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PROBLEMS AND SOLUTIONS 

ADVANCED PROBLEMS 

6661. Proposed by Jeffrey C. Lagarias, A T  & T Bell Laboratories, Murray Hill, 
NJ, and Thomas Zaslavsky, SUNY at  Binghamton. 

A curious property of is that to two decimal places it equals .02 x 7. Add 
.022 X 7 and you obtain $ to four decimal places. Add .023 x 7 and you obtain it 
to six places (with an error of 1 in the last place), and so on. In fact $ equals 7 
times the sum of a geometric series whose ratio has a terminating decimal 
expansion: 

Which positive integers N have a similar representation, 

where r is a terminating decimal? 

6662. Proposed by F. S. Cater and John Erdman, Portland State University, 
Oregon. 

(a) Let I be the unit interval [0, 11 and let I X I be the unit square. Let d 
denote the smallest a-algebra of subsets of I X I containing all rectangles of the 
form U X V.where either U or I\ U is a first category set, and either V or I\ V 
is a first category set. Prove that the diagonal D = {(x, x): x E I }  does not lie 
in d. 

(b) Is this true when "first category set" is replaced by "set of measure zero"? 
(c) Let a and b be cardinal numbers such that a > b > H,, and let S be a set 

with cardinality IS1 = a .  Let 99 denote the smallest a-algebra of subsets of S x S 
containing all rectangles of the form U x V where either U or I \  U has 
cardinality G b, and either V or I \  V has cardinality G b. Prove that the 
diagonal D = {(x, x): x E S} does not lie in @. 

6663. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria and 
the editors. 

Show that 

for 0 < x < 1and all positive integers N; also show that the constant 4 log 2 is best 
possible. (If we drop the factor log 2, we have a special case of Hardy's inequality; 
see Hardy, Littlewood, and Pblya, Inequalities, pp. 239-242). 


