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2 Reference Notes on Signed Graphs and Geometry

Introduction

These notes and the lectures are a personal introduction to signed graphs, concentrating
on the aspects that have been most persistently interesting to me. This is just a few corners
of the theory; I am leaving out a great deal. The emphasis is on the way signed graphs arise
naturally from geometry, especially from the geometry of the classical root systems.

The arrangement of the notes is topical, not historical. In the lectures I will talk about
the historical development, but in the notes the purpose is to provide a printed reference for
most of the definitions, theorems, and examples, and possibly some proofs.

The principal reference for most of the properties of signed graphs treated here is [4].
A simple introduction to the hyperplane geometry is [B, Zaslavsky (1981a)]. Many of my
articles can be downloaded from my Web site,

http://www.math.binghamton.edu/zaslav/Tpapers/

Bon voyage! Suffa yathra.

1. Graphs

In these lectures all graphs are finite.
A graph is Γ = (V, E), where V := V (Γ) is the vertex set and E := E(Γ) is the edge set.

Notation:

• n := |V |, called the order of Γ.
• V (e) is the multiset of vertices of the edge e.
• If S ⊆ E, V (S) is the set of endpoints of edges in S.

Edges and edge sets:

• There are four kinds of edge: A link has two distinct endpoints. A loop has two equal
endpoints. A half edge has one endpoint. A loose edge has no endpoints. The set of
loose edges of Γ is E0(Γ).

• An ordinary edge is a link or a loop. An ordinary graph is a graph in which every
edge is ordinary. A link graph is a graph whose edges are links.

• The set of loose edges of Γ is E0(Γ). The set of ordinary edges of Γ is E∗ := E∗(Γ).
• Edges are parallel if they have the same endpoints. A simple graph is a link graph

with no parallel edges.
• If S ⊆ E, Sc := E \ S is its complement.
• E(X, Y ), where X, Y ⊆ V , is the set of edges with one endpoint in X and the other

in Y .
• A cut or cutset is an edge set E(X, Xc) that is nonempty.

The degree of a vertex v, d(v) := dΓ(v), is the number of edges of which v is an endpoint,
but a loop counts twice. Γ is regular if every vertex has the same degree. If that degree is
k, it is k-regular.

Walks, trails, paths, circles:

• A walk is a sequence v0e1v1 · · · elvl where V (ei) = {vi−1, vi} and l ≥ 0. Its length is
l. It may be written e1e2 · · · el or v0v1 · · · vl.

• A closed walk is a walk where l ≥ 1 and v0 = vl.
• A trail is a walk with no repeated edges.
• A path or open path is a trail with no repeated vertex, or the graph of such a trail

(technically, the latter is a path graph), or the edge set of a path graph.
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• A closed path is a closed trail with no repeated vertex other than that v0 = vl. (A
closed path is not a path.)

• A circle (also called ‘cycle’, ‘polygon’, etc.) is the graph, or the edge set, of a closed
path. Equivalently, it is a connected, regular graph with degree 2.

• C = C(Γ) is the class of all circles in Γ.

Examples:

• Kn is the complete graph of order n. KX is the complete graph with vertex set X.
• Kc

n is the edgeless graph of order n.
• Γc is the complement of Γ, if Γ is simple.
• Pl is a path of length l (as a graph or edge set).
• Cl is a circle of length l (as a graph or edge set).
• Kr,s is the complete bipartite graph with r left vertices and s right vertices. KX,Y is

the complete bipartite graph with left vertex set X and right vertex set Y .
• The empty graph, ∅ := (∅, ∅), has no vertices and no edges. It is not connected.

Types of subgraph: In Γ, let X ⊆ V and S ⊆ E.

• A component (or connected component) of Γ is a maximal connected subgraph, ex-
cluding loose edges. An isolated vertex is a component that has one vertex and no
edges.

• c(Γ) is the number of components of Γ (excluding loose edges). c(S) is short for
c(V, S).

• A spanning subgraph is Γ′ ⊆ Γ such that V ′ = V .
• Γ|S := (V, S). This is a spanning subgraph.
• S:X := {e ∈ S : ∅ 6= V (e) ⊆ X} = (E:X ∩ S. We often write S:X as short for the

subgraph (X, S:X).
• The induced subgraph Γ:X is the subgraph Γ:X := (X, E:X). An induced subgraph

has no loose edges. We often write E:X as short for (X,E:X).
• Γ \ S := (V, E \ S).
• Γ \X is the subgraph with

V (Γ \X) := V \X and E(Γ \X) := {e ∈ E | V (e) ⊆ V \X}.

We say X is deleted from Γ. Γ \X includes all loose edges, if there are any.

Vertices and vertex sets in Γ: Let X ⊆ V .

• An isolated vertex is a vertex that has no incident edges; i.e., a vertex of degree 0.
• X is stable or independent if E:X = ∅.
• X is a clique if every pair of its vertices is adjacent.
• Xc denotes V \X.

Graph structures and types:

• A theta graph is the union of 3 internally disjoint paths that have the same endpoints.
• A block of Γ is a maximal subgraph without isolated vertices or loose edges, such that

every pair of edges is in a circle together. The simplest kind of block is ({v}, {e})
where e is a loop or half edge at vertex v. A loose edge or isolated vertex is not in
any block.

• Γ is inseparable if it has only one block or it is an isolated vertex.
• A cutpoint is a vertex that belongs to more than one block.
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Let T be a maximal forest in Γ. If e ∈ E∗ \ T , there is a unique circle Ce ⊆ T ∪ {e}. The
fundamental system of circles for Γ, with respect to T , is the set of all circles Ce for e ∈ E∗\T .
The set sum or symmetric difference of two sets A, B is denoted by A⊕B := (A\B)∪(B\A).

Proposition 1.1. Choose a maximal forest T . Every circle in Γ is the set sum of funda-
mental circles with respect to T .

Proof. C =
⊕

e∈C\T CT (e). �

2. Signed Graphs

A signed graph Σ = (Γ, σ) = (V, E, σ) is a graph Γ together with a function σ that assigns
a sign, σ(e) ∈ {+,−}, to each ordinary edge (link or loop) in Γ. A half or loose edge does
not get a sign. Thus, the sign function (or signature) is σ : E∗ → {+,−}. Notation:

• |Σ| is the underlying graph Γ.
• E+ := σ−1(+) = {e ∈ E : σ(e) = +}. The positive subgraph is Σ+ := (V, E+).
• E− := σ−1(+) = {e ∈ E : σ(e) = −}. The negative subgraph is Σ− := (V, E−).
• +Γ := (Γ, +), an all-positive signed graph (every ordinary edge is +). e ∈ E∗ = E∗(Γ)

becomes +e ∈ +E = E(+Γ).
• −Γ := (Γ,−), an all-negative signed graph (every ordinary edge is −). e ∈ E∗

becomes −e ∈ −E = E(−Γ).
• ±Γ := (+Γ) ∪ (−Γ). E(±Γ) = ±E := (+E) ∪ (−E). This is the signed expansion of

Γ.
• Σ• := Σ with a half edge or negative loop attached to every vertex that does not

have one. Σ• is called a full signed graph.
• Σ◦ := Σ with a negative loop attached to every vertex that does not have one.
• If ∆ is a simple graph, then K∆ := (−∆)∪(+∆c), with underlying graph |K∆| = Kn.

This is a signed complete graph.

Equivalent notations for the sign group: {+,−}, {+1,−1}, or Z2 := {0, 1} modulo 2.

2.1. Balance and switching.

2.1.1. Balance.
Signs and balance:

• The sign of a walk, σ(W ), is the product of the signs of its edges, including repeated
edges.

• The sign of an edge set, σ(S), is the product of the signs of its edges, without
repetition.

• The sign of a circle, σ(C), is the same whether the circle is treated as a walk or as
an edge set.

• The class of positive circles is

B = B(Σ) := {C ∈ C(|Σ|) : σ(C) = +}.
• Σ is balanced if it has no half edges and every circle in it is positive. Similarly, any

subgraph or edge set is balanced if it has no half edges and every circle in it is positive.
• A circle is balanced if and only if it is positive. However, in general, a walk cannot

be balanced because it is not a graph or edge set.
• b(Σ) is the number of components of Σ (omitting loose edges) that are balanced.
• πb(Σ) := {V (Σ′) : Σ′ is a balanced component of Σ}. Then b(Σ) = |πb(Σ)|.
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• V0(Σ) is the set of vertices of unbalanced components of Σ. Formally, V0(Σ) :=
V \

⋃
W∈πb(Σ) W.

• πb(S) is short for πb(Σ|S). V0(S) is short for V0(Σ|S).

Types of vertices and edges in Σ:

• A balancing vertex is a vertex v such that Σ\v is balanced although Σ is unbalanced.
• A partial balancing edge is an edge e such that Σ \ e has more balanced components

than does Σ.
• A total balancing edge is an edge e such that Σ \ e is balanced although Σ is not

balanced. A total balancing edge is a partial balancing edge, but a partial balancing
edge may not be a total balancing edge.

Proposition 2.1. An edge e is a partial balancing edge of Σ if and only if it is either

(i) an isthmus between two components of Σ \ e, of which at least one is balanced, or
(ii) a negative loop or half edge in a component Σ′ such that Σ′ \ e is balanced, or
(iii) a link with endpoints v, w, such that every vw-path in Σ \ e has sign opposite to that of

e.

Lemma 2.2. Σ is balanced if and only if every block is balanced.

A bipartition of a set X is an unordered pair {X1, X2} such that X1 ∪ X2 = X and
X1 ∩X2 = ∅. X1 or X2 could be empty.

Theorem 2.3 (Harary’s Balance Theorem [1]). Σ is balanced ⇐⇒ it has no half edges and
there is a bipartition V = V1∪· V2 such that E− = E(V1, V2).

Corollary 2.4. −Γ is balanced if and only if Γ is bipartite.

2.1.2. Switching.
A switching function for Σ is a function ζ : V → {+,−}. The switched signature is

σζ(e) := ζ(v)σ(e)ζ(w), where e has endpoints v, w. The switched signed graph is Σζ :=
(|Σ|, σζ). We say Σ is switched by ζ. Note that Σζ = Σ−ζ .

If X ⊆ V , switching Σ by X means reversing the signs of every edge in the cutset E(X, Xc).
The switched graph is ΣX . (This is the same as Σζ where ζ(v) := − if and only if v ∈ Z.
Switching by ζ or X is the same operation, with different notation.) Note that ΣX = ΣXc

.

Proposition 2.5. (i) Switching leaves the signs of all circles unchanged. That is, B(Σζ) =
B(Σ).

(ii) If |Σ1| = |Σ2| and B(Σ1) = B(Σ2), then there exists a switching function ζ such that

Σ2 = Σζ
1.

Proof of (i). Let ζ be a switching function and let C = v0e0v1e1v2 · · · vn−1en−1v0 be a circle.
Then

σζ(C) =
(
ζ(v0)σ(e0)ζ(v1)

)(
ζ(v1)σ(e1)ζ(v2)

)
. . .

(
ζ(vn−1)σ(en−1)ζ(v0)

)
= σ(e0)σ(e1) · · ·σ(en−1) = σ(C). �

Proof of (ii). We may assume Σ1 is connected. Pick a spanning tree T and list the vertices
in such a way that vi is always adjacent to a vertex in {v1, . . . , vi−1} (for i > 1). Let ti be
the unique tree edge connecting vi to Σ:{v1, . . . , vi−1}.
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We define a switching function ζ:

ζ(vi) =

{
+ if i = 1,

σ1(ti)σ2(ti)ζ(vj) if i > 1, where vj is the endpoint of ti that is not vi.

Now it is easy to show that Σζ
1 = Σ2. �

Signed graphs Σ1 and Σ2 are switching equivalent, written Σ1 ∼ Σ2, if they have the same
underlying graph and there exists a switching function ζ such that Σζ

1 = Σ2. The equivalence
class of Σ,

[Σ] := {Σ′ : Σ′ ∼ Σ},
is called its switching class.

Proposition 2.6. Switching equivalence, ∼, is an equivalence relation on signatures of a
given underlying graph.

Corollary 2.7. Σ is balanced if and only if it has no half edges and it is switching equivalent
to +|Σ|.

Proof of Harary’s Balance Theorem. Σ has the form stated in the theorem ⇐⇒ it is
(+|Σ|)V1 ⇐⇒ it is a switching of +|Σ| ⇐⇒ (by Proposition 2.5) it is balanced. �

2.2. Deletion, contraction, and minors.
R,S denote subsets of E. A component of S means a component of (V, S).
The deletion of S is the signed graph (V, Sc, σ|Sc).

2.2.1. Contracting an edge e.
If e is a positive link, delete e and identify its endpoints (this is how to contract a link

in an unsigned graph); do not change any edge signs. If e is a negative link, switch Σ by a
switching function ζ, chosen so e is positive link in Σζ ; then contract e as a positive link.

Lemma 2.8. In a signed graph Σ any two contractions of a link e are switching equivalent.
The contraction of a link in a switching class is a well defined switching class.

To contract a positive loop or a loose edge e, just delete e.
If e is a negative loop or half edge and v is the vertex of e, delete v and e, but not any

other edges. Any other edges at v lose their endpoint v. A loop or half edge at v becomes a
loose edge. A link with endpoints v, w becomes a half edge at w.

2.2.2. Contracting an edge set S.
The edge set and vertex set of Σ/S are

E(Σ/S) := E \ S, V (Σ/S) := πb(Σ|S) = πb(S).

For w ∈ V , define This means we identify all the vertices of each balanced component so
they become a single vertex. For e ∈ E(Σ/S), the endpoints are given by the rule

VΣ/S(e) = {W ∈ πb(S) : w ∈ VΣ(e) and w ∈ W ∈ πb(S)}.
(If e is a loop at w in Σ, then w is a repeated vertex in VΣ(e); if w ∈ W ∈ πb(S), then W is a
repeated vertex in VΣ/S(e) so e is a loop in Σ/S. If w ∈ VΣ(e)∩V0(S), then w disappears from
VΣ/S(e). To define the signature of Σ/S, first switch Σ to Σζ so every balanced component
of S is all positive. Then σΣ/S(e) := σζ(e).
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Lemma 2.9. (a) Given Σ a signed graph and S ⊆ E(Σ), all contractions Σ/S (by different
choices of switching Σ) are switching equivalent. Any switching of one contraction Σ/S
is another contraction and any contraction Σζ/S of a switching of Σ is a contraction of
Σ.

(b) If |Σ1| = |Σ2|, S ⊆ E is balanced in both Σ1 and Σ2, and Σ1/S and Σ2/S are switching
equivalent, then Σ1 and Σ2 are switching equivalent.

(c) For e ∈ E, [Σ/e] (defined in Section 2.2.1) and [Σ/{e}] are essentially the same switching
class.

Part (a) means that the switching class [Σ/S] is uniquely defined, even though the signed
graph Σ/S is not unique.

2.2.3. Minors.
A minor of Σ is any contraction of any subgraph.

Theorem 2.10. Given a signed graph Σ, the result of any sequence of deletions and con-
tractions of edge and vertex sets of Σ is a minor of Σ. In other words, a minor of a minor
is a minor.

Proof. See [4, Proposition 4.2]. �

2.3. Frame circuits.
A frame circuit of Σ is a subgraph, or edge set, that is either a positive circle or a loose

edge, or a pair of negative circles that intersect in precisely one vertex and no edges (this is
a tight handcuff circuit), or a pair of disjoint negative circles together with a minimal path
that connects them (this is a loose handcuff circuit). We regard a tight handcuff circuit as
having a connecting path of length 0 (it is the common vertex of two the circles).

Proposition 2.11. Σ contains a loose handcuff circuit if and only if there is a component
of Σ that contains two disjoint negative circles.

Proposition 2.12. Let e ∈ E. If Σ contains a handcuff circuit C such that e ∈ C, then e
is in an unbalanced component Σ′ of Σ and e is not a partial balancing edge. If e is in an
unbalanced component Σ′ of Σ and e is not a partial balancing edge, then Σ contains a frame
circuit C such that e ∈ C.

Proof. If there exists C as stated in the proposition, then the component Σ′ that contains
e also contains C so it is unbalanced. As C \ e is unbalanced, Σ′ \ e has no balanced
component (this requires checking cases), so e is not a partial balancing edge (this requires
checking definitions).

Conversely, suppose e is not a partial balancing edge and it is in an unbalanced component
Σ′. Since Σ′ \ e is unbalanced, it has a negative circle C1. If e is an unbalanced edge at v,
there is a path P in Σ′ from v to C1; then C = C1 ∪ P ∪ e.

If e is a balanced edge, it is a link with endpoints v, w. If it is an isthmus, then Σ′ \ e has
two components, both unbalanced (by Proposition 2.1), so C is a negative circle in each of
those components, together with a connecting path (which must contain e). If e is not an
isthmus, it lies in a circle C ′. If C ′ is positive, let C = C ′. But suppose C ′ is negative; then
there are three subcases, depending on how many points of intersection C ′ has with C1. If
there are no such points, take a minimal path P connecting C ′ to C1 and let C = C1∪P ∪C ′.
If there is just one such point, C = C1 ∪C ′. If there are two or more such points, take P to
be a maximal path in C ′ that contains e and is internally disjoint from C1. Then P ∪ C1 is
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a theta graph in which C1 is negative; hence one of the two circles containing P is positive,
and this is the circuit C. �

Theorem 2.13 ([B, Slilaty (2007a)]). Σ has no two vertex-disjoint negative circles if and
only if one or more of the following is true:

(1) Σ is balanced,
(2) Σ has a balancing vertex,
(3) Σ embeds in the projective plane, or
(4) Σ is one of a few exceptional cases.

We will not discuss projective planarity, which is a large topic in itself (see [B, Zaslavsky
(1993a)], [B, Archdeacon and Debowsky (2005a)]).

2.4. Closure and closed sets.
The balance-closure of an edge set R is

bcl(R) := R ∪ {e ∈ Rc : ∃ a positive circle C ⊆ R ∪ e such that e ∈ C} ∪ E0(Σ).

The closure of an edge set S is

clos(S) :=
(
E:V0(S)

)
∪

( k⋃
i=1

bcl(Si)
)
∪ E0(Σ),

where S1, . . . , Sk are the balanced components of S.
An edge set is closed if it equals its own closure: clos S = S. We write

Lat Σ := {S ⊆ E : S is closed}.

When partially ordered by set inclusion, Lat Σ is a lattice.
Note that a half edge and a negative loop are equivalent in everything that concerns closure

or circuits.
The usual closure operator in a graph Γ is the same as closure in +Γ. In that case, since

+Γ is balanced, a frame circuit is simply a positive circle (or a loose edge).

Lemma 2.14. bcl(R) is balanced if and only if R is balanced. Furthermore, bcl(bcl R) =
bcl(R) = clos(R).

Lemma 2.15. For an edge set S, πb(clos S) = πb(bcl S) = πb(S) and V0(clos S) = V0(S).

Let E be any set; its power set P(E) is the class of all subsets of E. A function J : P(E) →
P(E) is an (abstract) closure operator on E if it has the three properties

(C1) J(S) ⊇ S for every S ⊆ E (increase).
(C2) R ⊆ S =⇒ J(R) ⊆ J(S) (isotonicity).
(C3) J(J(S)) = J(S) (idempotence).

Theorem 2.16. The operator clos on subsets of E(Σ) is an abstract closure operator.

Proof. The definition makes clear that clos is increasing and isotonic. What remains to be
proved is that clos(clos(S)) = clos(S).
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Let πb(S) = {B1, . . . , Bk}; thus, S:Bi is balanced. Using Lemma 2.15,

clos(clos S) =
(
E:V0(clos S)

)
∪

k⋃
i=1

bcl
(
(clos S):Bi

)
=

(
E:V0(S)

)
∪

k⋃
i=1

bcl
(
(bcl S):Bi

)
=

(
E:V0(S)

)
∪

k⋃
i=1

bcl(S:Bi) = clos S. �

Theorem 2.17. For S ⊆ E,

clos S = S ∪ {e /∈ S : ∃ a frame circuit C such that e ∈ C ⊆ S ∪ e}.

Proof. We treat a half edge as if it were a negative loop.
Necessity. We want to prove that if e ∈ clos S, then a frame circuit C exists. There are three
cases, depending on where the endpoints of e are located.

Case 0. A trivial case is where e is a loose edge. Then e ∈ clos S and C = {e}.
Case 1. Suppose e has its endpoints within one component, S ′. Then there is a circle

C ′ in S ′ ∪ e that contains e. If C ′ is positive it is our circuit C. (This includes the case
of a positive loop e, where C = {e}.) If S ′ is balanced, then e ∈ bcl S ′ so there exists a
positive circle C ′. If S ′ is unbalanced and e is not a partial balancing edge, then C exists by
Proposition 2.11.

Suppose S ′ is unbalanced and e is a partial balancing edge. Then Proposition 2.1 tells us
that e cannot be in clos S (this requires checking the three cases of that proposition).

Case 2. Suppose e has endpoints in two different components, S ′ and S ′′. For e to be in
the closure, it must be in E:V0. Hence, S ′ and S ′′ are unbalanced. Each of them contains
a negative circle, C ′ and C ′′ respectively, and there is a connecting path P in S ∪ e which
contains e. Then C ′ ∪ P ∪ C ′′ is the desired circuit.

Sufficiency. Assuming a circuit C exists, we want to prove that e ∈ clos S. Again there are
three cases, this time depending on C and its relationship with e.

Case 0. C is balanced. Then e ∈ bcl S ⊆ clos S.
Case 1. C is unbalanced and e is not in the connecting path. Let C1, C2 be the two negative

circles and P the connecting path of C, and assume e ∈ C1. Since C \ e is connected, it
lies in one component S ′ of S. Thus, C2 ⊆ S ′, whence S ′ is unbalanced. It follows that
e ∈ E:V0 ⊆ clos S.

Case 2. C is unbalanced and e is in the connecting path. With notation as in Case 1, now
C \ e has two components, one containing C1 and the other containing C2. The components
of S that contain C1 and C2 are unbalanced. (There may be one such component or two,
depending on whether C1 and C2 are connected by a path in S.) Therefore, e has both
endpoints in V0, so again, e ∈ E:V0 ⊆ clos S. �
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3. Geometry

In this section we write the vertex set as V = {v1, v2, . . . , vn}. F denotes any field. The
most important field will be the real numbers R. Other important fields are F2, the 2-element
field of arithmetic modulo 2, and F3, the 3-element field of arithmetic modulo 3.

3.1. Vectors for edges.
We have a signed graph Σ of order n. For each edge e there is a vector x(e) ∈ Fn, whose

definition is, for the four types of edge:

i

j



0
...
0
±1
0
...
0

∓σ(e)
0
...
0


a link e:vivj,

i



0
...
0

±1∓ σ(e)
0
...
0



a loop e at vi,

i



0
...
0
±1
0
...
0



a half edge e at vi,


0
...
0
...
0



a loose edge.

These vectors are well defined only up to sign, i.e., the negative of x(e) is another possible
choice of x(e). We make an arbitrary choice x(e) for each edge e. The choice does not affect
the linear dependence properties.

For a set S ⊆ E, define x(S) := {x(e) : e ∈ S}.

Theorem 3.1. Let S be an edge set in Σ and consider the corresponding vector set x(S) in
the vector space Fn over a field F.

(1) When charF 6= 2, x(S) is linearly dependent if and only if S contains a frame circuit.
(2) When charF = 2, x(S) is linearly dependent if and only if S contains a circle or a

loose edge.

The proof is not short.

Corollary 3.2. The minimal linearly dependent subsets of x(E) are the sets x(C) where C
is a frame circuit in Σ.

The proofs of the next results are short. Define a set S ⊆ E(Σ) to be independent if x(S)
is linearly independent.

Corollary 3.3. A set S ⊆ E(Σ) is independent if and only if it does not contain a frame
circuit.

The vector subspace generated by a set X ⊆ Fn is denoted by 〈X〉. We write

LF(Σ) := {〈X〉 : X ⊆ x(E)}.
When partially ordered by set inclusion, LF(Σ) is a lattice.
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Corollary 3.4. For S ⊆ E(Σ), x(E) ∩ 〈x(S)〉 = x(clos S). Thus, LR(Σ) ∼= Lat Σ.

The rank of S ⊆ E is defined to be

rk S := n− b(S).

Theorem 3.5. Let S ⊆ E. Then dim〈x(S)〉 = rk S.

Proof. The proof is simplest when expressed in terms of the frame matroid (Section 3.4), so
I omit it; see [4, Theorem 8B.1 and following remarks]. The essence of the proof is using
Corollary 3.3 to compare the minimum number of edges required to generate S by closure
in Σ to the minimum number of vectors x(e) required to generate 〈x(S)〉. �

3.2. The incidence matrix.
The incidence matrix H(Σ) (read ‘Eta of Sigma’) is a V × E matrix (thus, it has n rows

and m columns where m := |E|) in which the column corresponding to edge e is the column
vector x(e).

Theorem 3.6. Let S ⊆ E. The rank of H(Σ|S) is rk S.

Proof. The column rank is the dimension of the span of the columns corresponding to S,
which is the span of x(S). Apply Theorem 3.5. �

3.3. Arrangements of hyperplanes.
An arrangement of hyperplanes in Rn, H = {h1, h2, . . . , hm}, is a finite set of hyper-

planes. The complement is Rn \
( ⋃m

k=1 hk

)
. A region of H is a connected component of

the complement. We write r(H) := the number of regions. The intersection lattice is the
family L(H) of all subspaces that are intersections of hyperplanes in H, partially ordered
by s ≤ t ⇐⇒ t ⊆ s (reverse inclusion). The characteristic polynomial of H is

(3.1) pH(λ) :=
∑
S⊆H

(−1)|S|λdim S,

where dim S := dim
( ⋂

hk∈S hk

)
.

Theorem 3.7 ([3, Theorem A]). We have r(H) = (−1)npH(−1).

A signed graph Σ, with edge set {e1, e2, . . . , em}, gives rise to a hyperplane arrangement

H[Σ] := {h1, h2, . . . , hm}
where

hk has the equation


xj = σ(ek)xi, if ek is a link or loop with endpoints vi, vj,

xi = 0, if ek is a half edge or a negative loop at vi,

0 = 0, if ek is a loose edge or a positive loop.

(The last equation has the solution set Rn, so it is not truly a hyperplane, but I allow it under
the name ‘degenerate hyperplane’.) The hyperplane hk is the solution set of the equation
x(ek) · x = 0; i.e.,

hk = {x ∈ Rn : x(ek) · x = 0}.
(· is the usual inner product or ‘dot product’.)

Lemma 3.8. Let S = {hi1 , . . . , hil} be the subset of H[Σ] that corresponds to the edge set
S = {ei1 , . . . , eil}. Then dim S = b(S).
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Proof. Apply vector space duality to Theorem 3.5. �

Theorem 3.9. L(H[Σ]) is isomorphic to LR(Σ) and Lat Σ.

Proof. The isomorphism between L(H[Σ]) and LR(Σ) is standard vector-space duality. The
isomorphism LR(Σ) ∼= Lat Σ is in Corollary 3.4. �

3.4. Matroid.
The frame matroid G(Σ) is an abstract way of describing all the previous characteristics

of a signed graph: linearly dependent edge sets, minimal dependencies, rank, closure, and
closed sets. See [4, Section 5] for more information. For matroid theory, consult [Oxley].

4. Coloring

We color a signed graph from a color set

Λk := {±1,±2, . . . ,±k} ∪ {0}
or a zero-free color set

Λ∗
k := Λk\{0} = {±1,±2, . . . ,±k}.

A k-coloration (or k-coloring) of Σ is a function γ : V → Λk. A coloration is zero free if it
does not use the color 0. Coloring comes from [5] and [B, Zaslavsky (1982c)].

A coloration γ is proper if it satisfies all the properties{
γ(vj) 6= σ(e)γ(vi) for a link or loop e with endpoints vi, vj,

γ(vi) 6= 0 for a half edge e with endpoint vi,

and there are no loose edges. (These are the negations of the equations of the hyperplanes
hk.)

4.1. Chromatic polynomials.
There are two chromatic polynomials of a signed graph. For aninteger k ≥ 0, define

χΣ(2k + 1) := the number of proper k-colorations,

and
χ∗

Σ(2k) := the number of proper zero-free k-colorations.

Theorem 4.1. The chromatic polynomials have the properties of

(i) Unitarity: χ∅(2k + 1) = 1 = χ∗
∅(2k) for all k ≥ 0.

(ii) Switching Invariance: If Σ ∼ Σ′, then χΣ(2k +1) = χΣ′(2k +1) and χ∗
Σ(2k) = χ∗

Σ′(2k).
(iii) Multiplicativity: If Σ is the disjoint union of Σ1 and Σ2, then

χΣ(2k + 1) = χΣ1(2k + 1)χΣ2(2k + 1) and χ∗
Σ(2k) = χ∗

Σ1
(2k)χ∗

Σ2
(2k).

(iv) Deletion-Contraction: If e is a link, a positive loop, or a loose edge,

χΣ(2k + 1) = χΣ\e(2k + 1)− χΣ/e(2k + 1) and χ∗
Σ(2k) = χ∗

Σ\e(2k)− χ∗
Σ/e(2k).

Outline of Proof. The hard part is the deletion-contraction property. The proof is similar to
the usual proof for ordinary graphs: count proper colorations of Σ\e. If e is a link, switch so
it is positive. Then a proper coloration of Σ\e give unequal colors to the endpoints of e, and
is a proper coloration of Σ, or it gives the same color to the endpoints, and it corresponds
to a proper coloration of Σ/e. If e is a half edge or a negative loop, the two cases are when
the endpoint gets a nonzero color or is colored 0. �
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Theorem 4.2. χΣ(λ) is a polynomial function of λ = 2k + 1 > 0; specifically,

(4.1) χΣ(λ) =
∑
S⊆E

(−1)|S|λb(S).

Also, χ∗
Σ(λ) is a polynomial function of λ = 2k ≥ 0. Specifically,

(4.2) χ∗
Σ(λ) =

∑
S⊆E:balanced

(−1)|S|λb(S).

Proof. Apply Theorem 4.1 and induction on n. �

Therefore, we can extend the range of λ to all of R. In particular, we can evaluate χΣ(−1).
This lets us draw an important connection between the geometry and coloring of a signed
graph.

Theorem 4.3. χΣ(λ) = pH[Σ](λ).

Proof. Compare the summation expressions, (4.1) and (3.1), for the two polynomials, and
note that by Lemma 3.8 b(S) = dim S if S ⊆ H[Σ] corresponds to the edge set S. �

Corollary 4.4. The number of regions of H[Σ] equals (−1)nχΣ(−1).

To compute the chromatic polynomial it is often easiest to get the zero-free polynomial
first and use

Theorem 4.5 (Zero-Free Expansion Identity). The chromatic and zero-free chromatic poly-
nomials are related by

χΣ(λ) =
∑

W⊆V : stable

χ∗
Σ\W (λ− 1).

Proof. Let λ = 2k+1. For each proper k-coloration γ there is a set W := {v ∈ V : γ(v) = 0},
which must be stable. The restricted coloration γ|V \W is a zero-free, proper k-coloration of
Σ \W . This construction is reversible. �

4.2. Chromatic numbers.
The chromatic number of Σ is

χ(Σ) := min{k : ∃ a proper k-coloration},

and the zero-free chromatic number is

χ∗(Σ) := min{k : ∃ a zero-free proper k-coloration}.

Thus, χ(Σ) = min{k ≥ 0 : χΣ(2k + 1) 6= 0} and χ∗(Σ) = min{k ≥ 0 : χ∗
Σ(2k) 6= 0}.

Almost any question about the behavior of chromatic numbers of signed graphs is open.
What I know is in [B, Zaslavsky (1984a)], where I studied complete signed graphs with very
large or very small zero-free chromatic number.
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5. Examples

The standard basis vectors of Rn are b1 = (1, 0, . . . , 0), b2, . . . , bn.

5.1. Full signed graphs. In this example Σ is a signed graph with no half or loose edges
or negative loops, Σ• is Σ with a half edge at every vertex, and Σ◦ is Σ with a negative
loop at every vertex. Whether a half edge or negative loop is added makes little difference,
because each is an unbalanced edge. Write fi for the unbalanced edge added to vi.

• Graph theory : The balanced subgraphs in Σ• are the same as those of Σ.
• Closed sets : An edge set in Σ• is closed if and only if it consists of the induced edge

set E(Σ•):W together with a balanced, closed subset of E(Σ):W c, for some vertex
set W ⊆ V . Σ◦ is similar.

• Vectors : x(E(Σ•)) is x(E(Σ)) together with the unit basis vectors bi of Rn. x(E(Σ◦))
is x(E(Σ)) together with the vectors 2bi.

• Hyperplane arrangement : H[Σ•] = H[Σ◦], and they equal H[Σ] together with all the
coordinate hyperplanes xi = 0.

• Chromatic polynomials : χΣ•(λ) = χΣ◦(λ), and both = χΣ•(λ) = χ∗
Σ(λ− 1) by Theo-

rem 4.5, since the only stable set is W = ∅.
χ∗

Σ•(λ) = χ∗
Σ◦(λ) = χ∗

Σ(λ).
• Chromatic numbers : χ(Σ•) = χ(Σ◦) = χ∗(Σ) since the unbalanced edges prevent the

use of color 0.

5.2. All-positive signed graphs. Assume Γ is a graph with no unbalanced edges and no
loose edges. +Γ has almost exactly the same properties as its underlying graph.

• Graph theory : Every subgraph is balanced; b(S) = c(S) for all S ⊆ E.
• Closed sets : S is closed ⇐⇒ every edge with endpoints connected by S is in S.

Closure in +Γ is identical to the usual closure in Γ, and the closed sets in +Γ are the
same as in Γ.

• Vectors : If e has endpoints vi, vj, then x(e) = ±(bj − bi). All x(e) ∈ the subspace
x1 + · · ·+ xn = 0.

If Γ = Kn and one takes both signs, the set of vectors is the classical root system
An−1. Thus, x(E) for any graph is a subset of An−1.

• Incidence matrix : M(+Γ) is the ‘oriented incidence matrix’ of Γ.
• Hyperplane arrangement : If ek has endpoints vi, vj, then hk has equation xi = xj.

All hk ⊇ the line x1 = · · · = xn.
Take Γ = Kn; then H[+Kn] = An−1, the hyperplane arrangement dual to An−1.

• Chromatic polynomials : χ+Γ(λ) = χ∗
+Γ(λ) = χΓ(λ), the chromatic polynomial of Γ.

• Chromatic numbers : χ(+Γ) = bχ(Γ)/2c and χ∗(+Γ) = dχ(Γ)/2e.
The full graph +Γ• is very much like Γ+v0 := Γ with an extra vertex v0 which is adjacent

to all of V by edges e0i between v0 and vi. Define α : E(+Γ•) → E(Γ + v0) by α(e) := e if
e ∈ E(Γ) and α(fi) := e0i.

• Graph theory : S is balanced if and only if it does not contain an unbalanced edge fi.
• Closed sets : S is closed ⇐⇒ α(S) is closed in Γ + v0.
• Chromatic polynomials : χ+Γ(λ) = χ∗

+Γ(λ− 1) = χΓ(λ− 1).
• Chromatic numbers : χ(+Γ•) = χ∗(+Γ•) = dχ(Γ)/2e.
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5.3. All-negative signed graphs. Assume Γ is a graph with no unbalanced edges. −Γ is
very interesting.

• Graph theory : A subgraph is balanced ⇐⇒ it is bipartite. b−Γ(S) = the number of
bipartite components of S (including isolated vertices).

• Closed sets : S is closed if the union of its non-bipartite components is an induced
subgraph.

• Vectors : If e has endpoints vi, vj, then x(e) = bi + bj (or its negative).
• Incidence matrix : M(−Γ) is the ‘unoriented incidence matrix’ of Γ.
• Hyperplane arrangement : hk has equation xi +xj = 0 if ek has endpoints vi, vj. Also,

r(H[−Γ]) =
∑

F∈Lat Γ |χΓ/F (−1
2
)|.

• Chromatic polynomials : χ∗
−Γ(λ) =

∑
F∈Lat Γ χΓ/F (1

2
λ) [B, Zaslavsky (1982c), Theo-

rem 5.2]. χ−Γ(λ) has not seemed interesting.
• Chromatic numbers : χ∗(−Γ) = the largest size of a matching in the complement of a

contraction of Γ [B, Zaslavsky (1982c), page 299]. χ(−Γ) has not seemed interesting.

5.4. Complete signed graphs. The signed expansions ±Kn, called the complete signed
link graph, and ±K•

n, called the complete signed graph, have very simple properties.

• Closed sets : Lat(±K•
n) ∼= the lattice of signed partial partitions of V [B, Dowling

(1973b)].
• Vectors : x(E(±Kn)) = {±(bj − bi),±(bj + bi) : i 6= j} where we take either + or −

for each vector. x(E(±K•
n)) = {±(bj − bi),±(bj + bi) : i 6= j} ∪ {±bi} (if fi is a half

edge; but ±2bi if fi is a negative loop) where we take either + or − for each vector.
If we take both signs, we get the classical root systems Dn := {±(bj−bi),±(bj+bi) :

i 6= j} (where we take both + and − signs) from ±Kn, and Bn := Dn ∪ {±bi} and
Cn := Dn ∪ {±2bi} from ±K•

n (the former if all fi are half edges, the latter if they
are negative loops).

• Hyperplane arrangement : H[±K•
n] = Bn = Cn and H[±Kn] = Dn, the duals of Bn,

Cn, and Dn. The numbers of regions are 2nn! and 2n−1n!, respectively.
• Chromatic polynomials : χ±K•

n
(λ) = (λ− 1)(λ− 3) · · · (λ− 2n + 1),

χ±Kn(λ) = (λ− 1)(λ− 3) · · · (λ− 2n + 3) · (λ− n + 1), and
χ∗
±Kn

(λ) = χ∗
±K•

n
(λ) = λ(λ− 2) · · · (λ− 2n + 2).

• Chromatic numbers : χ(±K•
n) = χ∗(±K•

n) = χ∗(±Kn) = n and χ(±Kn) = n− 1.

5.5. Signed expansion graphs. The properties of ±Γ and ±Γ• are closely related to those
of Γ.

• Graph theory : Each balanced set S ⊆ E(Γ) gives 2b(S) balanced subsets of E(±Γ).
• Hyperplane arrangement : r(H[±Γ•]) = 2n(−1)nχΓ(−1) = 2n|χΓ(−1)| and

r(H[±Γ]) =
∑

W⊆V : stable in Γ

(−2)n−|W ||χΓ\W (−1)|.

• Chromatic polynomials : χ±Γ•(λ) = 2nχΓ(1
2
(λ− 1)), χ∗

±Γ(λ) = 2nχΓ(1
2
λ), and

χ±Γ(λ) =
∑

W⊆V : stable in Γ

2n−|W |χΓ\W (1
2
(λ− 1)).

• Chromatic numbers : χ(±Γ•) = χ∗(±Γ) = χ(Γ), the chromatic number of Γ, and
χ(±Γ) = χ(Γ)− 1.
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