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Orientation of Signed Graphs*

THOMAS ZASLAVSKYT

A graph with signed arcs is oriented by directing each end. of each arc in accordance with a
sign-compatibility rule. We prove that the regions of the hyperplane representation of a signed
graph X, as well as the vertices of the convex hull of all degree vectors of orientations of X, are
in natural one-to-one correspondence with the cyclic orientations of X. The proof uses the
oriented matroid of a signed graph. For use elsewhere, we also develop the relationships
between orientations and hyperplane representations of a signed graph and those of its double
covering graph.

1. INTRODUCTION

In this paper we develop a theory of orientation of signed graphs (graphs where each
arc is labelled + or —). The chief purpose is to generalize a simple but profound
observation of Curtis Greene’s: the acyclic orientations of a graph I' are in natural
one-to-one correspondence with the regions of an associated arrangement of hyper-
planes H[I'] (see Proposition 4.3 below). With this observation one can count the
regions of the arrangement by using Stanley’s theorem on the number of acyclic
orientations [10], or conversely count the acyclic orientations from a general formula
for the number of regions in an arrangement [13, 14]. More significantly, Greene’s
observation leads to new results on the numbers of orientations of various types; for
instance, the number of acyclic orientations with a single specified source [5, 6, 14].
Since the associated arrangement generalizes to signed graphs [15,16], where it
consists of certain hyperplanes determined by equations of the forms x; = +x; and
x; =0, it seemed to me that Greene’s correspondence should generalize as well. But it
was necessary first to find the right definitions of orientation and acyclicity for signed
graphs; then the desired generalization turned out to be surprisingly hard to prove.
Greene’s proof takes a few lines: our extension to signed graphs requires a few pages
and the theory of oriented matroids. Even so, the analogs of the ancillary results on
restricted acyclic orientations are not immediate corollaries. The machinery necessary
for their proof (in [6, Section 9]) is developed here in Sections 5 and 6.

To orient a signed graph X one assigns a direction to each end of an arc—what
Edmonds calls ‘bidirecting’ the arc—so that the two arrows on a positive arc agree (this
is like ordinary graph orientation), but those on a negative arc are opposed. A ‘cycle’
is then a matroid circuit with no source or sink. This generalizes ordinary oriented
cycles, since the signed-graphic matroid G(X) generalizes the polygon matroid of a
graph [16]. .

Our first proof of the generalized Greene’s correspondence, in earlier versions of this
paper, relied entirely on the double covering graph £ (Section 5), which has unsigned
arcs; through it we can reduce signed to ordinary orientation by establishing a
relationship between cycles in. ¥ and in 3. Following the suggestion of a referee, I
have simplified the proof and considerably strengthened the theory by first establishing
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the connections among oriented signed graphs, the standard real vector representation,
and oriented matroids (Section 3). From them we deduce relationships among
orientations of X, their ‘net degree’ vectors (the net degree of a vertex is its indegree
less its outdegree), and the zonotope generated by the representing vectors of X, which
we dub the ‘acyclotope’;s and, by dualizing, the crucial theorems about the
hyperplane arrangement H[X] (Section 4). In Section 5 we show how cycles in X and 3
are related. This is interesting both in its own right, as an oriented strengthening of the
circuit relationship of [16, Section 6], and as enabling us to prove Proposition 6.1,
which is needed in [6, Section 9]. There we regard the arrangement H[X], which
resides in RY (where N is the node set), as a cross-section of H[Z], which sits in
RY x RY. Proposition 6.1 states that the regions of H[Z] that meet the cross-section
are just those corresponding to orientations of 5 obtained by lifting acyclic orientations
of X,

Our results are here proved only for finite graphs (in part because the oriented
matroid theory of [2] is finite). Since G(X) is finitary I do not doubt that they will hold
in general (when they are meaningful). But I prefer not to tackle here the issues raised
by infinities.

Signed graph orientation is interesting for other reasons than the geometric
connection emphasized here. For instance, it enriches Edmonds’ theory of bidirected
flows (see [8, Section 6.3]). Because bidirecting a graph is the same as orienting
node-arc incidences, it determines arc signs and therefore a matroid G(X). One can
show by deletion-and-contraction arguments that, if ¢(x, y) is the Tutte polynomial of
G(2), then [£(0, 1 — n)| is the number of nowhere-zero bidirected flows with values in a
finite abelian group of odd order n. This partly extends a result for ordinary graphs
[12, Theorem XI] and regular matroids [4, Theorem IIT]. Although the method of
proof is familiar, the result is a new one because G(X) need not be binary [16].
(Integer-valued bidirected flows have been studied recently by Bouchet, who proved a
sufficient-width theorem [3].)

Another point of interest is that an arc two-coloring of a graph I' can be regarded as
an orientation of the all-negative graph —I, by calling the colors ‘introverted’ and
‘extroverted’ (the two ways to orient a negative arc). Let us call an alternating cycle
either an even circle with alternating colors or a pair of odd circles connected only by a
simple path of length at least 0 and colored so there is no monochromatic node. Since
this is a cycle in the oriented all-negative graph, by Corollary 3.7 the union of all
alternating cycles is closed in the even-cycle matroid of I". Moreover, whatever one can
prove about acyclic orientations translates into a statement about two-colorings with no
alternating cycles. For instance, their number is a known function of I" [18, Section
8.9].

A third outgrowth of signed graph orientation is that it gives us the right language
with which to define a notion of a line graph of a digraph in such a way that it has the
nice matrix properties of ordinary line graphs. One finds also that the properties of
Hoffman’s generalized line graphs result from their being line graphs of special
oriented signed graphs. This topic will be treated elsewhere.

Finally, Stanley’s theorem on the number of compatible pairs of colorings and acyclic
orientations generalizes to signed graphs [17].

IncipENTAL NoTes. (1) References [6] and [17] cite results from this paper, the
identifications of which have been changed since the early versions. The changes are as
follows: 2.1 is now 5.1, 2.4 is 3.7, 3.1 is now 3.10, 4.2 is now 4.4, 4.5 is 4.6.

(2) I take this opportunity to correct misleading remarks in [6]. The ‘Note’ on page
124 should have said that the basic results of the article [6] as a whole date from 1975
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and were announced by Greene in [5] and Zaslavsky in [14]. The results on signed
graphs of [6, Section 9] date from 1979-1981, after the first (1979) version of the
present paper. Also, the statement which I inserted on page 102 that the task of
extending ‘most of our results’ to oriented matroids is ‘straightforward’ is a very
considerable exaggeration. Indeed, it is a fairly complex task just to formulate many of
the results in terms of oriented matroids.

2. FUNDAMENTAL DEFINITIONS AND LEMMAS

Graphs. An (unsigned) graph I consists of a node set N(I') and an arc set E(I'). (We
often write merely N, E and also I' = (N, E).) Multiple arcs are allowed. We assume
finiteness. Besides links (two distinct endpoints) and loops (two coincident endpoints)
we need half arcs (one endpoint) and loose arcs (no endpoints; here regarded as a kind
of balanced loop). We write the incidence between an arc e and its endpoint v as (v, e).
(The two incidences of a loop at v are not distinguished by the notation, but that will
not cause any problems.) We denote the set of incidences by I(I'). Other useful
notations are as follows:

X¢=N\X for a node set X,
S§¢= E\X for an arc set S,
E* = the set of arcs excluding half arcs,
I''X = (X, E:X), the subgraph induced by the node set X, where E:X is the set
of arcs having their endpoints in X (but not loose arcs),
E:(X,Y) =the set of arcs having one endpoint in X and the other in Y, where
X,YcN. :

Signed graphs. We summarize basic concepts of signed graphs from [16]. A signed
graph X = (T, o) consists of an underlying unsigned graph I'=(N, E) and a sign
mapping o: E*— {%} such that o | {loose arcs} = +. We write 2:X for the subgraph
induced by a node set X. The product of arc signs along a path P is denoted by o(P).
A circle C is balanced if 0(C) = +; an arc set S is balanced if it contains no unbalanced
circle or half arc (these are called unbalanced figures). We set

7m,(S) ={B < N: B#(Jis the node set of a balanced component of S},

N,(S) = the set of nodes of unbalanced components of S,
b(S) = #m, (S).

(Here S means the subgraph (N, S).) For restrictions and contractions of X, see below.

The signed-graphic (or bias) matroid G(X) is the matroid on E the circuits of which
are the balanced circles, and the arc sets consisting either of two unbalanced figures
having one node and no arcs in common, or of two disjoint unbalanced figures and a
simple connecting path meeting each figure once, at an endpoint. The two unbalanced
types are unified if we view the former as having a connecting path of length zero. A
bond (cocircuit) of G(X) is any arc set of the form

D =(E:{X, Y))U(D:X), 2.1)

for which X:(X U Y) is a connected component of X, X is non-empty and disjoint from
Y, 2:X is connected, D°: X is a maximal balanced arc set in X:X, and b(2:Y) =
b(Z:(X UY)). The roles of X and Y are interchangeable if 3:(X U Y) is balanced, but
not otherwise.

The rank function of G(ZX) is rk $ = rn — b(S). The lattice of closed arc sets of G(2)
is denoted by Lat G(2).
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Switching X by a switching function v: N— {4} means replacing o by ¢*, defined by
0*(e) = v(v) o(e) v(w), where v and w are the two (possibly coincident) endpoints of
e. The switched graph is written 2. Switching does not alter balance or the matroid.
We call v a potential for ¥ if XV is (balanced and) all positive, since then
a(e) = v(v) v(w) for each arc e (where v and w are its endpoints).

Orientation. A bidirection of an unsigned graph I'is any mapping t: I(I')— {%}. The
interpretation of 7 is this: if 7(v, ) = +, the incidence (v, e) points into the node v; if
7(v, e) = —, (v, e) points away from v. The possible orientations of arcs are illustrated
in Figure 1. The sign mapping o given by '

o(e)=—1(v, e) T(w, e) (2.2)

whenever e has the two (possibly coincident) endpoints v and w, determines a signed
graph ¥(7). Conversely, given a signed graph 2 we call any bidirection 7 satisfying
(2.2) an orientation of %, and we call (£, t) an oriented signed graph. We write 7:X to
mean 2:X oriented by t.

- + + -
+Link —p——p o —t—a——e
- +
- DO
+ —-—
. - - + +
- Link *—Pp——dq—o *r—g¢———p—o
Introverted Extroverted
- +
o D o
- +
- +
Half arc —p— ~—a4

Loose arc O (no orientation )

FiGURE 1. Types of oriented arcs.
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A balanced cycle

A balanced loop is a cycle

A loose arc is a cycle

An unbalanced cycle
with a half arc

An unbalanced cycle
with a loop

An unbalanced cycle with
no connecting path

FIGURE 2. Cycles of oriented signed graphs. Positive arcs are marked (usually) by single arrows, and
negative arcs by double arrows.

A cycle in an oriented signed graph ' is a matroid circuit of G(X) that has neither a
source nor a sink. The cyclic part C(7) of an orientation 7 is the union of all cycles; 7 is
acyclic if C(t) =J. Cycles are shown in Figure 2.

A cocycle of 7 is a bond D for which D°:X has a potential vy: X — {%} such that
7(v, €) = vx(v) for every incidence (v, ¢) with v e X, e € D. Equivalently, in some
switching of X every arc of D points into X wherever it meets X.

Switching T by v: N— {+} means replacing 7 by t”, defined by

(v, e) = v(v) (v, e).

Then X(7") = Z(7)". Switching does not affect cyclicity.

A restriction subgraph X |S=(N, S, o|S) of an oriented signed graph (I, 1),
where S c E, is oriented by restricting 7. We write this orientation 7 | S or 7\S°.

A contraction XZ/S is oriented by 7 in a more complicated way. To construct the
contracted orientation /S, first switch (2, 7) until every balanced component of §
consists entirely of positive arcs. Then discard N,(S) (but not any arcs); this may
reduce some arcs to half arcs or loose arcs. Then coalesce all the nodes in each
balanced component of S. Finally, discard the arcs of S. This defines both the
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contracted signed graph ¥/S and the contracted orientation z/S, not uniquely but up
to switching. That is all we need since switching does not affect cyclicity.

The oriented incidence matrix. The incidence matrix of t is the N X E matrix
M(t) = (m,,; v €N, e € E) the entries of which are

+1 if e enters v,
—1 if e leaves v, except
+2 if e is a negative loop at v (+2 if entering, —2 if leaving), and

0 if e is a positive loop or not incident with v.

This matrix is an oriented incidence matrix of 2 in the sense of [16, Section 8A].

The column of M(7) labelled by e is a vector x.(e) e R", which depends only on 3
up to sign (i.e. vector orientation). We call the mapping x,: E— R”" or its image the
vector representation of t. Theorem 8B.1 of [16] says that the linear dependence
matroid of x.(E), which is clearly independent of t, equals G(X).

Oriented matroids. We shall require some properties of oriented matroids. For
notation we refer to [2]. Let M be an oriented matroid on the point set E. The union of
all cycles (positive circuits) is C(M). For e € E, M, denotes M with e reoriented (signs
reversed in every signature).

LemMA 2.1. C(M*)=E\C(M). Also, C(M) is closed in the underlying matroid.

Proor. For the first statement see [7, p. 233]. Since C(M) is the intersection of
complements of cocycles, it is closed. O

Lemma 2.2. For any ScE we have C(M/S)o C(M)\S. If S<C(M), then
C(M/S)=C(M)\S.

Proor. For the first statement see [2, Proposition 4.4]. For the second, by [2,
Theorem 4.3] we have C((M/S)')=C(M*\S), which equals C(M*) since SN
C(M*)=@. Dualizing by Lemma 2.1, C(M/S) = C(M)\S. O

LemmMa 23. (a) If eeC(M)NC(M,), then C(M)=C(M, and C(M\e)=
C(M/e)=C(M)\e.
(b) If e CIM)\C(M,), then C(M\e)=C(M,) = C(M)\e and C(M/e) = C(M)\e.
(c) If e¢ C(M)U C(M,), then C(M)=C(M,)=C(M\e)=C(M/e).

This result strengthens [7, Lemma 3.1.1].

Proor. If Cis acycle in M and C, is one in M, and both contain e, then (CU C,)\e
is a union of cycles by [2, Axiom (II)]. Part (a) follows from this and Lemma 2.2. Part
(b) is obvious, given Lemma 2.2. In part (c) only C(M/e) = C(M) requires comment.
If X is a cycle in M/e, then X or X + e, whichever is a circuit, is a cycle in M. From
this (c) follows. ) O

3. ORIENTATION AND GEOMETRY

An orientation 7 of X defines a natural oriented matroid structure upon E which
agrees with that implied by positive dependence in the vector representation. This is
our fundamental geometrical result.
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We can describe an oriented matroid by its circuit signature or its bond signature [2].
Let C be a circuit of X, and & any cyclic orientation of C. We define

Ct={feC:t|f=E|f}, C ={feC:t|f+E|f}.

The names C* and C™ are interchanged by reversing £ but the bipartition {C*, C™} is
unique. The circuit signature of 7 is

O(1) = {(C*, C7): Cis a circuit and & is a cyclic orientation of C}.

Lemva 3.1. Let e, f be arcs of a circuit C and let P be a simple path in C\{e, f}
from an endpoint v of e to an endpoint w of f. Suppose e € C* and f € C°. Then
8e =—0(P) (v, e) T(w, f).

Proor. Let us switch so that P is all positive and (v, ¢) = + and let us choose & so
that ¢ = +. Then & directs P from v to w, so f € C* precisely when 7(w, f)=-. O
Let D be a bond of X as in (2.1) and let vy be a potential for D°:X. We define
D°={feD:vx(v)t(v, f)= 6 for (v, f) e I(I') and v € X},
where 6 = + or —. The bond signature of t is
O0*(t)={(D*, D7): D is a bond and vy a potential for D°: X}.

LemMA 3.2.  For each bond D, {D*, D™} is well defined.

Proor. For f € D:X we might have an inconsistency from choosing the other end of
f. Say v, w are the endpoints of f. Then vx(v)vx(w)=—0o(f)=1(v, )z(w,f). It
follows that & is independent of the endpoint selected.
In case both X:X and X:Y are balanced we could have reversed the roles of X and
Y, giving the criterion
Di={feD:vy(y)t(y,f)=¢for (y,f)eI(I') and y € Y}.

But in this case X:(X U Y) is balanced. Thus
0¢ = vx (v)vy(y) ©(v, f)2(y, f)

= —vx(v)vy(y)o(e),
which is — if we choose v to be a potential for T:(X UY) and vy = v|x, vy = v|y.
Therefore the {D*, D™} determined by X and Y are one and the same. O

THEOREM 3.3. Let T be an orientation of 2. The oriented matroid on G(X) implied
by the vector representation x., has circuit signature 0(t) and bond signature 0 (7).

Proor. The proof has two parts. The easier half is to show that O(7) is the right
circuit signature.
Let C be a circuit of X and let a linear dependence relation for x,.(C) be

> a.x.(e) =0.

eeC
A cycle has the positive dependency given by a,=+1 except a,=+2 if C is
unbalanced and contains e in its connecting path. If C is not a cycle, we see that
C*={e: a,>0} and C~ ={e: a, <0}, as required, by reorienting it to be a cycle,
calculating «,, and negating «, on the reoriented arcs.
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The second half of the theorem now follows from Lemma 3.4 and the uniqueness of
the dual [2, Theorem 2.2].

Lemma 3.4, O*(7) is the orthogonal dual of O(t) in the sense of oriented matroids.

Proor. We show that 0= 0(7) and 0’ = 0*(7) satisfy property (III) of [2, Theorem
2.2]. The property is that, if C and D are a circuit and bond having 2 or 3 common
elements, then

(C*'NDHYU(C ND)Y+D (I1,)
and
(C"NDTHYU(C NDY)#D. (I11,)

Let D be given by (2.1) with B=D*:X balanced. Say e e CN D with endpoint
v e X. We may switch so that B is all positive and 7(v, ¢) = +; then e € C* N D+ and
(I1,) is satisfied.

There must be a second arc f € C N D connected to e at v by a simple path P c B.
(If not, e would have to cut C into halves. Each half would be unbalanced. The half
containing v would have to lie in B. This is impossible.) Let w be the node at which P
meets f. By Lemma 3.1, f € C™*™/)_ Since also f € D*™), (IIL,) is satisfied. O

Restrictions and contractions of oriented matroids are defined in [2, Section 4].

THEOREM 3.5.  Let 7 orient X and let S  E. Then O(t | $)=0() | S and O(v/S) =
O(t)/S.

Proor. The restriction part is trivial. We prove the part concerning contractions by
the linear algebra model. We assume by switching that each balanced component of §
is positive. Let & = m,(S) and define L: R¥Y— R ” by

L(x)g= D xz for B e .
veB
Obviously, L is linear. Its kernel is spanned by x,(S). Now we appeal to a lemma of
oriented matroid representation theory. For E; c R", let O(E,) be the circuit signature
of the oriented matroid of positive dependence.

LemMma 3.6. Let E; cR" and let L: R"— R? be linear. Suppose Ker L is spanned by
SI < El' Then @(L(El\sl)) = @(El)/sl.

Proor. Each circuit C, of L(E;\S;) has the form L(C;\S,) for some circuit C} of
E,. The signature of C{\S; in O(E,)/S, is that of C; restricted to C;\S,. We compare
this to O(L(E;\S))). Let the linear dependence of C, be

2 al(e)=0

ecCi\S;

and that of C; be
> Bet X Bf=0.

eeCi\S; feCins

Applying L to the latter expression, X, ,L(e) =0. Thus the S, are constant multiples
of the «,, which implies that C,; has the same signature as C;\.S,. O

The theorem follows upon setting E; = x.(E) (with other appropriate identifications)
and observing that L(E;\S;) = x.,s(E\S), the vector set representing 7/S5. O
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From Theorems 3.3 and 3.5 and the lemmas in Section 2 we draw several
conclusions.

CoroOLLARY 3.7. The cyclic part of an orientation T of the signed graph X is closed in
G(2). Its complement is the union of all cocycles.

CoROLLARY 3.8.. For any S ¢ E we have C(1/S5) 2 C(7)/S.
CorOLLARY 3.9. If S < C(x), then C(z/S) = C(%)/S. In particular, T/C(7) is acyclic.

CoroLLARY 3.10. Let t be an orientation of the signed graph X and let e € E. Let =,
be t with the orientation of e reversed. Then:
(a) If e e C(v) N C(3.), then

C(7)=C(z.), C(r\e)=C(1)\e, C(t/e) = C(1)/e.
(b) If e e C(t)\C(x.), then
C(t\e) = C(1,) = C(1)\e, C(z/e) = C(1)/e.
(c) If e ¢ C(7) U C(x,), then
C(t) = C(z.)= C(t\e) = C(z/e).

4. GEOMETRY OF ORIENTATIONS OF A SIGNED GRAPH

Score vectors and the acyclotope. Let S(e) be the line segment between x.(e) and —x.(e)
in R", and let :

Z[z)= };E S(e).
Such a vector sum of line segments is called a zonotope (a reference is [9]). For Z[X]
we prefer the vivid name acyclotope because it is the convex hull of the net degree
vectors of the acyclic orientations of 2 (Corollary 4.7). (The permutohedron, the
convex hull of all permutations of (1,2, ..., r), is therefore a half-sized translate of
Z[+K,]. And the vertices of Z[1K}], where £K, is the signed graph with all possible
links and negative loops, are the permutations of (£2, £4, ..., £2r).)

Our theorem is a relationship between faces of Z[ZX] and the net degree vector (or

score vector)

d(v) =2 x.(e)

ecE

of an orientation 7, so called because its v-component is the indegree less the
outdegree at v. Suppose & acyclically orients a contraction X/T; let

f(Z/T, &) =conv{d(): 7 orients X and agrees with & on all arcs e ¢ T'}.

(For this definition it is necessary to use the same switching throughout in contracting 7
onto X/T.)

THEOREM 4.1.  The mapping (Z/T, §)—=f(Z/T, &) is a one-to-one correspondence
between the acyclically oriented contractions of X and the faces of Z|X), under which
dimf(2/T, §) =1k T.

If T orients X, then the smallest face of Z[Z] which contains d(t) is f(7)=
f(Z/C(x), T/C(7)), the dimension of which equals rk C(7).
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Proor. Suppose that we forget signed graphs momentarily and redefine X to be a
set of vectors x, € RY indexed by E, G(X) to be the linear dependence matroid, Z[X]
the zonotope X, . conv(x,, —x.), X/T the projection of Z\{x,: e € T} onto a subspace
complementary to lin{x,: e € T}; furthermore, we regard 7 as a mapping E— {&£},
- d(t) = Y.ep T%., and C(7) = the set of e € E such that 7,x, is positively dependent on
the other vectors 7. Then the theorem is a standard property of zonotopes.
Specializing it to a signed graph &', with 7.x, defined as x,(e), we see by the results of
Section 3 that the revised definitions agree with the original, graphical ones. For
example, the revised C(7) is the same set as the graphical C(7). Theorem 4.1 follows.

O

CoroLLARY 4.2. The vertices of Z[X] are the net degree vectors of the acyclic
orientations of 2/0 (Z with its balanced loops removed). All of these net degree vectors
are distinct from each other and from all d(t) where T is not acyclic.

This corollary generalizes half of a characterization of the net degree vectors of
orientations of an ordinary graph I" (unpublished; cited in [11, Example 3.1]). Let d be
the (unoriented) degree vector of I'; then the net degree vectors are the integral points
y in the acyclotope of I' (that is, Z[+I']) for which y = d(mod 2). (This result follows
from Greene'’s observation about H[I'] and the total unimodularity of the oriented
incidence matrix of I'.) In the extension to signed graphs the net degree vectors are
further restricted depending on which half arcs are present. The details will appear
elsewhere.

Hyperplanes, regions and faces. The arrangement of hyperplanes of X is the set
H[X]={h(e):ec E},

where if e:vw is a link or a loop then k(e) is defined by x, = o(e)x,,; if e:v is a half arc
its equation is x, =0, and if e is a balanced loop, A(e) is the whole space (we grant it
honorary hyperplane status as the ‘degenerate hyperplane’). Since A(e) =x.(e)*, the
set Lat H[2] of all intersections of subsets of H[Z], ordered by reverse inclusion, is a
geometric lattice isomorphic to Lat G(X) under the mapping h: E— (RV)*.

The regions of H[X] are the connected components of R\ (U H[X]); its faces are
the regions of all the induced arrangements

H[Z],={hNt: heH[Z],h bt}

for teLat H[Z].  The faces of Z[2] and H[X] are in one-to-one order-inverting
correspondence, k-dimensional faces of one corresponding to (n — k)-dimensional
faces of the other. Given an orientation 7 of 3, the hyperplanes are oriented; the
positive half-space of e is

h(e)={x e R": x.(e)-x>0}.
(This is void if h(e) is degenerate.) Let us write

R(7)= eDE h.(e).

Contrariwise, for a region R let a(R) give an incidence (v, €) the positive sign if e is a
link to w and x, > o(e)x,, in R, or if e is a negative loop or half arc at v and x, >0 in
R, and otherwise the negative sign. Clearly each R(7) is either a region or void. Curtis
Greene’s fundamental observation is as follows:

ProrosiTiON 4.3 [5, 6, 14].  If I is an unsigned (i.e. all-positive) graph oriented by T,
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then R(7) is a region of H[I'] iff T is acyclic. The correspondence between regions and
acyclic orientations is a bijection.

Greene’s proof depends on the fact that the inequalities defining R(7) are
directional, of the form x, <x,,, just like orientations of unsigned (i.e. positive) arcs.
Thus one has an easy proof by ordering the nodes. For signed graphs that is not
possible. In order to treat them we dualize Theorem 3.3, appealing to the relationship
between positive independence of vectors and, dually, regions of the arrangement of
hyperplanes; equivalently, we dualize Theorem 4.1. Here, then, is our main theorem:

THEOREM 4.4. If 2'is a signed graph oriented by <, then R(7) is a region of H[X] iff
t is acyclic. The correspondence between regions and acyclic orientations is a bijection.
The inverse of the mapping t— R(7) is R— w(R).

Proor (concluded). The last statement follows from the obvious fact that
a(R(7))=1. O

We can characterize the faces of H[X] once we describe its flats.

Lemma 4.5. LetteLlat H[X] and let T = {e € E: h(e) ot}. For each B € n,(T), let
vg: B— {x} be a potential for T:B. Then t is described by the equations

x, =0  forveN,/T),
and, for each B € 7,(T),
vg(V)x, = constant xg ~ for veB.
Also, dim ¢ = b(T).

Now let T c E and let 7 be an orientation of X/T. If T is closed, then 7 determines
an orientation of X | T¢, whence h.(e) is a well-defined half-space in R" if e ¢ T. We
can therefore define

E@=[ o]0 k)],
eeT e¢T
which is & if T is not closed.

COROLLARY 4.6. There is a one-to-one correspondence between the k-dimensional
faces of H[Z) and the acyclic orientations of contractions X/ T, where T is a closed arc
set with k balanced components.

Precisely: each face F of H[X] is an Fy(t) for some closed T and acyclic orientation ©
of Z|T. Both T and 7 are unique, and b(T)=dim F. Furthermore, Fr (1) 2 Fr.(t') iff
T<T and t/(T'\T)=1".

Conversely, assuming that T orients X/ T, then Fr(t) # & iff T is acyclic. Then Fy(t) is
a face of H[2X] the dimension of which is b(T).

CoroLLARY 4.7. Let t be an orientation of 2 and let T c E. If T is closed and
contains C(t), then Fp(t/T) is a face of H[X], the dimension of which is b(T).
Otherwise, F;(1/T) = .

Proor. The first part is a special case of the second part of Corollary 4.6. The
second follows from Corollary 3.8. O
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5. DouBLE COVERING OF AN ORIENTED SIGNED GRAPH

The signed covering 5 of a signed graph X = (I, 0) (defined in [15] or see [1,
Definition 19.1]) has node set N = £N = {+} X N; its covering projection p: £ — Tis a
graph homomorphism, 2-to-1, and locally an isomorphism, with p(xv)=v. X is
uniquely determined by the additional requirement that, if & has endpoints év and &w,
then 6¢ = o(p(€)). The double covering I is the same, except that one forgets the
signs on N. In [16, Section 6] we explored the connection between the matroids of I"
and 2.

If X is oriented by 7, then 3 is oriented by % determined by the rule

T(ev, €)= et(v, p(€)).

We call (2, ©) the signed covering of (Z, t). Notice that 7 is an ordinary orientation of
3, which is all positive (or in essence unsigned). In this section we show how the
cyclicity of 7 is related to that of 7.

A double covering has a canonical involutory automorphism *, defined by
p(x*)=p(x) and x* #x. We call $* (the image of a set S of nodes and arcs) the opposite
of §. If € is an arc oriented §—w, then é* is oriented w*— 0*. Conversely, suppose
that I is any graph having an mvolutory automorphlsm with no fixed points, and 7 is
an orientation of I" which is reversed by *. Then I" is a double covering of a signed
graph X and the fact that 7 is reversed allows us to orient 2 so that T is the lift of that
orientation.

THEOREM 5.1.  Let 7 be an orientation of the signed graph X, and let (£, ©) be the
signed covering. Then C(%) =p~'(C(7)). In particular, % is acyclic iff T is.

The proof depends on the following lemma.
Lemma 5.2.  If Cis a cycle in T, then its projection p(C) is a union of cycles of .

Proor. Let us consider an arc e € C. We must show that p(e) lies in a cycle of
2(7). We proceed by gradually transforming C until we have a cycle C’ containing e,
the projection of which is a circuit, hence a cycle. We shall treat only the case where C
contains no half arcs. (We can always reduce to that case by changing the half arcs to
negative loops.) We may assume that p(C) is not a balanced circle, since then the
lemma is trivial.

To find out how to transform C we look at the Gauss code of p(C). A double path
(in C) will mean a pair of maximal paths in C having the same projection; that is,
which are of the form

P: £y, €1, E1V1, €3, . . . , &,, EU,;
k. * * * .
P*: —&U,, €y, ..., €2, —EUy, €7, —EgUg;

oriented from left to right, with = 0. If we name all the double paths, a Gauss code of
C is a sequence of names in the cyclic order in which they are encountered as one
travels once around C. Note that each name appears just twice. The order of C is the
number of names in its Gauss code.

If C has order 1, p(C) is an unbalanced circuit in (7). Then the lemma is obvious.
We shall show that, when the order is at least 2, we can rearrange parts of C or their
opposites to create a cycle which contains e and has order smaller than that of C. The
lemma will then follow by descent.

First we solve a special case. We call a Gauss code a - - - z normalized if e belongs to
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the path denoted by a or z or to the path which wraps around from the final z to the
initial a.
The split case. If the Gauss code, normalized or not, has the form
ab---b(--a---

where e is not in the portion of C denoted by (- ), write C=APB--- B*QA* - - -,
where A and A* constitute the double path named 4, and B and B* constitute that
named b. Since e ¢ O, replacing Q by P* transforms C into a cycle C; which contains
e. Then C; has smaller order than C because ¢ and b have been combined into a
double path {APB, (APB)*}.

The general case. Suppose that C has normalized Gauss code a---a---. If it is
aa - -+ (thus aa(---)z---z normalized, which is zaa(---)z ---unnormalized) or
aay---a,(---)a---, the split case applies. That leaves us only with Gauss codes of
the form

aal . e = a Y al L
If a does not succeed a;, again either the split case applies or the code has the form
aalaz . . a . . al . .o a2 e

Continuing in this fashion we see that the Gauss code, if not reducible, must be of the
form

a(alaz...ai)a...al...az ......... ai...‘

Write C=A---AfRA*---A;Q, so e€c AUA;UQ. Then the cycle AR*A;Q has
reduced order since, at the very least, A and A; are no longer in double paths. That
completes the proof. a

ProOF OF THEOREM 5.1. To show C(%) 2 p~'(C(t)), suppose that C is a cycle in 7.
One can see (cf. the proof of Lemma 6.6 in [16]) that p~'(C) is the union of two circles
which project to C. It is clear from the definition that both are cycles; so
pH(C)  C(D).

To show that C(%) < p~'(C(7)), it is enough to show that p(C(%)) c C(7); this is a
consequence of Lemma 5.2. O

COoROLLARY 5.3. An acyclically oriented signed graph with finitely many nodes has a
source or a sink.

We cannot conclude that it has a source and a sink even when there are no half arcs.

RemaRrk. Theorem 5.1 gives a graph-theoretic proof of the first half of Corollary
3.7. Because X is positive, C(T) is closed in G(2). Then C(z) is closed by [16,
Theorem 6.5(1)].

6. DouBLE COVERING OF THE GEOMETRIC REPRESENTATION OF A SIGNED GRAPH

An alternative approach to the results of Sections 3 and 4 is to deduce them from the
ordinary graphical geometry of the double covering graph. This is the method
employed in [6, Section 9] to count certain restricted -acyclic orientations of a signed
graph. Here we develop the geometrical machinery needed in [6].

Because £ is a positive (or unsigned) graph with node set £N, it is represented by an
arrangement of hyperplanes H[Z] in R*", the regions of which, by Proposition 4.3,
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are all the sets R(«) for which « is an acyclic orientation of 5. Let the co-ordinates in

R*M be x; and let those in R™ be x; for ve N. For x e R*" we write x = (x*, x7)..

Let
s={xeR*™:x"+x"=0}.
Now if e lifts to & and &*,
h@)Ns=h(E*)Ns={xes: x* eh(e))}.

Thus H[X], is essentially identical to H[Z], only having two copies of each hyperplane
in H[Z], if we embed R" in R*" as the subspace s by the mapping y— (y, —y). Our
problem is to characterize how s cross-sections H[X].

ProrosiTION 6.1.  Regard H[X] as lying in s  R*". Then the regions of H[Z] are the
non-void intersections of s with the regions of H[2]. Let « be an acyclic orientation of
2. Then sNR(a)#QD iff a=*% the lift of an orientation © of 3; and then
s NR(«) = R(7) and 7 is acyclic.

Proor. The first assertion is true because no 4(€) contains s. To see this observe
that /(&) is defined by an equation in at most two variables. The only such equations
satisfied by s are x,, = —x, which are not equations of a positive arc or a half arc. But
é is such an arc. The desired conclusion follows.

Suppose in the second assertion that « is not a lift of an orientation of =. From our
discussion of the involution * in Section 5, we know that this means that there are arcs
€ and &* which are not oppositely oriented. Suppose that the arcs are links (the other
cases are similar), say é:+v~>ew and é*:—v— —ew, where £ = o(p(é)). Then R(«)
lies in the half-spaces defined by

xi<xf and x; <x,°%
which in s are the complementary half-spaces x} <ex), and —x}<-—ex}. So
sNR(a)=2.

Now suppose that « = 7. By Theorem 5.1, 7 is acyclic. By the first assertion s N R(a)
is a region of H[X] if it is not void; by inspection that region can only be R(7). So all
that remains is to prove s N R(a) # @.

Let Z, be the set of sources of & (non-void because £ is ordinary and « is acyclic).
Then —Z, is the set of sinks. Let us agree that, when both +v and —v are sources
(and sinks), we put only one in Z,. Now inductively define

Z,,1=Z;U {sources of a:(+Z,)},

with the same convention on ambiguous cases. Since « orients the induced subgraph
3 :(£Z,))° acyclically, this process will not end until +N is exhausted. Let Z = lim Z,.
Then Z and ~Z partition +N.

To simplify the rest of the proof, switch X so that Z = +N. In the switched graph an
arc with endpoints of both signs is directed +v——w.

Now let x™ be any vector such that x} < x> wherever there is an arc é:+v—+w. The
existence of x* is guaranteed by the acyclicity of a* = a:(+N); we simply choose

*eR(a"), a region of the arrangement H[Z:(+N)]. By subtracting a suitable
multiple of (1,1,...,1) we can even make all co-ordinates of x* negative. Let
x=(* —x). Thus x €5 and x € R(«). So we have proved s N R(a) #J, completing
the proof of the proposition. O
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Theorem 4.4 is an easy consequence (that was our original proof of the theorem).
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