Other Matroids from Graphs (Outline)

Thomas Zaslavsky Binghamton University (SUNY) April 1, 2008

I. MANY KINDS OF MATROIDS

A. Graphs

- 1. Definitions about Graphs:
 - a. $\Gamma = (V, E)$.
 - b. n := |V|. (Usually finite.)
 - c. Half and loose edges.
 - d. Pseudoforests.
 - e. Theta subgraphs, loose and tight handcuffs (minimal connected subgraphs with cyclomatic number 2 that are not theta graphs), loose and tight bracelets (minimal subgraphs with cyclomatic number 2 that are not theta graphs).
 - f. c(S) = number of connected components of (V, S).
- 2. Customary Matroids of Graphs:
 - a. Graphic (circle, polygon, circuit, cycle) matroid $G(\Gamma)$.
 - b. Cographic (bond, cocircuit, cocycle) matroid $G^*(\Gamma)$.

B. Signed, Gain, and Biased Graphs

- 1. What the Graphs Are:
 - a. Definitions
 - i. Signed graph: $\Sigma = (\Gamma, \sigma)$ where $\sigma : E \to \{+, -\}$.
 - ii. Gain graph: $\Phi = (\Gamma, \varphi)$ with gain group \mathfrak{G} .
 - (1) Integral gain graph: $\mathfrak{G} = \mathbb{Z}^+$ (additive group).
 - (2) Real multiplicative gain graph: $\mathfrak{G} = \mathbb{R}^{\times}$.
 - (3) Real additive gain graph: $\mathfrak{G} = \mathbb{R}^+$.
 - (4) Modular gain graph: $\mathfrak{G} = \mathbb{Z}_m$.
 - iii. Biased graph: $\Omega = (\Gamma, \mathcal{B})$ where \mathcal{B} is a linear subclass of circles; that is, any theta subgraph contains 0, 1, or 3 but not exactly 2 circles of \mathcal{B} .
 - (1) $\langle \Sigma \rangle = (\Gamma, \mathcal{B}(\Sigma)), \langle \Phi \rangle = (\Gamma, \mathcal{B}(\Phi))$: the associated biased graphs.
 - (2) Sign-biased graphs are *additively biased*, i.e., a theta subgraph contains 1 or 3 circles of B.
 - iv. Balance
 - (1) A subgraph or edge set is *balanced* if it contains no unbalanced circle or half edge.
 - (2) A circle is balanced iff it belongs to \mathcal{B} .
 - (3) An edge is unbalanced iff it is an unbalanced loop or a half edge.
 - (4) $b(\Omega) =$ the number of balanced components of Ω . This applies to all subgraphs. In particular, b(S) = b(V, S) for $S \subseteq E$.

- (5) A balancing set is an edge set S whose deletion makes an unbalanced component balanced without increasing the number of components.
- (6) A balancing vertex is a vertex whose deletion makes an unbalanced biased graph balanced. Existence makes Ω almost graphic.
- (7) A biased graph is *entangled* if it is unbalanced, has no balancing vertex, and has no 2 disjoint negative circles.
- v. Switching
 - (1) Switching function: $\tau: V \to \mathfrak{G}$.
 - (2) $\Phi^{\tau} := (\Gamma, \varphi^{\tau})$ where $\varphi^{\tau}(e:vw) := \tau(v)^{-1}\varphi(e)\tau(w)$.
 - (3) Switching class: $[\Sigma]$ or $[\Phi]$.
 - (4) $\langle \Phi^{\tau} \rangle = \langle \Phi \rangle.$
- b. Minors
 - i. Subgraphs and deletion $(\Omega \setminus S \text{ et al.})$ of edge set S: Obvious.
 - ii. Contraction Ω/S of edge set S: Vertex set is the set of vertex sets of balanced components of (V, S). Edge set is S^c .
 - iii. Contraction Φ/S of gain graph (and signed graph): Switch so balanced components of S have gains all equal to the identity. Then contract as in the previous, retaining the switched gains. (This is well defined up to switching.)
- c. Examples
 - i. Graphic: $\varphi \equiv$ identity, or $\sigma \equiv +$ (all-positive signed graph).
 - ii. All-negative: $-\Gamma$. Positive circles are even circles. *Parity bias*: $\mathcal{B} = \{\text{even circles}\}$. An edge set is balanced iff it is bipartite.
 - iii. Contrabalanced graphs: $\mathcal{B} = \emptyset$, i.e., $\Omega = (\Gamma, \emptyset)$.
 - iv. Poise bias: For a mixed graph $\vec{\Gamma}$, $\vec{\mathcal{B}}$ is the class of circles having equally many edges in each direction (integral gains).
 - Modular poise bias: The same, but counted modulo m (gains in \mathbb{Z}_m).
 - v. Antidirection bias: For a digraph $\vec{\Gamma}$, \mathcal{B} is the class of circles in which no two consecutive edges have the same direction around the circles.
 - vi. Full biased graph: Ω^{\bullet} has a half edge at each vertex.
 - vii. Group expansion $\mathfrak{G}\Delta$, where Δ is a simple graph: Each edge of Δ is replaced by one edge for each possible gain, i.e., for each group element.
 - viii. Full group expansion: $\mathfrak{G}\Delta^{\bullet}$, i.e., add a half edge to each vertex of the group expansion.
- 2. The Frame Matroid $G(\Omega)$:
 - a. Definitions
 - i. Ground set: E.
 - ii. Circuits: Balanced circles and contrabalanced handcuffs and theta graphs.
 - iii. Independent sets: Contrabalanced pseudoforests.
 - iv. Rank: $\operatorname{rk}(S) = |V| b(S)$.

- v. Cocircuits: Minimal subsets that increase b(S). These include cut sets that cut off a balanced subset, minimal balancing sets, and combinations of cutsets and balancing sets.
- b. Properties
 - i. Deletion and contraction are compatible with those in $\Omega.$
 - ii. The lattice of closed sets (flats) is $Lat \Omega$.
 - iii. The frame matroids of biased graphs are precisely the matroids called *frame matroids*, i.e., M is a submatroid of a matroid M^{\bullet} that has a basis B such that every point of M^{\bullet} is in a line determined by two basis elements.
 - iv. $G(\Omega)$ is essentially graphic, unlike $L(\Phi)$.
- c. Examples
 - i. $G(+\Gamma)$ is the polygon matroid $G(\Gamma)$.
 - ii. $G(\Gamma, \emptyset)$ is the bicircular matroid of Γ . (Simões-Pereira, Klee) Lat($\Gamma^{\bullet}, \emptyset$) is the geometric lattice of all forests of Γ . (Zaslavsky)
 - iii. $G(-\Gamma)$ is the even-circle matroid. (Tutte, Doob)

iv. $G(-K_5) = R_{10}$.

v. $G(\vec{\Gamma}, \vec{\mathcal{B}})$ where $\vec{\mathcal{B}}$ is poise or modular poise bias on a mixed graph. (Matthews)

vi. $G(\vec{\Gamma}, \mathcal{B})$ where \mathcal{B} is antidirection bias on a digraph. (Matthews) vii. $G(\mathfrak{G}K_n^{\bullet})$ is the Dowling geometry of rank n of \mathfrak{G} .

viii. $G(\mathfrak{G}K_n)$ is the jointless Dowling geometry of rank n of \mathfrak{G} .

3. The Lift Matroid $L(\Omega)$:

- a. Definitions
 - i. Ground set: E
 - ii. Circuits: Balanced circles and contrabalanced bracelets and theta graphs.
 - iii. Independent sets: Contrabalanced edge sets with no more than one balanced circle.
 - iv. Rank: $\operatorname{rk}_L(S) = |V| c(S)$ if S is balanced, |V| + 1 c(S) if unbalanced.
 - v. The lattice of closed sets is Lat $L(\Omega)$.

b. Properties

- i. Deletion is compatible with that in Ω .
- ii. Contraction of balanced edge sets is compatible with Ω .
- iii. Contraction of an unbalanced set gives an unbiased graph.
- iv. The lift matroids of biased graphs are precisely the elementary lifts of graphic matroids.
- v. The lift theory applies to all matroids; not essentially graphic. (Dowling & Kelly)
- c. Examples
 - i. $L(+\Gamma)$ is the polygon matroid $G(\Gamma)$.
 - ii. $L(\Gamma, \emptyset)$ is the bicircular lift matroid of Γ , the lift analog of the bicircular matroid.

iii.
$$L(-K_5) = R_{10} = G(-K_5).$$

iv. $L_0(\mathfrak{G}K_n)$ is the Dowling lift matroid of rank n of \mathfrak{G} , the lift analog of the Dowling matroid $G(\mathfrak{G}K_n^{\bullet})$.

- 4. The Extended (or Complete) Lift Matroid $L_0(\Omega)$.
 - a. Ground set: $E_0 = E \cup \{e_0\}$.
 - b. The *extra point* e_0 counts as an unbalanced edge, but it has no endpoints. Given this interpretation, L_0 is L with the extra point.
 - c. L_0 is a one-point extension of L, and L is an elementary lift of $G(\Gamma)$.
- 5. Comparison of Frame and Lift Matroids.
 - a. Equal iff Ω has no 2 disjoint unbalanced circles.
 - b. For an inseparable signed graph: (Zaslavsky; others)
 - i. Equal iff regular.
 - ii. If not equal, then $G(\Sigma)$ is nonbinary and $L(\Sigma)$ is binary but not regular.
- 6. The Balanced Semimatroid.
 - a. Ground set: E.
 - b. The sets of the semimatroid are the balanced sets of Ω .
 - c. The rank function is the same as those of G and L.
 - d. The closed sets are the balanced flats of G and L (which are the same).
 - e. The semilattice of closed sets is $\operatorname{Lat}^{\operatorname{b}}\Omega$. It is a geometric semilattice (cf. Wachs & Walker).
- 7. Many Ways for Graph \rightarrow Matroid. Summarizing, the (full) frame or (complete) lift matroid of a gain graph constructed from a graph Δ .
 - a. $-\Delta, \mathfrak{G}\Delta, (\Delta, \emptyset), \mathfrak{G}\Delta, \mathfrak{G}\Delta^{\bullet}$ as above.
 - b. $(\mathfrak{G} \setminus 1)\Delta$, $1K_n \cup \mathfrak{G}\Delta$, $1\Delta \cup (\mathfrak{G} \setminus 1)K_n$, etc., etc. (Zaslavsky)
- 8. Common generalization of frame and lift matroids. (Whittle)
- C. Sublattices and Subposets
 - 1. Subposets of Dowling (semi)lattices (of sign group).
 - a. Nested \mathfrak{G} -partitions. (Athanasiadis)
 - b. Non-crossing (partial) &-partitions. (Blass & Sagan; Athanasiadis)
 - 2. Essentially connected subgraphs of Dowling lattices (of sign group). (Björner & Sagan)
- D. Coxeter Matroids
 - 1. $\bigcup_{\sigma} G(\Gamma, \sigma)$ is a symplectic matroid. (T. Chow)
- E. Linearly Bounded ("Count") Matroids (White & Whiteley)

1. Ground set: E.

- 2. Let the rank of an edge set S be $\leq a|V(S)| + b$. Take the free-est matroid.
- 3. Examples: Circle matroid from a = 1, b = -1. Bicircular matroid from a = 1, b = 0.
- 4. Status: Not much is well understood, because great complications arise when a > 1 or b > 0.
- F. Matroidal Families (Simões-Pereira, Schmidt)
 - 1. Ground set: E.

- 2. Given: a family C of isomorphism types of finite graph. A subgraph (that is, its edge set) is a circuit iff the subgraph is in C. C is a *matroidal family* if it produces a matroid for every graph.
- 3. Examples: Graphic matroid from circles. Bicircular matroid from handcuffs and theta graphs. Bicircular lift matroid from bracelets and theta graphs. Even-circle matroid from even circles and all handcuffs whose circles are odd. Linearly bounded (count) matroids.
- 4. Status: There are uncountably many, but very complicated, matroidal families. They seem to have no particular structure or properties.
- G. Delta Matroids
 - 1. Can be defined based on graphs in surfaces. (Bouchet)
- II. VECTOR AND HYPERPLANE REPRESENTATIONS
 - A. Multiplicative Gain Graphs

Here the gain group is (contained in) F^{\times} for a field or division ring.

- 1. The Incidence Matrix, $H(\Phi)$ (read "Eta") = (η_{ve}) .
 - a. Gain graphs:
 - i. $H(\Phi)$ is a $V \times E$ matrix. The column of e:vw is zero except that $\eta_{ve} = -1$ and $\eta_{we} = \varphi(e:vw)$. A balanced loop or loose edge has all zeros. An unbalanced loop or half edge at v has one nonzero entry η_{ve} .

ii. Any column scaling also works.

iii. $H(\Phi)$ has rank $n - b(\Phi)$.

- b. Signed graphs:
 - i. The incidence matrix is totally dyadic. It gives half-integral solutions of integral programs.
 - ii. *Binet matrices* are a signed-graphic generalization of network matrices. (Appa & Kotnyek)
 - iii. $H(+\Gamma)$ is the usual oriented incidence matrix of Γ , which is totally unimiodular.
 - iv. $H(-\Gamma)$ is the usual unoriented incidence matrix of Γ . Its rank is n less the number of bipartite components of Γ . (van Nuffelen and many subsequent discoverers)
- 2. Vectors.
 - a. The column of e is a vector $x_e \in F^n$.
 - b. The linear dependences of vectors x_e are given by $G(\Phi)$.
- 3. Hyperplanes.
 - a. The equations $x_j = x_i \varphi(e:v_i v_j)$ determine an arrangement of hyperplanes, $\mathcal{H}[\Phi]$, in F^n . This is the *two-term hyperplane representation* of Φ .
 - b. The intersection flats of $\mathcal{H}[\Phi]$ correspond to the flats of $G(\Phi)$.
 - c. Real or complex multiplicative gains: Is $\mathcal{H}[\Phi]$ supersolvable, inductively free, free?
- 4. Networks with Gains ("Generalized Networks"):
 - a. Gain group $\mathbb{R}_{>0}^{\times}$, representing gains or losses in the edge.

- b. Extensive literature on typical network-flow questions, going back 50 years.
- c. Frame matroid and especially bases are fundamental, though usually implicit.

B. Additive Gain Graphs

Here the gain group is (contained in) F^+ for a field or division ring.

- 1. The Augmented Incidence Matrix.
 - a. The incidence matrix is obtained by orienting Γ (arbitrarily), then adding to the incidence matrix $H(\vec{\Gamma})$ an extra row with the edge gains (as oriented).
 - b. The incidence matrix has rank $n-c(\Gamma)$ if Φ is balanced and $n+1-c(\Gamma)$ if Φ is unbalanced.
 - c. This is equivalent to a graphic linear program with one linear side condition whose coefficients are the gains.
 - d. One can treat several linear side conditions as vector gains. The theory has not been fully worked out yet. (Some work by Geelen et al.)
- 2. Vectors.
 - a. The column of e is a vector $z_e \in F^{n+1}$.
 - b. The linear dependencies of vectors z_e are expressed by $L(\Phi)$.
 - c. The extra point corresponds to a vector whose extra coordinate is 1, and whose other coordinates are 0. (The same as the vector of a half edge.)
- 3. Hyperplanes.
 - a. The equations $x_j = x_i + \varphi(e:v_iv_j)$ determine an affine hyperplane arrangement $\mathcal{A}[\Phi]$ in F^n . This is the affinographic hyperplane representation of Φ .
 - b. The intersection flats of $\mathcal{A}[\Phi]$ correspond to the balanced flats of $L(\Phi)$.
 - c. The intersection flats of the projective completion $\mathcal{A}_{\mathbb{P}}[\Phi]$ correspond to the flats of $L(\Phi)$.

III. CYCLE AND CUT SPACES; TENSIONS AND FLOWS

A. Signed Graphs (Chen & Wang)

- 1. Over a field F, with gains in F^{\times} .
 - a. Cycle space $Z_1(\Phi; F)$:
 - i. It is the null space of the incidence matrix.
 - ii. It is the space of *F*-valued flows (circulations).
 - iii. It is generated by characteristic vectors of circuits of the frame matroid $G(\Phi)$.
 - b. Cut space $B^1(\Phi; F)$:
 - i. It is the row space of the incidence matrix.
 - ii. It is the space of F-valued tensions.
 - iii. It is generated by characteristic vectors of cocircuits of $G(\Phi)$.
- 2. Over the integers, with gains in \mathbb{Z}^+ .

- a. Integral cycle lattice $Z_1(\Phi; \mathbb{Z})$:
 - i. It is the integral null space of the incidence matrix.
 - ii. It may not contain all integral flows (circulations).
 - iii. It is generated by characteristic vectors of circuits of the frame matroid $G(\Phi)$ and other strange edge sets. (Chen, Wang, & Za-slavsky)
 - iv. Nowhere-zero integral k-flows are counted by a polynomial function of k. (Kochol)
- b. Integral cut lattice $B^1(\Phi; F)$:
 - i. It is the row space of the incidence matrix.
 - ii. It is the space of F-valued tensions.
 - iii. It is generated by characteristic vectors of cocircuits of $G(\Phi)$.

B. Gain Graphs:

Little or no work known to me.

IV. CHARACTERISTIC AND CHROMATIC POLYNOMIALS AND OTHER INVARIANTS

A. Coloring

We assume the gain group \mathfrak{G} is finite. Let

$$\mathfrak{C}_k^* := \mathfrak{G} \times [k], \qquad \mathfrak{C}_k := \mathfrak{C}_k^* \cup \{0\}.$$

- 1. Definitions.
 - a. A k-coloration is a function $f: V \to \mathfrak{C}_k$.
 - b. It is zero free if it maps into \mathfrak{C}_k^* .
 - c. It is proper if, for every edge e:vw, $f(w) \neq f(v)\varphi(e:vw)$.
 - d. An edge is *improper* if $f(w) = f(v)\varphi(e:vw)$. The set of improper edges is I(f).
 - e. The number of proper k-colorations, $\chi_{\Phi}(k|\mathfrak{G}|+1)$, is called the *chro-matic polynomial* of Φ .
 - f. The number of zero-free proper k-colorations, $\chi_{\Phi}^{\rm b}(k|\mathfrak{G}|)$, is called the *zero-free* or *balanced chromatic polynomial* of Φ (depending on the point of view; see further on).
- 2. Properties.
 - a. $\chi_{\Phi}(\lambda)$ is a polynomial, monic of degree *n*, and otherwise similar to the chromatic polynomial of an ordinary graph. So is $\chi_{\Phi}^{\rm b}(\lambda)$.
 - b. $\chi_{\Phi}(\lambda)$ equals the characteristic polynomial of the frame matroid, $G(\Phi)$, times a factor of $\lambda^{b(\Phi)}$. Thus it is the characteristic polynomial of Lat Φ , up to the same factor.
 - c. $\chi_{\Phi}(\lambda)$ equals the characteristic polynomial of Lat^b Φ times a factor of $\lambda^{c(\Gamma)}$.
 - d. Algebraic formulas:

$$\chi_{\Phi}(\lambda) = \sum_{S \subseteq E} \lambda^{b(S)}, \qquad \chi_{\Phi}^{b}(\lambda) = \sum_{S \text{ balanced}} \lambda^{b(S)}.$$

(The latter explains the name "balanced chromatic polynomial".)

B. Extensions

- 1. Dichromatic Polynomials.
 - a. Combinatorial definitions:
 - i. The dichromatic polynomial $Q_{\Phi}(u, v)$ in the normalized form

$$\bar{Q}_{\Phi}(uv,v) := v^{-n}Q_{\Phi}(u,v)$$

counts k-colorations by size of the improper edge set:

$$\bar{Q}_{\Phi}(k|\mathfrak{G}|+1,v) = \sum_{f} (v+1)^{|I(f)|}$$

summed over k-colorations.

ii. The balanced dichromatic polynomial $Q_{\Phi}^{\rm b}(u,v,z)$ in the normalized form

$$\bar{Q}^{\mathbf{b}}_{\Phi}(uv,v) := v^{-n}Q^{\mathbf{b}}_{\Phi}(u,v)$$

counts zero-free k-colorations by size of the improper edge set:

$$\bar{Q}_{\Phi}^{\mathbf{b}}(k|\mathfrak{G}|, v) = \sum_{f} (v+1)^{|I(f)|}$$

summed over zero-free k-colorations.

b. Algebraic definitions:

$$Q_{\Phi}(u,v) = v^{-n} \sum_{S \subseteq E} (uv)^{b(S)} v^{|S|}$$

and $Q_{\Phi}^{b}(u, v)$ summed over balanced sets *S*. These are the graph versions of the corank-nullity (rank generating) polynomial of a matroid or semimatroid (respectively). They generalize Tutte's dichromatic polynomial of a graph.

- 2. Whitney-Number Polynomials.
 - a. Combinatorial definitions:
 - i. The Whitney-number polynomial $w_{\Phi}(x, \lambda)$ counts k-colorations by rank of the improper edge set: $w_{\Phi}(x, k|\mathfrak{G}|+1) = \sum_{f} x^{\operatorname{rk} I(f)}$ summed over k-colorations.
 - ii. The balanced Whitney-number polynomial $w_{\Phi}^{\rm b}(x,\lambda)$ counts zerofree k-colorations by rank of the improper edge set: $w_{\Phi}^{\rm b}(x,k|\mathfrak{G}|) = \sum_{f} x^{\operatorname{rk} I(f)}$ summed over zero-free k-colorations.
 - b. Algebraic definitions:

$$w_{\Phi}(x,\lambda) = \sum_{R \subseteq S \subseteq E} x^{n-b(R)} \lambda^{b(S)} (-1)^{|S \setminus R|}$$

and $w_{\Phi}^{\rm b}(x,\lambda)$ summed over balanced sets S.

- c. The coefficients of $w_{\Phi}(x, \lambda)$ are the "doubly indexed" Whitney numbers of the first kind of Lat Φ .
- d. The coefficients of $w_{\Phi}(x, -1)$ count faces of $\mathcal{H}[\Phi]$ when $\mathfrak{G} = \mathbb{R}^{\times}$. (Then the coloring definition can't be used because the group is infinite.)
- e. The coefficients of $w_{\Phi}^{\mathrm{b}}(x,-1)$ count faces of $\mathcal{A}[\Phi]$ when $\mathfrak{G} = \mathbb{R}^+$.
- 3. Polychromatic Polynomials.

a. The general polychromatic polynomial combines all the foregoing:

$$q_{\Phi}(w, x, u, v, z) := \sum_{R \subseteq S \subseteq E} w^{|R|} x^{n-b(R)} \lambda^{b(S)} v^{|S \setminus R|} z^{c(S)-b(S)}.$$

- b. The polychromatic polynomial results from setting z = 1. The balanced polychromatic polynomial results from setting z = 0, thus restricting the summation to balanced sets R and S.
- c. The pairs of polynomials above are obtained by specializing the (balanced) polychromatic polynomials.
- C. Arbitrary Gain Graphs and Biased Graphs

We assume the graph is finite. The order of the gain group, if any, is immaterial.

- 1. The algebraic formulas are used to define chromatic and other polynomials.
- 2. Reduction formulas:
 - a. Multiplication: $Q_{\Omega_1 \cup \Omega_2} = Q_{\Omega_1} Q_{\Omega_2}$.
 - b. Deletion-contraction: $\tilde{Q}_{\Omega} = Q_{\Omega \setminus e} Q_{\Omega/e}$ if e is a link, and the same for the balanced dichromatic polynomial.
 - c. Both polynomials remain the same if balanced loops are changed to loose edges or vice versa.
 - d. The balanced dichromatic polynomial remains the same if all unbalanced edges are deleted.
- 3. Universality: Any function of biased graphs with the first three properties is an evaluation of Q_{Ω} , and if it has the last property it is an evaluation of $Q_{\Omega}^{\rm b}$.

V. ORIENTED MATROIDS

A. Signed-Graphic Matroids

- 1. Orient Σ with bidirected edges:
 - a. Definition: one arrow at each end. Positive edge: arrows agree. Negative edge: arrows conflict.
 - b. Direct generalization of orientation of an ordinary graph.
 - c. (Bidirected) cycle: an oriented signed-graph circuit with no source or sink.
 - d. Acyclic orientations \leftrightarrow regions of $\mathcal{H}[\Sigma]$.
 - e. Number of acyclic reorientations = $|\chi_{\Sigma}(-1)|$ (by oriented matroid theory).
- 2. Orientations of $G(\Sigma)$: (Slilaty)
 - a. Orientation from bidirection.
 - b. Other orientations? For an inseparable signed graph with non-binary frame matroid:
 - i. No other orientation classes for some.
 - ii. At least three orientation classes for most, obtained from circle orientations (see below). Conjecturally, only three.
 - iii. Determining factors: $[\pm C_3]$ and $[-K_4]$ minors.
- 3. Orientations of $L(\Sigma)$: (Slilaty)
 - a. For an inseparable signed graph with non-regular lift matroid:

- i. Impossible for most.
- ii. Unique for the rest.
- iii. Determining factors: $[\pm C_3]$ and $[-K_4]$ minors.
- b. Note that if $L(\Sigma)$ is regular, it equals $G(\Sigma)$, so the orientations are the same.

B. Frame Matroids

- 1. Biased Graphs.
 - a. Circle orientation: Circles are oriented, not edges. (Slilaty)
 - i. A theta-graph consistency condition.
 - ii. Cycles and acyclic orientations are defined.
 - b. Signed Biased Graphs. (Slilaty)
 - i. Combination of circle orientation and bidirection.
- 2. Gain Graphs.
 - a. Ordered gain group.
 - b. Gain group \mathbb{R}^{\times} : consistent with regions of $\mathcal{H}[\Phi]$. (Slilaty)
- C. The Balanced Semimatroid
 - 1. This is the right approach to orienting the lift: not the whole matroid. (Modelled on affinographic hyperplane arrangements.)
 - 2. Conjecturally, there are orientations of the balanced semimatroid that are not restrictions of orientations of the frame matroid.
 - 3. Orientation of a semimatroid has never been defined.
- D. Nonorientable Matroids
 - 1. Minimal projective, nonorientable matroids are contained in $L_0(\Phi)$, where Φ has gains in \mathbb{F}_p . (Flórez & Forge)

VI. STRUCTURE AND ISOMORPHISM

- A. k-Sums
 - 1. Defined mainly between a biased graph and a balanced graph.
 - 2. 3-sum along a $\langle \pm K_2^{\bullet} \rangle$ subgraph.
- B. Isomorphism
 - 1. Frame Matroids:
 - a. In general: not known.
 - b. Signed graphs: slightly known.
 - c. Bicircular matroids: isomorphism corresponds to complicated graph operations. (D.K. Wagner; Coullard, del Greco, & Wagner)
 - d. Group expansions: in progress. (Zaslavsky)
 - 2. Lift Matroids:
 - a. In general: not known.
 - b. Signed graphs: partly known. (A major part is in progress by Guenin, Pivotto, & Wollan.)
 - c. Group expansions: in progress. (Zaslavsky)
 - 3. Frame \cong Lift Matroids:
 - a. In general: not known.

- b. Group expansions: in progress. (Zaslavsky)
- C. Graph Properties
 - 1. Disjoint Unbalanced Circles:
 - a. Signed graphs with no 2 disjoint unbalanced circles are classified. (Slilaty)
 - i. Balanced.
 - ii. Balancing vertex.
 - iii. Entangled: Projective planar or $[-K_5]$, k-summed with various balanced signed graphs for various $k \leq 3$.
 - b. Contrabalanced graphs with no disjoint (unbalanced) circles are classified. (Lovász)
 - 2. Possible Gain Groups:
 - a. A biased graph can be signed iff it has no contrabalanced theta subgraph.
 - b. A finite biased graph can have gains in an infinite group but not in any finite group. (Brooksbank, Qin, E. Robertson, & Seress)

D. Matroid Properties

- 1. Biased Graphs:
 - a. Supersolvability of frame and lift matroids. (Zaslavsky; Koban)
- 2. Gain Graphs:
 - a. The gain graphs with fixed gain group are, like projective spaces with fixed coordinate field, a fundamental class in matroid theory (a "variety" of matroids). (Kahn & Kung)
- 3. Signed Graphs:
 - a. Nonbinary iff no $\pm K_2^{\bullet}$ minor.
 - b. Regular iff no 2 disjoint negative circles iff $G(\Sigma) \neq L(\Sigma)$ (for inseparable Σ).
 - c. \mathbb{F}_4 -representable iff cylindrical, or mesa graph, or no link minor $[\pm C_3]$ or $[-K_4]$, up to 3-summing with balance signed graphs. (Pagano; Gerards & Schrijver)
 - d. Assuming 3-connected and no 2 disjoint negative circles: \mathbb{F}_4 -representable implies $\langle \Sigma \rangle$ has gains in \mathbb{Z}_3 . (Pagano)
 - e. \mathbb{F}_4 -representable iff nearly poised (i.e., discrepancy ≤ 1). (Gerards & Schrijver; Pagano)

VII. DUALITY AND EMBEDDING

A. Signed Graphs (mostly Slilaty)

Graph in surface has signs according to a \mathbb{Z}_2 -homology rule.

- 1. Projective Plane:
 - a. Embed Γ noncontractibly and let Σ be its signed geometric dual. Then $G^*(\Sigma) = G(\Gamma)$.
 - b. Embed Σ and let Γ be its unsigned geometric dual. Then $G^*(\Sigma) = G(\Gamma)$.

- c. If Γ is nonplanar and $G^*(\Sigma) = G(\Gamma)$, then Γ and Σ have dual projectiveplanar embeddings.
- 2. Torus, Klein bottle, and Cylinder:
 - a. Use dual homology rules for signs.
 - b. Embed Σ and let Σ^* be its geometric dual. Then their frame matroids are dual. (Assume sufficient connectivity.)
 - c. Conjecture: The converse.
- B. Gain Graphs
 - 1. Some connection between surface duality and matroid duality? (Slilaty)

VIII. RECOGNITION

The main problem is to recognize a matrix whose matroid is a frame matroid.

- A. Real Multiplicative Frame Matroids
 - 1. Recognition is an important and difficult problem in linear optimization.
 - 2. It contains recognition of bicircular matroids.
- B. Bicircular Matroids (Chandru, Collard, del Greco, & D.K. Wagner)
 - 1. Recognition of a matrix with bicircular matroid is NP-complete.
 - 2. Deciding whether a real gain graph is contrabalanced is NP-complete.
- C. Signed-Graphic Matroids
 - 1. Binet matrices are under study. (Appa et al.)
 - 2. Recognizing when the matroid is graphic depends on recognizing certain forbidden minors.
 - 3. Recognizing contrabalance (i.e., when the frame matroid is bicircular) is trivial.

IX. FORBIDDEN MINORS

- A. Standard Matroids
 - 1. $G(K_n)$, $G(K_{3,3})$, F_7 , F_7^- , $R_{10} = G(-K_5)$, duals: characterized as $G(\Omega)$, $L(\Omega)$, $L_0(\Omega)$. (Zaslavsky; Slilaty)
- B. Frame Matroids
 - 1. Many small forbidden minors of rank 3; no large ones.
 - 2. Signed graphs: Regular forbidden minors are known (many). (Qin, Slilaty, & Zhou)
 - 3. Gain graphs: Unknown.
 - 4. Gain graphs over a specific group: Essentially nothing is known.

X. GENERALIZATIONS

- A. Matroids with Gains
 - 1. Signed Matroids.
 - a. Binary clutters:
 - i. Definition: the class $\mathfrak{C}_{-}(M, \sigma)$ of negative circuits.
 - ii. Equivalently: a port of a binary matroid.
 - iii. $L(M, \sigma)$ and $L_0(M, \sigma)$.

- iv. MFMC related to excluding $\mathcal{C}(F_7)$, $\mathcal{C}_{-}(-K_5)$, $\mathcal{C}_{-}(-K_4)$ as minors. (Seymour)
- v. Ideal if excludes $\mathcal{C}(F_7)$, $\mathcal{C}_-(-K_5)$ and blocker, $\mathcal{C}_-(-K_4)$ and blocker as minors. (Novick & Sebö; Cornuéjols & Guenin)
- 2. Oriented Matroids with Gains.
 - a. Orientation and abelian group required to define gain of a circuit.
 - b. Lift matroid of (\mathcal{M}, φ) defined via lifting signature. (Koban)
- B. Hypergraphs with Gains
 - 1. The "gain" of a hyperedge is an equivalence class of functions $V(e) \to \mathfrak{G}$ under the left action of \mathfrak{G} . Little is known about matroids.
 - 2. Signed hypergraphs reduced (in part) to signed graphs. (Rusnak)
 - 3. $\mathfrak{G} = \mathbb{F}_q^{\times}$ gives higher-weight Dowling geometries, associated with errorcorrecting codes. (Dowling, Bonin)
- XI. More References and Information
 - A. My bibliography [19].

References

- Gautam Appa and Balázs Kotnyek, A bidirected generalization of network matrices. *Networks* 47 (2006), no. 4, 185–198. MR 2008a:05157. Zbl. 1097.05025.
- [2] Gérard Cornuéjols, Combinatorial Optimization: Packing and Covering. CBMS-NSF Reg. Conf. Ser. in Appl. Math., Vol. 74. Soc. Indust. Appl. Math., Philadelphia, 2001. MR 2002e:90004. Zbl. 972.90059.
- [3] Collette R. Coullard, John G. del Greco, and Donald K. Wagner, Representations of bicircular matroids. Discrete Appl. Math. 32 (1991), 223–240. MR 92i:05072. Zbl. 755.05025.
- [4] Collette R. Coullard, John G. del Greco, and Donald K. Wagner, Uncovering generalized-network structure in matrices. *Discrete Appl. Math.* 46 (1993), 191–220. MR 95c:68179. Zbl. 784.05044.
- [5] T.A. Dowling, A class of geometric lattices based on finite groups. J. Combin. Theory Ser. B 14 (1973), 61–86. MR 46 #7066. Zbl. 247.05019. Erratum. ibid. 15 (1973), 211. MR 47 #8369. Zbl. 264.05022.
- [6] T.A. Dowling and D.G. Kelly, Elementary strong maps between combinatorial geometries. In: Colloquio Internazionale sulle Teorie Combinatorie (Atti, Roma, 1973), Vol. II, pp. 121-152, Atti dei Convegni Lincei, 17, Accademia Nazionale dei Lincei, Rome, 1976. MR 58 #27567. Zbl. 359.05019.
- Jeff Kahn and Joseph P.S. Kung, Varieties of combinatorial geometries. Trans. Amer. Math. Soc. 271 (1982), 485–499. MR 84j:05043. Zbl. 503.05010.
- [8] Lori Koban, Two Generalizations of Biased Graph Theory: Circuit Signatures and Modular Triples of Matroids and Biased Expansions of Biased Graphs. Doctoral dissertation, Binghamton University, 2004.
- [9] L.R. Matthews, Bicircular matroids, Quart. J. Math. Oxford (2) 28 (1977), 213–227. MR 58 #21732.
 Zbl. 386.05022.
- [10] Laurence R. Matthews, Matroids from directed graphs. Discrete Math. 24 (1978), 47–61. MR 81e:05055.
 Zbl. 388.05005.
- [11] Steven R. Pagano, Separability and Representability of Bias Matroids of Signed Graphs. Doctoral dissertation, Binghamton University, 1998.
- J.M.S. Simões-Pereira, On subgraphs as matroid cells. Math. Z. 127 (1972), 315–322. MR 47 #6522.
 Zbl. 226.05016, (243.05022).
- [13] Daniel C. Slilaty, Orientations of Biased Graphs and Their Matroids. Doctoral dissertation, Binghamton University, 2000.
- [14] Daniel C. Slilaty, Matroid duality from topological duality in surfaces of nonnegative Euler characteristic. Combin. Probab. Comput. 11 (2002), no. 5, 515–528. MR 2003i:05034. Zbl. 1009.05036.
- [15] Donald K. Wagner, Connectivity in bicircular matroids. J. Combin. Theory Ser. B 39 (1985), 308–324.
 MR 87c:05041. Zbl. 584.05019.
- [16] Neil White and Walter Whiteley, A class of matroids defined on graphs and hypergraphs by counting properties. Unpublished manuscript, 1983.
- [17] Thomas Zaslavsky, Signed graphs. Discrete Appl. Math. 4 (1982), 47–74. Erratum. Discrete Appl. Math. 5 (1983), 248. MR 84e:05095. Zbl. 503.05060.
- [18] Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains. II. The three matroids. III. Chromatic and dichromatic invariants. IV. Geometrical realizations. J. Combin. Theory Ser. B 47 (1989), 32–52; 51 (1991), 46–72; 64 (1995), 17–88; 89 (2003), 231–297. MR 90k:05138; 91m:05056; 96g:05139, 2005b:05057. Zbl. 714.05057; 763.05096; 857.05088; 1031.05034.
- [19] Thomas Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas. *Electronic J. Combin.*, Dynamic Surveys in Combinatorics (1998), No. DS8 (electronic). MR 2000m:05001a. Zbl. 898.05001.
- [20] Thomas Zaslavsky, Glossary of signed and gain graphs and allied areas. *Electronic J. Combinatorics* (1998), Dynamic Surveys in Combinatorics, #DS9. (41 pp.) MR 2000m:05001b. Zbl. 898.05002.