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Abstract. Mock threshold graphs are a simple generalization of threshold

graphs that, like threshold graphs, are perfect graphs. Our main theorem is

a characterization of mock threshold graphs by forbidden induced subgraphs.
Other theorems characterize mock threshold graphs that are claw-free and

that are line graphs. We also discuss relations with chordality and well-quasi-

ordering as well as algorithmic aspects.
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1. Introduction

We define, and study the surprisingly many properties of, a new class of graphs:
a simple generalization of threshold graphs that we call “mock threshold graphs”.
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One reason to study mock threshold graphs is that, like threshold graphs, they are
perfect. We characterize the class of mock threshold graphs by forbidden induced
subgraphs; we discuss their properties of chordality, planarity, claw-freeness, and
well-quasi-ordering; and we find the line graphs that are mock threshold. We also
treat algorithmic aspects of mock threshold graphs.

A graph G is said to be threshold if there are a function w : V (G) → R and a
real number t such that there is an edge between two distinct vertices u and v if
and only if w(u)+w(v) > t (Chvátal–Hammer 1973). The class of threshold graphs
has been studied in great detail, mainly because of its simple structure. There is
an entire book about threshold graphs [14]. A fundamental theorem characterizes
the class by forbidden induced subgraphs.

Theorem 1 (Chvátal–Hammer 1973). A graph is threshold if and only if it contains
no induced subgraph isomorphic to 2K2, P4, or C4.

Another fundamental fact about threshold graphs is their characterization by
vertex ordering. If G is a graph and X ⊆ V (G), then G:X denotes the subgraph
of G induced on X.

Theorem 2. A graph G is threshold if and only if G has a vertex ordering v1, . . . , vn
such that for every i (1 ≤ i ≤ n) the degree of vi in G:{v1, . . . , vi} is 0 or i− 1.

By relaxing this characterization slightly we get a new, bigger class of graphs.

Definition 3. A graph G is said to be mock threshold if there is a vertex ordering
v1, . . . , vn such that for every i (1 ≤ i ≤ n) the degree of vi in G:{v1, . . . , vi} is
0, 1, i− 2, or i− 1. We write GMT for the class of mock threshold graphs.

We call such an ordering an MT-ordering. Note that a graph can have several
MT-orderings. There are several easy but important consequences of the definition.

Although the class of mock threshold graphs is not closed under taking sub-
graphs, it is hereditary in the sense of induced subgraphs.

Proposition 4. Every induced subgraph of a mock threshold graph is mock thresh-
old.

Thus, as with threshold graphs, there exists a characterization by forbidden
induced subgraphs, which we describe in Section 4.

A graph G is perfect if χ(H) = ω(H) for all induced subgraphs H of G (Berge
1961). It is chordal if every induced cycle in it is a triangle (Dirac 1961). It is split
if its vertex set can be partitioned into a clique and a stable set (Földes–Hammer
1977). It is weakly chordal if every induced cycle in it or its complement is either
a triangle or a square (Hayward 1985). We have the following chain of inclusions:

Threshold ⊂ Split ⊂ Chordal ⊂Weakly Chordal ⊂ Perfect.

All the inclusions except the last one are easy. The last inclusion can be proved
directly [12] or one can use the Strong Perfect Graph Theorem [3] to see the inclusion
immediately.

Mock threshold graphs are perfect (Proposition 6) and indeed weakly chordal
(Corollary 15) but not necessarily chordal. The cycle of length four is a mock
threshold graph that is not chordal.

Proposition 5. The complement of a mock threshold graph is also mock threshold.
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Proof. The same vertex ordering works. �

Proposition 6. A mock threshold graph is perfect.

Proof. Adding an isolated vertex or a leaf preserves perfection. The Weak Perfect
Graph Theorem [13] tells us that a graph is perfect if and only if its complement
is also perfect. Hence the four operations of constructing a mock threshold graph
from K1, viz., adding an isolated vertex, adding a leaf, adding a dominating vertex,
and adding a vertex that dominates all but one vertex, preserve perfection. Hence
every mock threshold graph is perfect. �

2. Preliminaries

All our graphs are finite and simple, that is, we allow neither loops nor multiple
edges. When we say G contains H, we mean that G contains H as a subgraph.
Let k be a positive integer. Then Pk, Ck, Kk denote the path, cycle, and complete
graph, respectively, on k vertices. We denote the complement of G by G. The
neighborhood of a vertex v is denoted by N(v). For a positive integer k, the k-core
of a graph G is the graph obtained from G by repeatedly deleting vertices of degree
less than k. It is routine to show that this is well defined.

For G a graph, δ(G) and ∆(G) denote the minimum and maximum degree of G,
respectively. The chromatic number of G, denoted by χ(G), is the smallest positive
integer k such that its vertices can be colored with k colors so that adjacent vertices
receive different colors. The clique number of G, denoted by ω(G), is the largest
positive integer k such that the complete graph on k vertices is a subgraph of G.
The codegree d(v) of a vertex v in G is its degree in the complement G.

3. Simple properties

We list some easy but useful properties and examples.

Lemma 7. Let G be a graph on n vertices with 1 < δ(G) ≤ ∆(G) < n− 1. Then
G is not mock threshold.

A removable vertex is a vertex whose degree or codegree is at most 1. Thus, a
graph with no removable vertex cannot be mock threshold.

Lemma 8. Let G be a graph on n vertices. Let v ∈ V (G) be removable. Then G
is mock threshold if and only if G− {v} is mock threshold.

Proof. If G is mock threshold, then every induced subgraph of G is also mock
threshold (by Proposition 4). This proves one direction. For the other direction,
assume that G−{v} is mock threshold. Thus it has an MT-ordering. Add v as the
last vertex to this MT-ordering; since v is removable, this is an MT-ordering for G.
Hence G is mock threshold. �

Proposition 9. Kn and K2,n are mock threshold.

Proposition 10. A forest is a mock threshold graph.

Proposition 11. A graph is mock threshold if and only if its 2-core is also mock
threshold.

Proof. One direction follows from Proposition 4. The other direction follows from
the fact that a graph obtained from a mock threshold graph by adding an isolated
vertex or a pendant edge is also mock threshold. �
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Lemma 12. A graph consisting of two disjoint cycles is not mock threshold.

Proof. The graph has no removable vertices. �

Attaching a graph H to a vertex v of G means that a vertex of H is identified
with v. (It is assumed that G and H are disjoint and that H is not K1.)

Proposition 13. A bipartite graph is mock threshold if and only if either it is a
forest, or it has one component that consists of K2,s, s ≥ 2, with a tree optionally
attached to each vertex, and any other components are trees.

Proof. It is clear that any such graph has a removable vertex and that deleting that
vertex results in a graph of the same type.

Now, let G be bipartite and mock threshold. We may prune all leaves and
isolated vertices until the only remaining vertices are in cycles. The resulting graph
G′ must be mock threshold (Proposition 5) and connected (Lemma 12). Every
vertex has degree 2 or more, so there must be a (removable) vertex of codegree 0 or
1. Let G′ have left vertex set X and right vertex set Y with r := |X| and s := |Y |;
necessarily r, s ≥ 2. If r, s ≥ 3, every vertex has codegree at least 2; therefore r,
say, equals 2. Then every vertex y ∈ Y , having degree d(y) > 1, is adjacent to both
members of X; that is, G′ = K2,s. �

4. Minimal graphs that are not mock threshold

A graph is a minimal non–mock-threshold graph (from now on, minimal non-
MTG) if it is not mock threshold but every induced proper subgraph is mock
threshold. We write Forb(GMT) for the class of minimal non-MTGs. It is straigh-
forward to show that a graph is mock threshold if and only if it does not contain
any of the minimal non-MTGs as an induced subgraph.

Proposition 14. Let n ≥ 5. Then both Cn and Cn are minimal non-MTGs.

Proof. By virtue of Proposition 5, it suffices to prove that Cn is a minimal non–
mock-threshold graph. Since no vertex in Cn is removable, we see, by Lemma 7,
that Cn is not a mock threshold graph. Every proper subgraph of Cn is a forest,
and hence, by Proposition 10, a mock threshold graph. �

Corollary 15. Mock threshold graphs are weakly chordal.

Proposition 16. Every graph on at most five vertices except C5 is mock threshold.

Proof. As shown in Proposition 14, C5 is not mock threshold. Clearly, every graph
on at most four vertices is mock threshold. This implies that a graph on 5 vertices
is mock threshold if it has a vertex whose degree is not 2. Every graph on 5 vertices
has such a vertex with the exception of C5. �

We are interested in determining Forb(GMT). Our main theorem is the following:

Theorem 17. A graph is mock threshold if and only if it contains none of the
following as an induced subgraph:

(a) Cycles of length at least 5 and their complements.
(b) 318 graphs, each with at most 10 vertices (shown in Figures 1, 2, 8, 9, 10).

To prove the theorem we will need the following lemmas. LetG be a minimal non-
MTG on n vertices on that is neither a cycle nor its complement. By Proposition
16, n > 5.
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Lemma 18. The minimum degree of G is at least 2. The maximum degree of G is
at most n− 3.

Proof. Suppose G has a vertex v of degree 0, 1, n−2, or n−1. Since G is a minimal
non-MTG, G−v is mock threshold, and hence has an MT-ordering. Adding v as the
last vertex in the MT-ordering, we get an MT-ordering for G, a contradiction. �

We call a vertex in a graph co-divalent if it is non-adjacent to exactly two vertices.

Lemma 19. Every vertex in G is either adjacent to a divalent vertex or non-
adjacent to a co-divalent vertex.

Proof. Let v be a vertex in G. Since G is a minimal non-MTG, G − v is mock
threshold, and hence has a vertex w that has degree 0, 1, n−3, or n−2. By Lemma
18, w has degree at least 2 and at most n − 3 in G, and hence at least 1 and at
most n − 3 in G − v. If w has degree 1 in G, then v must be adjacent to w, since
by the Lemma 18 w must have degree at least 2 in G. Hence v is adjacent to the
divalent vertex w. If w has degree n− 3, then since the degree of w in G is at most
n − 3, v is non-adjacent to w, and the degree of w in G − v is n − 3. Hence v is
non-adjacent to the co-divalent vertex w. �

Lemma 20. Every vertex in G is in an induced cycle of length 3 or 4.

Proof. Let v be a vertex in G. By Lemma 18, G has minimum degree at least 2,
and hence has a cycle passing through v. Let C be a smallest cycle passing through
v. Then C is an induced subgraph of G. Since G is a minimal non-MTG and n > 5,
G does not contain an induced cycle of length at least 5. Thus C has length 3 or
4. �

Lemma 21. There do not exist three divalent vertices with the same neighborhood.

Proof. Let x, y, z be divalent vertices with the same neighborhood {a, b}. Since G
is a minimal non-MTG, G − z is mock threshold, and hence has an MT-ordering.
Without loss of generality we may assume a was above b, and x was above y in
the ordering. Suppose a was above x in the MT-ordering of G− z. Then placing z
immediately above x gives an MT-ordering of G. Suppose x was above a in the MT-
ordering of G− z. Then placing z as the first vertex followed by the MT-ordering
of G − v gives an MT-ordering of G. In either case, we get an MT-ordering of G,
a contradiction. �

If the neighbors of a divalent vertex are adjacent, we say that the divalent vertex
is of triangle-type. If the neighbors of a divalent vertex are non-adjacent, we say
that the divalent vertex is of seagull-type.

Lemma 22. Then the neighbors of a seagull-type divalent vertex have another
common neighbor.

Proof. Let v be a divalent vertex in G of seagull type. By Lemma 20, v is a cycle
of length 3 or 4. Since v is of seagull type, it cannot be in a 3-cycle. Hence v is in
a 4-cycle i.e., the two neighbors of v have another common neighbor. �

Lemma 23. If X is a set of vertices in G such that every vertex in X has at least
two neighbors in X and at least two non-neighbors in X, then X = V (G).

Proof. By Lemma 7, G:X is not mock threshold. By the minimality of G, X =
V (G). �



6 RICHARD BEHR, VAIDY SIVARAMAN, AND THOMAS ZASLAVSKY

A vertex set satisfying the condition in Lemma 23 is called a full set. The reason
is that in a minimal non-MTG, the vertex set is the only full set.

Lemma 24. The total number of divalent and co-divalent vertices in G is at least
n
2 .

Proof. Lemma 19 says that every vertex in a minimal non-MTG is adjacent to
a divalent vertex or non-adjacent to a co-divalent vertex. Hence the number of
vertices in G is at most twice the number of vertices that are either divalent or
co-divalent. �

Lemma 25. If G is not connected, then G has at most 8 vertices.

Proof. Let H1 and H2 be two components of G. Since the minimum degree of a
vertex in G is at least 2, G has a cycle in each component. Let Ci be a smallest
cycle (and therefore chordless) in Hi (i = 1, 2). Note that |Ci| ∈ {3, 4} since a
cycle of length at least 5 is a minimal non-MTG. Now C1 ∪C2 is a non-MTG, and
therefore G = C1 ∪ C2, and hence G has at most 8 vertices. �

Lemma 26. If G has an isthmus, then G has at most 8 vertices.

Proof. If G is not connected then we are done by Proposition 25. Hence we may
assume that G is connected. Let e = vw be an isthmus in G. Let the two com-
ponents in G − e be H1 and H2 where v ∈ V (H1) and w ∈ V (H2). Since every
vertex in G has minimum degree at least 2, H1 and H2 each has a cycle. Let Ci be
a shortest cycle in Hi (i = 1, 2). Note that |Ci| ∈ {3, 4}.

If v ∈ V (C1) and w ∈ V (C2), then C1 ∪C2 + e is a non-MTG and hence is equal
to G. Otherwise, C1 ∪C2 is a non-MTG and hence is equal to G. In both cases, G
has at most 8 vertices. �

Lemma 27. If G has a cutvertex, then G has at most 9 vertices.

Proof. If G is connected or has an isthmus, we are done by Lemmas 25 and 26.
Hence we may assume that G is connected and has no isthmuses. Let v be a
cutvertex in G. Let the components of G − v be H1, . . . ,Hk (k ≥ 2). Since v has
at least two non-neigbors, we have the following two cases:

Case 1: Hi −N(v) = ∅ for 2 ≤ i ≤ k. Let a, b be adjacent vertices in H2. (Such
vertices must exist because G has no bridges.) If H1 − N(v) contains an induced
cycle C, then V (C)∪{v, a, b} is a full set. This is because every vertex is in a cycle
and vertices in C are non-adjacent to both a and b. Hence we may assume that
H1 − N(v) is a forest. If there is a tree T with an edge, then it has at least two
leaves. Choose two leaves y, z such that the distance between them is minimum,
and let P be the unique path from y to z. Since G does not contain an induced
cycle of length at least 5, P has length at most 2. Let y1 be a neighbor of y, and
let z1 be a neighbor of z such that y1, z1 ∈ N(v). Now V (P ) ∪ {y1, z1, v, a, b} is a
full set. This is because every vertex has at least two neighbors and every vertex
in P is non-adjacent to both a and b. Hence we may assume that H1 − N(v) is
an edgeless forest. Let y, z be vertices in the forest. The set {v, a, b, y, z} together
with any two neighbors of y and any two neighbors of z is a full set because every
vertex has at least two neighbors and the vertices y, z and their two neighbors are
non-adjacent to both a and b.

Case 2: Hi −N(v) 6= ∅ for i = 1, 2.
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Let x be a vertex in H1 that is non-adjacent to v. Let y be a vertex in H2 that
is non-adjacent to v. Let C1 be a smallest cycle passing through x, and let C2 be
a smallest cycle passing through y. We claim that X = V (C1) ∪ V (C2) is a full
set in G. Every vertex in G:X is in a cycle and hence at least two neighbors. Also
every vertex except v has at least two non-neighbors because the two cycles were
chosen in different components. But the vertex v is not adjacent to either x or y.
This proves that X is a full set irrespective of whether or not v ∈ X.

In all cases, we have established a full set X of size at most 9. By Lemma 23,
V (G) = X. This completes the proof. �

We will use the fact that every vertex in G has at least two neighbors and at
least two non-neighbors (Lemma 18) in the sequel without mention. So when we
make a statement there exists a vertex that is a neighbor (or non-neighbor) of some
vertex, it means we are using this fact. To show G has size at most k, it suffices
(by Lemma 23) to show the existence of a full set of size at most k. In other words,
the following six lemmas use Lemma 18 and Lemma 23, but we will not mention
them explicitly.

Lemma 28. If G has two seagull-type divalent vertices with no common neighbor,
then G has at most 8 vertices.

Proof. Let a and b be seagull-type divalent vertices. Let c, d be the neighbors of a,
and e, f be the neighbors of b with {c, d} ∩ {e, f} = ∅. By Lemma 22, there exists
a vertex g adjacent to both c and d, and there exists a vertex h that is adjacent
to both e and f . Note that g and h need not be distinct. Now we claim that
X = {a, b, c, d, e, f, g, h} is a full set in G. All we need to show that every vertex
in X has at least two neighbors and at least two non-neighbors in X. The vertices
a,b, being divalent clearly satisfy the condition of having at least two neighbors and
at least two non-neighbors. The vertex c has neighbors a, g and non-neighbors b, d.
The vertex d has neighbors a, g and non-neighbors c, b. The vertex e has neighbors
b, h and non-neighbors f, a. The vertex f has neighbors b, h and non-neighbors e, a.
The vertex g has neighbors c, d and non-neighbors a, b. The vertex h has neighbors
e, f and non-neighbors a, b. Hence X is a full set. �

From now on, we will not give detailed reasons as to why a set of vertices is a full
set. They are all similar to the one above, and the reader can verify them easily.
The presence of two divalent vertices makes the verification easy.

Lemma 29. If G has two seagull-type divalent vertices with exactly one common
neighbor, then G has at most 7 vertices.

Proof. Let a and b be seagull-type divalent vertices. Let c, d be the neighbors of a,
and d, e be the neighbors of b where c 6= e. If ce is an edge, then {a, b, c, d, e} is a
full set, and we are done. Hence we may assume that ce is not an edge. By Lemma
22, there exist vertices f and g such that f is adjacent to c and d, and g is adjacent
to d and e. Now {a, b, c, d, e, f, g} is a full set, and we are done. �

Lemma 30. If G has two triangle-type divalent vertices with no common neighbor,
then G has at most 10 vertices.

Proof. Let a and b be triangle-type divalent vertices. Let c, d be the neighbors of
a, and e, f be the neighbors of b with {c, d} ∩ {e, f} = ∅. Suppose there is a vertex
z that is adjacent to none of c, d, e, f . Let C be a smallest cycle passing through
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z. We know that C has length 3 or 4. Now {a, b, c, d, e, f} ∪ V (C) is a full set,
and we are done. Hence we may assume that every vertex outside {a, b, c, d, e, f}
has at least one neighbor in {c, d, e, f}. Suppose there is a vertex x with exactly
one neighbor in {c, d, e, f}, say e. Let y be a neighbor of x other than e. Let
u be a vertex non-adjacent to e other than a. Let v be a neighbor of u outside
{c, d, e, f}, and if no such vertex exists, then let v be any neighbor of u. Then
{a, b, c, d, e, f, u, v, x, y} is a full set, and we are done. Hence we may assume that
every vertex outside {a, b, c, d, e, f} is adjacent to at least two vertices in {c, d, e, f}.
Let c′, d′, e′, f ′ be vertices non-adjacent to c, d, e, f , respectively, such that c′ 6= b,
d′ 6= b, e′ 6= a, and f ′ 6= a. Then {a, b, c, d, e, f, c′, d′, e′, f ′} is a full set, and we are
done. �

Lemma 31. If G has two triangle-type divalent vertices with exactly one common
neighbor, then G has at most 10 vertices.

Proof. Let a, b be triangle-type divalent vertices. Let c, d be the neighbors of a,
and d, e be the neighbors of b where c 6= e.

Suppose there exists a co-divalent vertex z outside {a, b, c, d, e}. Suppose there
exists a vertex f non-adjacent to all three of c, d, e. Let f ′ be a neighbor of f other
than z. Let d′ be a non-neighbor of d other than f , and d′′ be a neighbor of d′

other than z. Now {a, b, c, d, e, f, f ′, d′, d′′, z} is a full set. Hence we may assume
every vertex outside {a, b, c, d, e} has at least one neighbor in {c, d, e}. Let c′ be
a non-neighbor of c such that c′ 6= b. Let d′, d′′ be two non-neighbors of d. Let
e′ be a non-neighbor of e such that e′ 6= a. Now {a, b, c, d, e, c′, d′, d′′, e′, z} is a
full set. Hence we may assume there is no co-divalent vertex outside {a, b, c, d, e}.
Suppose c, e are both co-divalent. Suppose ce is not an edge. Let d′, d′′ be two
non-neighbors of d. Then {a, b, c, d, e, d′, d′′} is a full set. Hence we may assume
ce is an edge. Suppose there exists a vertex f non-adjacent to all three of c, d, e.
Let f ′ be a neighbor of f . Let d′ be a non-neighbor of d other than f . Now
{a, b, c, d, e, f, f ′, d′} is a full set. Hence we may assume that every vertex outside
{a, b, c, d, e} has at least one neighbor in {c, d, e}. Let c′ be a non-neighbor of c and
e′ be a non-neighbor of e such that c′ 6= b and e′ 6= a. Suppose c′ = e′. Let c′′ be a
neighbor of c′. Let d′, d′′ be two non-neighbors of d. Then {a, b, c, d, e, c′, c′′, d′, d′′}
is a full set. Hence we may assume c′ 6= e′. Suppose d is adjacent to both c′ and
d′. Let d′, d′′ be two non-neighbors of d. Now {a, b, c, d, e, c′, e′, d′, d′′} is a full set.
Hence we may assume that d is non-adjacent to at least one of c′, e′. Suppose d is
non-adjacent to both c′ and e′. Let c′′ be a neighbor of c′, and e′′ be a neighbor of
e′ such that c′′ 6= e and e′′ 6= c. Then {a, b, c, d, e, c′, e′, c′′, e′′} is a full set. Hence
we may assume that d is adjacent to exactly one of c′, e′, without loss of generality,
say c′. Let e′′ be a neighbor of e, and d′ be a non-neighbor of d such that d′ 6= e′.
Now {a, b, c, d, e, c′, e′, e′′, d′} is a full set. Hence we may assume not both c, e are
co-divalent. By Lemma 19 applied to vertices a and b, one of c, e must be divalent,
but then d would be a cutvertex, and we are done by Lemma 27.

�

Lemma 32. If G has two divalent vertices, one of triangle-type and the other
seagull-type, with no common neighbor, then G has at most 10 vertices.

Proof. Let a be a triangle-type divalent vertex with neighbors c, d. Let b be a
seagull-type divalent vertex with neighbors e, f such that {c, d} ∩ {e, f} = ∅. Let
g be a vertex adjacent to both e and f . Let m be the number of edges with one
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endpoint in {c, d} and the other endpoint in {e, f}. Suppose m = 0 or 1. Then
{a, b, c, d, e, f, g} is a full set and we are done. Suppose m = 2. If ed and cf are
edges, or if ec and df are edges, then {b, c, d, e, f} is a full set. If ec and ed are
edges, or if fc and fd are edges, then {a, b, c, d, e, f, g} is a full set. If ce and cf are
edges, or if de and df are edges, then {b, c, d, e, f} ∪ V (C), where C is a smallest
cycle passing through a non-neighbor of c other than b, is a full set. Suppose
m = 3. Say ce is not an edge. Let d′ be a vertex not adjacent to d such that
d′ 6= b. Let C be a smallest cycle passing through d′. Then {a, b, c, d, e, f} ∪ V (C)
is a full set. Suppose m = 4. If there is a vertex z non-adjacent to both of c, d,
then {a, b, c, d, e, f} ∪ V (C), where C is a smallest cycle passing through z, is a
full set. Hence we may assume every vertex outside {a, b, c, d, e, f} is adjacent to
at least one of c, d. Let c′ be a non-neighbor of c, c′′ be a neighbor of c′, d′ be
a non-neighbor of d, and d′′ be a neighbor of d′ such that c′ 6= b, d′ 6= b, c′′ 6= d,
and d′′ 6= c. Then {a, b, c, d, e, f, c′, c′′, d′, d′′} is a full set. In all cases, we have
established the existence of a full set of size at most 10. The proof is complete.

�

Lemma 33. If G has two divalent vertices, one of triangle-type and the other
seagull-type, with exactly one common neighbor, then G has at most 10 vertices.

Proof. Let a be a triangle-type divalent vertex with neighbors c, d. Let b be a
seagull-type divalent vertex with neighbors d, e such that c 6= e. Suppose ce is an
edge. If there exists a vertex f non-adjacent to both c and d, then {a, b, c, d, e} ∪
V (C), where C is a shortest cycle passing through f , is a full set. Hence we may
assume that every vertex outside {a, b, c, d, e} has at least one of c, d as neighbor.
Let c′ be a non-neighbor of c, and c′′ be a neighbor of c′ such that c′ 6= b and
c′′ 6= d. Let d′ be a non-neighbor of d, and d′′ be a neighbor of d′ such that d′ 6= e
and d′′ 6= c. Now {a, b, c, d, e, c′, c′′, d′, d′′} is a full set.

Hence we may assume that ce is not an edge. If there is a vertex f adjacent to e
but not to d, then {a, b, c, d, e}∪V (C), where C is a smallest cycle passing through
f is a full set. Hence we may assume that every vertex that is adjacent to e is also
adjacent to d. Let e′ be a vertex adjacent to e, and d′ be a vertex non-adjacent to
d such that e′ 6= b and d′ 6= e. Now {a, b, c, d, e, e′} ∪ V (C), where C is a smallest
cycle passing through d′, is a full set. In all cases, we have established the existence
of a full set of size at most 10. The proof is complete. �

Proof of the main theorem. Let G be a minimal non-MTG that is neither a
cycle of length at least 5 nor its complement. Suppose n ≥ 10. By Proposition 24,
G has at least 5 vertices that are either divalent or co-divalent. By going to the
complement if necessary, we may assume that G has at least 3 divalent vertices.
By Lemma 21, two of them must have distinct neighborhoods. We have six cases
depending on the type of these two divalent vertices (triangle-type or seagull-type)
and whether they have 0 or 1 common neighbors. The previous six lemmas tell us
that in each case G has at most 10 vertices. Hence G has at most 10 vertices.

The complete list of non-cycle members of Forb(GMT) was generated using a
computer program created in Wolfram Mathematica 10. The program takes a list
of all graphs with at most 10 vertices as input, and for each graph in the list
determines whether or not it is a minimal non-MTG. First, it tests whether a
graph G is mock threshold by examining the degrees of its vertices and iteratively
removing removable vertices. If it succeed in removing all the vertices G is mock
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Figure 1. Members of Forb(GMT) with at most 7 vertices. There
are 39 of them: the 20 shown and their complements. The only
self-complementary graph in the list is C5.

threshold, as we have discovered an MT-ordering. Such a graph is discarded. If
G is not mock threshold, we generate all of its vertex-deleted subgraphs, and test
each one of these in turn to see if it is mock threshold or not. If all vertex-deleted
subgraphs of G are mock threshold, we know that G is a minimal non-MTG. There
are 318 of them. They are shown in Figures 1, 2, 8, 9, 10. This establishes the
theorem. �

Our main theorem can be restated in terms of weakly chordal graphs as follows:

Corollary 34. A weakly chordal graph is mock threshold if and only if it contains
none of the 318 graphs shown in Figures 1, 2, 8, 9, 10.

The following lemma singles out a structure common to all minimal non-MTGs
on 10 vertices or their complements, with the exception of the 10-cycle.

Lemma 35 (Butterfly Lemma). Let G be a 10-vertex graph with vertices xi, yi, zi,
where 1 ≤ i ≤ 4 and z1 = z2 and z3 = z4 where xi are divalent, and xiyi, xizi,
yizi, yi, zi+2, z1z3 are edges. There may be edges with both endpoints in zi. (see
Figure 3) Then G is a minimal non-MTG.

Proof. Every vertex in G has at least two neighbors and at least two non-neighbors.
By Lemma 7, G is not mock threshold. Consider G−x1. The following is a sequence
of removable vertices: z3, x3, x4, y3, y4, y1, z1, x2. Note that in both G − y1 and
G− z1, the vertex x1 becomes removable and we then have the previous sequence
of removable vertices. By symmetry, we see that deleting any vertex from G results
in a mock threshold graph. Hence G is a minimal non-MTG. �
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Figure 2. Members of Forb(GMT) with 10 vertices. There are 40
of them: the 20 shown and their complements. None of them is
self-complementary.

Figure 3. The butterfly skeleton, common to all the graphs of
Lemma 35.

5. Claw-freeness

A claw is an induced subgraph that is isomorphic to K1,3; its trivalent vertex is
called its center. A graph is claw-free if it contains no claw. Claw-free graphs are
interesting for several reasons, initially as a generalization of line graphs and later
because of good algorithmic properties (see the survey [8]).

To begin with we describe the claw-free threshold graphs. The characterization
is easy to prove from a threshold ordering.

Proposition 36. A graph is claw-free threshold if and only if it consists of isolated
vertices and possibly one component that has a vertex whose deletion results in a
complete graph.
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We can explicitly describe all mock threshold graphs that are claw-free. Hanging
a path off a vertex v of G means that the path is attached to G by identifying v
with an endpoint of the path; we assume that any such path has positive length.

Theorem 37. A graph G is a claw-free mock threshold graph if and only if either
every component is a path, or else just one component G1 is not a path, G1 consists
of a 2-core G2 and at most one path hanging off each vertex of G2 whose G2-
neighborhood is a clique, and the complement of G2 is one of the following types
I–IX.

I. G2 is a forest of order at least 3 in which every vertex has at least 2 non-
neighbors.

II. G2 has a component that consists of K2,s, s ≥ 2, with a tree optionally
attached to each vertex; all other components are trees; and every vertex
has at least 2 non-neighbors.

III. G2 is a triangle with one or more pendant edges attached to each of at least
two vertices.

IV. G2 consists of K2,p with p ≥ 2, whose vertex classes are X = {x1, x2} and
Z of order p; also Y of order s ≥ 2 of which all elements are adjacent to x1
and at least one is adjacent to x2; also w adjacent to every vertex in X ∪Y ;
and at least one pendant edge incident to w (Figure 4).

V. G2 is K1,1,r with r ≥ 2, whose vertex classes are {v}, {w}, and X; and
α and β pendant edges incident to v and w, respectively, where α, β ≥ 2
(Figure 5).

VI. G2 consists of K1,1,r with r ≥ 2, whose vertex classes are {v}, {w}, and X;
K2,p with p > 0, whose vertex classes are {w, z} and P ; the edge vz; and
α and β pendant edges incident to v and w, respectively, where α ≥ 1 and
β ≥ 0, but β ≥ 1 if p = 1 (Figure 5).

VII. G2 consists of K1,1,r with r ≥ 2, whose vertex classes are {v}, {w}, and
X; K1,r whose vertex classes are {y} and X; and α and β pendant edges
incident to v and w, respectively, where α, β ≥ 1 (Figure 5).

VIII. G2 consists of K1,1,r with r ≥ 2, whose vertex classes are {v}, {w}, and
X; K1,r whose vertex classes are {y} and X; K2,q with p > 0, whose vertex
classes are {w, y} and Q; and α and β pendant edges incident to v and w,
respectively, where α ≥ 1 and β ≥ 0 (Figure 5).

IX. G2 consists of K1,1,r with r ≥ 2, whose vertex classes are {v}, {w}, and X;
Kr,s with s ≥ 1, whose vertex classes are X and Y ; and α and β pendant
edges incident to v and w, respectively, where α + β > 0 if r = 2 (Figure
5).

Note that in Type I the forbidden forests are a star Sk, a disjoint union Sk ∪K1,
and Sk with a pendant edge attached to a non-central vertex.

Proof. Consider a mock threshold graph G that is claw-free. A component that
is a tree cannot have a vertex of degree greater than 2; thus, it is a path. Two
components that are not trees would give an induced subgraph that is a disjoint
union of cycles, contrary to Lemma 12. Thus, if G is not a forest it has exactly one
component, say G1, that is not a tree. Letting G2 be the 2-core of G1, it is clear
that G1 is G2 together with trees that are attached to vertices of G2 by identifying
a vertex of the tree with a vertex of G2. These trees must be paths attached to G2

at an endpoint in order to avoid creating claws in G1. If two paths are hung off the
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Figure 4. A graph whose complement is claw-free, that has a
triangle and has a unique vertex that belongs to every triangle
(t = 1). If B = ∅, this is a mock threshold graph. The dashed
lines represent edges that may or may not exist.

same vertex v, or if one path is hung off v and there are two non-adjacent neighbors
of v in G2, then G1 contains a claw with center v; therefore, G1 must be constructed
from its 2-core as the theorem states, and the remainder of the proof consists in
characterizing G2. The best way to do so is to characterize its complement, G2,
which we call H.

As G2 must itself be a claw-free mock threshold graph (Proposition 11), we know
that H is mock threshold (by Proposition 5), every vertex has at least two non-
neighbors (since H is a 2-core), and its complement is claw-free. The first and last
properties imply that H has a removable vertex, and that if uvw is a triangle in
H, then every vertex is adjacent to at least one of u, v, w (then we say the vertex
is adjacent to the triangle). Either H is triangle-free, or it is not. In the latter case
we define t to be the number of vertices of H that belong to every triangle in H.
There are consequently five cases in the proof, according as H has no triangles, or
it has a triangle and t = 0, 1, 2, or 3.

Case 1. H is triangle-free. Then H is bipartite, since it has no long odd cycles.
Bipartite mock threshold graphs were characterized in Theorem 13. Every such
graph is a possible 2-core complement H. That gives Type I of the theorem.

Case 2. H has a triangle and t = 3. That is, H has exactly one triangle, T .
Since every other vertex of H must be adjacent to T but cannot be adjacent to more
than one vertex of T without forming a second triangle, H consists of a triangle
with any number of pendant edges hanging off each vertex. In order for H to be
a 2-core, at least two vertices of T need a pendant edge. This H is clearly mock
threshold; thus, this case is characterized and we have Type III.
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Figure 5. A graph whose complement is claw-free, having a tri-
angle, and containing exactly two vertices that are in every triangle
(t = 2). We assume |X| ≥ 2. The graph is mock threshold pro-
vided that P 6= ∅ implies Y = Q = ∅; Q 6= ∅ implies P = ∅ and
|Y | = 1; |Y | ≥ 2 implies P = Q = ∅; |Y | > 2 implies |X| = 2. If
P = ∅, then z may be omitted.

Case 3. H has a triangle and t = 0. This case is impossible. A vertex not
in a triangle must have at least two neighbors, since if it had only one neighbor,
that neighbor is not in every triangle. Thus, H has minimum degree at least 2.
Its complement being a 2-core, it also has minimum codegree at least 2. Therefore
H is not mock threshold, contradicting our hypothesis that H is mock threshold.
That is, Case 3 does not exist.

Case 4. H has a triangle and t = 1. We begin with a lemma that certain
graphs, shown in Figure 4, are mock threshold with claw-free complement. The
lemma includes the case t = 1 of our theorem but it is less restrictive since it does
not require the complement to be a 2-core.

Lemma 38. A graph is mock threshold and has claw-free complement if it consists
of K2,p with p > 0, whose vertex classes are X = {x1, x2} and Z of order p; also Y
of order s > 0 of which all elements are adjacent to x1 and at least one is adjacent
to x2; also w adjacent to every vertex in X ∪ Y ; and any number of pendant edges
incident to w.

Proof. Since every vertex is adjacent to every triangle, the complement is claw-free.
The pendant edges on w are removable. Then the only non-neighbor of x1 is x2,

so x1 is removable. Then all vertices in Z are leaves; deleting them, the remaining
graph is clearly mock threshold with dominating vertex w. �
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Now we assume that H has a triangle, exactly one vertex w belongs to every
triangle, and every vertex is adjacent to every triangle. The fact that only w is in
every triangle implies that there are two triangles whose only common part is w;
let them be wx1y1 and wx2y2. There are at least two vertices not adjacent to w,
say z1 and z2, and each must be adjacent to one (and only one) of x1, y1 and one of
x2, y2. Let us say z1 is adjacent to x1, x2. As H −w is triangle-free, it is bipartite;
therefore it is impossible for z2 to be adjacent to x1 or y2. If z2 is adjacent to y1, y2,
then the induced subgraph on {w, x1, x2, y1, y2, z1, z2} has no removable vertex, so
it is not mock threshold. It follows that every z ∈ Z is adjacent to x1 and x2 and
not to y1 or y2.

The vertices, other than w, of all triangles induce a bipartite graph; call the two
vertex classes X and Y , chosen so each z ∈ Z is adjacent to every x ∈ X (and no
y ∈ Y ). Thus, x1, x2 ∈ X and y1, y2 ∈ Y . Furthermore, since every vertex in X∪Y
is in a triangle, each y ∈ Y is adjacent to at least one x ∈ X and vice versa. It
follows that no y ∈ Y is adjacent to any z ∈ Z, for if it were then xyz would be a
triangle for some x ∈ X.

Any vertex in N(w) − (X ∪ Y ) cannot be adjacent to another neighbor of w,
since it is not in a triangle. Therefore, it is a leaf or it is adjacent to at least one
z ∈ Z. Let B be the set of leaf neighbors of w and let A = N(w) − (X ∪ Y ∪ B);
that is, A contains the w-neighbors that are not leaves and not in triangles so
V (H) = {w} ∪X ∪ Y ∪ Z ∪A ∪B.

We show that |A ∪X| ≤ 2, from which it follows that A = ∅ and X = {x1, x2}.
Every vertex in H −B has degree at least 2, and the only ones whose codegree can
be less than 2 are the x ∈ X. However, the codegree of x is at least |A ∪X| − 1;
therefore |A∪X| ≤ 2. Furthermore, since x1, say, must have codegree 1 and it has
the non-neighbor x2, it must be adjacent to all y ∈ Y . On the other hand, x2 only
has to be adjacent to y2. We have now shown that in Case 4, H is a graph of Type
IV.

Case 5. H has a triangle and t = 2. We begin with another lemma that certain
graphs are mock threshold and have complement that is claw-free. It includes the
case t = 2 but does not require the complement to be a 2-core.

Lemma 39. A graph of the type in Figure 5 (with α, β ≥ 0 and any of P,Q,X, Y
possibly empty) is mock threshold and has claw-free complement.

Proof. All triangles are of the form vwxi and every vertex is adjacent to v or w or,
for vertices in Y , to every xi ∈ X. Therefore the complement is claw-free.

We prove the graph F is mock threshold. Leaves are removable, so we may
assume α = β = 0 in the figure. If |Y | < 2, then w is removable and F −w is mock
threshold because it is either a forest or, if |Y | ≥ 2, K2,s with trees attached. If
|Y | ≥ 2, then P = Q = ∅ so every x ∈ X is removable; the remaining graph is a
forest. �

The lemma proves that Types V–IX are claw-free mock threshold graphs. One
can verify by inspection that all codegrees are at least 2. We have to prove that H
is of one of those types.

In order to have exactly two vertices, say v and w, in every triangle, H must
have at least two vertices adjacent to both and those two cannot be adjacent. Let
X = {x1, . . . , xr} be the set of vertices adjacent to v and w; then r ≥ 2. Let
Y = {y1, . . . , ys} (with s ≥ 0) be the set of vertices that are non-adjacent to both
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v and w; then every yj must be adjacent to every xi for H to be claw-free and
consequently no two yj ’s can be adjacent, so we have an induced subgraph Kr,s.

Any remaining vertex of H must be adjacent to v or w but not both. Let
A = N(v) − X and B = N(w) − X; then V (H) = {v, w} ∪X ∪ Y ∪ A ∪ B. The
edges involving vertices a ∈ A or b ∈ B are limited, as we show in the subcases.

An edge bxi would form a triangle without w; thus it cannot exist, nor can axi.
By Proposition 13, r = 2 or s ≤ 2. We treat cases according to the value of

s. We first prove each case falls under Lemma 39, hence is mock threshold and
claw-free; then we verify when the complement is a 2-core, i.e., all codegrees d are
at least 2.

When s = 0, an edge ab is possible, but suppose there are two such edges that
are not adjacent, ab and a′b′. Then the induced subgraph H:{v, w, x1, x2, a, a′, b, b′}
has no removable vertex; thus it is not mock threshold. This applies whether or
not H has edges ab′ and a′b. It follows that the edges between A and B, if any,
constitute a star, which we may assume is part of an induced subgraph K2,p with
vertex sets {z, w} and P .

In order for H to be a 2-core, H must have no vertex with codegree 0 or 1. To
get d(v) ≥ 2, w must have at least 2 neighbors in B. If p = 0 these are leaves. Thus
β (and α) are at least 2. Then every d(xi) ≥ 5 so the degree condition for being a
2-core complement is satisfied. This gives us the graph of Type V. If p = |P | > 0,
then v has a neighbor z that is not a leaf so the number α of pendant edges at v
only needs to be positive to make d(w) ≥ 2. Since v has all of P as non-neighbors,
only when p = 1 is it necessary for w to have a pendant edge; that is, for β to be
positive. Thus we have Type VI.

When s > 0, no edge ab is possible, since if there were such an edge, the induced
subgraph H:{v, w, a, b, x1, x2, yj} would have no removable vertex.

In case s = 1 there cannot simultaneously be edges ay1 and by1 since that would
make H:{v, w, a, b, x1, x2, y1} have no removable vertex. If there is no edge of either
type, we need at least one pendant edge at each of v and w to make d(w) ≥ 2 and
d(v) ≥ 2, respectively, in order to guarantee that H is a 2-core; that gives Type
VII. If there is an edge by1, there may be several of them; the q vertices of B in
such edges along with w and y induce a K2,q with one vertex class {w, y1}. Then

we need at least one pendant edge at v to make d(w) ≥ 2. This gives Type VIII.
If s ≥ 2, suppose there were an edge by1; then H:{v, w, x1, x2, b, y1, y2} has no

removable vertex. Therefore byj and similarly ayj cannot exist. The codegrees are

d(yj) ≥ s+ 1 > 2, d(xi) = r− 1 +α+ β, and d(v), d(w) ≥ s ≥ 2. To ensure that H
is a 2-core, r− 1 +α+ β must be at least 2, which implies α+ β ≥ 1 if r = 2 while
if r > 2 there is no restriction on α and β. Thus we have Type IX. �

6. Line graphs

The line graph of G, denoted by L(G), has the edges of G as its vertices, with
two vertices adjacent if they are adjacent as edges in G. Line graphs are important
in graph theory for various reasons, one of the most important being that they
translate questions about edges into questions about vertices and vice versa. The
class of line graphs is closed under taking induced subgraphs and there is a beautiful
characterization of this class in terms of its forbidden induced subgraphs [1].
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In this section we characterize graphs whose line graphs are mock threshold.
First, we review the facts about threshold line graphs (for which we did not find a
reference).

Proposition 40. A graph is a threshold line graph if and only if it is complete or
has a vertex of degree 1 or 2 whose deletion results in a complete graph.

Proposition 41. The line graph L(G) is threshold if and only if every component
of G is an isolated vertex or edge, except possibly one, which is a star, optionally
with one added edge.

Another way to describe the non-isolated component (if any) of G is as a con-
nected subgraph of a triangle with any number of pendant edges at one vertex.

Proof Sketch. Proposition 40 follows immediately from the characterization of claw-
free threshold graphs in Proposition 36. Then it is easy to deduce Proposition 41
by using Whitney’s theorem that the root graph of a connected line graph is unique
with the exception that L(K3) = L(K1,3). �

We start the treatment of mock threshold line graphs with a well-known fact.

Lemma 42. If H is a subgraph of G, then L(H) is an induced subgraph of L(G).

As a consequence of this, the class of all graphs whose line graphs are mock
threshold is closed under taking subgraphs and hence can be characterized by a
list of forbidden subgraphs. This class also has a nice structural characterization.
These two characterizations are combined in the following theorem.

Theorem 43. Let G be a graph. The following statements are equivalent.

(1) L(G) is mock threshold.
(2) G contains no cycle of length at least 5 and none of the 12 graphs shown in

Figure 6.
(3) G is one of the following:

(a) A linear forest (every component is a path).
(b) Only one component is not a path and it is obtained by iteratively adding

a pendant edge to a leaf in one of the following:
Type 1. A star.
Type 2. A star plus two pendant edges on a leaf.
Type 3. C3 with pendant edges on one vertex and at most one more pendant

edge on one of the other two vertices.
Type 4. C4 with pendant edges on one vertex and at most one pendant edge

on one adjacent vertex.
Type 5. K4 − e with pendant edges on a trivalent vertex and at most one

more pendant edge on one divalent vertex.
Type 6. K4 − e with two pendant edges on a divalent vertex.
Type 7. K4 with at most two pendant edges on one vertex.
Type 8. Two triangles at a vertex with pendant edges on the vertex.

Proof. We will prove (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2). The line graph of each of the graphs in Figure 6 is non–mock-
threshold. One way to see this is to observe that every vertex in the the line graph
of each one of the graphs in the list has degree and codegree greater than 1 and
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Figure 6. Cycles of length at least 5 and these 12 graphs are
the minimal forbidden subgraphs for the class of graphs whose line
graphs are mock threshold.

then use Lemma 7. This together with Lemma 42 and Proposition 4 completes the
proof.

(2) ⇒ (3). Assume G is a graph that contains none of the graphs in the list
as a subgraph. We will show that L(G) is mock threshold. If G has two non-
path components, then it would contain one of the forbidden subgraphs: Cn(n ≥
5), G1, G2, G3, G4, G5, G7. Hence G contains at most one component that is not a
path. If G has no non-path component, then we are done. Hence we will focus on
the case where G has exactly one non-path component. Also, we will reduce G, by
which we mean repeatedly deleting leaves adjacent to vertices of degree 2.

Note that G contains only cycles of length 3 or 4.
Case 1. G has no cycles. In this case G is a tree. Since G contains neither G1

nor G11, any two vertices of degree at least three must be adjacent. Since G has
no triangles this implies G has at most two vertices of degree at least 3. If G has
only one vertex of degree greater than 2, then G is a star (Type 1). If G has two
vertices that have degree greater than 2, then one of them has to have degree 3
(since G does not contain G1). This gives Type 2.

Case 2. G has a 3-cycle but no 4-cycle. Let X = {va, vb, vc} form a triangle
in G. Since G has no bigger cycles, every vertex in V (G) − X has at most one
neighbor in X. Since G is reduced, every vertex in V (G) − X is adjacent to at
least one vertex in X. Observe that G −X can have at most one edge (otherwise
it would contain a cycle of length greater than 3). If G−X has exactly one edge,
then G is of Type 8. Otherwise, G is the triangle on X together with pendant edges
(forming a star) at each of a, b, c. If two of these stars have size more than one,
then G would contain G11. Hence G is of Type 3.

Case 3. G has an induced 4-cycle. Let X = {va, vb, vc, vd} induce a 4-cycle in
G. Since G contains neither C5 nor G9, every vertex in V (G)−X has at most one
neighbor in X. Since G is reduced, every vertex in V (G)−X is adjacent to at least
one vertex in X. Hence every vertex in V (G)−X is adjacent to exactly one vertex
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Figure 7. Mock threshold line graphs. The shaded part denotes
a clique. In the first two the clique can be of any size whereas in
the third the clique has 5 vertices.

in X. Since G contains neither G6 nor cycles of length greater at least 5, G−X is
edgeless.

Hence G is the 4-cycle on X together with pendant edges (forming a star) at
each of its vertices. Since G10 is not a subgraph of G, the stars can be at two
adjacent vertices only. If both stars have size more than one, then G would contain
G1. Hence G is of Type 4.

Case 4. G has an induced K4 − e. Let X = {va, vb, vc, vd} induce a K4 − e in
G where vbvd is the missing edge. Arguing exactly as in the previous case, we see
that G−X is edgeless. Hence G is the K4 − e on X together with pendant edges
(forming a star) at each of its vertices. Since G does not contain G2, the stars at
vb and vd can have at most two edges. If one of them has two edges, then there
can be no other edges since G contains neither G10 nor G11. Hence G is of Type
6. Otherwise G is of type 5.

Case 5. G contains K4. If two of these vertices have degree more than 3, then G
would contain C5 or G10. Hence only one of these vertices (say va) has degree more
than 3. Also the neighbors of va outside the 4-clique must form an independent set
for G does not contain G3. Since G does not contain G2, the degree of va must be
at most 5. Hence G is of Type 7.

This concludes the proof that (2) ⇒ (3).

(3)⇒ (1). It is straightforward to check that the line graph of a graph belonging
to any of the eight types is mock threshold. We omit the details. �

Corollary 44. A graph is a mock threshold line graph if and only if it is a linear
forest or a graph with exactly one non-path component which can be obtained from
a connected induced subgraph of one of the three graphs in Figure 7 by repeatedly
adding pendant edges to leaves.

7. Miscellaneous topics

We would like to characterize the mock threshold graphs with other standard
graph properties. We can characterize planarity and outerplanarity; that will ap-
pear separately. We have minor or partial results on other properties, that we
address in this section.
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7.1. Chordality.
Threshold graphs are chordal, as can easily be seen from their characterization

by forbidden induced subgraphs (Theorem 1). But mock threshold graphs need not
be chordal. We characterize those that are chordal.

Proposition 45. A mock threshold graph is chordal if and only if it has an MT-
ordering v1, . . . , vn such that for every i (1 ≤ i ≤ n), if the degree of vi in
G:{v1, . . . , vi} is i− 2, the unique non-neighbor of vi in {v1, . . . , vi} is simplicial in
G:{v1, . . . , vi}.
Proof. Let G be a mock threshold graph with an MT-ordering v1, . . . , vn such that
for every i (1 ≤ i ≤ n) such that the degree of vi in G:{v1, . . . , vi} is i − 2, the
unique non-neighbor of vi in G:{v1, . . . , vi} is simplicial. Suppose G contains an
induced k-cycle (k ≥ 4), say C. Let i be the largest index of a vertex in C.
Since vi has degree 2 in C, {v1, . . . , vn} is an MT-ordering, and C is induced in G,
k = 4. This means the unique non-neighbor of vi in {v1, . . . , vi} is not simplicial,
a contradiction. Hence G does not contain an induced k-cycle for some k ≥ 4, and
hence is chordal.

For the converse, we prove the contrapositive. Let G be a mock threshold graph
with an MT-ordering v1, . . . , vn. Let vi be a vertex that is non-adjacent to exactly
one vertex in {v1, . . . , vi}, say vk. Suppose vk is not simplicial in G:{v1, . . . , vi}.
Then vk has neighbors va and vb that are non-adjacent. Now {vi, vj , va, vb} induces
a 4-cycle in G, and hence is not chordal. �

7.2. Evenness.
A graph is even if all its vertices have even degree and Eulerian if it is even and

connected. We cannot characterize even or Eulerian mock threshold graphs, but we
will show that every mock threshold graph with n vertices is an induced subgraph
of a mock threshold even graph with at most 2n vertices. But first, for comparison,
we state an easy characterization of even and Eulerian threshold graphs.

Proposition 46. A threshold graph is even if and only if, in a threshold ordering,
the length of each consecutive string of dominating vertices is even. It is Eulerian
if and only if it is even and the last vertex added is dominating.

Let G be a graph. Let v1, . . . , vk be the vertices with even degree. Let w1, . . . , wp

be the vertices with odd degree. (Note that p is even.) Let G′ be obtained from
G by adding vertices x1, . . . , xp and xi is adjacent to all vertices in G′ except wi.
Since G′ is obtained from G by adding near-dominating vertices,

Lemma 47. If G is mock threshold, then so is G′.

The following fact is straightforward to verify.

Lemma 48. If G has an odd number of vertices, then G′ is even.

We will use these two lemmas to prove an evenness property.

Proposition 49. Every mock threshold graph G with n vertices is an induced
subgraph of a mock threshold even graph with at most 2n vertices.

Proof. Let G be a mock threshold graph on n vertices. If G is already even, we are
done. If G has an odd number of vertices, then G′ is mock threshold (by Lemma
47) and is even (by Lemma 48). If G has an even number of vertices, then H ′ is
mock threshold and even, where H is obtained from G by adding a dominating
vertex. �
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7.3. A big clique or a big stable set.
It is known that every graph on n vertices contains a clique or stable set of size

at least 1
2 log2 n. It is also known that every perfect graph on n vertices contains

a clique or stable set of size at least
√
n. Since mock threshold graphs are more

structured, a stronger conclusion holds for them.

Proposition 50. Every mock threshold graph on n vertices contains a clique or
stable set of size at least n

4 .

Proof. Let G be a mock threshold graph on n vertices. Consider one of its MT-
orderings. Color a vertex red if it is of dominating or near-dominating type, and
blue otherwise. By the pigeonhole principle there must be at least n

2 blue vertices
(passing to the complement, if necessary). Call the set of blue vertices B. Then
G:B is a forest, which is bipartite and hence has a stable set of size at least 1

2 |B| ≥
1
2 ·

n
2 = n

4 . �

For comparison, a threshold graph has a clique or stable set of size at least n
2 .

7.4. Well-quasi-ordering.
A quasi-order is a pair (Q,≤), where Q is a set and ≤ is a reflexive and transitive

relation on Q. An infinite sequence q1, q2, . . . in (Q,≤) is good if there exist i < j
such that qi ≤ qj . A quasi-order (Q,≤) is a well-quasi-order (WQO) if every infinite
sequence is good. Some graph classes are well-quasi-ordered, others are not; and
it can depend upon the chosen ordering. Threshold graphs are well-quasi-ordered
under both the induced subgraph relation and the subgraph relation, but mock
threshold graphs cannot be added to the list of well-quasi-ordered graph classes
because they include trees.

Proposition 51. Mock threshold graphs are not well-quasi-ordered under either
the subgraph relation or the induced subgraph relation.

Proof. Trees are not well-quasi-ordered under either relation. Take a path of length
i and attach two pendant edges at each of its ends. Call this tree Ti. Then T1, T2, . . .
is a sequence that is not good since no Ti is a subgraph of Tj for i 6= j. We are
done by Proposition 10 and the fact that if (Q,≤) is a WQO, then any subset of
Q is a WQO with respect to ≤. �

8. Algorithmic aspects

8.1. Recognition algorithm.
There is an easy recognition algorithm for mock threshold graphs.

Input : A graph G.
Algorithm: Check whether there is a removable vertex. If not, declare that the
graph is not mock threshold. If yes, delete that vertex and repeat the procedure.

The algorithm works because of Lemmas 7 and 8.
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8.2. Chromatic and clique numbers.
Determining whether a graph has chromatic number 3 is NP-complete. Since a

mock threshold graph is perfect, its chromatic number and clique number coincide.
The special structure of mock threshold graphs makes it possible to determine these
numbers in polynomial time.

Algorithm to compute the clique number of a mock threshold graph.
Step 1: Determine an MT-ordering for the given graph G.
Step 2: We look at vertices one-by-one, starting with the last vertex in the MT-

ordering. If the scanned vertex is dominating or almost dominating, delete the
vertex and its non-neighbor (if there is one) and increase the clique number by 1.
If the scanned vertex is pendant or isolated, just delete it.

Since mock threshold graphs are weakly chordal, any efficient algorithm that
applies to weakly chordal graphs also works for mock threshold graphs.

9. Open problems

We mentioned the problem of characterizing even mock threshold graphs. Here
are more open problems that are worthwhile but may be difficult.

9.1. Degree sequences.
A mock threshold graph and a non–mock-threshold graph can have the same

degree sequence. We give an example. Let G1 be the graph with two components:
one being a 5-cycle with a chord, and the other K2. Let G2 be the graph consist-
ing of a 5-cycle together with two pendant edges at two adjacent vertices on the
cycle. The degree sequence of both G1 and G2 is (3, 3, 2, 2, 2, 1, 1), but G1 is mock
threshold whereas G2 is not. This is in stark contrast with threshold graphs, where
the graph is determined by the degree sequence.

Problem 52. (a) Characterize graphic sequences all of whose realizations are mock
threshold.

(b) Characterize graphic sequences none of whose realizations are mock thresh-
old.

Amongst the solutions to (b) will be the graphic sequences in which all degrees
lie between 2 and |V (G)| − 3; but those are not all.

9.2. Splitness.
Let GSplitMT denote the set of all graphs that are both split and mock threshold.

Problem 53. Characterize graphs that are both split and mock threshold. More
specifically, determine Forb(GSplitMT).

9.3. Chromatic and Tutte polynomials.
It is not clear whether anything is known about the chromatic or Tutte polyno-

mial of a threshold graph.

Problem 54. Can we say anything about the Tutte polynomial of a mock threshold
graph?
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9.4. Hamiltonicity.
Harary and Peled [11] characterized Hamiltonian threshold graphs.

Problem 55. Give a similar characterization for Hamiltonian mock threshold
graphs.

9.5. Further generalization.
Let k be a non-negative integer. Let Gk denote the class of graphs that can be

constructed from K1 by repeatedly adding a vertex with at most k neighbors or
at most k non-neighbors. Then we have a nested sequence: G0 ⊂ G1 ⊂ G2 ⊂ · · · .
Note that each containment is proper. For example, a k-regular graph on 2k + 2
vertices is in Gk but not Gk−1. Clearly

⋃
Gk is the set of all graphs. Every Gk is

closed under taking complements and induced subgraphs (but certainly not under
taking subgraphs). Forb(Gk) consists of graphs G such that G /∈ Gk and G−v ∈ Gk
for every v ∈ V (G).

A general goal would be to understand Gk and a specific natural and important
problem will be to determine Forb(Gk). The case k = 0 is solved (it corresponds to
threshold graphs) and the case k = 1 is the topic of this paper; we found Forb(G1)
in Section 4.

Note that we go out of the realm of perfect graphs when k ≥ 2.

Acknowledgements. We are grateful to Jeff Nye for helping us with the Mathe-
matica program for determining the minimal non-MTGs with at most 10 vertices.
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[8] R. Faudree, E. Flandrin, and Z. Ryjáček, Claw-free graphs—a survey, Discrete Math. 164

(1997), 87–147.
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Figure 8. Members of Forb(GMT) with 8 vertices; the figure shows
one member of each complementary pair.
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Figure 9. One member of each complementary pair of graphs in
Forb(GMT) with 9 vertices.
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Figure 10. One member of each complementary pair of graphs
in Forb(GMT) with 9 vertices (contd.)


