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The Mébius Function and the
Characteristic Polynomial

THOMAS ZASLAVSKY

The effort to generalize graph theory to matroids has yielded analogs of the
chromatic polynomial and related graph invariants and (although there is still
no exact analog for an arbitrary matroid) a partial extension of vertex
coloring. The ‘characteristic polynomial’ provides every matroid with an
algebraic analog of the chromatic polynomial; Crapo and Rota’s ‘critical
problem’ defines a kind of proper coloring for submatroids of finite vector
spaces. We shall begin our account with the characteristic polynomial, its
logical building block the combinatorial Mdbius function, and the related beta
invariant; then we present examples including the connection with graph
coloring and conclude with the critical problem.

As usual in enumeration we assume throughout this chapter that all
matroids, lattices, and other combinatorial objects are finite.

7.1. The Mobius Function
The combinatorial Mdbius function, which we will need for geometric
lattices, can just as easily be defined for any finite partially ordered set. Let
P be such a set and consider integral functions P x P— Z. The function U
(or up) which satisfies -

Y oux,y)=468x,2) if x<z (7.1)

xgy<z
(where J is the Kronecker delta) together with ordering property
ux,z2)=0 if x<&z

is called the Mébius function of P. [Hall (1936). Weisner (1935) for lattices. The
basic reference is Rota (1964). A good recent treatment is Aigner (1979).]
To see that p exists and is uniquely defined, let us rewrite (7.1) as two
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equations:
px, x)=1, (7.2)
ux,z)=— Y uxy if x<z : (7.3)
x<y<z

We can calculate p(x, z) first for z=x from (7.2), then recursively from (7.3)
for successively higher z by induction on the length of the'longest chain from
x to z. Thus the value of pp(x, z) depends only on the order structure of the
interval [x, z] and not on the rest of P.

To understand the Mobius function better, let us mtroduce the 1nc1dence
algebra I(P): the set of all functions ¢:P x P—Z such that (x,y)=0ifx Ky,
with pointwise addition and the convolution product

@)= ) (s nY(,2)-.

This product is a form of matrix multiplication. If we extend <p to a linear
ordering of P denoted by subscripts, so p;<pp; implies i<j, then an
incidence function is a | P| by | P| upper-triangular matrix and convolution is
matrix multiplication. Hence multiplication is associative and has & for
identity. Also, any incidence function ¢ with ¢ (x, x) = 1 is invertible. The zeta
function of P is the function {el(P) with

{x,;y=1 if x<y.

We can now restate the definition (7.1): u is the lefi inverse of (.
The recursive formula (7.3) is an effective way to compute the Mobius
function of a small interval. Some useful values are the following,

7.1.1. Proposition. In a partially ordered set,
plx,x) =1,
,u(x; n=—1 ifycovers x,
wx,z)=n—1 if[x,2] is an n-point line.
Proof. Exercise. |

Before we concentrate on geometric lattices, we shall give some important
general properties of the Mobius function.

7.1.2. Proposition. The Mébius function of P can be defined by replacing (7.1)
by

Y up2)=éxz f x<z

XLy<sz
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or by replacing (7.3) by
,Lt(x,Z)z— z ﬂ(y,Z) lf x <z ?
x<y<z

Proof. Exercise. O

The raison d’étre of the M6bius function is the inversion property. This is the
common generalization of the principle of inclusion and exclusion (which is
M&bius inversion on the power set of a set) and of number-theoretic Mébius
inversion [in which P is the set of natural numbers ordered by divisibility; the
classical u(n) = pp(1,n)]. If pel(L) and f:P — A (an abelian group, which will
often be the integers), define '

@*)x)= 3 ¢G0S ),

(f*)p) = X f(x)p(x.)-

These are the‘incidence-algebra versions of the product of a vector by a matrix.

7.1.3. Proposition (Mobius Inversion). Let P be a finite poset. Let f and g be
functions on P with values in any ring (or Z-module, i.e., abelian group). Then

gx)= Y ()

yzx

implies
fx)= 3 uelx, )g()s
yzx :
and vice-versa. In addition

g = f(x)

X<y

implies

F0)= Y gt)us(x, y),

X<y
and vice versa.

Proof. Exercise. O

Now we specialize to the case of a finite matroid M = M(E). Itslattice of flats
L has Mobius function yu; . [The value ,u .(0,1) is often called the Mdbius
invariant of L and written p(L). As we noted earlier, the Mdbius invariant of an
interval [x,y] in L, g([x, ¥1), is equal to u;(x, y).] The Mobius function of M is
defined by

luM(XﬂF)zl’l’L(X9F) if XaFELa
U X, F)=0 if X¢L, Fel;

Ul X, F)is not defined if F¢ L. The purpose of this extended definition of u,, is
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to allow matroids in which & is not closed to obey the same formulas as other
matroids—the same reason for which the chromatic polynomial of a graph with
loops is taken to be identically 0. (These two cases are virtually the same, as our
discussion of the chromatic polynomial will show.)

One such formula of basic importance is the following expansion (valid
more generally for any closure on S). It seems to originate with Weisner. The
non-trivial case (where WelL) is a special case of Weisner (1935), Equation (15)
with property P’ = ‘minimal’. For a graphic matroid it is implied by a result
of Whitney (1932).

7.1.4. Proposition (Boolean Expansion Formula). Let L be the lattice of flats
of the matroid M = M(E). Let WS E and FeL. Then

W, F)=Y, (=1)*"
WeXcF
cX=F

Proof. See Exercise 7.9. ' O

7.1.5. Example. Uniform matroids, Boolean algebras, and circuits. In the
uniform matroid U,,, of rank r on an m-set E, the flats of rank k (for k<r)
are the k-subsets of E. We have

r—1 ‘
WU, = z(—l)"“(',:‘), i o<r<m
k=0

In particular for the Boolean algebra B, = Uy, We have u(B,) =(— )™ For.

the m-point circuit C,, = U, -1 » We have w(C,) = (— )"~ }(m— 1). (Exercise.)
Another useful formula, also valid for any closure, is:

7.1.6. Proposition. [Special case of Weisner’s theorem (Weisner 1935,
Theorem 9; Rota 1964, p.351, Corollary)] In the matroid M = M(E) let F be a
flat,e a point in F,and F |, F,,... the flats such that F covers F;and e¢ F;. Then

#M(Q:'F) = Z#M(gan)

Proof. For fixed e and any flat F containing e, let

FF) = 1D, F) + Yt D F).

We want to show f = 0. Since that is trivially true if J is not closed, we may '

assume cl (e) is an atom A in the lattice L of flats. Let
g = 3% [fF)
ASF<&F

=) | M. F)+ Zu(@fé)]-'
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Each flat E' < F appears exactly once in the latter sum. For if E' = A4, then E' is:

an F';butif E' 2 A4, then E’ is one of the F; associated with that F’ which equals
E' v A. Hence g .

gF)= Y wJ,E)=0

E'KF

since F = A > 0. We therefore have

Y. fF)=g(F)=0.

F'e[A,F]

Applying M&bius inversion (Proposition 7.1.3), we see that f =0. mp

Now we are ready to prove the main properties of the Mobius function of a
matroid. The first theorem is the core of Brylawski (1972, Theorem 4.2), which
will reappear in Theorem 7.2.4 and Section 7.4.

7.1.7. Theorem. The Mobius invariant of a matroid M = M(E) satisfies:
(i) the deletion-contraction rule: if ecE is not an isthmus,
MM) = (M — e) — p(M/e);
(ii) the direct sum rule: if M =M, ® M,, then
w(M) = p(M )u(M).

Proof of (i). If e is a loop, M — e = M/e and both sides of the equation are 0.
Suppose then that e is neither an isthmus nor a loop. ' .
We rewrite the left-hand side by Proposition 7.1.4:

pMy= Y (=1
cg(g-——EE
= Y (== ¥ (-1 (7.4)
S

Since e is not an isthmus, a set X = E — e spans M if and only if it spans M — e.
Hence the first sum in (7.4) equals (M — e). The second sum equals u(M/e), for
an X containing e spans M if and only if X — e spans M/e.

Proof of (ii). See Exercise 7.10. . O

Next is the fundamental theorem on the sign of u in a geometric lattice.
7.1.8. Theorem. (Rota 1964, Theorem 4, p. 357) The Mébius Junction of a
geometric lattice L is non-zero and alternates in sign. Precisely,

(= 1y &y, (x,»)>0 if x<y in L.
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Proof. It will suffice to prove
(= 1y®p(0,1)>0. (7.5)

We use induction on the rank and nullity of the combinatorial geometry
G = G(E) whose points are the atoms of L.

If G has nullity 0, it is a Boolean algebra. Hence by Example, 7.1.5, ug(0, 1) =
(— 1)H = (— 1y, whence (7.5) is immediate. This case includes lattices with
rank 0 or 1. ,

If G has positive nullity, it is not a Boolean algebra. Hence there is a point e
which is not an isthmus. By induction on rank, (— 1)*%/9u(G/e) > 0. By
induction on nullity, (— 1y¢~9u(G — e) > 0. By Theorem 7.1.7,

(= 1Y OUG) = (— I u(Gle) + (— 1Y€~ (G—e),
which is positive by the previous observations. Thus we have the theore'm.»

O

7.19. Corollary. (Brylawski 1972, Theorem 4.2 and Corollary 4.3) The magni-
tude of the Mobius invariant of a matroid satisfies

|u(M)| = | (M — )| + | u(M/e)|

if eeE is neither an isthmus nor a loop, and

(M @ My)| = |u(M )| [(M)]. 0 -

The last result on u is an expansion formula which will be needed to prove
Stanley’s modular-element factorization of the characteristic polynomial,
Theorem 7.2.5 below.

7.1.10. Lemma. Let x be a fixed element of the lattice L and let veL. Then

uO,0)= 3> u0,y)u0,2).

yz
y<x,zAx=0
yvz=vp

Proof. Let f(v) denote the right-hand side. Then

WZ fwy="% X w0,yu0,2)

YEXAV zZKV
zAx=0

| =06(0,x Av) Y u(0,2).

ZEY
zAx=0

Either 6(0,x A v) =0, or else x A v=0 so that the z-sum ranges over all z<v
and consequently equals 6(0,v). Thus X, ., f(u) = 6(0,v). Inverting this sum
yields f(v) = (0, v), as desired. O
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7.2. The Characteristic Polynomial

The characteristic polynomial is the matroid analog of the chromatic
polynomial of a graph. While it does not count proper coTorings—indeed there
is no way known to color a general matroid corresponding to vertex coloring
of a graph-the characteristic polynomial has most of the algebraic properties
of the chromatic polynomial and can for many examples be interpreted in an
interesting way related to coloring (in the ‘critical problem’).

The characteristic polynomial' of a matroid M is defined to be

pM; )= Y pp(, F)Ar0=r®,
FeL

where L denotes the lattice of flats of M. Clearly, p(M;2)is monic of degree (M)
except when ¢ is not closed, in which case p(M;A)=0. The coefficient of
A0~ is known as the k-th Whitney number of the first kind of M, written
w (M) (cf. Chapter 8); thus

rHM

)
p(M; )= 3 w(M)ZODk,

k=0

wi (M) = F; (D, F).

rHFy=k

We also see that u(M) = p(M;0). Because of this, many properties of the
Moébius invariant are specializations of those of the characteristic polynomial,
We also define the characteristic polynomial of a geometric lattice L; it is

pL; )=}, py(0, )2 ~re,
xelL

This polynomial is always monic of degree r(L); its coefficients are the Whitney
numbers (of the first kind) of L. (Frequently in the literature p(M; A) is defined
to be p(L; 2) where L is the lattice of M. This is adequate for simple matroids
but our definition is better in general.)

From our knowledge of the Mobius function we get at once two useful
results. Setting W = ¢ and summing over all FeL in Proposition 7.1.4:

7.2.1. Proposition. The characteristic polynomial of the matroid M = M(E) has
the Boolean expansion

M= ¥ (— 1ao0-ro, O

X<E
7.2.2. Example. Uniform matroids, Boolean algebras, and circuits. For the

*Also called the Birkhoff or Poincaré polynomial.
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uniform matroid U,,, with 0 <r<m we have

r—1 m
PUms A)= 2, (—1)"( >[/1""—1]
K=o k ,
1 r—i ; m—1
== (x—l)jgo(—z)(r_l_j)
In particular p(B,;4) =(4 —1)" and

Y i o Ve
; .

P(Ci)=(A—1)
From Rota’s sign theorem, Theorem 7.1.8:

7.2.3. Proposition. If L is a geometric lattice, then the coefficients of
(= 1yY®p(L; 1 — 1) are all positive. In other words,

IwlL)| = (— 1fwy(L). O

And from Proposition 7.2.1 we can deduce an analog of Theorem 7.1.7
contained essentially in Brylawski (1972, Theorem 4.2).

72.4. Theorem. The characteristic polynomial of a matroid M = M(E)

satisfies:
(i) the deletion-contraction rule: if ecE is not an isthmus,

p(M;3) = p(M — e;4) — p(M/e;4);
(ii) the direct sum rule: if M =M, @M,
p(M;2) = p(M;;4)p(M 5 4).
Proof. Exercise. See also Section 7.4. - O

Theorem 7.2.4(ii) shows that some characteristic polynomials factor in an
interesting way. We can find a second kind of factorization by setting A4 = 1.
From the definition of pi,, p(M;1) = 0 for every matroid M whose point set is
not empty. Hence 4 — 1 divides p(M;4). Both factorizations are special cases of
a theorem due to Stanley.

7.2.5. Theorem. [Modular factorization (Stanley 1971, Theorem 2)] If x is a %
modular element of the geometric lattice L, then 1

L) =p([0xXLA) T, p0, AT,

zeL i
zAx=0

Proof. The right-hand side equals .
S 3 0,0, )OO, (1.6

y<x zax=0
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We now need a lemma. Recall that (v, w)M means v and w are a modular pair in
L.

7.2.6. Lemma. If (v, WM and v A w <u <v, then (u, w)M.
Proof of Lemma. We want to prove that
urwvi)=uaw)vet forall t<u.

The inequality 3> is a lattice identity, so it suffices to prove <. We have, by the
assumption (v, w)M,

vAawv=@vAawve forall <.
Note that v Aw=u A w and v > u. Hence
urnwvt)<(uaw)vt forall t<v,
which is stronger than what we need. , O

In the theorem, (x,z)M because x is a modular element; and x A z=
0 < y < x. The lemma implies (y, z)M, whence .

rM+r@=ryvz)+ry az)=ry v 2)
Thus (7.6) equals

Y Y w0 )u0,2"

y<xzax=0 .

=y O %% w0, y)uO,2).

vel y&x zAx=0
yvz=v

The inner double sum equals u(0,v) by Lemma 7.1.10. Thus we have the
theorem. ]

To see that Stanley’s theorem includes the direct-sum factorization, suppose
M=M,®M,. Then L=L(M)=L, x L,. In L the element x=(1,0) is
modular; moreover z A x =0 if and only if ze{0} x L,. Thus in Stanley’s
theorem the first factor is p(L,;A) and the second is p(L,;4). '

We can use Theorem 7.2.5 to determine the cofactor of 4 — 1in p(L;1). Leta
be any atom of L; then p([0,a];4) = A — 1. Let L(a) = L — [a, 1]; then L(a) isan
ideal in L. Define ’

pLayh)=3, pui(0, 24717,

zeL(a)

Since any atom is a modular flat, we have:

7.2.7. Corollary. Let a be any atom in the geometric lattice L. Then p(L; 1) =
(A — 1)p(L(a); A). O
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7.28. Corollary. The polynomial p(L(a); A) is the same for every atom aelL.
'l

7.2.9. Proposition. [Brylawski 1971, Theorem 6.16()] Let M be the parallel
connection of M| and M, with respect to the basepoint D, and assume p is not a
loop in either M, or M. Then

p(M ;)p(M ;1) _

p(M3h) =0

Proof. The assumptions imply that p is not a loop in M either. Hence by
Corollary 7.2.7 the proposition is equivalent to the assertion that

p(LAp); 2) = p(L(p); Hp(Ly(p); A), (7.7)

where L; is the lattice of flats of M,, provided that (¥ is closed in M 1 and M,,
which we may clearly assume. In full, (7.7) says ‘

3. py(0, F)2r =11
FeL
;. p¢F

= Z Z ‘uLl(O’Fl):u'Lz(O’FZ)'{r(L)—I_r(F“—"(Fz):

Fiely Fyel,
PEFy pEF;

since r(L)—1=[r(L,;)— 1]+ [r(L,)—1]. By Brylawski (1971, Proposition
5.11) (see White 1986, Chapter 9), the flats F not containing p are precisely the
unions F;UF, of flats of M, and M, where p¢F, and péF, and
[0,F]=[0,F,]x[0,F,]. So r(F)=r(F))+r(F,) and p0,F)=
u(0, F)u(0, F,), which is just what we need to prove the equation. O

7.3. The Beta Invariant

An informative number associated with a matroid is Crapo’s beta invariant.
With it one can decide whether a matroid is connected and whether it comes
from a series-parallel network. The invariant can sometimes also establish
that two matroids are not dual.

The beta invariant of the matroid M = M (E), whose lattice of flats is L, is
defined by :

I - d .
ﬁ(M) = (_ 1) M) laP(M: 1)’
which equals (— 1)"M)“iZFuM(@,F)[r(M) —r(F)], so that

B(M) = (— 1y FZL#M(Q s FYr(F).
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In view of Proposition 7.2.1 we could equally well define

BM) = (= 1Y% 3 (— 1) (x)

XcE

as Crapo (1967) did when introducing the invariant. Some simple pfopertiés of
B are summarized in Proposition 7.3.1. : :

7.3.1. Proposition. Let M = M(E), L = the lattice of flats of M.
(@) If M has no loops, (M) depends only on L.
(b) Blisthmus) = 1. :
(©) B(M)=0if E= or if M contains a loop.
(d) IfeeE is not a loop,
BM) = (—1y®0=1 % ﬂM(Q, F)

FelL
e¢F

Proof. Exercise 7.17. 7 O

We define the beta invariant of a geometric lattice to be that of the
underlying combinatorial geometry. Proposition 7.3.1 shows that BL)y=0if
rL)=0,1ifr(L)=1.

The fundamental properties of f are those in Theorem 7.3.2.

7.3.2. Theorem. (Crapo 1967) The beta invariant of the matroid M = M(E)
satisfies

(@ B(M)>0.

(b) B(M) >0 if and only if M is connected and is not a loop.

(¢) If e€E is neither an isthmus nor a loop,

B(M) = B(M — e) + B(M/e).
(d) B(M*) = B(M) except when M is an isthmus or a loop.
Proof of (c). Exercise 7.18. ]
Proof of (a). Exercise 7.18. O

Proof of (b). By Exercise 7.18, (M) =0 if M is disconnected. We have to
prove B(M)>0 if M is connected and not a loop. If M is connected and
|E| >3, then [White 1986, Proposition 7.69-(1)] for every element e either
M/eis connected or M — e is connected. Then, by induction, since |[E—e| =2,
either f(M/e)>0 or (M —e) >0, hence by (c) and (a) we have p(M)>0.
The cases with | E| < 2 are easily checked to start the induction. O

Proof of (d). Since M is disconnected if and only if M* is, the disconnected
case follows from (b). We may now assume that M is connected and |E| = 2.
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Since no point is an isthmus or a loop, we have from (c):

PM) = B(M — ) + p(M]e),
B(M*) = B(M* — ) + p(M*/e)
= B((M/e)*) + B((M — e)*).

Then (d) follows by induction on | E| provided |E — ¢| > 2. But if |[E—e|l=1,M
and M* are both isomorphic to the 2-point circuit; (d) follows. O

One of the uses of the beta invariant is to characterize series-parallel
networks. First we establish the behaviour of § under series and parallel
connections.

7.3.3. Proposition. [Brylawski 1971, Theorem 6.16 (vi)] Let M = M (E) be the
series or parallel connection of two matroids M ; and M ,, each having at least two
points, with respect to the basepoint p. Then B(M) = B(M,)B(M.).

Proof. Suppose M is the parallel connection. The proposition follows from
Proposition 7.3.1(d), Corollary 7.2.7, and Proposition 7.2.9.

But if M is the series connection, M* is the parallel connection of M* and
M%; the result follows from the former case and Theorem 7.3.2(d). |

7.3.4. Proposition. [ Brylawski 1971, Theorem 7.6(2)] M is the matroid of a
series—pqmllel network if and only if it is not an isthmus and B(M) = 1.

Proof. The smallest series-paralle] matroid is the 2-point circuit C 2. By
Proposition 7.3.1, B(C,) = 1. As White (1986, Chapter 6) shows, any series-
parallel matroid is obtained from C, by a succession of parallel duplications of
a point [which by Proposition 7.3.1(a) leave f unaltered] and dualizations
[which do not change f due to Theorem 7.3.2(d)]. Hence S(M) = 1 if M is the
-matroid of a series-parallel network.

Conversely, suppose that f(M) = 1 and let ecE, the point set of M. If |E| = 1,
M must be an isthmus. Assuming now |E|> 2, M is connected [by Theorem
7.3.2 (b)] so Theorem 7.3.2(c) holds; since f is always a non-negative integer,
we conclude that f(M —e) =0 or f(M/e) = 0. Say the former: then M — e =
M(E,)® M(E,); and B(M)= (M — E,)B(M — E,) by Proposition 7.3.3. So
M is the series connection of two matroids with f = 1, which by induction on
|E| are series-parallel matroids. But then M is a series-parallel matroid. []

Oxley [1982, Proposition (2.5)] extends Proposition 7.3.4 to larger values of
B. He shows that, if B(M) = k > 1, then either M is a series-parallel extension of
a 3-connected matroid with 8 = k or M is a 2-sum of two matroids with B<k
See Oxley’s paper for the definitions and proofs.

The beta invariant may be regarded as almost the Mobius inverse of the
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rank function. Let L be a geometric lattice; then the signed beta function
B(x)=(— 1y®~r™p(L/x) equals

2 1l yry).
Inverting, =
r(x)= ), B(y).

An expression essentially equivalent‘ to this one appears in the cluster analysis
of percolation processes on a graph (cf. Essam 1971, Sections 3.6-3.7).

7.4. Tutte—Grothendieck Invariance

The rank generating function of a matroid M = M(E), introduced in Crapo
(1970), is the two-variable polynomial

R(M;u,v) = Z w M)~ Xl —rtX)

XcE
The Boolean expansion theorems 7.1.5 and 7.2.1 amount to saying that u(M)
and p(M;2) are approximately specializations of R(M;u, v); specifically, -~
HM) = (— 1y™R(M;0, — 1),

P(M;3) = (— 1Y OR(M; — A, — 1)
Those observations and all the id‘eas of this sectioh are based on Tutte (1947),
where they were developed for graphs. Their extension to matroids is due to
Crapo, Rota, and Brylawski.

The rank generating polynomial has an important property which general-
izes Theorems 7.1.7 and 7.2.4. We need some definitions. An invariant of
matroids is any function f of matroids which is the same for isomorphic
matroids:

Mx=M' implies f(M)= f(M).
(We are only concerned, as usual, with finite matroids.) A Tutte—Grothendieck
invariant of matroids is an invariant satisfying the direct-sum rule
fM @ M) = f(M)f(M,)
and the deletion-contraction rule
JM) = f(M —e) + f(M/e)

for each point e of M that is neither a loop nor an isthmus. ; h

74.1. Proposition. The rank generating function is a Tutte—Grothendieck
invariant of matroids.
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Proof. Exercise 7.24. This result is implicit in Crapo (1970, Propositions 9
and 10), and is made explicit in Brylawski (1972). O

Theorems 7.1.7 and 7.2.4 are special cases because any specialization of
R(M ;u,v) is automatically a Tutte—Grothendieck invariant. The remarkable
thing is that there is a converse.

7.4.2, Proi)osition. (Brylawski 1972) If f(M) is a Tutte—Grothendieck invar-
iant of matroids, then it is an evaluation of R(M;u,v). It is obtained by setting
u = f(isthmus) — 1 and v = f(loop) — 1.

Proof': Exercise 7.25. 1

This is a fundamental result but it still does not capture the essence of the
characteristic polynomial. For that we need to define a Tutte—Grothendieck
invariant of geometries. This is a matroidal Tutte~Grothendieck invariant with
the additional property that \

f(M)=f(GM)) i M is loopless.

7.4.3. Theorem. (Brylawski 1 972,;C'0rollary 4.4) The invariant (— 1y ®p(M ;1)
is a Tutte—Grothendieck invariant of geometries. Moreover, it is a universal such
invariant. if f is any such invariant, then f (M) = (— 1™ p(M;1 — f(isthmus)).

Proof. The geometric invariance of (— 1)™p(M;) follows from the defi-
nition of p(M ;) and from Theorem 7.2.4. Given f, in view of Proposition 7.4.2
it is enough to show that f(B¥)=0. Let us consider M = C,, the 2-point
circuit. We have

fB)) = f(Cr)= f(C, —p) + f(Co/p) = f(By) + f(BY),
whence f(B¥)=0. ' ]

7.5. Examples

Aside from the graphic matroids, chosen for their historical and motivating
importance, our examples are of matroids whose characteristic polynomials
are particularly simple in form because they belong to the class of ‘supersolv-
able’ geometries. , o

- The chromatic polynomial. One of the raisons d’étre of the characteristic
polynomial, indeed its original motivation, is that it generalizes the chromatic
polynomial of a graph. Let y(I';4) be the chromatic polynomial, ¢(I') the
number of components, and M the matroid of the graph I

7.5.1 Proposition. y(I';A) = A“Tp(M;1).
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This formula can be traced back to G.D. Birkhoff's paper of 1912, where it
was stated (not for graphs, but for maps) in the form

$(T:2) = .Z L kgo (— 1,0, n—1), (18)

n being the number of vertices and ¢, (0, n — i) the number of chains of length k
from rank 0 to rank n —i in the lattice of contractions of I [isomorphic to
L(M)]. The equivalence of (7.8) with Proposition 7.5.1 is a consequence of
Philip Hall’s theorem (Exercise 7.13) and the fact that ¢(T') = n — r(M) (Whlte
1986, Chapter 6).

Proposition 7.5.1 is often proved by observing that y(I";A)/A°D is, like
p(M;A); a Tutte-Grothendieck invariant of graphic matroids, comparing the
two for a loop and an isthmus, and deducing their equality. But that approach
does not explain the appearance of the Mdbius function. For that it is better to
carry out a proof by Mébius inversion (due essentially to Whitney 1932).

Proof. Let y be any coloring of I in A colors, whether proper or not, and let
I(y) be the set of edges which are improperly colored, that is, e I(y) if and only if
I(y) gives the same values to the two end points of e. It is easy to see that I(y)is
closed in the graphic matroid M. Let L be the lattice of closed sets, and let
v(F) = the number of colorings y for which I(y) = F. Clearly

2 V(F)=

) FeL
More generally,

Y W(F) =A@,

Fx>F

since the colorings y being counted, those which are improper on F’ at least,
have to be constant on each component of F'. Inverting,

Y u(F', F)A = v(F’)

FzF
Setting F’ =0, on the left we have l‘(r)p(M ;l) and on the right ¢(I";1). (The
trivial case where ¢ is not closed can be handled separately.) - O

Supersolvable geometric lattices (Stanley 1972). A geometric lattice is
supersolvable when it contains a complete chain of modular elements. For such
a lattice the modular-element factorization theorem makes computation of the
characteristic polynomial easy.

7.5.2. Proposition. (Stanley 1971, p.217; 1972, Theorem 4.1) Suppose L is a
geometric lattice of rank r with a complete chain 0 <x, <x, <. <x,=1
consisting of modular flats. Let N, = the number of atoms which are < x, but
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% x,_1. Then
pL;iA)=@A—1)A—N)A—N3)-(A—N,),
w(L)=(—1yN;N;--N,,
BLy=(N,— (N3 —1)--«(N,— 1),
W)= (~ 1fo{L,N3, N, Ny,
where o, is the k-th elementary symmetric function. O

One class of supersolvable geometric lattices is the Boolean algebras, or
lattices of free matroids. Less trivial examples appear below.
Partitions. The partltlon lattice IT,, has characteristic polynomial

pIL;)=A—-1DA-2)-(A—n+1). (19)

The coefficient of A* in A(A—1).--(1—n+1) is by definition the Stirling
number s(n, k) of the first kind [hence the name “Whitney number of the first
kind’ for W, _ 1, since by (7.9), the Whitney number w,, _,(IL,) equals the Stirling
number s(n,k)].
Projective geometries. Consider Lj, the lattice of subspaces of the n-
dimensional vector space over GF(q), equlvalently of the projective geometry
PG}~ 1. Let g, denote the k-th elementary symmetric function. '

7.5.3. Proposition. We have
LA =G =D — (A —q?)-(A—q",
WLy = (= 1rq®,
Wk(LZ) = (_ l)kak(ls q9 q2, rers 61"— 1)

=(_ l)k - Z qi1+iz+"'+ik,

0gii<izg <o <ig<n

BLY=(@— D@ - D@ =1

Proof. Excercise. U

From this proposition it is possible to compute W,(L}), the number of
distinct (k — 1)-dimensional subspaces of PG5~ . See Exercise 7.31 (c).

7.6. The Critical Problem

The problem of coloring a graph is solved by finding the smallest positive
integral argument such that yr{4) > 0. In the matroidal analog introduced
by Crapo and Rota (1970), colors become vectors over the finite field of
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order g and one must find the smallest positive integral exponent d for which
p(M;q%) > 0. ,

The problem concerns a set E of vectors in the n-dimensional vector space
K" over K = GF(q). Let M(E) be the linear dependence matroid of E and L(E)
the lattice of flats of M(E). A set of linear functionals f;:K"— K is said to
distinguish E if for each point pe E some functional is non-zero on p; or in other
words the intersection of the hyperplanes Ker f; is disjoint from E. The critical
problem is to find the smallest size of a distinguishing set for E. We call this
number ¢ the critical exponent of E.

7.6.1. Theorem. [Critical Theorem (Crapo and Rota 1970, Theorem 16.1)] Let
Ec K" m=dimE, and d>0. The number of (ordered) d-tuples of linear
functionals which distinguish E (equivalently, the number of linear mappings
f:K"— K* whose kernel avoids E) is equal to (g°)*~"p(M(E);q".

The most impbrtant conclusion to be drawn is that the critical exponent of E
is the smallest non-negative integer ¢ such that p(M(E);q°) > 0. We also see:

7.6.2. Corollary. Let E be a non-empty subset of dlinear (or projective)' space
over GF(q), not containing the zero vector. Then there is an integer ¢ >0 such
that p(M(E);q*)=0 if 0<d <c but p(M(E);q*)>0 for all d > c. O

Proof of Theorem. The proof is similar to that of Proposition 7.5.1. First we
observe that, given X < K" with dim X = e, the number of linear mappings
f:K"~ K? whose kernel contains X is ¢**~9); for if we extend X to a spanning
set by adjoining p,.y,...,p,, We get such an f by setting f|X =0 and
choosing f(p,) arbitrarily from among the ¢? vectors of K¢fori=e+1,...,n.
Now for each F < K", let us write v(F) for the number of linear f:K” — K%such
that EnKer f = F. Obviously E nKer f is closed in M(E), so we have for each
XeL(E): '
2 P =(gy"~.

FzX

After M0bius inversion and setting X =0=cl (¥,

Fe;(E) ug(0, F)(@)'~mF = w(0).

But the left-hand side equals (q")"""p(L(E);q"). Modulo obvious remarks
about the case where ¢ is not closed, this is the theorem. O

The case of critical exponent 1 is easy to interpret geometrically. A
combinatorial geometry is affine if it is isomorphic to the affine dependence
matroid of a point set in an affine geometry AG}. (We regard q as fixed.) A
subset of PG is affinely embedded if it lies in the complement of a hyperplane.

|
|
|
|
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Clearly M(E)is affine if E is affinely embedded. We have the following converse
and criterion. (The criterion, ie., ¢ = 1, is Theorem 16.2 of Crapo and Rota
1970. It is a g-analog of the Two-Color Theorem of graph theory; see below.)

7.6.3. Corollary.’ Let E = PG}. The following are equivalent:
(i) E is affinely embedded.
(i) M(E) is affine. )
(iii) E has critical exponent 1.

Proof. Exercise. O

The Critical Theorem shows in principle how to find the critical number
(although drawing conclusions in specific cases is another matter!), but what it
counts is not very geometrical. One can deduce more complicated expressions
for the number of d-tuples of hyperplanes (as distinct from functionals) which
distinguish E and the number of e-dimensional subspaces which avoid E.

7.6.4. Corollary. Let EC K" and let m=dim E. (Or let ES PG and
m = 1 + dim E.) The number of d-tuples of hyperplanes which distinguish E (i.e.,
whose intersection avoids E) is equal to

d
-1 ;O(— 14 4(q°y" " "p(M(E); q°)

n k d
= § wonmn (5.
k=

Proof. Let x, (respectively v,) be the number of d-tuples of hyperplanes
(respectively functionals) that distinguish E. We have to take account of two
factors: some functionals are 0 (not corresponding to any hyperplane), and one
hyperplane corresponds to g — 1 functionals. '
We can obtain all d-tuples f of functionals that dlstlngulsh E in the
following way. First we choose e =0, 1,..., or d (e will be the number of non-
zero functionals in f) and one of the ., e- tuples of distinguishing hyperplanes,
h=(hy, hy,...,h,). Next for each h; we pick one of the g — 1 functionals g; with
h; for kernel Then we pick e 1nd1ces 1<y <iy< - <i,<d, and we let
f =g, but f; =0if i is not one of the selected indices. Th1s determines f, and
since the e-tuple h is recoverable from f, we obtain in this way all possiblef. So

Vg = io Ke(q - I)e <i>

Inverting this binomial relation,

d d
K== Y (- 1)e(e>ve

We obtain the value of v, from the Critical Theorem. .
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The alternate form of k, arises upon expanding p(M(E),g%) =
> wi(M(E))(g™*)? and rearranging the sum. O

Finally, we have the most geometrical version of the Critical Theorem. But
first this lemma.

7.6.5. Lemma. Let x be an (n — e)-dimensional subspace of K". The number of
linear mappings f:K"— K whose kernel is x equals

@ -G - @ —g°?),
interpreted as 1 if e = 0.

Proof. There is a one-to-one correspondence between such f -and the
mappings f:K"/x— K with zero kernel. To count the latter is a critical
problem: we want the number of mappings /K¢ — K whose kernel avoids
E = K°—{0}. This number is p(M(E);q%). But we know that polynomial
from Proposition 7.5.3 since L(E) =~ L;. So we have the lemma. O

7.6.6. Proposition. (Dowling 1971, Theorem 2, p. 220) Let E < K™ have dimen-
sionm. The number of (n — d)-dimensional subspaces of K™ not meeting E is equal
to

i (_ l)e(qd—e)n—mp(M(E);qd—e)

o@D = 1) (g1 =g e —q) (g — g Yy

Notice that the terms with e >d — ¢, ¢ the critical exponent of E, are all 0.

" Proof. Leta,_,denote the number of (n — d)-dimensional subspaces avoiding
E. We will set up and solve a recurrence for o, _,.

Each subspace counted by o,_, is the kernel of the number of mappings
K"—K* given by Lemma 7.6.5. So the total number of mappings K" — K*
whose kernels avoid E is given by

d
2 O
e=0

The number of such mappings is also given by the Critical Theorem; thus we
have

e—

1 ' X
~-e (qd - ql)

d , e—1
(g)" " "p(M(E);q%) = 2, - 11 (@ =)
The trick is to rewrite this as an identity involving the Gaussian coefficients,

[d:l I C ) C it VIR C it )
e @-Dg ™ =1)-@g-1 °

which is to be proved in Exercises 7.5 and 7.31 to equal the number of
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e-dimensional subspaces of K% That is, we want to prove

d e—1
@t mie= 5o [T - (7.10)

Equation (7.10) has the form

a;= eio be[:ﬂ, (7.11)

valid for all d > 0. We wish to solve for b,.. That we can do by defining, for xe L}
with dim x =d, .

ax)=a, and b(x)=b,.
Now (7.11) can be written

alx)= 3 b(y),

ysx

which by M&bius inversion in L] becomes

b(x) =}, a(y)u(x, y).

y<x

The interval [x, y] being a projective geometry, its Mbius invariant is given .
by Proposition 7.5.3; converting back to the notation of (7.11) we have

d .
b= 3 ae-d =) |
e=0" e
The result of inverting (7.10) in this fashion is

= d i 2 e.(;) d d—eyn—m . qd—e
o'n—di]_;[o(q —Q)=e;)(—1)q (@° ) "p(M(E); ¢" ).

e

Isolating o, _, and simplifying yields the result. O

7.6.7. Corollary. The largest dimension of a substance of K* not meeting E is
n—c, where c is the critical exponent of E. ]

7.6.8. Example. Independent sets. Any independent set of points has critical
exponent 1 and therefore lies in the complement of a hyperplane in K*.
Graph coloring as a critical problem. Since a graphic matroid can be
represented by vectors over any field, it has a critical problem for each prime
power g. Let I', a graph with n vertices, be represented by the vector set
E(') € K", where K = GF(g), in the usual way: vertex v; corresponds to the i-th
coordinate and an edge e;; corresponds to the vector p;—p jlorp;—p), {p;}
being the standard basis of K. Each linear mapping f: K" — K* corresponds to
a coloring of I' by K¢, that is, a map y: V(I') —» K defined by y(v,) = f(p,); and
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conversely each y determines one linear mapping f. Moreover, f distinguishes
E(T") if and only if, for each edge ¢;; of T, f(p; — p;) # 0; in other words, y is a
proper coloring. So in the graphic case the Critical Theorem says that y(I";¢%)
is the number of proper colorings of T by vectors in K% the critical exponent is
the smallest dimension d for which there is a proper coloring by K% (One
should now reread Corollary 7.6.3 as a g-color theorem!)

The most interesting case is the binary one, for the statement: the critical
exponent of a planar graph, over GF(2), is at most 2, is the Four-Color Theorem.
An aim of Crapo and Rota in formulating the critical problem was to put the
Four-Color Problem in a general setting which might lead to techniques
powerful enough to solve it and other problems of the type. (‘The fact that the
problem of coloring a graph was the first historically to arise, was a distressing
accident, which prevented it from being studied at that level of generality
which has been found indispensible in solving most problems of mathema-
tics.’) It must be admitted that this hope has not yet been realized, although it is
undoubtedly worthy of continued pursuit.

Linear codes and the critical problem. Another example was pointed out by
Dowling (1971). A linear code in K" with distance d is a linear subspace whose
non-zero vectors have minimum weight d. (The weight of a vector is the
number of non-zero coordinates.) The problem of linear coding theory is to
find large codes with give'n dimension and given (or bigger) distance. Suppose
we let

E;={peK": 0< wt(p)< 4},

and ¢, = the critical exponent of E;. Then a code with distance > ¢ is merely a
subspace avoiding E;; by the Critical Theorem the largest dimension of such a
subspace is n — ¢, and its size is g"~%. So if we can calculate p(M(E;);A) we will
know the maximum size of a linear code with distance > §.

This s a difficult calculation in general, although easy when 6 = 1 (Exercise).
Dowling accomplished the calculation for § =2. Then L(E,) is the Dowling
lattice Q,(K*) of the multiplicative group K* of K (Dowling 1973a; for the
Dowling lattices of any finite group see Dowling 1973b). The characteristic
polynomial of Q,(K*) evaluated at ¢ equals

. qd___l q"—l . qd——l
U] (=R

by Dowling’s results. Thus c, is the integer such that

2971gn<22, if g=2 or

c2—1 __ c2
q 1<n<q 1

if g>2.

g—1 g—1"
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Then we know the maximum size of a linear code over GF (g) that corrects one
error (which is what ¢ = 2 signifies). This problem was what led Dowling to
investigate his lattices and thence to the theory of Dowling (1973b).

Unfortunately, for 6 >3 this approach does not succeed. The reason is
roughly that M(E,)is essentially graphic, as one can see from the presentation
given in Dowhng (1973a, p. 109); moreover, it is supersolvable. For larger 4,
M(E;) is no longer graphic; the techmques to calculate its characteristic
polynomial have not been discovered. This is one of the important open
problems in matroid theory. ; ;

A different connection between linear codes and the critical problem and
also one between codes and the rank generatmg function (Section 7.4) are
developed in Greene (1976).

Exercises

7.1.: . Prove Proposition 7.1.1 using the recursive deﬁmtlon equations (7.1)— (7 3).
7.2.- Prove Proposition 7.1.2: first from the definition of 4, then using the incidence
algebra.
7.3 (a) Evaluate u(U,,) (Example 7.1.5).
(b} Find and factor the characteristic polynomial of the m-point line U,,,.
(c) Deduce Example 7.2.2 from Proposition 7.2.1. Calculate the Whitney
numbers of the first kind of U,,, B,, C,.
74. (2) For the partition lattice IT,, evaluate u(l’I,,).
(i) from the definition (7.1.) for n=4;
(i) from the alternative recurrence (Proposition 7.1.2)(Frucht and Rota

1963).
(i) Deduce that, if # < in IT, and = partitions n; different blocks of ¢
into i parts each for i=1,2,3,..., then

wm, )= (— 12y, .
(Schiitzenberger 1954)
(b) Deduce a formula for p(IT,; 1) from the definition of the characteristic
polynomial and Exercise 7.4(a). What are the Whitney numbers w,(I1,)?

7.5. (a) For the lattice L} of the projective geometry PG}~ of dimension n—1

over GF(qg), evaluate u(L3). Then calculate ,u(L(AG'l 1)), where AG"™ % i
the affine geometry. (You may express the result in terms of the numbers
Wy (L) of rank k subspaces of PG"~1.)

(b) Find the characteristic polynomial and Whitney numbers of the first kind
of L, based on your solution to (a). Do the same for L(AGE™1).

7.6. Let V, consist of all the points in the real affine space AG"(R) with coordinates
+ 1; we call this the verticial hypercube. If n=3, it is called the real affine cube. For
the geometric lattice of its affine dependence matroid, compute the M06bius
invariant and the characteristic polynomial when n < 3. The general problem is
unsolved, difficult, and important. It would yield an exact formula for the number
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7.19.
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of threshold switching functions of n variables (Winder 1966; Zaslavsky 1975,
Section 5F). ' ' : ;
(a) Let D, consist of all the points in the real vector space R* with exactly two
non-zero coordinates, whose values are in the set { + 1, — 1}. Let B, be D,
with the unit basis vectors adjoined. Let L denote the lattice of the linear
dependence matroid. Compute u(L(D,)) and WL(B,))forn < 3, thenn = 4if
time allows. [For general n, see Zaslavsky (1981).] ;
(b) Like Exercise 7.5(b) but for D, and B,. Hint: p(L(B,); 1) = (4 — DA —3)--
A—2n+1) '
Prove Proposition 7.1.3.
Prove Proposition 7.1.4. Hints: For the case W¢L, factor the sum. For Wel,
define the function

PW,F)= ¥ (X"
WeXcF
cdX=F

and employ the incidence algebra.

Prove Theorem 7.1.7 (ii). Hint; Use Proposition 7.1.4.

Prove that the sum iy —i; + iy — - + L, where i, is the number of independent
sets of rank k in a matroid M of rank r, equals zero ifand only if M has an isthmus.
Hint: Use Proposition 7.1.4.

Prove Rota’s sign theorem, Theorem 7.1.8, from Weisner’s theorem, Proposition
7.1.6. (Rota 1964)

[Philip Hall’s Theorem: Hall 1936, (2.21); Rota 1964, Proposition 6, p. 346.] For
x,yeP and i > 0, let c{x, y) be the number of chains x = Xo <Xy <+ <x;=yof
length i from x to y. Let

B(x, y) = co(x, y) — c1(x, ) + calx, y) — 3%, p) + .

Prove that p(x, y) = ¢(x, y). ,

Prove Theorem 7.2.4 in a manner analogous to the proof of Theorem 7.1.7.
If xeL is modular, L(x)= {reL: yAx=0}, and p(L(x); A) =
3 {u(0, y) A —r-r). yeL(x)}, is (A —1)p(L(x);4) always the characteristic
polynomial of a matroid? (Brylawski 1975, Section 7)

Discover and prove an analog of Proposition 7.2.9 for the generalized parallel
connection of M, and M, along a common modular flat F (Brylawski 1975,
Section 5; see White 1986, Chapter 9. Hint: Remember Stanley’s theorem,
Theorem 7.2.5 (Brylawski 1975, Theorem 7.8)).

Prove Proposition 7.3.1. ‘

Prove Theorem 7.3.2(c), (a). Also show that B(M)=0 when M is disconnected.
Use Theorem 7.3.2 to evaluate the beta invariant of (a) the m-point line U,,, and
(b) I1,.

Determine the value of f(U,,,). For which values of m and ris U, aseries-parallel
matroid? »

Calculate § for the examples of Exercises 7.5, 7.6, 7.7. Is any one a series-parallel
matroid? :

Prove that B(L)=(— 1™ TT{u(0,x): xe L, x #a} for every atom a of the
geometric lattice L (Zaslavsky 1975, Section 7.
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Calculate the rank generating function of U,,, directly from the definition.
Prove Proposition 7.4.1.
Prove Proposition 7.4.2. Hint: Use induction on the size of M.
Calculate R(U,,,; 4, v) from the Tutte—Grothendieck recurrence and the values for
m< 1. ’
Compute R(M(K,);u,v), where M(K,) is the graphic geometry of the complete
graph. How does your result, evaluated at v= — 1 and u = — 4, compare with
p(IT,; A) from Exercise 7.4?
(a) Prove that I1, is supersolvable. (Hin: What about a partition with only
one non-singleton block?) Deduce (7.9) and z(I1,) and B(I1,).
(b) Prove (7.9) by graph theory via Proposition 7.5.1, since I1, = L(M(K,)).
{c) Compare (7.9) to your answer to Exercise 7.4(b). What Stirling number
identity is thereby proved? ’
Prove Proposition 7.5.1 by the Tutte—Grothendieck method.
Prove Proposition 7.5.2.
(=D ' =g *"1 -1
(@ —D@ ' =D(g—1)

(a) Prove that Wy (L} = by counting

ordered bases.
(b) Deduce p and u of Proposition 7.5.3 from supersolvability (Stanley 1972,

Example 4.2).
(c) Compare with your results from Exercise 7.5(a). Deduce that
Wk(LZ) = Z qh gtk

0<jy Sa S-Sy <n—k
(a) Calculate the critical exponent over K =GF(g) of an m-point line
Usm2<m<q-+1.1Is Uy, affine in PG;™1?
(b) The same, for a circuit C, ,, of rank r > 3. Is C, ., affine in PG}~ 19 Hint:
Almost always.
(c) The same, for U,,, where 2 < r <m— 1. (Assume U,,, is such that it embeds
in PG;71) '
How many hyperplanes avoid a fixed non-empty set E < K"?How many (n — 2)-
dimensional subspaces?
Prove Example 7.6.8. How many (n — d)-dimensional subspaces avoid a fixed
basis?
If g = p%, PG" is a spanning subset of PGj. What is its critical exponent?
Prove Corollary 7.6.3.
Deduce Corollary 7.6.7 directly from the Critical Theorem.
Calculate the critical exponent of the set 4, of all vectors in K"* ! with exactly two
non-zero coordinates, one equal to + 1 and the other equal to — 1 (note that + 1 =
—1, if g is even). Hint: M(4,) =~ M(K, ), the complete-graph matroid.
What is the critical exponent of B,? (See Exercise 7.7. Assume g is odd. Hint: The
matroid of B, is the same for K = R and K = GF(q) as long as q is odd.)
(a) Calculate the critical exponent ¢, of E;. What is the maximum size of a
linear code with distance > 2 (a code that detects one error)?
(b) Express compactly the maximum size of a linear code with distance > 3 (a
code that corrects one etror).
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