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This is an expository survey of the uses of matrices in the theory of simple graphs with
signed edges.

A signed simple graph is a graph, without loops or parallel edges, in which every edge has
been declared positive or negative. For many purposes the most significant thing about a
signed graph is not the actual edge signs, but the sign of each circle (or ‘cycle’ or ’circuit’),
which is the product of the signs of its edges. This fact is manifested in simple operations
on the matrices I will present.

I treat three kinds of matrices of a signed graph, all of them direct generalizations of
familiar matrices from ordinary, unsigned graph theory.

The first is the adjacency matrix. The adjacency matrix of an ordinary graph has 1
for adjacent vertices; that of a signed graph has +1 or −1, depending on the sign of the
connecting edge. The adjacency matrix leads to questions about eigenvalues and strongly
regular signed graphs.

The second matrix is the vertex-edge incidence matrix. There are two kinds of incidence
matrix of a graph (without signs). The unoriented incidence matrix has two 1’s in each col-
umn, corresponding to the endpoints of the edge whose column it is. The oriented incidence
matrix has a +1 and a −1 in each column. For a signed graph, there are both kinds of
columns, the former corresponding to a negative edge and the latter to a positive edge.

Finally, there is the Kirchhoff or Laplacian matrix. This is the adjacency matrix with
signs reversed, and with the degrees of the vertices inserted in the diagonal. The Kirchhoff
matrix equals the incidence matrix times its transpose. If we multiply in the other order,
the transpose times the incidence matrix, we get the adjacency matrix of the line graph, but
with 2’s in the diagonal.

All this generalizes ordinary graph theory. Indeed, much of graph theory generalizes to
signed graphs, while much—though not all—signed graph theory consists of generalizing
facts about unsigned graphs.

As this is a survey, I will give very few proofs. As it is an outline, I will give few references;
they will be added to the final paper.

I. Fundamentals of Signed Graphs

I.A. Definitions about Vectors and Matrices.

A vector of all 1’s is denoted by j. The matrix J consists of all 1’s.

I.B. Definitions about Graphs.

A graph is Γ = (V,E) with vertex set V and edge set E. All graphs will be undirected,
finite, and simple: no loops or multiple edges. n := |V | is the order of the graph. c(Γ) is the
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number of connected components of Γ. Γc is the complement of Γ. ∆ also denotes a graph
of order n.

An edge with endpoints v, w may be written vw or evw. An edge with endpoints vi, vj

may also be written eij .
A walk in Γ is a sequence W = e01e12 · · · el−1,l of edges, where the second endpoint vi of

ei−1,i is the first endpoint of ei,i+1. Its length is l. Vertices and edges may be repeated. W is
closed if v0 = vl and l > 0; otherwise it is open. A trail is a walk with no repeated edges. A
path is an open walk with no repeated vertices or edges. A closed path is a closed walk with
no repeated vertices or edges except that v0 = vl.

Important Subgraphs. A subgraph of Γ is spanning if it contains all the vertices of Γ. A
circle (or circuit, cycle, polygon) is a 2-regular connected subgraph. A theta graph consists
of three internally disjoint paths joining two vertices. A pseudoforest is a graph in which
every component is a tree or a tree with one extra edge forming a circle. A block of Γ is
a maximal 2-connected subgraph, or an isthmus or an isolated vertex. A cut is the set of
edges between a vertex subset and its complement, except that the empty edge set is not
considered a cut.

The adjacency matrix of Γ is the n × n matrix A(Γ) in which aij = 1 if vivj is an edge
and 0 if not. The Seidel adjacency matrix of Γ is the n × n matrix S(Γ) in which sij = 0 if
i = j and otherwise −1 if vivj is an edge, 1 if it is not. I will have much more to say about
the Seidel matrix.

I.C. Definitions about Signed Graphs.

A signed graph is Σ = (|Σ|, σ), where |Σ| = (V,E) is a graph, called the underlying graph,
and σ : E → {+,−} is the sign function or signature. Often, we write Σ = (Γ, σ) to mean
that the underlying graph is Γ. E+ and E− are the sets of positive and negative edges. The
spanning subgraphs of positive and negative edges are Σ+ = (V,E+) and Σ− = (V,E−);
they are unsigned graphs.

Σ is homogeneous if all edges have the same sign, and heterogeneous otherwise. It is all
positive or all negative if all edges are positive or negative, respectively.

Signed graphs Σ and Σ′ are isomorphic if there is a graph isomorphism f : |Σ| → |Σ′| that
preserves edge signs.

I.D. Examples.

1. +Γ denotes Γ with all positive signs. −Γ denotes Γ with all negative signs.

2. K∆ denotes a complete graph Kn with vertex set V = V (∆), whose edges are negative
if they belong to ∆ and positive otherwise. That is, (K∆)− = ∆ and (K∆)+ = ∆c.

I.E. Walks, Circles, and their Signs.

The sign of a walk W = e1e2 · · · el is the product of its edge signs:

σ(W ) := σ(e1)σ(e2) · · · σ(el).

Thus, a walk is either positive or negative, depending on whether it has an even or odd
number of negative edges, counted with their multiplicity in W if there are repeated edges.

A circle, being the graph of a closed path, has a definite sign, either positive or negative.
It is easy to see that the number of negative circles in any theta subgraph of Σ is either 0 or
2.
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I.F. Balance.

Σ, or a subgraph or edge set, is called balanced if every circle in it is positive. (Physicists
picturesquely say satisfied and frustrated for ‘balanced’ and ‘unbalanced’.) b(Σ) is the num-
ber of balanced components of Σ. For S ⊆ E, b(S) is the number of connected components
of (V, S) that are balanced.

A circle is balanced if and only if it is positive. A walk is called balanced when its
underlying graph is balanced; thus, a positive walk may be balanced or unbalanced, and the
same holds for a negative walk.

Σ is antibalanced if −Σ is balanced, equivalently if all even circles are positive and all odd
circles are negative. One way to get an antibalanced signed graph is to give negative signs
to all edges of a graph.

Harary’s Balance Theorem [6]: Σ is balanced if and only if there is a bipartition of V
into X and Y such that an edge is negative if and only if it has one endpoint in X and one
in Y . (X or Y may be empty.) In other words, Σ is balanced if and only if E− is empty or
a cut. When Σ is balanced, a Harary bipartition is any bipartition as in the theorem. It is
unique if and only if Σ is connected. It was not so easy to prove this theorem at the time,
but with switching it becomes simple; see below.

It is easy to see that Σ is balanced if and only if every block is balanced.

A deletion set in Σ is an edge set S such that Σ \S is balanced. A negation set is an edge
set S such that negating the sign of every edge in S makes Σ balanced. Theorem (Harary):
S is a balancing set if and only if it is a deletion set. Thus, negation is just as good as
deletion for achieving balance. It is easy to see that no minimal deletion set can contain a
cut.

I.G. Switching.

Switching Σ means reversing the signs of all edges between a vertex set X and its com-
plement. X may be empty. We say X is switched in Σ. The switched graph is written ΣX .
Vertex switching means switching a single vertex.

Another version of switching, which is equivalent to the preceding, is in terms of a function
θ : V → {+,−}, called a switching function.. Switching Σ by θ means changing σ to σθ

defined by
σθ(vw) := θ(v)σ(vw)θ(w).

The switched graph is written Σθ := (|Σ|, σθ).
If Σ can be switched to become Σ′, we say Σ and Σ′ are switching equivalent. Switching

equivalence is an equivalence relation on signatures of a fixed graph. An equivalence class is
called a switching class. [Σ] denotes the switching class of Σ.

If Σ′ is isomorphic to a switching of Σ, we say Σ and Σ′ are switching isomorphic. Switching
isomorphism is an equivalence relation on all signed graphs. (Often, switching isomorphism
is not distinguished from switching equivalence, but I prefer to separate the two concepts.)

It is not hard to prove that Σ is balanced if and only if it switches to an all-positive
signature, and it is antibalanced if and only if it switches to an all-negative signature. (To
prove the first statement one can assume Σ is connected. Take a spanning tree and switch
it to be all positive. Σ is balanced if and only if there are no remaining negative edges.
The second statement follows by negation, or it has a similar proof.) Properties preserved
by switching are the signs of circles, and balance or imbalance of Σ and of any subgraph.
With switching I can give a short Proof of Harary’s Balance Theorem: If there is a
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Harary bipartition, every circle has an even number of negative edges, so Σ is balanced. If
Σ is balanced, switch it to have as few negative edges as possible. Since Σ is balanced, this
number is 0. Letting X be the set of switched vertices, the Harary bipartition is {X,V \X}.

I.H. History.

Signed graphs were invented by Harary (1953) to treat a question in social psychology [2].
König [7, Section X.3] almost invented signed graphs. He defined a graph with distinguished
edge set, proved Harary’s Balance Theorem, and had switching in the form of adding a cut,
but did not think of labelling the edges by the 2-element group, which I regard as the crucial
step. Signed graphs have been invented again and again in many different contexts—thus
showing that they are a natural concept.

Another Definition. Some people define a ‘signed graph’ to be a pair (Γ, E−) where
E− ⊆ E. They define the edge signature as σ : E → Z2 where σ(e) = 1 if e ∈ E− and 0
if e /∈ E−. They also tend to call positive edges ‘even’ and negative edges ‘odd’ (which is
confusing since, e.g., a circle can then be both even in parity and odd in sign at the same
time).

II. The Adjacency Matrix

The notation for the adjacency matrix is A(Σ).

II.A. Definition and Elementary Properties.

The adjacency matrix A = A(Σ) is an n×n matrix in which aij = σ(vivj) (the sign of the
edge vivj) if vi and vj are adjacent, and 0 if they are not. Thus A is a symmetric matrix with
entries 0,±1 and zero diagonal, and conversely, any such matrix is the adjacency matrix
of a signed simple graph. The absolute value matrix, |A(Σ)|, equals A(|Σ|), the adjacency
matrix of the underlying unsigned graph.

Powers of A count walks in a signed way. Let w+
ij(l) be the number of positive walks from

vi to vj (that is, the sign product of the edges in W is positive), and let w−
ij(l) be the number

of negative walks. Then the ij entry of Al is w+
ij(l) − w−

ij(l).
Let us define Σ to be regular if both Σ+ and Σ− are regular graphs. (There is no currently

accepted definition of regularity of a signed graph.) Then Σ is regular if and only if Aj = rj
for some real number r, and in fact

r = d±(Σ) := d(Σ+) − d(Σ−),

where d denotes the degree of any vertex.

II.B. Examples.

1. If Σ is complete, i.e., |Σ| = Kn, then A(Σ) is the Seidel adjacency matrix of the negative
subgraph Σ−. That is, the Seidel matrix of a graph is the adjacency matrix of a signed
complete graph. This fact inspired my work on adjacency matrices of signed graphs.

2. If Σ is complete bipartite, i.e., |Σ| = Kr,s, then A(Σ) =

(

O B
BT O

)

where B = B(Σ) is

an r×s matrix of +1’s and −1’s. If Σ is bipartite but not necessarily complete bipartite,
then A(Σ) has a similar form but B may have 0’s as well as +1’s and −1’s.
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II.C. History.

As far as I know, the first adjacency matrix of a signed graph was defined by the social
psychologists Abelson and Rosenberg [1]. Their definition was, from the mathematical view-
point, weird and interesting. They used, instead of numbers, the symbols u, p, n, a, standing
for ‘unrelated’, ‘positive’, ‘negative’, and ‘ambiguous’ and meaning, respectively, that the
two persons had no relationship, a positive or negative relationship, or a relationship with
both positive and negative aspects. They defined multiplication rules that enabled them to
take a Hadamard (i.e., componentwise) product of matrices, with which they were able to
detect interesting mathematical properties.

The standard adjacency matrix, which is what I have defined, appeared soon after, but
I’m not sure exactly when and where. Harary certainly used it early on.

II.D. Switching.

Switching has a simple effect on A(Σ). Given X ⊆ V , switching by X negates both the
rows and columns of vertices in X. Given a function θ : V → {+1,−1}, switching by θ
negates both the rows and columns of vertices in θ−1(−1).

In matrix terms, let Diag(θ) be the diagonal (0,±1)-matrix with θ(vi) in the ith diagonal
position. Then switching by θ conjugates A(Σ) by Diag(θ); that is,

A(Σθ) = Diag(θ)A(Σ) Diag(θ).

If Σ is bipartite with bipartition V = V1∪V2, we can examine the effect of switching X on
B. Say the rows are indexed by V1 and the columns by V2. Switching negates each row of B
corresponding to a vertex in X ∩ V1 and each column corresponding to a vertex in X ∩ V2.

II.E. Eigenvalues.

An eigenvalue of Σ is an eigenvalue of its adjacency matrix. Just as with ordinary graphs,
a regular signed graph has d±(Σ) as an eigenvalue. Other eigenvalues are problematic, but
they may give information about Σ. I know of nothing that has been done on this except
for strongly regular signed graphs.

II.F. Very Strong Regularity.

Seidel [9, 10] discovered that a strongly regular graph has a nice definition in terms of its
Seidel adjacency matrix S, namely, that

S2 − tS − kI = p(J − I) and Sj = ρ0j

for some constants t, k, p, ρ0 (thus j is an eigenvector of S). Here k = n − 1; the other
constants have combinatorial interpretations. The cases p = 0 and p 6= 0 behave differently.

Recalling that S(∆) is the same matrix as A(K∆), I was led to the following definition: A
signed graph is very strongly regular [15] if its adjacency matrix satisfies

A2 − tA − kI = pĀ and Aj = ρ0j

for some constants t, k, p, ρ0. Here Ā is the adjacency matrix of the complement of |Σ|. The
combinatorial interpretation of these parameters is:

a. |Σ| is k-regular.
b. ρ0 = d±(Σ), the net degree (which is an integer).
c. t = t+ij − t−ij where t+ij, t

−
ij are the numbers of positive and negative triangles on edge

eij .
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d. p = p+
ij − p−ij for any pair vi, vj of nonadjacent vertices, where p+

ij, p
−
ij are the numbers

of positive and negative length-2 paths joining the vertices.
e. t and p are independent of the choices of adjacent or nonadjacent vertices.

The main problem is to classify very strongly regular signed graphs. I am currently
working on this [15]. Various simplifications are helpful. For instance, −Σ, whose signature
is −σ, behaves just like Σ except that t and ρ0 are negated. Thus, one may assume that t is
nonnegative, or that Σ is not all negative, when it is convenient to do so.

The most important factor in the classification is which of p and t are 0. As is usual
in such problems, there are numerical restrictions. It is interesting that some of the types
include kinds of matrices that have already been studied for many years. I will run down
the possibilities.

a. Homogeneous signed graphs can be assumed (by negation) to be all positive. +Γ is
very strongly regular iff Γ is a strongly regular unsigned graph. For the rest of the
cases I assume Σ is inhomogeneous.

b. If p = 0, the defining equations are A2 = kI and Aj = ρ0j. Eigenvalue arguments
show there is a positive integer s such that k = s(s + |t|) and ρ0 = s + (t + |t|)/2.

i. When t = 0, ρ0 =
√

k. Thus, A is a symmetric weighing matrix with zero

diagonal and in each row
(

√
k+1
2

)

entries equal to +1 and
(

√
k

2

)

entries equal to
−1.

ii. When t 6= 0 one can analyse further but I omit the details.
c. The most complicated cases are when p 6= 0. Σ must be connected, and there is a

positive integer q such that p(n − 1 − k) + k = q(q + |t|).
i. When t = 0, then q equals the eigenvalue ρ0.
ii. The case t 6= 0 is more complicated; I omit further description.

The bipartite case is noteworthy. There A =

(

O B
BT O

)

so the defining equations imply

BBT = kI, t = 0, and ρ0 =
√

k. Aj = ρ0j means that B has line sums
√

k. Therefore, B is
a square weighing matrix of order n/2 and weight k with all row and column sums =

√
k.

If Σ is complete bipartite, B is a Hadamard matrix with constant line sums
√

n. Not all
Hadamard matrices have this property, but infinitely many do.

III. Orientation

III.A. Bidirected Graphs.

In a bidirected graph, every edge has an independent orientation at each end. We think
of these in two ways: as an arrow at each end, which may point towards or away from the
endpoint, and as a sign η(v, e) on the end of e that is incident with v, which is +1 if the
arrow points to the endpoint, −1 if the arrow is directed away from the endpoint.

III.B. Oriented Signed Graphs.

A bidirected graph is naturally signed by the formula

σ(e) = −η(v, e)η(w, e)

for an edge evw. An edge is negative if its arrows both point toward their corresponding
endpoints, or both away from their endpoints. An edge is positive if one arrow points at its
endpoint while the other is directed away from its endpoint.

6



Conversely, an orientation of a signed graph Σ is a bidirection η of |Σ| that satisfies the
sign formula just given.

Reorienting an edge evw means replacing η(v, e) and η(w, e) by their negatives. In terms
of arrows, it means reversing the arrows at both endpoints of the edge. This does not change
the sign of the edge.

IV. The Incidence Matrix

The notation for an incidence matrix of a signed graph is H(Σ) (read ‘Eta’).

IV.A. Definition.

An incidence matrix of Σ is a V ×E matrix in which the column of edge e has two entries
±1, one in the row of each endpoint of e, and 0’s elsewhere. The two nonzero entries must
have product equal to −σ(e); that is, they are equal if e is negative, but if e is positive, one
is +1 and the other is −1.

The incidence matrix is not unique. The choice of signs in each column reflects a choice
of orientation η of Σ: the (v, e) entry in H(Σ) is η(v, e) if v is an endpoint of e and 0 if not.
Conversely, the entries of an incidence matrix of Σ determine an orientation η.

The incidence matrix can be treated as a matrix over any field k.

IV.B. Rank.

If k has characteristic 2, H(Σ) has rank n − c(Σ). Otherwise, H(Σ) has rank n − b(Σ).

IV.C. The Kirchhoff Matrix and Matrix-Tree Theorems.

The Kirchhoff matrix (also called the Laplacian) is

K := H(Σ)H(Σ)T = ∆(|Σ|) − A(Σ),

where ∆(|Σ|) is the degree matrix of |Σ|, the diagonal matrix whose diagonal entries are
the degrees of the vertices in the underlying graph. I state two signed-graphic analogs of
the matrix-tree theorem. For proofs see the references; the first is not hard (it uses the
Binet–Cauchy theorem in the standard way), but the second is rather complicated both to
state fully and to prove.

a. The determinant det K is the sum, over all pseudoforests F with n edges and with no
positive circles, of 4c(F ), where c(F ) is the number of components of F [12, Section
8A].

b. From K delete k rows, corresponding to vertices r1, . . . , rk, and k columns, corre-
sponding to c1, . . . , ck, and then take the determinant. The resulting number is the
sum of ±4q, where q is the number of circles in F , over all n − k-edge spanning
pseudoforests without positive circles such that each tree component of F contains
exactly one ri and one cj [3]. The sign of the term is given by a complicated rule.

IV.D. Examples.

1. An oriented incidence matrix of the unsigned graph Γ is the same as an incidence matrix
of the all-positive signed graph +Γ. Since +Γ is balanced, the rank given by our formula
equals n − c(Γ), as is well known.

The Kirchhoff matrix of +Γ is simply that of Γ, i.e., ∆(Γ) − A(Γ). The fact that its
determinant is zero is consistent with the general theorem on det K(Σ), because there
are no negative circles in +Γ.
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2. The incidence matrix of an all-negative signed graph, −Γ, can be defined to have +1’s
in every nonzero position. This is the customary definition of the unoriented incidence
matrix of Γ. Since an all-negative graph is balanced if and only if it is bipartite, the
rank of the matrix (except in characteristic 2) equals n − b where b is the number of
bipartite components of Γ. This result was previously obtained by ad hoc methods (first
by van Nuffelen [8], to my knowledge), but it is really a special case of the general rank
theorem for signed graphs.

The Kirchhoff matrix K(−Γ) equals ∆(Γ) + A(Γ). Its determinant equals the sum of
4c(F ) over all n-edge pseudoforests F in which every component contains an odd circle.

V. Line Graphs

V.A. Unsigned Line Graphs.

The line graph of an unsigned graph Γ is denoted by L(Γ). Its vertex set is E(Γ); two edges
are adjacent if they have a common endpoint in Γ. L(Γ) has two kinds of distinguished circles:
vertex triangles are formed by three edges incident with a common vertex, and derived circles
are the line graphs of circles in Γ. Every circle in L(Γ) is a set sum of vertex triangles and
derived circles.

V.B. Signed Line Graphs.

The line graph Λ(Σ) of Σ is a switching class, not a single signed graph. Its underlying
graph is the line graph L(|Σ|) of the underlying graph. To define Λ(Σ) we may take the
approach of edge orientation or a direct definition of the circle signs.

1. Definition by Orientation.
Choose an orientation η of Σ. We define a bidirection η′ of L(|Σ|) and therefore

a signature, thus forming the line signed graph Λ(Σ). Two edges evw, e′vw incident
with a vertex v form an edge ee′ in Λ, whose vertices are evw and e′vw. An end of
ee′ may therefore be written (evw, e), corresponding to the end (v, evw) in Σ. Define
η′(evw, e) = η(v, evw).

In terms of arrows, bidirect each edge of Σ with two arrows as indicated by η, and let
the arrow on (evw, e) point into the vertex evw iff the arrow on (v, evw) points into the
vertex v in Σ.

Reorienting an edge in Σ corresponds to switching the corresponding vertex in Λ(Σ).
Thus, Λ(Σ) is well defined only up to switching. I.e., it is a well defined switching class.

2. Definition by Circle Signs.
Make every vertex triangle negative and give to every derived circle the same sign as

the circle in Σ it derives from. Other circles get signed by the following sum rule: If C
is the set sum of certain vertex triangles and derived circles, its sign is the product of
the signs of those vertex triangles and derived circles. One has to prove that the sum
rule gives the same sign no matter how it is applied, which is done by showing that the
definition by circle signs agrees with that by edge orientation, the latter being obviously
well defined.

V.C. Characterisation.

Line graphs of signed simple graphs are characterisable by forbidden induced subgraphs.
The exact subgraphs are unknown. They probably all have at most 6 vertices.
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What is known is that the forbidden induced subgraphs for reduced line graphs of simply
signed graphs without loops have at most 6 vertices. This takes us to signed graphs with
parallel edges. Suppose Σ is allowed to have both positive and negative edges linking the
same vertices. Then in the line graph Λ(Σ), if there are edges +ef and −ef with the
same endpoints but opposite signs, they are deleted. This gives the reduced line graph of
Σ. If Σ has no parallel edges, no reduction is possible. Chawathe and Vijayakumar [4]
found the 49 forbidden induced signed subgraphs (actually, switching classes) for reduced
line graphs of signed graphs with parallel edges allowed (which they regard as the signed
graphs ‘representable by the root system D∞’).

V.D. Examples.

1. The line graph of the all-negative signed graph −Γ is [−L(Γ)], the switching class of the
ordinary line graph with all negative signs.

2. The line graphs that are antibalanced are [−∆] where ∆ is an ordinary line graph or
a Hoffman generalised line graph. Thus, the usual theory of line graphs is the case of
all-negative signed graphs.

V.E. Adjacency Matrix and Eigenvalues.

The adjacency matrix is the E × E matrix given by

A(Λ(Σ)) = 2I − H(Σ)TH(Σ).

The largest eigenvalue of A(Λ(Σ)) is 2. It is a simple eigenvalue if Σ is connected. The
connected signed graphs whose eigenvalues are at most 2 are the line graphs of signed graphs
and a few sporadic examples. (This was found by Vijayakumar et al.)

VI. Other Aspects of Signed Graphs

Here are some topics that I omitted.

VI.A. Spaces and Lattices.

The row and null spaces of the incidence matrix tell a lot about the structure of Σ. The
integral elements of the real row and null spaces present remarkable new phenomena, not
seen with unsigned graphs [5].

VI.B. Multigraphs.

Most of what I’ve said works equally well when loops and multiple edges are allowed.
Some of it becomes more complicated.

VI.C. Matroids and Geometry.

The incidence matrix of Σ is intimately connected with matroid theory and with the
geometry of Coxeter hyperplane arrangements.

A second type of incidence matrix of a signed graph, the augmented binary incidence
matrix, is the matrix over F2 whose rows are those of the ordinary incidence matrix of |Σ|
(oriented or not, it being the same over F2) together with one extra row in which the signs
appear as 0 for a positive edge and 1 for a negative one. This matrix has been exploited
effectively by Gerards and Schrijver, among others.

The adjacency matrix arises in the study of semi-equiangular lines, which are lines in R
d

whose angles are either 90◦ or arccosα where 0 < α < 1 [10]. If G is the Gram matrix of the
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lines, α−1(G − I) is the adjacency matrix of a signed graph. This construction generalizes
that of A(Λ(Σ)), where α = 1/

√
2.
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