n symbols, none repeated in a row or column. The asymptotic numbers
of latin squares and rectangles of given dimensions have been the subject of many studies.
Our geometric counting method leads in a different direction that, as far as we know, has
not been studied. Define a magilatin rectangle to be an m×n array of positive integers with
all row sums equal and all column sums equal, but with no repeated values in any row or
column. We discuss the number of magilatin squares or rectangles of fixed dimensions as we
vary the maximum permitted value.

The magic and latin properties generalize far beyond squares and rectangles. Semimagic
and pandiagonal magic squares suggest a general picture: that of a covering clutter, consisting
of a finite set X of points together with a family L of subsets, called lines for no particular
reason, of which none contains any other and none is empty, and whose union is X. We
want to assign positive integers to X so that all line sums are equal to a single number.
Such a labelling is called a weakly or strongly magic or latin labelling of the covering clutter,
depending on the particular requirements. There are many interesting examples, that we
cannot treat individually here; but we mention three:

• A finite affine or projective geometry, the “lines” being the subspaces of any fixed
dimension; more generally, a block design.

• An n× n× · · · × n hypercubical array.
• A k-net, where the lines fall into k parallel classes (with k ≥ 2) so that each point

belongs to a unique line in each parallel class. (A semimagic square is a 2-net and a
pandiagonal square is a kind of 4-net.)

These examples have lines of equal size, a property that has advantages but is not necessary
for the theory to apply. Consider for instance magic graphs [11, Section 5.1], where the edges
are assigned positive integers so that the sum of labels of all edges incident to a node is the
same for every node. The lines are the vertex stars; they have equal size only for a regular
graph.

These ideas generalize still further. Take rational linear forms f1, f2, . . . , fm. A magic
labelling of [d] := {1, 2, . . . , d} with respect to f1, f2, . . . , fm is an integer point x ∈ Rd such
that all the values fi(x) are equal to the same number. The analog here of a covering clutter
in which all lines have the same size is a system of forms for which all values fi(1) (the
weights ; 1 is the vector of all ones) are equal; such systems have nice properties.
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We treat two distinct interesting approaches to enumeration. Traditionally, magic and
semimagic squares have been counted with the magic sum as the parameter (due to its geo-
metrical interpretation we call this affine counting); but another tack is to take as parameter
the maximum allowed value of a label (which we call cubical counting). These same two
systems apply to latinity. In our treatment we develop both counting systems equally.

The reader may wonder how practical our counting method is. We believe it is relatively
feasible. In [5] we apply it to solve in utter detail six problems of 3 × 3 squares: magic,
semimagic, and magilatin (all strong), counted both cubically and affinely.

2. Inside-out polytopes take the stage

The theory of inside-out polytopes [4] is designed to count those points of the integral
lattice Zd that are contained in a rational convex polytope P but not in a rational affine
hyperplane arrangement H, that is, where each hyperplane is spanned by the rational points
it contains. We call (P, H) a rational inside-out polytope, closed if P is closed. We shall
always assume P is closed, except when we specifically state otherwise. The affine span aff P
may be a proper subspace of Rd.

A region of H is a connected component of Rd \
⋃

H. A closed region is the closure of a
region. A region of (P, H) is the nonempty intersection of a region of H with P . A vertex
of (P, H) is a vertex of any such region. Note that a closed region of (P, H) is the closure of
an open region of (P, H) and therefore meets the relative interior P ◦. The denominator of
(P, H) is the smallest positive integer t for which t−1Zd contains every vertex of (P, H).

The fundamental counting functions associated with (P, H) are the closed Ehrhart quasipoly-
nomial,

EP,H(t) :=
∑

x∈t−1Zd

mP,H(x),

where P is closed and the multiplicity mP,H(x) of x ∈ Rd with respect to H is defined
through

mP,H(x) :=

{
the number of closed regions of (P, H) that contain x, if x ∈ P,

0, if x /∈ P,

and the open Ehrhart quasipolynomial,

E◦
P ◦,H(t) := #

(
t−1Zd ∩ [P ◦ \

⋃
H]

)
.

We denote by vol P the volume of P normalized with respect to Zd ∩ aff P , that is, we
take the volume of a fundamental domain of Zd ∩ aff P to be 1. When P is full dimensional
this is the ordinary volume.

Theorem 2.1 ([4, Theorem 4.1]). If (P, H) is a closed, full-dimensional, rational inside-
out polytope in Rd, then EP,H(t) and E◦

P ◦,H(t) are quasipolynomials in t that satisfy the

reciprocity law E◦
P ◦,H(t) = (−1)dEP,H(−t), with period equal to a divisor of the denominator

of (P, H), with leading term (vol P )td, and with constant term EP,H(0) equal to the number
of regions of (P, H).

In particular, if (P, H) is integral then EP,H and E◦
P ◦,H are polynomials.
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The Möbius function of a finite partially ordered set S is the function µ : S × S → Z
defined recursively by

µ(r, s) :=


0 if r 6≤ s,

1 if r = s,

−
∑

r≤u<s µ(r, u) if r < s.

Sources are, inter alia, [12] and [16, Section 3.7].
The intersection semilattice of H is defined as

L(H) :=
{⋂

S : S ⊆ H and
⋂

S 6= ∅
}
,

ordered by reverse inclusion (so the whole space Rd, the intersection of no hyperplanes, is
the bottom element 0̂). Its members are the flats of H. The intersection poset of (P ◦, H) is
defined as

L(P ◦, H) :=
{
P ◦ ∩

⋂
S : S ⊆ H

}
\

{
∅

}
,

ordered by reverse inclusion. The intersection poset is a ranked poset and every interval is
a geometric lattice. It equals L(H) if

⋂
H meets P ◦.

The arrangement induced by H on s ⊆ Rd is

Hs := {h ∩ s : h ∈ H, h 6⊇ s, h ∩ s 6= ∅}.

For the second theorem we need the notion of transversality. The arrangement H is
transverse to P if every flat u ∈ L(H) that intersects P also intersects P ◦, and P does not
lie in any of the hyperplanes of H. Let

EP (t) := #
(
tP ∩ Zd

)
,

the standard Ehrhart counting function (without any hyperplanes present).

Theorem 2.2 ([4, Theorem 4.2]). If P and H are as in Theorem 2.1, then

E◦
P ◦,H(t) =

∑
u∈L(P ◦,H)

µ(0̂, u)EP ◦∩u(t), (2.1)

and if H is transverse to P ,

EP,H(t) =
∑

u∈L(P ◦,H)

|µ(0̂, u)|EP∩u(t). (2.2)

Often the polytope is not full-dimensional. Suppose that s is any affine subspace. Its
period p(s) is the smallest positive integer p for which p−1Zd meets s.

Corollary 2.3 ([4, Corollary 4.3]). Let P be a rational convex polytope and H a hyperplane
arrangement in s := aff P . Then EP,H(t) and E◦

P ◦,H(t) are quasipolynomials in t that satisfy

the reciprocity law E◦
P ◦,H(t) = (−1)dim sEP,H(−t). Their period is a multiple of p(s) and

a divisor of the denominator of (P, H). If t ≡ 0 mod p(s), the leading term of EP,H(t)
is [vol p(s)P ]tdim s and its constant term is the number of regions of (P, H); but if t 6≡ 0
mod p(s), then EP,H(t) = E◦

P ◦,H(t) = 0. �

Note that vol p(s)P is defined with respect to the integer lattice in the dilation p(s)s of
the affine subspace s.
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3. Magic squares, magic labellings of covering clutters, and equal line
sums

3.1. Sorts of magic. We pointed out in the introduction that the difference between weak
and strong magic (or semimagic) squares lies in the fact that for the latter we require the
entries to be distinct. We will therefore spend the beginning of this section studying the
general setting of integer points in polytopes with distinct entries.

We have a convex polytope P ⊆ Rd, spanning an affine subspace s. To ensure distinctness
of the coordinates of a vector we avoid the hyperplanes of H := H[Kd]

s, the complete-graph
arrangement H[Kd] intersected with s. Transversality of H and P means that, first of all, s
is not a subspace of any hyperplane xj = xk and, secondly, any flat of H[Kd] that meets P
also meets P ◦. In many of the interesting special cases the latter condition is automatic.

Suppose x is a point in Rd whose entries are all distinct. There is a unique permutation
τ of [d] such that xτ1 < xτ2 < · · · < xτd. We say x realizes τ . We call a permutation σ
realizable in a subset A ⊆ s if there is a vector x ∈ A that realizes it. We are interested
in realizability in P , but realizability in s is simpler. Fortunately, a permutation that is
realizable in s is also realizable in P if P contains a positive multiple of 1 := (1, 1, . . . , 1),
since every closed region of H contains 〈1〉. This is the case when every form has equal
positive weight.

If x ∈ Rd satisfies xσ1 ≤ xσ2 ≤ · · · ≤ xσd, we say x and σ are compatible.

Theorem 3.1. Suppose P ⊆ Rd is a closed, rational convex polytope transverse to H[Kd]
and s := aff P . The number E◦

P ◦,H[Kd]s(t) of integer points in tP ◦ with distinct entries

is a quasipolynomial in positive integers t with leading term (vol P )tdim s. Furthermore,
(−1)dim sE◦

P ◦,H[Kd]s(−t) = EP,H[Kd]s(t) := the number of pairs (x, σ) consisting of an in-

teger point x ∈ tP and a compatible P -realizable permutation σ of [d]. The constant term of
EP,H[Kd]s(t) equals the number of permutations of [d] that are realizable in P .

Proof. The first statement is a direct consequence of Corollary 2.3 along with the observation
that, by transversality, a region that intersects P must also intersect P ◦. For the second, the
multiplicity m(x) of x equals the number of closed regions of H[Kd]

s that contain x. The
regions of H[Kd]

s correspond to certain regions of H[Kd], which correspond to permutations
of [d]. Clearly, a closed region contains x if and only if its permutation is compatible with
x. Thus, m(x) is the number of permutations that are both realizable in P and compatible
with x. Now appeal to Corollary 2.3. �

Problem 3.2. The period and denominator present a puzzle. The denominator of the inside-
out polytope (P, H[Kd]) is obviously a multiple of the denominator of the standard polytope
P . The first question is when the hyperplane arrangement H[Kd] changes this latter de-
nominator, and in what way. As for the period, if in particular P has integral vertices then
EP is a polynomial. What conditions on P ensure that (P, H[Kd]) is also integral, so that
EP,H[Kd] is a polynomial? That it need not be is illustrated by the simple example of the
line segment from (0, 1) to (1, 0) in R2 and the hyperplane x1 = x2.

Our desire to develop the ideas behind magic squares and graphs suggests two approaches
to choosing P and s. The subspace, s, represents the existence of a magic sum. The polytope,
P , represents the constraints on the entries in the value vector. The magic sum constraints
may be pure equalities:

(i) Set all linear forms equal to each other. (Homogeneous equations.)
6



Or, they may be set all equal to a controlled constant:

(ii) Set all linear forms equal to t. (Affine equations.)

(Sometimes one wants additional equations; see the discussion of centrally symmetric squares
in Examples 3.9 and 3.19.) Similarly, the constraints on the components of x may be two-
sided bounds:

(I) All variables xi satisfy 0 ≤ xi ≤ t. (Cubical constraints.)

Or, the constraints may be merely nonnegativity of the variables:

(II) All variables xi ≥ 0. (Nonnegativity.)

We think the natural combinations are (i) with (I) and (ii) with (II) and that is how we
develop the theory.

3.2. Cubical magic. The cubical approach to magic squares counts them by the largest
allowed value of the entry in a cell; if t is the parameter, the squares counted are those with
entries 0 < yij < t.

In the general situation the magic subspace s is defined by homogeneous, rational linear
equations

f1(x) = f2(x) = · · · = fm(x) = 0. (3.1)

These are obviously equivalent to (i), if the forms in (3.1) are the differences of the forms of
(i). The magic polytope is

P := [0, 1]d ∩ s,

whence the name “cubical”. The hyperplane arrangement is H := H[Kd]
s. In the example

of magic squares, P is the set of all square matrices with real entries in [0, 1] such that all
row, column, and diagonal sums are equal. For magic graphs, P is the set of edge labellings
by numbers in [0, 1] such that all node sums are equal.

One has to be sure that P spans s.

Lemma 3.3. If P is not contained within a coordinate hyperplane, it affinely spans the
magic subspace s.

Proof. First, P contains a point of the open hypercube (0, 1)d. By the hypothesis P contains
points xi (not necessarily distinct) with 0 < (xi)i ≤ 1. The barycenter x of these points lies
in (0, 1]d and in P . Then 1

2
x ∈ P ∩ (0, 1)d.

Therefore P does not lie in the union of the coordinate hyperplanes and the hyperplanes
xi = 1. Since P is bounded by those hyperplanes, P ◦ = (0, 1)d ∩ s, which spans s because it
is nonvoid. �

If P is contained in a coordinate hyperplane, one should reformulate the problem with
fewer variables.

Now for the main theorem on cubical magic. The magic subspace s ⊆ Rd is given by (3.1);
the polytope is P := [0, 1]d ∩ s. For t = 1, 2, . . . let

B◦(t) := the number of integer points x ∈ s with distinct entries that satisfy 0 < xi < t,

and let

B(t) := the number of pairs (x, σ) consisting of an integer point x ∈ s that satisfies
0 ≤ xi ≤ t and a compatible s-realizable permutation σ of [d].
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Theorem 3.4 (Magic enumeration by bounds). Suppose P := [0, 1]d∩s does not lie within a
coordinate hyperplane. Then B◦ and B are quasipolynomials with leading term (vol P )tdim s

and with constant term B(0) equal to the number of permutations of [d] that are realizable
in s. Furthermore, (−1)dim sB◦(−t) = B(t).

Proof. Theorem 3.1 shows that B = EP,H and B◦ = E◦
P ◦,H are reciprocal quasipolynomials.

The constant term equals the number of permutations that are realizable in P . To prove
these are the same permutations that are realizable in s, we show that a permutation realized
in s is realized by a point in P ◦.

That a permutation σ is realized in s means that it is realized by a region R of H[Kd]
s.

Each region R′ of H[Kd] meets every neighborhood of 〈1〉 =
⋂

H[Kd]; thus, it meets (0, 1)d.
Consequently, R′ ∩ s, if nonvoid, intersects (0, 1)d ∩ s, which is P ◦ by Lemma 3.3. Choosing
R′ so that R = R′ ∩ s, it follows that R ∩ P ◦ is nonempty. Any point in it realizes σ. �

Most interesting is the case in which all the forms fi have weight zero. It is precisely then
that H and P are transverse, as one can see by comparing the subspace

⋂
H = 〈1〉 ∩ s with

the definition of transversality; moreover, then P spans s.

Theorem 3.5. With s defined by forms of weight zero, and assuming a magic labelling exists,
we have

B◦(t) =
∑

u∈L(P ◦,H)

µ(0̂, u)E(0,1)d∩u(t) ,

B(t) =
∑

u∈L(P ◦,H)

|µ(0̂, u)|E[0,1]d∩u(t) ,

where µ is the Möbius function of L(P ◦, H).

Proof. Apply Theorem 2.2 in s. A magic labelling exists if and only if s does not lie in any
hyperplane xj = xk. �

A flat u ∈ L(H) has the form v∩s where v is given by a series of equations of coordinates:
xi1 = xi2 = · · · = xip , xj1 = xj2 = · · · = xjq , etc.; that is, v corresponds to a partition π of
X. We can treat these equations as eliminating the variables xi2 , . . . , xip , xj2 , . . . , xjq , . . . in

favor of xi1 , xj1 , . . . . With this substitution, v = Rd′ for some d′ < d and [0, 1]d∩ v = [0, 1]d
′
.

Then [0, 1]d ∩ u is essentially [0, 1]d
′ ∩ s′, where s′ is s after identifying variables. Similar

remarks apply to L(P ◦, H), since its members are the nonvoid intersections with P ◦ of flats
of H.

We describe some of the most interesting examples, concluding with the two best known.

Example 3.6 (Lines of constant length). In a covering clutter (X, L), suppose every line has
the same number of points. Then the linear equations that express the existence of a magic
sum take the form ∑

j∈L1

xj =
∑
j∈L2

xj for all L1, L2 ∈ L .

Theorems 3.4 and 3.5 both apply: B◦(t) and B(t) are reciprocal quasipolynomials in the
upper bound t, they have leading term (vol P )tdim s, B(0) is the number of permutations that
can be realized by magic labellings of (X, L), and B(t) and B◦(t) reduce through Möbius
inversion to ordinary Ehrhart quasipolynomials. Examples include magic, semimagic, and
pandiagonal magic squares, affine and projective planes, k-nets, and magic hypercubes with
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or without diagonals of various kinds, as well as magic labelling of regular graphs. One
has to ask about the existence of a magic labelling. There is no known general answer, but
certainly there exist magic and semimagic squares of all orders n ≥ 3 and pandiagonal magic
squares of all orders n ≥ 4, using the standard entries {1, 2, . . . , n2} if n 6≡ 2 mod 4 (see [2,
pp. 203–211]).

For a general covering clutter only Theorem 3.4 applies. If it has magic labellings at all,
the problems of existence and characterization of realizable permutations come to the fore.
An example of nonexistence is the Fano plane. Examples of existence are magic squares of
size n ≥ 3. Regarding characterization we propose a conjecture. We may assume X = [d].
Given a covering clutter, a magic permutation (with respect to the covering clutter) is a
permutation of [d] that is realizable by a positive point x ∈ P . Obviously, x can be chosen to
be rational if it exists at all. In the cubical situation we are discussing here, all points in P ◦

are positive, so magic permutations are identical to P -realizable and therefore to s-realizable
permutations. A permutation σ of [d] defines a reverse dominance order on the power set
P([d]) by

L 4σ L′ if, when L and L′ are written in decreasing order according to σ, say
L = {σj1, . . . , σjl} where j1 > · · · > jl and L′ = {σj′1, . . . , σj′l′} where j′1 > · · · > j′l′ ,
then l ≤ l′ and j1 ≤ j′1, . . . , jl ≤ j′l.

This is a partial order on P([d]).

Conjecture 3.7 (Magic permutations). A permutation σ of [d] is realizable by a positive point
in the magic subspace s of the covering clutter ([d], L) if and only if L is an antichain in the
reverse dominance order due to σ.

The archetype is magic squares, where a magic permutation is a permutation of the cells
of the square that is obtained from some magic labelling by arranging the cells in increasing
order. We have verified the conjecture for 3 × 3 magic and semimagic squares (Examples
3.11 and 3.12).

A permutation being a total order on [d], one could generalize to total preorders, in which
the antisymmetric law is not required. We propose that the conjecture remains true when
permutations are replaced by total preorders.

The necessity for L to be an antichain is obvious. It is the same with the extension to
linear forms. Such a form is positive if all its coefficients are positive numbers. We define
the reverse dominance order due to σ on the set of positive linear forms on Rd by

f 4σ f ′ if, writing f =
∑d

k=1 akxk and f ′ =
∑d

k=1 a′kxk, then

d∑
k=j

aσk ≤
d∑

k=j

a′σk for every j = 1, 2, . . . , d.

Conjecture 3.8 (Magic permutations for linear forms). Let f1, . . . , fm be positive forms on
Rd and s the subspace on which they are all zero. A permutation σ of [d] is realizable by a
positive point in s if and only if {f1, . . . , fm} is an antichain in the reverse dominance order
of forms.

Example 3.9 (Cubical symmetry). A cubically symmetric magic or semimagic square has the
property that any two cells that lie opposite each other across the center have sum equal to t,
the cell-value bound, and the center cell (if there is one) contains the value 1

2
t. This definition
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is generalized from that of associated square in [1] (symmetrical square in [2]), in which the
entries are 1, 2, . . . , n2 and a symmetrical pair sums to n2 + 1. (Cubical symmetry contrasts
with affine symmetry, which we shall treat shortly.) The novel feature is the additional linear
restraints besides the magic sum conditions: these are yij +yn+1−i,n+1−j = t for all i, j ∈ [m].

Translated into the language of (1/t)-fractional vectors x = t−1y ∈ t−1Zn2
, we require

xij + xn+1−i,n+1−j = 1. (3.2)

The effect is to reduce the magic subspace s to a smaller subspace s′, but Theorems 3.1 and
3.5 apply (with s′ replacing s). In the next lemma we generalize symmetry to fairly arbitrary
covering clutters on the point set [n]2. The definition is the same: we take the magic sum

conditions and the symmetry equations (3.2). The magic subspace s ⊆ Rn2
is defined by

equality of line sums; the cubically symmetric magic subspace, s′, is the affine subspace of s
in which (3.2) is valid; then P = [0, 1]n

2 ∩ s′ and H = H[Kn2 ]s
′
.

Lemma 3.10. If ([n]2, L) is a covering clutter of constant line size such that s′ is not
contained in a hyperplane xij = xkl of H[Kn2 ], and in particular if a cubically symmetric,
strongly magic labelling exists, then P and H are transverse.

Proof. Since 1
2
1 ∈ P ∩

⋂
H, every flat of H intersects P ◦. �

The hypothesis on s′ is satisfied in the case of cubically symmetric magic squares of side
n ≥ 3 because such squares are known to exist, using the values 1, 2, . . . , n2 if n 6≡ 2 mod 4;
in fact, cubically symmetric pandiagonal squares exist if n ≥ 4. See [2, pp. 204–211].

Example 3.11 (Magic squares of order 3: cubical count). Define M◦
c (t) for t = 1, 2, 3, . . . to

be the number of 3 × 3 magic squares in which each cell value is less than t. From [5], the
Ehrhart quasipolynomial is

M◦
c (t) =



t3−16t2+76t−96
6

= (t−2)(t−6)(t−8)
6

if t ≡ 0, 2, 6, 8 mod 12,

t3−16t2+73t−58
6

= (t−1)(t2−15t+58)
6

if t ≡ 1 mod 12,

t3−16t2+73t−102
6

= (t−3)(t2−13t+34)
6

if t ≡ 3, 11 mod 12,

t3−16t2+76t−112
6

= (t−4)(t2−12t+28)
6

if t ≡ 4, 10 mod 12,

t3−16t2+73t−90
6

= (t−2)(t−5)(t−9)
6

if t ≡ 5, 9 mod 12,

t3−16t2+73t−70
6

= (t−7)(t2−9t+10)
6

if t ≡ 7 mod 12.

The constant term of Mc(t) = (−1)3M◦
c (−t) is the number of magic permutations, which

is 16. These permutations are the rotations and reflections of the patterns

(a)
4 9 2
3 5 7
8 1 6

(b)
3 9 2
4 5 6
8 1 7

In these diagrams the numbers are not cell values but rather permutation positions: the
largest value is in the cell marked 9, the next largest in that marked 8, and so on. (To realize

10



the permutations by magic squares, (a) can be left untouched but (b) needs numbers.) The
general form of a magic square is, up to the eight symmetries and an additive constant on
each value,

−β α + β −α

−(α− β) 0 α− β

α −(α + β) β

where α > β > 0 and α 6= 2β. If α > 2β we get the magic permutation (a); if α < 2β we
get (b). This proves there are just 16 magic permutations.

Example 3.12 (Semimagic squares of order 3: cubical count). Let S◦
c (t), for t > 0, be the

number of semimagic squares of order 3 in which every entry is less than t. [5] has exact
formulas. The constant term |Sc(0)| = 1296 = 64 equals the number of 3 × 3 semimagic
permutations, that is, magic permutations for semimagic squares of order 3, in agreement
with Conjecture 3.7. We verified this by hand, finding all semimagic permutations of order
3, based on the fact that a normalized semimagic permutation is a linear extension of the
partial ordering implied by the supernormalized form of a semimagic square developed in
[5].

3.3. Affine magic. The affine approach counts magic squares, and magic labellings in gen-
eral, by the magic sum. In the general situation the magic subspace s is defined by a rational,
nonhomogeneous linear system

f1(x) = f2(x) = · · · = fm(x) = 1 (3.3)

that we assume is consistent. The magic polytope P is the nonnegative part of s, that is,

P := s ∩O,

where O := Rd
≥0, the nonnegative orthant, and the hyperplane arrangement is H := H[Kd]

s.
Affine magic is quite similar to cubical magic, but there is something new: one has to

worry about boundedness of P . Obviously, P is bounded if the defining linear forms fi in
(3.3) are positive and every variable appears in a form. If the latter fails, we are simply in
the wrong dimension, so we make the overall assumption in this section that every variable
appears in at least one form. (A covering clutter satisfies this automatically.) As in the
cubical treatment, one must make sure that P affinely spans s (or else change s in the
theorems to aff P ) and one has to be concerned about transversality of P and H.

Lemma 3.13. If P is not contained within a coordinate hyperplane, it spans s.

Proof. The proof is similar to that of Lemma 3.3. First, P contains a point of the open
positive orthant O◦. By the hypothesis P contains points xi (not necessarily distinct) with
0 < (xi)i ≤ 1. The barycenter x of these points lies in O◦ and in P .

Therefore P does not lie in the union of the coordinate hyperplanes. Since P is bounded
by the coordinate hyperplanes, P ◦ = O◦ ∩ s, which spans s. �

Let s ⊆ Rd be the solution space of (3.3), where the fi are rational linear forms, and let
P := s ∩O. For t = 1, 2, . . ., let

A◦(t) := the number of integer points x ∈ tP with distinct positive entries,

and let
11



A(t) := the number of pairs (x, σ) consisting of a nonnegative integer point x ∈ tP and
a compatible P ◦-realizable permutation σ of [d].

When P is bounded and spans s, Theorem 3.1 applies.

Theorem 3.14 (Magic enumeration by line sums). Suppose that P is bounded and does not
lie within a coordinate hyperplane. Then A◦ and A are quasipolynomials with leading term
(vol P )tdim s and with constant term A(0) equal to the number of permutations of [d] that are
realizable in s. Furthermore, (−1)dim sA◦(−t) = A(t).

Proof. The proof is similar to that of Theorem 3.4. Theorem 3.1 shows that A = EP,H

and A◦ = E◦
P ◦,H are reciprocal quasipolynomials. The constant term equals the number of

permutations that are realizable in P . To prove these are the same permutations that are
realizable in P ◦, we show that a permutation realized in P is realized by a point in P ◦.

Any permutation σ that is realized in P is realized by a region R of H[Kd]
s. Since R is

relatively open in s, R ∩ P ◦ is nonempty; and it realizes σ. �

We want to know when P and H are transverse so that the Möbius-function formulas of
Theorem 2.2 will apply.

Lemma 3.15. Assume P is bounded. P and H are transverse if s is not contained in any
hyperplane xj = xk and all forms fi have equal positive weight.

Proof. We need to verify that for no u ∈ L(H) do we have ∅ 6= P∩u ⊆ ∂P . But P∩u = P∩v
for some v ∈ L(H[Kd]), and ∂P is contained in the union of the coordinate hyperplanes since
they determine the facets of P . If some v∩P lies in a coordinate hyperplane, then the same
is true of v = 〈1〉; but 〈1〉 ∩ P is in a coordinate hyperplane if and only if it is ∅ or {0}.
These are impossible with forms as in (3.3). If the forms have equal weight c > 0, then
〈1〉 ∩ P = {c−11}. �

Theorem 3.16. With s defined by forms of constant positive weight, and assuming P is
bounded and a magic labelling exists, we have

A◦(t) =
∑

u∈L(P ◦,H)

µ(0̂, u)Eu∩O◦(t) ,

A(t) =
∑

u∈L(P ◦,H)

|µ(0̂, u)|Eu∩O(t) ,

where µ is the Möbius function of L(P ◦, H).

Proof. Transversality holds by Lemma 3.15, since a magic labelling exists if and only if s
does not lie in any hyperplane xj = xk. Apply Theorem 2.2 in s. �

Some interesting examples are the affine versions of the cubical examples we already
mentioned. In many of them the affine intersection poset is combinatorially equivalent to
the cubical intersection poset. Let Pc be the cubical polytope s∩ (0, 1)d; P is still the affine
polytope s ∩O.

Lemma 3.17. Suppose that s is defined by positive forms such that each variable xj has
some form in which its coefficient is at least 1. Assume also that a magic labelling exists.
Then the affine and cubical intersection posets are naturally isomorphic: L(P ◦

c , H[Kd]) ∼=
L(P ◦, H[Kd]) by u ∩ P ◦

c 7→ u ∩ P ◦ for u ∈ L(H[Kd]) such that u ∩ Pc 6= ∅.
12



Proof. The assumption on the coefficients implies that P = Pc ∩ s. �

Example 3.18 (Lines of constant length, cf. Example 3.6). The linear equations that express
the existence of a magic sum t take the form

∑
j∈L

xj = t for all L ∈ L .

Theorems 3.14 and 3.16 and Lemma 3.17 all apply as long as a magic labelling exists; thus,
A◦(t) and A(t) are reciprocal quasipolynomials in the magic sum t, etc.

For general covering clutters Theorem 3.14 applies, showing that A(t) and A◦(t) are recip-
rocal quasipolynomials in t—provided that magic labellings exist at all. With that assump-
tion, Lemma 3.17 also applies. The affine magic subspace, call it s1, defined by

∑
i∈L xi = 1

for all L ∈ L, is an affine subspace of the homogeneous magic subspace, call it s0, and s0

is the linear subspace generated by s1. This means that the permutations realizable in s0

and s1 are the same, so all our comments on magic permutations with respect to a covering
clutter, in the context of cubical counting, apply as well to affine enumeration, except that
we do not in general know that all s-realizable permutations are P -realizable.

Example 3.19 (Affine symmetry; cf. Example 3.9). An affinely symmetric magic or semimagic
square has the property that the average value of any two cells that lie opposite each
other across the center equals the average cell value, t/n, and the center cell (if n is odd
sothere is one) contains the value t/n. (Of course, one cannot expect such squares to ex-
ist unless t ≡ 0 (mod n) for odd n or t ≡ 0 (mod n/2) for even n.) This definition is
another generalization of that of associated square. The additional linear restraints are
yij + yn+1−i,n+1−j = 2t/n for all i, j ∈ [n]. Translated into the language of (1/t)-fractional

vectors x = t−1y ∈ t−1Zn2
, we require

xij + xn+1−i,n+1−j =
2

n
. (3.4)

The effect is to reduce the magic subspace s to a smaller subspace s′. Theorems 3.1 and
3.16 apply, with s′ replacing s, by the following lemma, in which we generalize symmetry
to covering clutters on X = [n]2, with magic sum conditions and the symmetry equations

(3.4). The magic subspace s ⊆ Rn2
is defined by equality of line sums; the affinely symmetric

magic subspace, s′, is the affine subspace of s in which (3.2) is valid; then P = Rn2

≥0 ∩ s′ and

H = H[Kn2 ]s
′
.

Lemma 3.20. If ([n]2, L) is a covering clutter with lines of size n such that s′ is not contained
in a hyperplane xij = xkl of H[Kn2 ], and in particular if an affinely symmetric magic labelling
exists, then P and H are transverse.

Proof. Since n−11 ∈ P ∩
⋂

H, every flat of H intersects P ◦. �
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Example 3.21 (Magic squares of order 3: affine count). Let M◦
a (t), for t > 0, be the number

of magic 3× 3 squares with magic sum t. In [5] we find that

M◦
a (t) =



2t2−32t+144
9

= 2
9
(t2 − 16t + 72) if t ≡ 0 mod 18,

2t2−32t+78
9

= 2
9
(t− 3)(t− 13) if t ≡ 3 mod 18,

2t2−32t+120
9

= 2
9
(t− 6)(t− 10) if t ≡ 6 mod 18,

2t2−32t+126
9

= 2
9
(t− 7)(t− 9) if t ≡ 9 mod 18,

2t2−32t+96
9

= 2
9
(t− 4)(t− 12) if t ≡ 12 mod 18,

2t2−32t+102
9

= 2
9
(t2 − 16t + 51) if t ≡ 15 mod 18,

0 if t 6≡ 0 mod 3.

Xin [17] has another way to find the generating function of M◦
a (t) (with the minor difference

that he allows zero entries), by applying MacMahon’s partition calculus.
The constant term Ma(0) = 16 is the number of magic permutations; this is the same

number as with cubically counted magic squares, Mc(0) in Example 3.11.

Example 3.22 (Semimagic squares of order 3: affine count). Complete results for this example
are in [5].

4. Latin squares join in magically

The general picture that encompasses latin squares is that of a covering clutter (X, L), as
in Section 3, with an integer labelling x : X → Z subject to the requirement that

x(e) 6= x(f) if e and f lie in a line.

This is a latin labelling of (X, L). The graph of forbidden equalities is therefore

ΓL :=
⋃
L∈L

KL,

KL being the complete graph on the node set L. Every graph is equal to ΓL for some choice
of covering clutter. An orientation of ΓL is acyclic if it has no directed cycles. An orientation
and a node c-coloring x : V → [c] are compatible if xj ≥ xi whenever there is a ΓL-edge
oriented from i to j [15].

A crucial decision is how to restrict the symbols of the latin labelling. One may simply
specify the number of symbols allowed, say k, and an arbitrary symbol set, let us say [k].
Then the number of latin labellings equals the chromatic polynomial χΓL

(k), so we would
have merely an application of graph coloring. In this article, taking a leaf from the guidebook
of magic squares, we focus on approaches which give rise to magilatin squares : we impose a
summation condition on the lines, which may be either homogeneous:

(i) Set all line sums equal to each other.

or affine:
14



(ii) Set all line sums equal to t.

This tactic is not so strange as it may appear. A magilatin square with homogeneous line-
sum requirements and symbols restricted to the interval [1, n] is just a latin square with
symbol set [n]. So is a magilatin square with affine line-sum restrictions, line sum t =

(
n+1

2

)
,

and positive symbols. We are assuming that the affine constraint (ii) is supplemented by
a positivity assumption and that the homogeneous constraint (i) is supplemented by the
requirement that the symbols be drawn from the set [k] for some k. To treat Latin rectangles
similarly, as a special case of magilatin rectangles (see the introduction for the definitions),
requires a generalization of (i) to multiple covering clutters; see Section 4.1. In every case
the hyperplane arrangement is H := H[ΓL]s, where s is the subspace of RX determined by
the appropriate line sum conditions.

4.1. Cubical latinity. The cubical approach to latin labellings counts them by the largest
allowed value; if t is the parameter, the labellings counted are those with 0 < xi < t. We
assume a multiple covering clutter, (X; L1, . . . ,Lk), that is, there are k ≥ 1 covering clutters
L1, . . . ,Lk; in our examples k will be 1 for squares and 2 for rectangles. The labelling
must be such that the lines in each class have equal sums; but the sums in different classes
are independent of each other. For a magilatin labelling the numbers in each line must be
distinct. To count the labellings we take the subspace s of Rd in which all line sums within
each covering clutter Li are equal. The polytope is P := [0, 1]d ∩ s. This is as in Section 3.2,
so Lemma 3.3 applies to assure that P spans s. For t = 1, 2, . . ., let

L◦
c(t) := the number of latin labellings x with equal line sums within each covering clutter

and with entries that satisfy 0 < xi < t,

and let

Lc(t) := the number of pairs consisting of a latin labelling x, with equal line sums within
each covering clutter and with 0 ≤ xi ≤ t, and a compatible acyclic orientation
of ΓL.

Theorem 4.1 (Magilatin enumeration by upper bound). Suppose P := [0, 1]d ∩ s does not
lie within a coordinate hyperplane. Then L◦

c and Lc are quasipolynomials with leading term
(vol P )tdim s and with constant term Lc(0) equal to the number of acyclic orientations of ΓL

that are realizable in s. Furthermore, (−1)dim sL◦
c(−t) = Lc(t).

Proof. Theorem 2.1 shows that Lc = EP,H and L◦
c = E◦

P ◦,H are reciprocal quasipolynomials.
The remainder of the proof is as in Theorem 3.4. �

Theorem 4.2. If all lines have the same size and a latin labelling exists, then we have all
the formulas of Theorem 3.5 with Lc in place of B.

Proof. Apply Theorem 2.2. �

Example 4.3 (Small latin shapes, counted cubically). We calculated two very small magilatin
examples: a square and a rectangle.

In the 2 × 2 magilatin square it must be that x11 = x22 6= x12 = x21. With cubical
constraints, then,

L◦
c(t) = (t− 1)(t− 2).

For comparison, the number of squares without the magilatin distinctness requirement is
(t− 1)2.
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The 2 × 3 magilatin rectangle is much more complicated. Calculation with Maple shows
that the denominator of P is 6 and that of (P, H) is 12. This permits us to calculate the
quasipolynomial (by actual count of rectangles up to t = 60). Its period turns out to be 4.

L◦
c(t) =


t3−12t2+41t−30

4
= (t−1)(t−5)(t−6)

4
if t ≡ 1 mod 4,

t3−12t2+41t−42
4

= (t−2)(t−3)(t−7)
4

if t ≡ 3 mod 4,
t3−12t2+44t−48

4
= (t−2)(t−4)(t−6)

4
if t is even.

For comparison, the number of rectangles without the distinctness requirement is{
t3−3t2+3t−1

4
= (t−1)3

4
if t is odd,

t3−3t2+6t−4
4

= (t−1)(t2−2t+4)
4

if t is even.

Problem 4.4. We do not know why the coefficients alternate in sign, what causes the smallness
of the differences among the constituents, nor what makes the even constituents have a
smaller period than the odd constituents.

Example 4.5 (Magilatin 3× 3 squares, counted cubically). See [5] for the complete solution.

4.2. Affine latinity. For affine counting of latin labellings we take a covering clutter (X,L).
s is the subspace in which all line sums equal 1, and P = s ∩ O, as in affine magic (Section
3.3). As there, we can apply Lemma 3.13 to conclude that P spans s in all interesting cases.
One advantage over magic is that, because we consider only line sums and not general linear
forms, P is certain to be bounded. For t = 1, 2, . . ., let

L◦
a(t) := the number of latin labellings of (X, L) with positive entries and all line sums

equal to t,

and let

La(t) := the number of pairs consisting of a nonnegative latin labelling with all line sums
equal to t and a compatible acyclic orientation of ΓL that is realizable in P ◦.

Lemma 4.6. P and H are transverse if a positive latin labelling exists.

Proof. As with Lemma 3.15. The existence of a positive latin labelling implies that s is
not contained in any hyperplane xj = xk for which ei and ej are collinear and, for every
v ∈ L(H[ΓL]), v ∩ P is not contained in a coordinate hyperplane. �

Theorem 4.7 (Magilatin enumeration by magic line sum). Suppose that a positive latin la-
belling exists for some t. Then L◦

a and La are quasipolynomials with leading term (vol P )tdim s

and with constant term La(0) equal to the number of acyclic orientations of ΓL that are re-
alizable in P . Furthermore, (−1)dim sL◦

a(−t) = La(t).

Proof. By Theorem 3.1, adapted to the latin nonequalities, together with Lemma 4.6 to
ensure transversality so that realizability in P is equivalent to realizability in P ◦. �

If every line has the same size, then the acyclic orientations that are realizable in P ◦ are
the same as those realizable in s, because then 〈1〉 intersects P ◦; see the discussion following
Theorem 3.14.

Theorem 4.8. Assuming a positive latin labelling exists and all lines have the same size,
we have the formulas of Theorem 3.16 with La in place of A.

Proof. Transversality holds by Lemma 4.6. Apply Theorem 2.2 in s. �
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Example 4.9 (Small magilatin squares, counted affinely). It is easy to see that in a 2 × 2
magilatin square with affine constraints,

L◦
a(t) =

{
t− 1 if t is odd,

t− 2 if t is even.

The period of 2 equals the denominator of (P, H). The number of positive squares without
the magilatin distinctness requirement is t− 1.

Example 4.10 (Magilatin 3 × 3 squares, counted affinely). For the number of these squares
see [5].

5. Generalized exclusions

We concentrated our treatment on exclusions of magic and latin type: that is, where
all values, or all collinear values, are unequal. Other kinds of exclusion are possible. We
want to mention the very natural complementation restrictions. In cubical enumeration we
call xi and xj complementary if xi + xj = t. If we forbid certain pairs of values to be
complementary, we pass from graphs to signed graphs, since the rule xi +xj 6= t corresponds
to a negative edge −ij. A nonequality xi 6= xj corresponds to a positive edge, +ij; thus
ordinary edges are positive. The exact application of signed graphs involves translation
and halving of the centrally symmetric polytope [−1, 1]d to [0, 1]d, along with corresponding
translation of the signed-graphic hyperplane arrangement, as explained in [4, Section 5].
Because signed-graphic hyperplanes, as translated, give half-integral vertices, we expect a
counting quasipolynomial with nonequalities and noncomplementarities given by a signed
graph to have twice the period of a counting quasipolynomial pertaining to a similar unsigned
graph of nonequalities. This is necessarily vague; we intend only a suggestion for research
that we invite readers to explore.
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