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Abstract. For each pair (Qi, Qj) of reference points and each real number r there is
a unique hyperplane h ⊥ QiQj such that d(P, Qi)

2 − d(P, Qj)
2 = r for points P in h.

Take n reference points in d-space and for each pair (Qi, Qj) a finite set of real numbers.
The corresponding perpendiculars form an arrangement of hyperplanes. We explore the
structure of the semilattice of intersections of the hyperplanes for generic reference points.
The main theorem is that there is a real, additive gain graph (this is a graph with an additive
real number associated invertibly to each edge) whose set of balanced flats has the same
structure as the intersection semilattice. We examine the requirements for genericity, which
are related to behavior at infinity but remain mysterious; also, variations in the construction
rules for perpendiculars. We investigate several particular arrangements with a view to
finding the exact numbers of faces of each dimension. The prototype, the arrangement of
all perpendicular bisectors, was studied by Good and Tideman, motivated by a geometric
voting theory. Most of our particular examples are suggested by extensions of that theory in
which voters exercise finer discrimination. Throughout, we propose many research problems.

Postpublication revision 8 May 2002: added reference to Voronoi in §9: “that

goes back to the original paper [25a]”.

1. Introduction

Choose n points Q1, . . . , Qn in d-dimensional Euclidean space and, for each pair of points,
take the hyperplane which is the perpendicular bisector of their connecting line segment.
Into how many regions does this arrangement of

(

n

2

)

hyperplanes dissect the space? In their
article [17], Good and Tideman showed that this number is, in general, equal to

(1.1) |s(n, n)| + |s(n, n− 1)|+ |s(n, n− 2)|+ · · ·+ |s(n, n− d)|.
Here s(n, k) is the Stirling number of the first kind, one of whose many definitions is that it
equals (−1)n−k times the number of permutations having k cycles of a set of n objects.
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This geometry problem arose from a model of voter preference. Suppose there are n can-
didates, and d issues on which each candidate has a position indicated by a real number. A
voter, who also has a (real number) position on each issue, prefers the nearer of two candi-
dates. How many different orderings of the candidates are possible? Considering candidates
i and j, represented by points Qi and Qj in d-space, the perpendicular bisecting hyperplane
of the segment [Qi, Qj] divides those voters ranking i over j from those ranking j over i.
The

(

n

2

)

bisecting hyperplanes together dissect the space into regions such that all voters
(i.e., points) in each region have the same ranking of candidates, while different regions yield
different rankings. Thus the model leads to the geometry problem described in the first
paragraph and thus to the solution given by (1.1). (This account ignores pseudo-orderings,
in which the voter ranks some candidates equally. Pseudo-orderings arise from voters located
within bisecting hyperplanes; so to count all pseudo-orderings we should count all the cells,
of all dimensions, into which the bisectors divide the space. That was also done by Good
and Tideman.)

Good and Tideman proved their formula by an induction on n and d, in the course of
which they proved (inductively) that for each (d − k)-dimensional flat of a special kind in
the original arrangement the remaining hyperplanes form an arrangement of bisectors of
n− k points. From this fact they deduced the number of i-dimensional faces of the original
arrangement, for all i. (Their proof for the special (d − k)-flats contains an oversight but
their numerical result is correct. We discuss this in Section 7.2.)

We present a new proof and a generalization of Good and Tideman’s formula (1.1), which
explains the occurrence of the Stirling numbers. Our approach is based on the fact that one
can compute the number of regions of an arrangement H of hyperplanes from a knowledge of
the partially ordered set L(H) of flats of intersection of the hyperplanes (ordered by reverse
inclusion).

In broad outline: According to [27, Theorem A], H has |w0| + |w1| + · · · + |wd| regions,
where the wi are the so-called “Whitney numbers of the first kind” of L(H). If H is the
arrangement of bisectors of n points in d-space, then L(H) is isomorphic to the set of all
partitions of n objects into at least n− d parts, ordered by refinement. (This was proved in
effect by Good and Tideman. We give a new and more general proof: see Section 11.1 for
the result.) Since the Whitney number wi of the partition lattice equals s(n, n− i) ([14], [24,
§9]), formula (1.1) follows. This proof sketch will be filled out below.

Our generalization is to allow other hyperplanes perpendicular to the lines QiQj besides
the bisectors. We call these arrangements Pythagorean arrangements of hyperplanes. Then
one must decide how to specify the location of the hyperplane, or, what is the same thing,
of its foot Pij on QiQj. Two obvious ways to do this are by specifying either the signed
distance dij(Pij) of the foot from the midpoint of the segment [Qi, Qj] (positive toward Qj,
negative toward Qi), or the proportional distance dij(Pij)/d(Qi, Qj). The most appropriate
way to locate Pij, however, is neither of these. We introduce the Pythagorean coordinate of
a point P with respect to QiQj: it is the value

(1.2) ψij(P ) = d(P,Qi)
2 − d(P,Qj)

2 = 2 dij(P ) · d(Qi, Qj).

The significance of this coordinate is that, when it is employed to determine the locations
of perpendicular hyperplanes, then for generic reference points Q1, . . . , Qn all concurrences
of perpendiculars to lines QiQj are determined in a nontrivial way by the Pythagorean
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coordinates of their feet (Section 5).1 That enables us to compute the number of regions
(and bounded regions and indeed flats and faces of any dimension) of the arrangement of
perpendiculars. We can also characterize (Section 7.2) the arrangement induced in each
flat by the original hyperplanes. If on the other hand we locate the feet by signed distance
from the midpoint, or proportional distance, or indeed any locating function of the form
cψij(Pij)/d(Qi, Qj)

α where α 6= 0 and c is any fixed nonzero multiplier, then (for generic
reference points) there are no concurrences except those of bisectors (Section 8). Thus the
formula for the number of regions becomes less richly structured, depending not at all on
the exact locations of the nonbisecting perpendiculars.

With the general theory we can treat more sophisticated voters, for instance those who
prefer Qi to Qj only when the former is significantly closer than the latter—provided “sig-
nificantly closer” is interpreted so as to be a linear condition. The calculations, however,
may become quite difficult. Broadened examples like this are treated in Section 11, with
detailed formulas. The natural, but nonlinear, interpretation of “significantly closer” to
mean d(V,Qi) < d(V,Qj) − δij, where δij > 0 is fixed, leads to a totally different problem,
unstudied but interesting and difficult: a quadric analog of hyperplane dissections (Section
13.3).

We reiterate that our results apply when the reference points Qi are chosen generically. A
definition of this concept is that, ifQ1, . . . , Qn are generic, then shifting them slightly does not
change the combinatorial type of the set of intersection flats of the associated arrangement
of perpendiculars. Exactly what genericity entails for the set of reference points is hard to
say. It does imply simple position—that is, no d + 1 of the Qi are affinely dependent—and
more strongly, “ideal general position”, which includes such projective properties as that
no line QiQj parallels a hyperplane determined by d of the points. However, these are not
sufficient for genericity. What else it may entail is insufficiently known despite our efforts in
Section 6.1.

2. Arrangements of Hyperplanes

We begin with some general theory of arrangements of hyperplanes from [27]. An ar-
rangement H is a finite set2 of hyperplanes in Euclidean space Ed or real projective space
Pd, together with the associated decomposition of the space into connected components,
the faces of H. The d-dimensional faces are called regions. The number of k-dimensional
faces (k-faces) is fk(H). The number of bounded faces, in the Euclidean case, is bk(H). A
flat of H is any subspace obtained as the intersection of hyperplanes in H, excluding the
null subspace in the Euclidean case. The number of k-dimensional flats (k-flats) is ak(H).
The set L(H) of all flats, when ordered by reverse inclusion, is a meet semilattice with 0̂
= the whole space; in the projective case it is a lattice with 1̂ =

⋂

H. The rank function
rk(x) = codimx makes L(H) a geometric semilattice (which is a geometric lattice with the
interval over an atom deleted; see [26]) and in the projective case a geometric lattice.

Our primary interest is in Euclidean arrangements of hyperplanes perpendicular to lines,
but it is easier to study them if we can also refer to their projective analogs. Let E be an
arrangement of N hyperplanes in Ed. The projectivization EP is the arrangement of N + 1

1The only other specific use of Pythagorean coordinates of which I am aware is in Cacoullos [7]; they are
his δij(X). He locates hyperplanes by proportional coordinates. However, his problem is merely to find the
nearest neighbor from amongst d + 1 points and not the entire distance ranking of n points.

2In this paper all graphs and all sets of hyperplanes, flats, etc., are finite.
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hyperplanes in Pd consisting of the projective closure hP of each hyperplane h in E and
additionally the ideal hyperplane h∞. The flats (and faces) of EP are those of E (actually,
the projective closures sP of all s ∈ L(E)) and the extra flats (and faces) in h∞, which reflect
parallelisms among the Euclidean flats of E.

For a ranked partially ordered set P with zero element we write Wi for the number of
rank i elements (the Whitney number of the second kind); thus Wi(L(H)) = ad−i(H). More
important for our purposes are the Whitney numbers of the first kind , wi. To define them
we need the combinatorial Möbius function of P (see [24]), that is, µ : P × P → Z defined
recursively for increasing y by

µ(x, y) = 0 if x 6≤ y,

µ(x, x) = 1,

µ(x, y) = −
∑

z:z<y

µ(x, z) if x < y.

Then
wi =

∑

{µ(0̂, y) : rk(y) = i}.
We take P to be L(H); hence

|wi(L(H))| = (−1)iwi(L(H)) =
∑

{|µ(0̂, y)| : y ∈ L(H) and codim y = i}

by Rota’s theorem [24, §7] that (−1)rk(1̂)µ(0̂, 1̂) > 0 in a geometric lattice.
With these preliminaries behind us, we can state the key facts of enumeration for arrange-

ment of hyperplanes [27, Thms. A, B, and C]. For a Euclidean arrangement E,

(2.1a) fd(E) =
d
∑

i=0

|wi(L(E))| and

(2.1b) bd(E) = |
d
∑

i=0

wi(L(E))|;

the latter equals (−1)d
∑d

0wi(L(E)) if E has any 0-flats. For a nonvoid projective arrangement
A,

(2.2a) fd(A) = 1
2

d+1
∑

i=0

|wi(L(A))|,

which if
⋂

A = ∅ is

(2.2b) = (−1)k

d
∑

i=0
i even

wi(L(A)).

We can similarly count faces of each dimension. Letting the doubly indexed Whitney number
of the first kind be wij(P ) =

∑

{µ(x, y) : rkx = i, rk(y) = j} (so, e.g., w0i = wi and
wii = Wi), we have:

(2.3a) fk(E) =
d
∑

j=d−k

|wd−k,j(L(E))|,

4



(2.3b) bk(E) = |
d
∑

j=d−k

wd−k,j(L(E))|,

and for a projective arrangement,

(2.4a) fk(A) = 1
2

d+1
∑

j=d−k

|wd−k,j(L(A))|

provided k > codim(
⋂

A); if
⋂

A = ∅, this

(2.4b) = (−1)k

d
∑

j=d−k
d−j even

|wd−k,j(L(A))|.

It is important in computations to remember that

sgnwij = (−1)j−i

by Rota’s theorem.
With formulas (2.1–2.4) in hand we can split the task of enumeration into two parts:

determining the structure of L(H) from a suitable description, and evaluating its Whitney
numbers.

3. Perpendiculars specified by coordinates

Here is the precise problem we want to solve: We have a rule that assigns to any n-
tuple Q = (Q1, . . . , Qn) of distinct reference points in Euclidean d-space an arrangement of
hyperplanes, H =

⋃

i<j Hij, where each hijk ∈ Hij is perpendicular to the line QiQj. The

rule consists of
(

n

2

)

sets Rij of real numbers and an exponent α ∈ R. Given an n-tuple
(Q1, . . . , Qn), Hij consists of all those hyperplanes perpendicular to QiQj whose foot (the
point of intersection with QiQj) is a point P for which the quantity

(3.1) ψij(P )d(Qi, Qj)
−α ∈ Rij.

(In fact, since ψij(P )d(Qi, Qj)
−α is the same for all points P ∈ h if h ⊥ QiQj, we may

call ψij(P ) the Pythagorean coordinate of h as a whole.) We want to know the number of
regions (and also faces and flats) of the arrangement H. But since this obviously depends
on the choice of (Q1, . . . , Qn), we are content to ask for the answer generically, in the sense
discussed in the introduction.

(It is not necessary to assume Qi and Qj are distinct if there is no hyperplane hijk specified
perpendicular to QiQj. However, if we allow reference points that are not distinct, we must
define QiQj to be aff(Qi, Qj), which is a point when Qi = Qj.)

Particular choices for α correspond to the three ways of specifying perpendiculars we
mentioned in the introduction. When α = 1, we are specifying twice the signed distance
of the foot from the midpoint between Qi and Qj. When α = 2, we are specifying twice
the proportional distance. When α = 0, we specify the Pythagorean coordinate of the foot.
In each case, Rij specifies the values of the chosen coordinate at which we locate the feet
of perpendiculars to QiQj. We may think of α as universally fixed, with various choices of
{Rij : 1 ≤ i < j ≤ n} leading to various generic enumerative results. If every Rij = {0},
then α is irrelevant and we have the original Good–Tideman arrangement of bisectors.
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Figure 3.1. Two generic but nonisomorphic arrangements of bisectors in the plane.

The fact that there is a unique generic answer to our numerical question, and indeed that
the structure of L(H) itself can be determined generically, is significant. In contrast it seems
intuitively clear that, if we look at the isomorphism type of the whole arrangement H (as a
cell complex whose cells are the faces of H), there is no one generic type. I expect that, when
n is large compared with d (written n ≫ d), there are many choices of Q that are generic,
in the sense of being deformable without altering the isomorphism type of H, and that yet
yield mutually nonisomorphic arrangements. At present this is unproved; we merely offer an
example.

Example 3.1. In Figure 3.1 we see two generic planar arrangements of all perpendicular bisec-
tors from 4 reference points. Their face complexes are simplicial: all regions are triangular.
By comparing the bounded parts one can see that they are nonisomorphic. (The reference
points have different convexity types, or oriented matroids: in the first arrangement but not
the second, one point is in the convex hull of the others. This may be significant.)

Research Problem 1. Fix d, {Rij}ij, and α. (a) Show that the face complex of H, the
arrangement of perpendiculars determined by these data, is (with minor exceptions) not
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unique even when Q is generic, if n ≫ d. (b) Estimate a lower bound, at least, for the
number of distinct isomorphism types of generic face complexes. (c) How large must n be
for the generic face complex to be nonunique? (I suggest n > d+ 1.)

The results of Section 8 suggest that the answers depend on whether α is 0 or not, but
not otherwise on its value.

Research Problem 2. Is there a relationship between the structure of the face complex of H

and the oriented matroid structure of generic Q1, . . . , Qn?

Example 3.2. (Affinographic arrangements and deformations of a Coxeter arrangement.) A
special case of particular importance is that in which d = n and we choose an origin O
and reference points Qi so that ~OQ1, · · · , ~OQn are orthogonal vectors of length

√
2. These

vectors determine coordinates (x1, . . . , xn). Let P have coordinate vector x. Then ψij(P ) =

‖x −
√

2ei‖2 − ‖x −
√

2ej‖2 = xj − xi (where ei = ~OQi/
√

2, the unit basis vector), so
the hyperplane with Pythagorean equation ψij(P ) = α has x-equation xj − xi = α. A
Pythagorean arrangement is therefore a system of hyperplanes given by equations of the
form xj − xi = α for α in some fixed set Rij, specified for each (i, j) with 0 < i < j ≤ n.
Such an arrangement we call affinographic, since the hyperplanes are affine translates of those
of the arrangement An = {xj−xi = 0 : 0 < i < j ≤ n}, which represents the polygon matroid
of the complete graph Kn. Especially when the constant terms are integers, affinographic
arrangements are known as deformations of the Coxeter arrangement An [2, 21, 25]. Thus
our results apply to deformations of An, and conversely, known characteristic polynomials of
various deformations of An can be applied to other Pythagorean arrangements as explained
in Section 10 and illustrated in several examples of Section 11.

Since all affinographic hyperplanes are orthogonal to x1 + · · ·+ xn =
√

2, we can take the
cross-section of an affinographic arrangement by the latter hyperplane. This contains all the
reference points, so it gives essentially the same arrangement in dimension n − 1, though
without the affinographic equations xj − xi = α.

4. Perpendiculars via gain graphs

A more convenient way to locate perpendiculars is by a gain graph. A graph Γ consists
of a vertex set V = V (Γ) and an edge set E = E(Γ). Multiple edges are permitted, indeed
encouraged, but normally we allow only links—that is, edges with two distinct endpoints.
V (e) denotes the set of endpoints of an edge e. The (connected) components of an edge set
S ⊆ E are the maximal subgraphs of (V, S) that are connected by edges of S, including any
isolated vertices, which are called trivial components; c(S) is the number of components of
S. A real, additive gain graph Φ (sometimes, for brevity, called here just a “gain graph”)
consists of a graph Γ = (V,E) and a gain function, a mapping

ϕ :
{

(e; v1, v2) : e ∈ E, {v1, v2} = V (e)
}

→ R+

satisfying

ϕ(e; v2, v1) = −ϕ(e; v1, v2).

(R+ is the additive group of real numbers.) What this alternating property means is that
the gain of e from v2 to v1 is the inverse of that of e from v1 to v2. We define an edge set or
subgraph to be balanced if, for every circle (simple closed path) in it, the gains (taken in a
consistent direction) sum to 0.
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There is a matroid theory of gain graphs extending that for ordinary graphs [30, Part II].
The complete lift matroid is implicit throughout our work here but we refer to it explicitly
only in Sections 6 (where we state a definition), 7.2, and 11.

We must show how gain graphs are related to arrangements of perpendiculars.
In one direction, suppose we start with reference points Q = (Q1, . . . , Qn) and an arrange-

ment H of perpendiculars based on Q. We assume that each hyperplane in H is associated
with a specific reference line QiQj. (The association need be explicit only if two such lines
are parallel, which will never happen if Q is generic.) The Pythagorean gain graph of H

(with respect to the given reference points), ΨQ(H), has vertex set {1, 2, . . . , n} and an edge
e(h) between vertices i and j for each hyperplane h associated with the reference line QiQj.
The gain of e(h) is the Pythagorean coordinate of h:

ψ(e(h); i, j) = ψQ(e(h); i, j) = ψij(P ),

where P is any point on h.
More important is the other direction. We are given a real, additive gain graph Φ.

The Pythagorean hyperplane arrangement of Φ with reference points Q1, . . . , Qn, written
H(Φ;Q1, . . . , Qn) or H(Φ;Q), is the arrangement of perpendiculars which has, for each edge
e ∈ E, a hyperplane h(e) perpendicular to QiQj, where {i, j} = V (e), whose Pythagorean
coordinate on QiQj is ϕ(e; i, j). Thus the Pythagorean gain graph of H(Φ;Q) is Φ. We think
of Φ as a rule that specifies an arrangement of perpendiculars for each choice of reference
points, equivalent to the real number sets Rij of the previous section but (as we shall see
shortly in Section 5) more natural.

More generally we may wish to specify not the Pythagorean coordinates but some mod-
ification such as signed distance or proportional coordinates. Given α ∈ R and Φ, the
arrangement of perpendiculars H(α,Φ;Q) is defined as H(Ψ;Q) where Ψ has gain function
ψ(e; i, j) = d(Qi, Qj)

αϕ(e; i, j). Thus the Pythagorean coordinate of a hyperplane h(e) in
H(α,Φ;Q) is d(Qi, Qj)

αϕ(e; i, j) and Ψ = ΨQ(H(α,Φ;Q)), the Pythagorean gain graph.
We think of (α,Φ) as a modified Pythagorean rule that determines an arrangement of per-
pendiculars on any given reference points. Again Φ is equivalent to the real number sets
of Section 3, but it is not normally the Pythagorean gain graph of the arrangement unless
α = 0.

In only one place we allow loops to appear, momentarily: when we contract, in Section
7.2. A loop’s geometric interpretation depends on its gain. A loop with gain 0 corresponds
to the whole space Ed, which one might call the “degenerate hyperplane”. If Ed is among
the “hyperplanes” of H, our convention is that there are no regions, since the complement of
the hyperplanes is void; but there still are d-faces, since they are regions of the flat s = Ed.
A loop with nonzero gain corresponds to the ideal hyperplane h∞, hence to nothing in Ed.
For that reason we always discard such loops.

Example 4.1. Figure 4.1 shows a gain graph Φ, four planar reference points, and the associ-
ated Pythagorean hyperplane arrangement H(Φ;Q). We write eij for an edge with endpoints
i and j and, when necessary, eij(ρ) to distinguish an edge eij with gain ρ = ϕ(eij; i, j). Our
H(Φ;Q) is generic because it has the generic intersection pattern required by Theorem 5.1:
since Φ has the single balanced circle e12e24(3)e14, h(e12) ∩ h(e24(3)) ∩ h(e14) is a multiple
point of intersection; furthermore, generically there can be no other multiple points and
no parallel flats except those implied by parallel edges like e24(0) and e24(3), which make
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Figure 4.1. A gain graph and an associated generic Pythagorean line ar-
rangement. (In the gain graph, the number by an edge is its gain. The arrow
indicates the direction for reading the gain, so reversing direction negates the
gain. The arrow may be omitted if the gain is 0.)

h(e24(0)) ‖ h(e24(3)). (The fact that h(e24(3)) passes through Q3 in this example is a coin-
cidence that implies nothing about the hyperplane arrangement.)

The foot P of a hyperplane h(eij) is positioned so that ψij(P ) = ϕ(eij; i, j). In practice
it may be easier to locate P by its signed distance from the midpoint Mij of QiQj: this
is d(Mij, P ), taken as positive toward Qj and negative toward Qi. The formula for signed
distance from a Pythagorean gain graph Φ is

d(Mij, P ) = 1
2
ϕ(eij; i, j)/dij,

where dij = d(Qi, Qj).
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Figure 4.2. A gain graph Φ; an associated generic non-Pythagorean arrange-
ment H(α,Φ;Q) having n = 3, d = 2, and α = 1; and the Pythagorean gain
graph Ψ = ΨQ of the arrangement. The distances among the reference points
are d12 = 2, d23 = 3, and d13 = 5

2
.

Example 4.2. In Figure 4.2 is a generic non-Pythagorean arrangement H(1,Φ;Q). It is
described by a gain graph Φ interpreted as specifying twice the signed distance of h(e); that
is, d(Mij, P ) = 1

2
ϕ(e; i, j). (See the previous example for notation.) In the Pythagorean gain

graph Ψ = ΨQ of H(1,Φ;Q), the gains are ψ(e; i, j) = dijϕ(e; i, j). The only concurrence of
lines is that of the three bisectors, which correspond to the balanced triangle in Ψ made up
of the edges with gain 0.

5. Pythagorean perpendiculars

Here is our central result.

Theorem 5.1. Let n > d ≥ 1, let Φ be a real, additive gain graph on vertex set {1, . . . , n},
and for distinct points Q1, . . . , Qn ∈ Ed let H = H(Φ;Q1, . . . , Qn) be the arrangement of per-
pendiculars based on Q1, . . . , Qn with Φ as its Pythagorean gain graph. Suppose Q1, . . . , Qn

are generic. Then the intersection of a subset S ⊆ H corresponding to an edge set S of Φ
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with n −m connected components is void if S is unbalanced or if m > d; otherwise it is a
nonempty flat of dimension d−m.

Furthermore, two subsets S1 and S2 have the same nonvoid intersection if and only if
S1 ∪ S2 is balanced and the connected components of S1 and S2 each partition the vertices
(into at least n− d parts) in the same way.

Note that whether Q1, . . . , Qn are generic depends on the particular Φ. What we assert
is that for each Φ a generic choice exists and has certain describable intersection properties.

The proof depends on several lemmas. The first two show, by demonstrating the close
connection of balanced circles in ΨQ(H) to nonvoid hyperplane intersections, exactly why
gain graphs are such a natural way to describe Pythagorean arrangements.

In the proof we assume that Qi and Qj are distinct if i and j are adjacent in Φ, but we
assume nothing if i and j are nonadjacent.

Lemma 5.2. Suppose C is a circle in Φ and C is the corresponding set of hyperplanes
in H(Φ;Q). If C is unbalanced,

⋂

C = ∅. If C is balanced and e ∈ C, then
⋂

C =
⋂
(

C \ {h(e)}
)

.

Proof. Take C = e12e23 · · · el,l+1el+1,1 and e = el+1,1. Let s =
⋂

(C\{h(e)}). For any point
P ∈ s,
(5.1) ψl+1,1(P ) = −[ψ12(P ) + · · ·+ ψl,l+1(P )]

by (1.2). The numbers ψi,i+1(P ) = ψ(ei,i+1) for i = 1, 2, . . . , l by definition of h(ei,i+1). If C
is balanced, then by (5.1) all of s lies in h(el+1,1). If not, no point of s is in h(el+1,1). �

Lemma 5.3. In the situation of Lemma 5.2, suppose Q1, . . . , Ql+1 are affinely independent.
If C is balanced, then

⋂

C is a (d− l)-flat.3

Proof. Because Q1, . . . , Ql+1 are affinely independent, l hyperplanes perpendicular to Q1Q2,
. . . , QlQl+1 are linearly independent. Thus their intersection is (d− l)-dimensional. Now the
lemma follows from Lemma 5.2. �

Lemma 5.4. Suppose
⋂

H(Φ;Q) has nonempty intersection s. Then

(a) Φ is balanced, and
(b) s is the intersection of a subset S of d − dim s hyperplanes. Any such subset corre-

sponds to a forest S in Φ.

Proof. For part (a), consider an unbalanced circle C in Φ. By Lemma 5.2, the hyperplanes
corresponding to the edges of C have empty intersection.

For part (b), S exists, of size codim s but no less, by the modular law of dimension in Pd

applied to sP. By Lemma 5.2, the minimality of S prevents S from containing a balanced
circle. �

Let pij denote the ideal point on QiQj, that is (QiQj)(∞), where s(∞) means sP ∩ h∞. (If
Qi = Qj, then pij = ∅. For the meaning of this, see Section 6.1.) Let s → s∗ denote the
natural polarity of ideal subspaces, viz. p∗ij = (hij)(∞) for any hyperplane hij ⊥ QiQj and,

3Lemmas 5.2 and 5.3 in the planar case of three vertices of a triangle with one perpendicular’s foot on
each extended edge of the triangle have been known to triangle geometers. See for instance [8] and [10, §1.5,
Exer. 7]. Although [8] is the earliest source I know, in Clark Kimberling’s opinion (personal information,
1984) the planar theorem is many decades older; that is not hard to believe since it has the appearance of
an easy exercise.
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for a general subspace s of h∞, s∗ = t(∞) where t is any orthogonal complement of any affine
space s′ whose ideal part s′(∞) equals s. We can regard the points pij as the edges of a graph

on the vertex set {1, . . . , n}, identified with {Q1, . . . , Qn}. Let P denote the set of all pij.

Lemma 5.5. Given an n-tuple Q = (Q1, . . . , Qn) of distinct points in Ed and a set T ⊆ P,
we have

(5.2) dimT ≤ min(n− c(T )− 1, d− 1)

The class of n-tuples Q such that equality holds for all T has the property of genericity; that
is, it is open and dense in (Ed)n. It excludes all nonsimple n-tuples Q.

Proof. Let G be the set of Q having equality in (5.2).
Consider a component Tk of T with vertex set {i1, . . . , ir}. It is easy to see that Tk

spans the space tk = aff(Qi1, . . . , Qir)(∞), whose dimension is ≤ r − 2. Summing over all
components yields (5.2).

If Q is not simple, say Q1, Q2, . . . , Qr are a minimal affinely dependent subset with r ≤
d + 1. Let T = {p12, p23, . . . , pr−1,r}. Then dimT = dim aff(Q1, . . . , Qr) − 1 = r − 3, but
n− c(T ) = r − 1. So Q /∈ G.

We wish to prove that G is open and dense. For an n-tuple Q = (Q1, . . . , Qn), let D(Q) =
{T ⊆ P : T has strict inequality in (5.2) and n − c(T ) ≤ d}. If D(Q) is empty, then (5.2)
holds with equality for all T ⊆ P. Moving any points of Q very slightly will not reduce the
dimension of any set T ; thus G is open; furthermore, for an arbitrary Q, D(Q′) ⊆ D(Q) if
Q′ is very near Q.

Suppose now that Q /∈ G. If Q is not simple, an arbitrarily slight deformation of its points
Q1, . . . , Qn will make it so. Thus we can assume simplicity. So, if Tk is a component of T
with n−c(T ) ≤ d, and Tk has vertices i1, . . . , ir, then tk = aff(Qi1, . . . , Qir)(∞) has dimension
r − 2. If T is a minimal element of D(Q) with nontrivial components T1, . . . , Tm, then

dim(t1 ∪ · · · ∪ tm−1) =
m−1
∑

1

dim tk

while

dim(t1 ∪ · · · ∪ tm) <
m
∑

1

dim tk = dim(t1 ∪ · · · ∪ tm−1) + dim(tm).

But tm is determined by points Qi1, . . . , Qir which have no effect on t1 ∪ · · · ∪ tm−1. Thus by
varying these points (arbitrarily slightly) to positionsQ′

i1
, . . . , Q′

ir
we can make the dimension

of (t1 ∪ · · · ∪ tm−1) ∪ tm equal to its maximum value of
∑m

1 dim tk. The new n-tuple Q′ will
have D(Q′) ⊂ D(Q). Continuing in this way we can find Q′′ ∈ G arbitrarily near to Q.
Thus G is dense. �

If Q = (Q1, . . . , Qn) satisfies (5.2) with equality, we say Q, or Q1, . . . , Qn, have ideal
general position. This is a strong kind of affine general position, ruling out all unneces-
sary parallelisms. Lemma 5.5 allows us to restrict our consideration of the general form of
perpendicular arrangements described by a fixed Φ to those Q in ideal general position.

We shall need the dual formulation. Recall that SP contains h∞ by definition.

Lemma 5.6. Let S ⊆ H(Φ;Q), corresponding to S ⊆ E(Φ). Then

dim(
⋂

SP) ≥ max(d− 1− [n− c(S)],−1),
12



with equality if Q has ideal general position.

Proof. Dulaize Lemma 5.5. �

Lemma 5.7. Let S ⊆ H(Φ;Q) correspond to a forest S ⊆ E(Φ) with m edges where m ≤ d.
Assume Q has ideal general position. Then dim(

⋂

S) = d−m.

Proof. Let s =
⋂

S, s′ =
⋂{hP : h ∈ S}, and s′′ =

⋂

SP. We know dim s′′ = d−m− 1 since
c(S) = n−m.

The proof is by induction on m. The base cases m = 0, 1 are trivial. Thus let 1 < m ≤ d.
Choose e ∈ S and set T = S \ {e}, T = S \ {h(e)}, t =

⋂

T, and t′′ =
⋂

TP. By induction,
dim t = d−m+ 1. Thus dim t′′ = d−m.

Now, either s = t, or ∅ 6= s ⊂ t and dim s = dim t − 1, or s = ∅. The last case is
impossible, for s = ∅ =⇒ s′ ⊆ h∞ =⇒ s′′ = s′, whence dim s′ = d−m− 1, contradictiing
the fact that dim s′ ≥ dim t − 1 by the modular law. The first case is impossible because
s = t =⇒ s′ = t′ =⇒ s′′ = t′′, but dim s′′ 6= dim t′′. Therefore ∅ 6= s ⊂ t and
dim s = dim t− 1. �

Lemma 5.8. Let S ⊆ H(Φ;Q) correspond to a forest S ⊆ E(Φ) with m edges where m > d.
Assume Q has ideal general position. Then dim(

⋂

S) is a point or void, and for generic Q

it is void.

Proof. That
⋂

S is contained in a point follows directly from Lemma 5.7.
Let G be the set of all Q ∈ (Ed)n that have ideal general position and for which

⋂

S = ∅.
We need to show that G is open and dense in (Ed)n.

If
⋂

S = ∅, shifting Q slightly will leave it so. Thus G is open.
Suppose

⋂

S is a point P . We show how to deform Q to make
⋂

S empty. Let i be an
end vertex in S, e its incident edge, j its neighbor, and T = S \ {e}. Then

⋂

T = {P} by
induction if m > d+ 1 or Lemma 5.7 if m = d+ 1. The hyperplane h(e) contains P ; thus

d(P,Qi)
2 = d(P,Qj)

2 + ϕ(e; i, j).

If we shift Qj slightly off the cylinder described by this equation,
⋂

S becomes empty. This
proves that G is dense. �

Example 5.1. In Lemma 5.8 it is indeed possible that
⋂

S be a point. Here is an example in
the plane. Take a point P and three lines through P making small angles, say l1, l2, l3 with
l2 between the other two lines. Choose a foot P2 on l2 at some distance from P and erect
a short perpendicular segment on P2, bisected by l2 and not intersecting either other line.
Call its endpoints Q2 (nearer to l1) and Q3 (nearer to l3). From Q2 drop a perpendicular to
l1 and continue it slightly past l1 to a point Q1. Similarly, drop a perpendicular to l3 from
Q3 and continue it to Q4. The reference points Q1, Q2, Q3, Q4 are plainly in ideal general
position; the perpendiculars l1, l2, and l3 to Q1Q2, Q2Q3, and Q3Q4 are described by their
Pythagorean gain graph Ψ which is a tree of 3 edges; yet l1, l2, l3 are concurrent.

Examples like this show that Lemma 5.8 is where ideal general position ceases to be
sufficient for genericity of Q.

Lemma 5.9. Let Φ be a fixed Pythagorean gain graph. Let Q = (Q1, . . . , Qn) have ideal
general position in Ed, where n > d ≥ 1. Take a subset S ⊆ H(Φ;Q), corresponding to
an edge set S of Φ. Then

⋂

S is a nonempty subspace of dimension d − (n − c(S)) if S is
balanced and has c(S) ≥ n − d, it is a point or void (and it is void for generic Q) if S is
balanced and c(S) < n− d, and it is void if S is unbalanced.
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Q2

3

Q4

P

l1

l2

l3

Q

P2

Q

1

Figure 5.1. A nongeneric arrangement of lines whose reference points nev-
ertheless have ideal general position.

Proof. Suppose S contains a balanced circle. By Lemma 5.2 we can remove an edge of C from
S without changing either the intersection of the hyperplanes or the number of components
of S. So we may as well assume S contains no balanced circle.

If S contains an unbalanced circle, then
⋂

S = ∅ by Lemma 5.4.
The remaining case is that of a forest, which is treated in Lemma 5.8. �

Proof of Theorem 5.1. For each S ⊆ E(Φ) let G(S) be the set of n-tuples Q for which S has
intersection as described in Lemma 5.9. There are finitely many of these sets G(S), each
open and dense in (Ed)n; thus their intersection G is open and dense as well. Since every
Q ∈ G has the intersection properties in the first part of the theorem, these properties are
generic, as claimed.

As for the second half of the theorem, where
⋂

S1 =
⋂

S2 6= ∅, this makes both in-
tersections equal to

⋂

(S1 ∪ S2). Thus S1 ∪ S2 is balanced, n − c(S1 ∪ S2) ≤ d, and
c(S1 ∪ S2) = c(S1) = c(S2). The latter entails that S1 and S2 induce the same partition of
the vertex set. �

We are—at last—able to state a precise definition of genericity, or “completely general
position,” of Q1, . . . , Qn.

Definition. Let Φ be a real, additive gain graph. Points Q1, Q2, . . . , Qn have general position
with respect to Φ if H(Φ;Q) satisfies the criteria for genericity of Theorem 5.1. They have
completely general position with respect to Φ if they have both ideal general position and
general position with respect to Φ.

6. Matroids and general position

6.1. Variations on general position. Re-expressing our results in terms of matroids is
technical but illuminating (for matroid theorists) and makes it possible to prove a number of
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interesting facts with little difficulty. The essential matroids are G(Γ), the graphic (polygon)
matroid of a graph Γ, and L0(Φ), the complete lift matroid of the gain graph Φ. The point
set of L0(Φ) is E ∪ {e0}, where e0 /∈ E, and its rank function is rk(S) = n− c(S \ {e0}) + ε
for S ⊆ E ∪ {e0}, where ε = 0 if S is a balanced subset of E and 1 otherwise. For more
about balanced flats and L0 we refer to [30, §§II.2, II.3]. The geometric lattice of flats of
a matroid M is denoted by LatM and the geometric semilattice of balanced flats of L0(Φ)
is Latb Φ. Truncation of a matroid or of its lattice of flats to rank r is denoted by Tr; this
means the elements of ranks r and higher, if any, are replaced by the single element 1̂.

We begin with six definitions of general position of Q. The first four restate those already
given in Sections 1 and 5. Recall that P is the set of all ideal points pij on the reference lines
QiQj. Its projective dependence matroid is M(P).

• Simple position (SP):
The matroid of the reference points is the uniform matroid of rank min(n, d + 1).
• Ideal general position (IGP):
M(P) ∼= Td(G(Kn)), the matroid of the complete graph truncated to rank d, under
the canonical correspondence pij ↔ ij. (IGP entails that all reference points are
distinct, since by our definition that QiQj = aff(Qi, Qj), pij = (QiQj)(∞) = ∅ if
Qi = Qj. Then pij is, in effect, a matroid loop in M(P), which consequently is not
isomorphic to Td(G(Kn)), not even when d = 1.)
• General position with respect to Φ (GP):

L(H(Φ;Q)) ∼= [Latb Φ]d0, the geometric semilattice consisting of ranks 0 through d of
Latb Φ, under the canonical correspondence h(e)↔ e.
• Completely general position with respect to Φ (CGP):

The combination of IGP and GP.
• Projective general position with respect to Φ (PGP):

L(HP(Φ;Q)) ∼= Td+1(LatL0(Φ)) under the canonical correspondence h(e) ↔ e and
h∞ ↔ e0.
• Projective completely general position with respect to Φ (PCGP):

The combination of IGP and PGP.

The meaning of Theorem 5.1 is that, generically, Q has GP. We can say more.

Theorem 6.1. Let Φ be a fixed real, additive gain graph on n vertices. Assume n > d ≥
1. Generically, n reference points Q1, . . . , Qn in Ed have completely general position and
projective completely general position with respect to Φ.

Proof. GP is a translation of Theorem 5.1 into the language of gain-graphic matroids. PGP
is equivalent to GP by Theorem 6.3(ii). IGP is a generic property of n points by [18, §2.1],
as we explain in the proof of Proposition 6.6. �

Proposition 6.2. If Q has ideal general position and, for every S ⊆ H that corresponds to
a forest of d+ 1 edges in Φ,

⋂

S is empty, then Q has general position with respect to Φ.

Proof. This follows from Lemma 5.9 and its proof. �

We should like to say something about the relationships among these several notions of
general position. We saw in Example 5.1 that IGP does not imply GP. This suggests that
both are needed in the definition of completely general position. Still, IGP is redundant if Φ
is complete, that is, every pair of vertices is adjacent. We call Φ separable if it has a vertex
v such that Φ \ v is disconnected.
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Theorem 6.3. Given: a real, additive gain graph Φ on n vertices and points Q1, . . . ,
Qn ∈ Ed.

(i) Ideal general position implies simple position.
(ii) General position and projective general position with respect to Φ are equivalent.
(iii) Completely general position and projective completely general position with re-

spect to Φ are equivalent.
(iv) General position with respect to Φ implies ideal general position if Φ is complete,

but not if Φ is disconnected or separable.

Proof. We prove (i) by contradiction. Suppose a setD of Qi’s is minimally affinely dependent
and has δ = |D| ≤ d + 1. Then dimD = δ − 2 ≤ d − 1. IGP implies that P(D) = {pij :
Qi, Qj ∈ D} has matroid Td(G(Kδ)), so dim P(D) = min(d − 1, δ − 2) = δ − 2. But
P(D) ⊆ (affD)(∞), whose dimension = dimD − 1 = δ − 3. Thus no such D can exist.

For the rest we need a basic fact from [26]. [x, y] denotes the interval from x to y.

Lemma 6.4 (Wachs and Walker [26, Thm. 3.2]). Up to isomorphism, a geometric semilattice
has the form L \ [e0, 1̂] for one and only one geometric lattice L and atom e0 of L.

In other words, a geometric semilattice determines the whole geometric lattice of which it
is a part. This is very important.

Here is how we use Lemma 6.4. Set H = H(Φ;Q1, . . . , Qn). First we note that [Latb Φ]d0 =
Td+1(LatL0(Φ))\ [e0, 1̂], so Td+1(LatL0(Φ)) is determined by [Latb Φ]d0. Second, L(H) deter-
mines L(HP) since it equals L(HP)\ [h∞, 1̂]. Combining these, GP =⇒ PGP. The converse
is trivial. Thus we have proved (ii) and (iii).

For (iv) the essential fact is that (LatL0(Φ))/e0 (the interval above e0) equals LatG(Γ) if Γ
is the underlying graph of Φ. Since L(Hh∞

P
), where H

h∞

P
= {hP∩h∞ : h ∈ H}, is the interval

[h∞, 1̂] ⊆ L(HP), we know that L(Hh∞

P
) ∼= Td(LatG(Γ)) under the canonical correspondence

h(e)(∞) ←→ the atom of LatG(Γ) that contains e. If Φ is complete, LatG(Γ) = LatG(Kn),
so we are done.

The assertions about disconnected and separable Φ follow from Example 6.1. �

Example 6.1. Let Φ be a gain graph that is the union of Φ1 and Φ2 where |V1 ∩ V2| = δ ≤ 1,
n1 = |V1| ≥ 2, and n2 = |V2| ≥ 2. Then n = |V | = n1 + n2 − δ. Choose d1, d2 > 0 so

that d = d1 + d2 satisfies n ≥ d + 3 − δ. Choose reference points Q
(k)
1 , . . . , Q

(k)
nk ∈ Edk for

H(k) = H(Φk;Q
(k)
1 , . . . , Q

(k)
nk ) that have general position with respect to Hk. Now embed Ed1

into Ed as Ed1
× {0} and embed Ed2

into Ed as {0} × Ed2
. If δ = 1, choose coordinates in

each Edk so that Q
(k)
1 is at the origin; then the embedding identifies Q

(1)
1 and Q

(2)
1 . If δ = 0,

choose coordinates so no Q
(k)
i is at the origin.

There is an affinely dependent subset of Q
(k)
1 , . . . , Q

(k)
nk if nk ≥ dk + 2. The only way to

avoid this for both k = 1 and k = 2 is to have n1 + n2 ≤ d + 2, contrary to our choice of d.
Thus the set of all n reference points has nonsimple position in Ed.

This analysis overlooks the cases in which n1 or n2 = 1, but they are trivial.

Example 6.2. It would be nice to have also an example in which the reference points have
simple position as well as general position with respect to Φ but not ideal general position.
Such examples exist at least for nontrivially disconnected gain graphs. We outline one such
example.
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The idea is to embed Ed1 and Ed2 in Ed as in Example 6.1 and then to find a line and
parallel hyperplane hQ that are affinely spanned by the reference points. To assure simple

position we must take dk = nk−1 > 0 so d = n−2. The line is Q
(1)
1 Q

(2)
1 ; the remaining points

span the hyperplane hQ. In general we expect Q
(1)
1 Q

(2)
1 and hQ to meet in Ed. However, if

we apply a dilatation around Q
(2)
1 to Ed2 with expansion factor λ > 0, then generically there

will be a choice of λ that makes Q
(1)
1 Q

(2)
1 ‖ hQ. That precludes IGP, as Proposition 6.6 will

show.

Example 6.3. Let d = 2 and n ≥ 4 and take Φ = (Kn \ e12, 0), that is, the complete graph
less one edge, all edges having gain 0. The corresponding hyperplane arrangement consists
of all but one of the perpendicular bisectors between n points in the plane.

Choose the reference points so that Q1Q2 ‖ Q3Q4 but there are no other parallelisms.
The reference points do not have IGP because p12 = p34, so M(P) 6= T2(M(Kn)). Since the
arrangement of bisectors can clearly be made to have general position with respect to Φ by
deforming the reference points slightly without losing the one required parallelism, we have
an example in which Φ is as nearly complete as possible, yet which violates the conclusion
of Theorem 6.3(iv).

However, I have not seen how to make such an example in dimension d > 2. Thus it is
still possible that the hypothesis of completeness can be weakened in higher dimensions.

These examples give some idea of the interrelations between simple and ideal general
position on the one hand and general position with respect to Φ on the other, but they leave
us far from a complete understanding. Here are some obvious questions.

Research Problem 3. (a) Is it possible to have GP and SP but not IGP with n > d + 2? If
Φ is connected?

(b) Show that it is possible to have GP without IGP for inseparable gain graphs, in
particular those with 2-separations (and enough vertices).

Proposition 6.5. If the reference points are affinely independent, they have completely gen-
eral position with respect to any gain graph of order n.

Proof. It is clear that they have ideal general position, indeed M(P) = G(Kn). Since n ≤
d+1, Φ cannot contain a forest of d+1 edges. So Proposition 6.2 is vacuously satisfied. �

6.2. At infinity. It may not be clear from our definition that ideal general position has
any connection with parallelism. Here we settle that. A parallelism within reference points
Q1, . . . , Qn ∈ Ed means a pair of flats, f and g, generated by reference points so that neither
is a point and ∅ 6= fP ∩ gP ⊆ h∞. Equivalently, d > dim f, dim g > 0 and dim f + dim g ≥
dim aff(f ∪ g), but f ∩ g = ∅.

Again we employ the convenient, short notation s(∞) = sP ∩ h∞ for an affine flat s.

Proposition 6.6. Points Q1, . . . , Qn ∈ Ed have IGP if and only if they have no parallelisms.

Proof. Call a projective hyperplane singular if it contains either a reference point or the
intersection of two flats that are generated by reference points and have nonempty intersec-
tion. We can interpret the existence of a parallelism as resulting from having the reference
points fixed in advance and choosing the ideal hyperplane so that it is singular although it
contains no reference point.
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A theorem of Mason ([18, §2.1], or see [6, Prop. 7.7.8]) says that, if n points in Pd have
matroid M , then a nonsingular hyperplane intersects the lines generated by those points
in a point set whose matroid is D1(M), the first Dilworth lower truncation of M . In our
case M = Ud+1(n), the uniform matroid, so D1(M) = Td+1(G(Kn)). Thus if there are no
parallelisms within the reference points, then M(P) = Td(G(Kn)). That proves IGP.

Suppose on the other hand that the reference points have IGP (hence simple position) and
yet h∞ is singular without containing a reference point. Say h∞ ⊇ fP ∩ tP, where f and g
are spanned by k and l reference points, respectively, with 2 ≤ k, l ≤ d. Then dim f = k−1,
dim g = l − 1, dim(f ∪ g) = min(d, k + l − 1), and dim(fP ∩ gP) = k + l − 2− dim(f ∪ g) =
max(k+l−d−2,−1). Since fP∩gP 6= ∅, k+l−d−2 ≥ 0; that is, k+l ≥ d+2. Now, there are
(

k

2

)

lines determined by the generators of f and
(

l

2

)

determined by the generators of g, which
meet h∞ in a set P′ of points whose matroid, by IGP, is Td(G(Kk ∪Kl)), where the union is
disjoint. This matroid has rank = min(k + l − 2, d) = d, whence dim P′ = d− 1. Yet P′ lies
in (f(∞)) ∪ (g(∞)), whose dimension is dim(fP ∩ h∞) + dim(gP ∩ h∞)− dim(fP ∩ gP ∩ h∞) =
dim f +dim g− 2−dim(fP∩ gP) = dim(f ∪ g)− 2 ≤ d− 2. Thus IGP contradicts singularity
of h∞; we deduce the backward implication of the proposition. �

6.3. Ideal points. To study dissections within a flat (Section 7.2) we need more information
about the set P and especially about its subsets

P(s) =
{

pij : ∃e for which V (e) = {i, j} and h(e) ⊇ s
}

for s ∈ L(H(Φ;Q)) and
P(S) = {pij : [i] = [j] in π(S)},

where π(S) is the partition of V induced by the edge set S in Φ. Recalling that E(s) = {e ∈
E(Φ) : h(e) ⊇ s}, it is clear that

P(s) ⊆ P(E(s)).

Lemma 6.7. For a point pij ∈ P and a flat s ∈ L(H(Φ;Q)), the following properties are
equivalent:

(i) pij ∈ s∗(∞).

(ii) There is a hyperplane h ⊥ QiQj such that h ⊇ s.
(iii) QiQj ⊥ s (where we assume s is not a point).

Proof. The equivalence of (ii) and (iii) is obvious.
As for that of (i) and (ii), first note that pij ∈ s∗(∞) ⇐⇒ p∗ij ⊇ s(∞). Now, in one

direction, if h ⊥ QiQj and h ⊇ s, then p∗ij = h(∞) ⊇ s(∞). Conversely, if p∗ij ⊇ s(∞), let
P ∈ s, hP = span(p∗ij ∪ {P}), and h = the finite part of hP. Then h satisfies the conditions
of (ii), because h(∞) = p∗ij ⇐⇒ h ⊥ QiQj. �

We write projs P for the orthogonal projection of a point P ∈ Ed into a flat s.

Lemma 6.8. If [i] = [j] in π(E(s)), then projsQi = projsQj.

Proof. Let us first look at the case in which i and j are adjacent by an edge e ∈ E(s). Then
h(e) ⊇ s, hence QiQj ⊥ s by Lemma 6.7, whence Qi and Qj have the same projection.

In general, [i] = [j] means that i and j are joined by a path i = i0, e1, i1, . . . , el, il = j in
E(s). Thus projsQi0 = projsQi1 = · · · = projsQil. �

Lemma 6.9. P(E(s)) ⊆ s∗(∞).
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Proof. pij ∈ P(E(s)) ⇐⇒ (by definition) [i] = [j] =⇒ (by Lemma 6.8) projsQi = projsQj

⇐⇒ QiQj ⊥ s ⇐⇒ (by Lemma 6.7) pij ∈ s∗(∞). �

Lemma 6.10. If Q has ideal general position, then span P(s) = s∗(∞).

Proof. First, pij ∈ P(s) ⇐⇒ ∃h(e) ⊇ s with V (e) = {i, j} =⇒ pij ∈ s∗(∞) by Lemma 6.7.

Thus P(s) ⊆ s∗(∞).

Now we compare dimensions. Because M(P) ∼= Td(G(Kn)) (by ideal general position)
and E(s) is balanced (by Lemma 5.4), dim P(s) = min(d − 1, rkE(s) − 1). If s is not a
point, rkE(s) = codim s ≤ d (by Lemma 5.9) so dim P(s) = rkE(s)− 1. At the same time,
dim s∗(∞) = d−2−dim s(∞) = d−1−dim s = rkE(s)−1. Since this equals dim P(s) while also

P(s) ⊆ s∗(∞), P(s) spans s∗(∞) if s is not a point. If s is a point, then rkE(s) ≥ codim s = d

(again by Lemma 5.9), so dim P(s) = d− 1. Consequently, P(s) spans h∞ = s∗(∞). �

Proposition 6.11. Suppose Q has ideal general position and s ∈ L(H(Φ;Q)) but s is not
a point. Then P(E(s)) = P ∩ spanP(s), the closure of P(s) in M(P).

Proof. We know that spanP(s) = s∗(∞) ⊇ P(E(s)) ⊃ P(s). Thus P(E(s)) spans s∗(∞).

However, it may not equal P∩span P(s) if s is a point, so we now assume dim s > 0. Therefore
rkE(s)) = codim s ≤ d − 1, from which we see that dim s∗(∞) > d − 1 so rkP(E(s)) <

d in M(P). Since M(P) ∼= Td(G(Kn)) and P(E(s)) (from its definition) corresponds to
a flat in G(Kn) of rank < d, P(E(s)) is itself a flat in M(P). That means P(E(s)) =
P ∩ spanP(E(s)) = P ∩ s∗(∞). Because P(s) also spans s∗(∞), we conclude that P(E(s)) =

P ∩ span P(s), as desired. �

Corollary 6.12. Suppose Q has ideal general position and s ∈ L(H(Φ;Q)) is not a point.
Then projsQi = projsQj ⇐⇒ [i] = [j] in π(E(s)).

Proof. Sufficiency is Lemma 6.8. For necessity, suppose that Qi and Qj have the same
porjection. Then QiQj ⊥ s, so by Lemma 6.7, ij ∈ s∗(∞). But then by Proposition 6.11,

pij ∈ P(E(s)). That is, [i] = [j]. �

7. Cross-sections

Peering into a flat t in Ed, we see it dissected into pieces by the hyperplanes of H(Φ;
Q1, . . . , Qn) that do not contain it. Does this induced dissection result from a Pythagorean
arrangement of relative hyperplanes, as Good and Tideman said of certain flats of their
original arrangement? Indeed it does—and this will enable us to explain why a flaw in Good
and Tideman’s proof does not invalidate their enumerative results. In order to explain how
an induced arrangement is Pythagorean, we need notions of contraction and therefore of
switching of a gain graph.

7.1. Switching and contraction. A switching function on a real, additive gain graph Φ
is simply a function η : V (Φ)→ R+. The secret is in how to use it. Switching Φ by η means
replacing the gain function ϕ by ϕη whose definition is

ϕη(e; i, j) = ϕ(e; i, j)− η(i) + η(j).

We write Φη for the switched gain graph. (Since Φη is unaffected by adding a constant to η, we
can always take η ≥ 0.) The difference between H(Φ;Q) and H(Φη;Q) is in the appearance
of offsets in the locations of perpendiculars. Instead of being placed at ψij(h) = ϕ(e; i, j),
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the hyperplane h(e) is now located at ψij(h) = ϕ(e; i, j)− η(i) + η(j). In full, the relocated
h(e) consists of the points P for which

[d(P,Qi)
2 + η(i)]− [d(P,Qj)

2 + η(j)] = ϕ(e; i, j).

Thus η modifies the location rule by offsetting h(e) along the line QiQj. Switching can
change the combinatorial type of L(H) and therefore also of H because it can put the
reference points into special position with respect to Φη even though they were general with
respect to Φ.

(Pythagorean arrangements of the form H((Kn, 0)η;Q) with η ≥ 0 correspond to the
weighted Voronoi diagrams known as “power diagrams”. There η(i), sometimes called the
“weight of Qi”, is interpreted as the squared radius of a sphere Si centered at Qi; thus
d(P,Qi)

2 − η(i) = ti(P )2, the squared length of a tangent from P to Si, provided P lies
outside all spheres. The hyperplane hij is located where ti(P ) = tj(P ).4)

Now we define contraction of a balanced edge set in Φ. Suppose S ⊆ E(Φ) has all zero
gains; that is, ϕ

∣

∣

S
≡ 0. Let π(S) be the partition of the vertices implied by the connected

components of (V, S) and let [i] denote the block of π(S) that contains i. The contraction
Φ/S has vertex set π(S) and edge set E(Φ) \ S. An edge e with endpoints i, j in Φ has
endpoints [i], [j] in Φ/S. (This process may introduce loops. We discard any loops whose
gain is nonzero.) Since the definition permits us to contract only zero-gain edges, we need
switching to contract an arbitrary balanced edge set S. There is always a switching function
η such that ϕη

∣

∣

S
≡ 0. We choose such a function, switch Φ by it, and contract S. Thus

we get a contraction Φη/S of Φ. This contraction is not unique: there is a different one for
each choice of η (up to an additive constant). (In that respect our definition is more refined
than the standard one found, e.g., in [30, §I.5]. Usually it is enough for a gain graph to
be specified up to switching; thus Φ and Φη would be equivalent and it would not matter
how we switch Φ because all contractions Φη/S would also be equivalent. But that is not so
here, since switching changes the hyperplane arrangement. In discarding nonzero loops our
definition is cruder than the usual one; we delete them because they correspond to nothing
in Ed.) A fact we shall have use for is that, if Φ is balanced, then Φ/S is again balanced.

We also need collapsing by a partition π of the vertex set [n]: we take Φ/π to be the gain
graph with the same edges and the same gain function as in Φ but with all the vertices in each
block of π identified to a point and with all loops removed. This is much like contraction,
but for consistency with general custom we confine the latter name to contraction by an
edge set.

7.2. Dissections within a flat. To describe the induced dissection of an affine flat t we
still need a few short definitions. The induced arrangement in t is

Ht =
{

h ∩ t : h ∈ H, h 6⊇ t, and h ∩ t 6= ∅
}

.

Write projt P for the orthogonal projection of a point P into t and let π(t) be the partition
of [n] that corresponds to the equivalence relation defined by i ∼ j if projtQi = projtQj.
Set ηt(i) = d(Qi, t)

2.

4Nonnegative weights have a long history; see [3] or [12, Section 13.6]. Arbitrary real weights appear to
be rare (an exception is [1]), possibly because they do not have the nice power-diagram interpretation. The
literature, however, concerns only nearest reference points (as weighted, i.e., after allowing for offsets) and
variations in the same spirit and consequently uses only pieces of dissecting hyperplanes instead of entire
hyperplanes. It is also limited to what we should call all-zero gains.
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Theorem 7.1. Take a fixed real, additive gain graph Φ of order n and points Q1, . . . , Qn ∈
Ed. Let H = H(Φ;Q1, . . . , Qn). For an affine flat t, let Q̄1, . . . , Q̄k be the distinct points
projtQi; thus k = |π(t)|. Then

Ht = H(Φηt/π(t); Q̄1, . . . , Q̄k).

If t is generic of codimension d′, then L(Ht) is isomorphic to the semilattice of all flats
of H of dimension at least d′.

Furthermore, if Q1, . . . , Qn have ideal general position, then Q̄1, . . . , Q̄k also have it.

Lemma 7.2. For a hyperplane h(e) ∈ H, corresponding to an edge e with V (e) = {i, j}, to
have h(e) ⊇ t or h(e) ∩ t = ∅ it is necessary and sufficient that projtQi = projtQj.

(This is a version of Corollary 6.12 suitable for arbitrary affine flats.)

Proof. Let us compare a point P ∈ t to the trace in t of h(e), where V (e) = {i, j}. We write
Qt

i = projtQi. We have

d(Qi, P )2 = d(Qi, Q
t
i)

2 + d(Qt
i, P )2,

d(Qj, P )2 = d(Qj, Q
t
j)

2 + d(Qt
j, P )2,

so by subtracting,

ψij(P ) = ψt
ij(P ) + d(Qi, Q

t
i)

2 − d(Qj, Q
t
j)

2,

where ψt
ij denotes the Pythagorean coordinate along Qt

iQ
t
j. This expression, together with

the fact that ψij(P ) = ϕ(e; i, j), shows that the correct gain for e in the Pythagorean gain
graph Ψ(Ht) is ϕηt(e; i, j).

The calculation also proves the lemma, since h(e) + t and h(e) ∩ t 6= ∅ if and only if t
contains points that take different values of the Pythagorean coordinate ψij, hence of ψt

ij;
but such points exist with respect to ψt

ij if and only if Qt
i 6= Qt

j.
The coalescence of reference points under projection shows that each block of π(t) must

be identified to a vertex in Ψ(Ht) but there should be no other identifications of reference
points. The lemma shows us which edges of Φ no longer correspond to hyperplanes in Ht so
should be deleted. Thus Ψ(Ht) is precisely the gain graph Φηt/π(t).

The assertion about generic t follows because a flat s ∈ L(H) intersects t in the smallest
dimension permitted by the modular law: in dimension dim s−codim t if that is nonnegative;
otherwise the intersection is empty.

Suppose Q̄1, . . . , Q̄k fail to have ideal general position. Then they have a parallelism: flats
f̄ and ḡ, generated by Q̄i’s, neither one a point, such that t(∞) ⊇ f̄P ∩ ḡP 6= ∅. Let t′ be an
orthogonal complement of t: a flat such that t′ ⊥ t, t ∩ t′ is a point, and dim t+ dim t′ = d.
We can regard Ed as t× t′. Let f̂ = f̄ × t′ and ĝ = ḡ× t′. Since f̄ ∩ ḡ = ∅, f̂ ∩ ĝ = ∅ as well.

Now let f = aff{Qi : Qi ∈ f̂} and let g be similar. Neither f nor g is a point. They are

disjoint because f̂ ∩ ĝ = ∅, but they meet at infinity because fP ∩ gP ⊇ f̄P ∩ ḡP. Therefore
there is a parallelism within Q1, . . . , Qn.

It follows that ideal general position of Q1, . . . , Qn implies ideal general position of Q̄1, . . . ,
Q̄k. �

We are especially interested in what happens when we look inside a flat of the arrangement
itself. If s is a flat of H, we write H(s) = {h ∈ H : h ⊇ s} and E(s) = {e ∈ E(Φ) : h(e) ⊇ s}.
E(s) is necessarily balanced, by Lemma 5.4.
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Theorem 7.3. Take a fixed real, additive gain graph Φ of order n and points Q1, . . . , Qn ∈ Ed

in general position with respect to Φ. Let H = H(Φ;Q1, . . . , Qn). For s ∈ L(H) which is
not a point, let Q̄1, . . . , Q̄k be the distinct points projsQi, where k = c(E(s)). Then

Hs = H(Φηs/E(s); Q̄1, . . . , Q̄k).

and Q̄1, . . . , Q̄k have general position in s with respect to Φηs/E(s).
Furthermore, if Q1, . . . , Qn have ideal general position, then Q̄1, . . . , Q̄k also have it.

Proof. Write S = E(s). We know that π(s) = π(S), hence k = c(S), due to Corollary
6.12. The bulk of the theorem follows from Theorem 7.1. What remains to prove is that
Q̄1, . . . , Q̄k have general position.

By general position of Q1, . . . , Qn with respect to Φ, L(H) ∼= [Latb Φ]d0. Switching does
not change Latb Φ. Thus L(H) ∼= [Latb Φηs]d0. We also know that L(Hs) ∼= L(H)/s =
{t ∈ L(H) : t ≥ s}; and this is isomorphic to [Latb Φ]d0/E(s) by the isomorphism of L(H)
with Latb Φ. One further fact is needed: Latb(Φηs/S) ∼= (Latb Φηs)/S for a balanced edge
set S [30, Prop. II.2.7]. Tracing through these isomorphisms, we conclude that L(Hs) ∼=
[Latb(Φηs/E(s))]dim s

0 . This is the definition of general position of Q̄1, . . . , Q̄k. �

We can now analyse the oversight in Good and Tideman’s Theorem 2 [17]. It asserts
(in our terminology) that, if (Kn, 0) is the complete graph with all-zero gain function ϕ
and H = H((Kn, 0);Q), then generically Hs has the form H((Kn−q+1, 0);Qs) for some
set of reference points Qs

1, . . . , Q
s
n−q+1 ∈ s if s ∈ L(H) is such that E(s) consists of

just one nonisolated component that has q vertices (thus dim s = d − q + 1). This kind
of flat is what Good and Tideman call a “circumflat”. By Theorem 7.3 we know that
L(Hs) ∼= [Latb(Kn, 0)η/E(s)]dim s

0 where η(i) = d(Qi, s)
2; that is, L(Hs) is an arrangement

of perpendiculars with respect to reference points in s and some gain graph. What we do
not know is that reference points exist within s with respect to which the gain graph can be
chosen to have all-zero gains (that is, the hyperplanes are to be perpendicular bisectors); and
in fact they may not exist, as Example 7.1 shows. But (Kn, 0)η/E(s) is balanced (in fact,
Hs is a power-diagram arrangement with centers bQ and spheres of radii d(Qi, s)) and, by
Corollary 11.1, generically the face and flat numbers of H(Φ;Q) for balanced and complete Φ
are the same as for perpendicular bisectors. So Good and Tideman’s numerical conclusions
are correct after all and are valid, moreover, for every flat of H.

Example 7.1. In Figure 7.1 are a planar arrangement of bisectors and a circumflat whose
induced arrangement cannot be constructed as bisectors from reference points within the
circumflat.

First, observe that, if six points in a line are the bisectors of the six segments produced
by four reference points in the line, then the bisection points are centrally symmetric.

To construct the example, take generic points Q1, . . . , Q5 in the plane. Let lij be the per-
pendicular bisector of [Qi, Qj] and for the circumflat take s = l45. The induced arrangement
Hs consists of one point Pij for each lij with i < j ≤ 4; we may ignore li5 since it and li4
meet s in the same point. Thus we have an arrangement of 6 points in s produced by 6
lines lij that are the perpendicular bisectors of all the segments generated by Q1, . . . , Q4.
In relation to these bisectors, s is an arbitrary line because we can determine it at will by
choosing Q5. It is easy to find s so that the 6 points in s are not centrally symmetric; in
fact, that situation is generic. Therefore, Hs cannot be produced by reference points in s.
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l45
P13 P14

P24
P12 P34P23

Q2

Q1

Q3

Q4

5Q

Figure 7.1. A counterexample to the Good–Tideman proof. The points Pij

are not centrally symmetric.

7.3. Cross-sectional representation. Is every Pythagorean arrangement a cross-section
of one in which the reference points are an affine basis? Yes!

Theorem 7.4. Given Φ of order n, d < n − 1, and Q1, . . . , Qn that affinely span Ed, it is
possible to find affinely independent reference points Q′

1, . . . , Q
′
n ∈ En−1 such that H(Φ;Q) =

H(Φ;Q′)t for some d-flat t in En−1.

Proof. Embed Ed as a flat t ⊆ En−1 and choose Q′
i that are all at some fixed positive

distance c from the corresponding points Qi but in generically different directions orthogonal
to t. Obviously the Q′

i will be affinely independent. (If d = n − 2, there are only two
directions orthogonal to t so special instructions are necessary. The reference points have
only one minimal dependent set, say Q1, . . . , Qk. If Q1, . . . , Qk are not all shifted in the same
direction, then Q′

1, . . . , Q
′
n will be affinely independent.) Now Qi = projtQ

′
i and therefore

H(Φ;Q′)t = H(Φη;Q), where η(i) = d(Q′
i, Qi) = c, by Theorem 7.1. Thus Φη = Φ. �

Conversely, let us begin with affinely independent reference points in dimension n − 1.
Then L(H(Φ;Q)) ∼= Latb Φ by Theorem 5.1 and Proposition 6.5. If t is a generic affine flat
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of dimension d, then L(H(Φ;Q)t) ∼= [Latb Φ]d0 by Theorem 7.1. This viewpoint gives another
explanation of the generic fact that H(Φ;Q) in lower dimensions has intersection semilattice
[Latb Φ]d0, as Good and Tideman observed for the arrangement of all perpendicular bisectors.
Possibly it could be the basis for an alternative proof of Theorem 5.1.

8. Non-Pythagorean perpendiculars

Now let us consider modified Pythagorean description rules, (α,Φ) where α 6= 0. Recall
that the arrangement H(α,Φ;Q), described by (α,Φ) and based on Q, has for each edge
e (with endpoints i and j) a hyperplane h(e) perpendicular to QiQj with Pythagorean
coordinate

ψij(h(e)) = ϕ(e; i, j)d(Qi, Qj)
α.

Let Z be the set of edges with gain ϕ(e) = 0.

Theorem 8.1. Let n > d ≥ 1. Choose a real number α 6= 0 and a real, additive gain graph
Φ on vertices {1, 2, . . . , n}. Supposing Q = (Q1, . . . , Qn) is generic, then the intersection of
a subset S ⊆ H(α,Φ;Q) is void except that, when S corresponds to an edge set S having
n− i connected components with i ≤ d and in which every circle is contained in Z (that is,
the parts of S corresponding to circles in Φ consist of bisectors), then the intersection is a
flat of dimension d− i.

Two subsets S1 and S2 with nonempty intersections have the same intersection if and only
if S1 \Z = S2 \Z and the connected components of S1 ∩Z and S2 ∩Z partition the vertices
in the same way.

Proof. Let Ψ be the Pythagorean gain graph of H(α,Φ;Q); that is,

(8.1) ψ(e; i, j) = ϕ(e; i, j)d(Qi, Qj)
α.

Choosing any Q, by varying Q slightly we can ensure that Q has ideal general position and
the gains in Ψ do not sum to zero on any circle except one whose edges all have gain zero. (A
more abstract way to obtain the same effect is to replace the nonzero gains in Φ by new real
gain values that are linearly independent over the rationals.) We may now apply Theorem
5.1 to H(Ψ;Q). This gives the first half of the theorem immediately.

For the second half we see from Theorem 5.1 that S1 ∪ S2 must be balanced in Ψ and, if
the components of S1 have vertex sets V1, . . . , Vk, then so do those of S2. We examine one
Vi. Let S1i and S2i be the parts of S1 and S2 with endpoints in Vi.

Suppose S1i∩Z partitions Vi into B1, . . . , Bl with l > 1. If S2i∩Z contains an edge e that
joins two of the Bj’s, say B1 and B2, then S1i ∪ {e} contains a circle C ∋ e. C * Z since e
lies in no circle in (S1i ∩ Z) ∪ {e}. Therefore S1 ∪ S2 contains a circle C that is unbalanced
in Ψ. This is impossible. Hence S2i ∩Z does not join any of the Bj’s. It follows that S1i ∩Z
and S2i ∩ Z partition Vi in the same way; as this is true for every i, S1 ∩ Z and S2 ∩ Z
partition V in the same way.

Meanwhile, if S2i \Z contains an edge f /∈ S1i \Z, then S1i ∪ {f} contains a circle C ∋ f .
But C is then unbalanced, which contradicts balance of S1 ∪ S2. Therefore S2i \Z ⊆ S1i. It
follows that S1i \ Z = S2i \ Z. �

Comparing with the definition of the complete lift matroid L0(Γ,B) of a biased graph
([30, §II.3]; see the gain-graphic version in our Section 6.1) and its balanced flats, we have a
matroid-theoretic restatement of Theorem 8.1.
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Corollary 8.2. Let Φ be a real, additive gain graph on n vertices, α a nonzero real number,
and n > d ≥ 1. Let Γ be the underlying graph of Φ, let Z = {e ∈ E : ϕ(e) = 0}, and let
Z be the set of circles in Z. Then for generic Q = (Q1, . . . , Qn) in Ed, L(H(α,Φ;Q)) ∼=
[

Latb(Γ,Z)
]d

0
and L(HP(α,Φ;Q)) ∼= Td+1(LatL0(Γ,Z)), with flats of HP in h∞ correspond-

ing to matroid flats containing the extra point e0. �

Example 8.1. In Example 4.2, Z consists of the one circle e12(0)e23(0)e13(0).

Corollary 8.2 leads to the question of describing the edge sets S ∈ Latb Ψ. From the proof
of Theorem 8.1, S is balanced ⇐⇒ every circle in it is contained in Z.

Proposition 8.3. Let S ⊆ E(Ψ). S ∈ Latb Ψ ⇐⇒ S is balanced and e ∈ S whenever e
is an edge in Z whose endpoints are connected by S ∩ Z ⇐⇒ S is balanced and S ∩ Z is
closed in the graphic matroid of (V, Z).

Proof. Just interpret the definitions of balance and balance-closure in [30, §§I.5, I.3, resp.].
�

We should like a similar description of the flats of the induced arrangement H(α,Φ;Q)s.
We get it by applying Theorem 7.3 to Ψ. The Pythagorean gain graph of Hs is Ψs = Ψη/E(s)
where η(i) = −d(Qi, s)

2. We wish to determine the edges sets A of Ψs that belong to Latb Ψs,
hence correspond to flats of a generic Hs (provided that A has the right rank, for which it
is necessary and sufficient that cΨs(A) ≥ n− d). To state a relatively nice result, we have to
think of A in two ways at once: as an edge set in Ψs and also as one in Ψ (which it is, since
E(Ψs) ⊆ E(Ψ)). An S-subcomponent is a component of (V, Z ∩ S).

Proposition 8.4. Let A ⊆ E(Ψs). A ∈ Latb Ψs ⇐⇒ A satisfies the two conditions
(a) every circle in A (as an edge set in Ψs) lies in Z ∩ A, and
(b) for each component A1 of A (in Ψs), A1 touches (in Ψ) at most one E(s)-subcomponent

in each component of (V,E(s)) and, if A1 touches two E(s)-subcomponents that are joined
by an edge e ∈ Z \ E(s), then e ∈ A.

The point of Proposition 8.4 is to show that Latb Ψs can be described but not so easily as
Latb Ψ. The proof, which is not hard, is very technical and ungeometrical and really belongs
to the theory of fat forests [31, Ch. IV]. Thus we omit it.

9. A projectionist’s view.

A quite different geometrical construction for the Pythagorean arrangement of a balanced
gain graph was suggested to me by Herbert Edelsbrunner in 1984, based on a parabolic
approach to Voronoi diagrams that goes back to the original paper [25a] (see Edelsbrunner
and Seidel [13, end of Note 3.1] for the plane, or the general treatment in [3, Section 4.1] or
[12, Section 13.1, p. 296]).

Embed Ed with coordinate vectors x = (x1, . . . , xd) in Ed+1 whose (d+ 1)-st coordinate is
z. The fundamental paraboloid is the hypersurface S: z = x2

1 + · · ·+ x2
d. For P ∈ Ed, let P ∗

be its vertical projection up into S; for Q∗ ∈ S, let Q be its projection down to Ed. Let TQ∗

be the tangent d-space to S at Q∗ ∈ S. If Qi, Qj ∈ Ed, then hij , the vertical projection into
Ed of the intersection TQ∗

i
∩ TQ∗

j
, is the perpendicular bisector of the line segment between

Qi and Qj. Thus the Good–Tideman arrangement can be constructed by

(1) lifting each Qi to Q∗
i ∈ S,
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(2) forming the
(

n

2

)

tangent space intersections, and

(3) projecting them back to Ed.

Edelsbrunner suggested a similar procedure with step (2) replaced by

(2′) raise each tangent space TQ∗

i
by an arbitrary amount η(i) ∈ R to a ‘displaced tangent’

Ti, parallel to TQ∗

i
but at height z increased by η(i), and form the intersections of the

displaced tangents.

Lemma 9.1. This procedure forms a Pythagorean arrangement in Ed, based on Q1, Q2, . . . ,
Qn, with complete, balanced Pythagorean gain graph Ψ = (Kn, 0)η.

Proof. Let Qi have coordinate vector ai = (ai1, . . . , aid) and P have coordinate vector x in
Ed. The tangent space at Q∗

i , revised by η(i) to Ti, has equation z = 2ai ·x− ci +η(i), where
ci = ai · ai, the z-coordinate of Q∗

i . Eliminating z, Ti ∩ Tj satisfies the equation

−2(aj − ai) · x+ cj − ci = η(j)− η(i),
which (with z = 0) defines hij , the projection into Ed.

Let us calculate the Pythogorean coordinate of a point P ∈ Ed. It is ψij(P ) = ‖x−aj‖2−
‖x−ai‖2 = 2(ai−aj)·x+cj−ci. Thus the equation of hij can be written ψij(P ) = η(j)−η(i).
Since the right side is a constant, hij is a hyperplane perpendicular to QiQj. The form of
the constant demonstrates that Ψ = (Kn, 0)η. �

We note that Lemma 9.1 is a trivial generalization of [3, Lemma 4].

Proposition 9.2. (a) Let T1, T2, . . . , Tn be arbitrary nonvertical affine d-spaces in Ed+1,
no two parallel, and let hij be the projection into Ed of Ti ∩ Tj. Then {hij} is a Pythag-
orean arrangement described by a balanced, complete gain graph Ψ, based on those points
Q1, Q2, . . . , Qn such that Q∗

i is the unique point where a translate of Ti is tangent to S.
(b) Conversely let Φ be a balanced, complete gain graph on n vertices and let Q1, Q2, . . . , Qn

be distinct points in Ed. Then there exist affine d-spaces T1, T2, . . . , Tn in Ed+1 such that
the Pythagorean arrangement H(Φ;Q1, . . . , Qn) equals the arrangement {hij} derived from
T1, T2, . . . , Tn by the procedure in (a).

Proof. (a) Suppose Ti has to be lowered vertically a distance η(i) to become tangent to S.
Then {hij} is as defined before Lemma 9.1 and Ψ is as in Lemma 9.1.

(b) Since Ψ is balanced and connected, there exist numbers η(1), η(2), . . . , η(n), unique up
to an additive constant, so that ψ(e; i, j) = η(j)−η(i). (This is a well-known characterization
of tensions on a graph in terms of potentials. See, e.g., [4] or [5, §2.3, Thm. 5].) Thus
Ψ = (Kn, 0)η. The d-space Ti is the result of raising TQ∗

i
the distance η(i). �

10. Invariants and face enumeration

There is a class of invariants of hyperplane arrangements that are determined by the
geometric semilattice: they include the Whitney numbers and the characteristic polyno-
mial. These invariants of a Pythagorean arrangement H(Φ;Q) in Ed with generic reference
points are readily derivable from corresponding invariants of Φ, because by Corollary 6.1
Lat H(Φ;Q) ∼= [Latb Φ]d0. Similarly, if α 6= 0, one can deduce the invariants of a generic
non-Pythagorean arrangement H(α,Φ;Q) from the fact that LatH(α,Φ;Q) ∼= [Latb Ψ]d0,
where Ψ is as in Section 8.

Throughout this section, Φ is a real, additive gain graph with n vertices and Q =
(Q1, . . . , Qn) ∈ (Ed)n.
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Reasonably obvious is this basic observation:

Theorem 10.1. Given Φ, d, and α (zero or not), the numbers of k-dimensional flats, faces,
and bounded faces of H(α,Φ;Q) are maximized for generic Q; specifically, when Q has
general position with respect to Φ. �

The fundamental enumerative result about arrangements of perpendiculars is

Theorem 10.2. Given Φ, d, and α (zero or not). Generically, the numbers of k-dimensional
flats, faces, and bounded faces of H = H(α,Φ;Q) are given by the formulas

fk(H) =
d
∑

j=d−k

|wd−k,j(Latb Ψ)|,

bk(H) = |
d
∑

j=d−k

wd−k,j(Latb Ψ)|,

ak(H) = Wd−k(Latb Ψ)

for 0 ≤ k ≤ d, where Ψ is the Pythagorean gain graph of H, defined by (8.1). The numbers
of flats and faces of HP if 0 ≤ k ≤ d < n are given by

fk(HP) = |
d
∑

j=d−k
d−j even

wd−k,j(LatL0(Ψ))|,

ak(HP) = Wd−k(LatL0(Ψ)).

Proof. This is merely a combination of the general arrangement enumerations in Section 2
with the particular description of generic L(H) in Section 6.1. �

In order to state these results about H most elegantly we need to define some polynomials.
The characteristic polynomial of an affine arrangement E in Ed is

pE(λ) =
d
∑

j=0

wj(E)λd−j.

The Whitney-number polynomial is

wE(x, λ) =
∑∑

0≤i≤j≤d

wij(E)xiλd−j.

(In these formulas we define wj = wij = 0 if j > rk E.) Thus (2.1) and (2.3) can be expressed
by the formulas

fd(E) = (−1)dpE(−1) and
∑

k

fk(E)xk = (−1)dwE(−x,−1),

while
bd(E) = (−1)dpE(1) and

∑

k

bk(E)xk = (−1)dwE(−x, 1).

Turning to a gain graph Φ of order n, we may define its balanced chromatic polynomial as

χb
Φ(λ) =

n
∑

j=0

wj(Latb Φ)λn−j
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and its balanced Whitney-number polynomial as

wb
Φ(x, λ) =

∑∑

0≤i≤j≤n

wij(Latb Φ)xiλn−j.

(Again, wj = wij = 0 if j > rk(Latb Φ).) If Φ has c connected components (thus Latb Φ has
rank n− c), the characteristic and Whitney-number polynomials of Latb Φ are

pLatb Φ(λ) = λ−cχb
Φ(λ) and wLatb Φ(x, λ) = λ−cwb

Φ(x, λ).

Theorem 10.3. Let H = H(Φ;Q) have generic reference points in Ed, where d ≤ n. Then
pH(λ) and wH(λ) equal the polynomial parts of χb

Φ(λ)/λn−d and wb
Φ(x, λ)/λn−d, respectively.

Proof. This is the conclusion of the preceding discussion. �

Theorems 10.2 and 10.3 reduce the problem of counting regions or faces in H to that of
finding the balanced chromatic or Whitney-number polynomial of Φ. This approach will be
illustrated in Section 11.

For non-Pythagorean descriptors there is a similar result.

Theorem 10.4. With notation as in Corollary 8.2, let H = H(α,Φ;Q) with generic Q ∈
(Ed)n. Then pH(λ) and wH(x, λ) are the polynomial parts of χb

Ψ(λ)/λn−d and wb
Ψ(x, λ)/λn−d,

respectively. �

Example 10.1. For the affinographic arrangements of Example 3.2, LatH(Φ;Q) ∼= Latb Φ.
(The reference points are generic by Proposition 6.2.) Thus Theorem 10.3 applies with d = n.

The Pythagorean planar case has a nice description in terms of the structure of Φ. Let
mij be the number of edges between i and j in Φ, q the total number of edges, and s2 the
second elementary symmetric function of the mij. Let t be the number of balanced triangles
in Φ and let t0 be the number of triangles in the zero-gain edge set.

Corollary 10.5. If Q1, . . . , Qn are generic in E2, then the Pythagorean arrangement of lines
H(Φ;Q1, . . . , Qn) has

a2 = q lines,
a1 = s2 points,
f2 = 1 + q + s2 − t regions,
f1 = q + 2s2 − 3t geometric edges (1-faces),
b2 = 1 + s2 − q − t bounded regions,
b1 = 2s2 − q − 3t bounded geometric edges.

Corollary 10.6. Let α be a nonzero real number. If Q1, . . . , Qn are generic in E2, then the
arrangement of perpendicular lines H(α,Φ;Q1, . . . , Qn) has numbers as in Corollary 10.5
with t replaced by t0.

Proof. Corollary 10.5 is obtained from Theorems 5.1 and 10.2 by way of Lemma 10.7. Corol-
lary 10.6 follows similarly from Theorems 8.1 and 10.2. �

Examples 11.1, 11.3, and 11.4 illustrate these corollaries.
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Lemma 10.7. Suppose a finite gain graph Φ has q edges, all of them links (two distinct
endpoints), and t balanced triangles and s2 is the second elementary symmetric function of
the edge multiplicities. Then in Latb Φ the first few Whitney numbers are

w0 = w00 = W0 = 1, w1 = w01 = −q, w2 = w02 = s2 − t,
w11 = W1 = q, w22 = W2 = s2 − 2t, w12 = 2s2 − 3t.

If t = 0 and there are Fn−3 forests with three edges and t′ balanced quadrilaterals, then

w3 = w03 = −(Fn−3 − t′), w13 = Fn−3 − 4t′,

w23 = −(Fn−3 − 6t′), W3 = w33 = Fn−3 − 3t′.

Proof. The essential fact for wi2 is that there are two kinds of balanced flat of rank 2: a
balanced triangle, and a pair of nonparallel edges not contained in a balanced triangle.
There are t of the former type and s2 − 3t of the latter. A similar remark applies to the
calculation of wi3. �

11. Enumeration in examples

We now have the machinery to do Pythagorean arrangements of special kinds. Here we
describe some abstractly; then in the next section we see how they may arise from various
models of voter preference. Throughout, Φ is a real, additive gain graph with n vertices and
Q = (Q1, . . . , Qn) ∈ (Ed)n.

11.1. Perpendicular bisectors, power-diagram arrangements, and other balanced

gain graphs. Suppose the arrangement H consists of one perpendicular hyperplane for each
line QiQj, positioned according to a balanced Pythagorean gain graph Φ. We obtain the
theorem of Good and Tideman as well as generalizations to arrangements based on power
diagrams (see Section 7.1) and to a voter with prior biases (as at the end of Section 12).

Corollary 11.1. Let Φ be a balanced, complete Pythagorean gain graph on n vertices. Let H

be the Pythagorean arrangement H(Φ;Q). Generically, the numbers of k-dimensional flats,
faces, and bounded faces of H are, for regions,

fd(H) =

d
∑

i=0

|s(n, n− i)|, bd(H) = (−1)d

d
∑

i=0

s(n, n− i),

and for the rest,

ak(H) = S(n, n− d+ k),

fk(H) = S(n, n− d+ k)
d
∑

j=d−k

|s(n− d+ k, n− j)|,

bk(H) = (−1)kS(n, n− d+ k)
d
∑

j=d−k

s(n− d+ k, n− j).

Proof. We combine Theorem 10.2 with standard facts about Πn, the set of partitions of
n elements ordered by refinement, in which rkπ = n − |π|. Since every edge set in Φ is
balanced, Latb Φ = LatG(Kn) = Πn. The Whitney numbers of the first and second kinds of
Πn are the Stirling numbers (see [14] or [24, §9] for the first kind, [23] for the second). The
doubly indexed Whitney numbers are wij(Πn) = S(n, n− i)s(n− i, n− j). �
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Figure 11.1. A balanced gain graph and a corresponding generic line ar-
rangement. (Example 11.1.)

The planar numbers result from substituting q =
(

n

2

)

, s2 =
(

q

2

)

= 3
(

n+1
4

)

, and t =
(

n

3

)

in
Corollary 10.5.

If Φ is balanced but incomplete, the conclusion is more complicated. A partial result is
easiest to state. It can be understood as an application of Theorem 10.3.

Corollary 11.2. Let Φ be a balanced Pythagorean gain graph on n vertices and let χΓ(λ) be
the chromatic polynomial of the underlying graph Γ. Generically, pH(Φ;Q)(λ) is the polynomial
part of χ(λ)/λn−d. The generic numbers of regions and bounded regions of H(Φ;Q) are

fd = the sum of magnitudes of the d+ 1 leading coefficients of χΓ(λ), and
bd = the magnitude of the sum of the d+ 1 leading coefficients.

Proof. Rota [24, §9] proved that χΓ(λ) =
∑

wi(Lat Γ)λn−i. We know Lat Γ = Latb Φ from
balance of Φ. �

In the planar case we may again resort to Corollary 10.5, as when Φ was complete: still
s2 =

(

q

2

)

, but now q and t depend on Φ.

Example 11.1. In Figure 11.1 we see a balanced gain graph and a corresponding generic
Pythagorean arrangement of lines. Since Φ is balanced, χΦ(λ) = χΓ(λ) = λ(λ− 1)(λ− 2)2,
Γ being the underlying graph of Φ. By Theorem 10.3 therefore pH(λ) is the polynomial part
of λ−2(λ4 − 5λ3 + 8λ2 − 4λ), so that pH(λ) = λ2 − 5λ + 8. It follows that the number of
regions is |pH(−1)| = 14 and the number of bounded regions is |pH(1)| = 4, in agreement
with the diagram.
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11.2. Generic hyperplanes and non-Pythagorean rules. (Forests.) Suppose Φ is a
Pythagorean gain graph in which no circle is balanced, as would (almost surely) happen if
the gains were chosen at random, or suppose (α,Φ) is a non-Pythagorean descriptor (i.e.,
α 6= 0) in which the zero-gain edges of Φ contain no circle. These two structures have the
same formulas. In either case there are no balanced circles in the appropriate biased graph,
so the balanced flats of the lift are precisely the spanning forests of the underlying graph Γ.
Let Fl(Γ) denote the number of spanning forests with l components.

Corollary 11.3. Let Φ be a Pythagorean gain graph without balanced circles and let α = 0, or
let (α,Φ) be a non-Pythagorean descriptor without zero-gain circles. Let Γ be the underlying

graph. Generically, pH(α,Φ;Q)(λ) =
∑d

i=0(−1)iFn−i(Γ)λd−i. The numbers of flats and faces
of H(α,Φ;Q) when Q is generic are

fd =
d
∑

i=0

Fn−i(Γ), bd =
d
∑

i=0

(−1)d−iFn−i(Γ),

ak = Fn−d+k(Γ), fk =
d
∑

i=d−k

(

i

d− k

)

Fn−i(Γ),

bk =
d
∑

i=d−k

(−1)d−i

(

i

d− k

)

Fn−i(Γ) (except when k = d− n+ c(Φ) > 0).

Outline of proof. The Pythagorean gain graph Ψ of H (which equals Φ if α = 0) is contra-
balanced (see [30, Ex. III.3.4]) so χb

Ψ(λ) =
∑

(−1)iFn−i(Γ)λd−i. Apply Theorem 10.4 to get
pH(λ).

The fact lying behind the counts, that the doubly indexed Whitney numbers of Latb Ψ
are binomial multiples of the forest numbers of Γ, is implicit in [29, Thm. 7] and explicit in
[30, Ex. III.5.4]. This fact was recently rediscovered in [21, §5] in the language of what in
[30, §IV.4] we would call the canonical affine hyperplanar lift representation of Ψ. �

The first three forest numbers are simple. If Φ has q edges, then Fn(Γ) = 1, Fn−1(Γ) = q,
Fn−2(Γ) =

(

q

2

)

. One can now write down explicit formulas for ak, fk, and bk in dimensions

d = 1 and 2. In E2, f2 = 1 +
(

q+1
2

)

, f1 = q2, b0 = f0 =
(

q

2

)

, b2 =
(

q−1
2

)

, b1 = q2 − 2q. (We
may obtain these formulas also from Corollary 10.6 with t = t0 = 0.)

Example 11.2. Equally many perpendiculars to each line. Take Γ = mKn, a complete graph
with m edges between each pair of vertices. Then

Fn−i(mKn) =
mi

(n− i)!

n−i
∑

k=0

(−1
2
)k

(

n− i
k

)(

n− 1

i− k

)

(n− i+ k)!ni−k

by Rényi’s formula for Fn−i(Kn) [22]. Even without Rényi’s formula it is easy to see that

Fn−1(mKn) = m
(

n

2

)

, Fn−2(mKn) = 3m2
(

n+1
4

)

, Fn−3(mKn) = m3
(

n

3

)n2 − 5n− 12

8
.

Example 11.3. The solid lines in Figure 11.2 show a gain graph, Φ, without balanced circles
and a generic Pythagorean arrangement of lines, H(Φ;Q). Since each two vertices are doubly
adjacent, we are in the situation of Example 11.2 with m = 2. The characteristic polynomial
is pH(λ) = λ2 − 6λ+ 12; there are 19 regions, of whcih 7 are bounded.
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Figure 11.2. Illustration of Examples 11.3 and 11.4. The solid edges and
lines show generic gains and a corresponding generic Pythagorean line ar-
rangent (Example 11.3.) With the dashed lines we have also all 0-gain edges
and, correspondingly, all perpendicular bisectors (Example 11.4).

11.3. Generic hyperplanes and non-Pythagorean rules, with all bisectors and with

equally many perpendiculars to each line. (Fat forests.) As in Section 11.2 this is two
kinds of example in one treatment. Here Φ has a complete balanced part as in Section 11.1
and a totally unbalanced part as in Section 11.2. Assume that each pair of vertices is joined
by M + 1 edges. If Φ is a Pythagorean gain graph, we assume that all balanced circles lie
in a balanced, complete spanning subgraph; for instance, they may be the zero-gain edges.
If Φ is part of a descriptor (α,Φ) with α 6= 0, we assume that the set Z of zero-gain edges
forms a complete spanning subgraph (V, Z). (Thus in either case, as a biased graph [30],
Φ = 〈Kn〉 ∪ (MKn,∅), where 〈Kn〉 is a balanced Kn and (MKn,∅) is Kn with each edge
replaced by M distinguishable copies of itself and with no balanced circles.)

The semilattice Latb Φ is isomorphic to the lower d ranks of the geometric semilattice of
spanning fat forests of MKn. A spanning fat forest (π, F ) consists of a partition π of the
vertex set together with an edge set F ⊆ E(MKn) such that, if each block of π is collapsed
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to a point, F contains no circle. The geometric lattice of fat forests of a graph and related
lattices and semilattices will be studied in detail in the anticipated [31, Ch. IV].

We mention three results from [31, Ch. IV]. First, the top Whitney number of Latb Φ is

wn−1 = (−1)n−1 (n− 1)!

nM

∑

µ⊢n

(nM)µ1+µ2+···

µ1!µ2! · · ·
;

here µ ⊢ n means that µ = (µ1, µ2, . . .) with all µi ≥ 0 and
∑

jµj = n. The other Whitney
numbers are given by

wn−i = (−1)n−i n!
∑

λ⊢n
P

λk=i

∞
∏

k=1

1

λk!

[

− 1

k2M

∑

µ⊢k

(kM)µ1+µ2+···

µ1!µ2! · · ·

]λk

.

These formulas are not among the easiest but they do permit computation of the generic
numbers of regions and bounded regions in the hyperplane arrangements H of this example.
Second, if χb

n,M(λ) denotes the balanced chromatic polynomial of Φ, then {χb
n,M(λ)}∞n=1 has

exponential generating function

−1 + exp

(

− λ

M

∞
∑

k=1

(−z)k

k2

∑

µ⊢k

(kM)µ1+µ2+···

µ1!µ2! · · ·

)

.

From this the region and bounded region numbers can, in principle, be obtained by the
formulas of Section 10. Third, the number Wn−i of spanning fat forests in MKn with i
connected components (recall that Wk = ad−k, the number of flats in H of codimension k)
is given by the same formula as for wn−i except with the signs omitted and an extra factor
of 1!µ22!µ3 · · · in the denominator of the inmost sum. For instance, the number of spanning
fat trees is

Wn−1 =
n!

n2M

∑

µ⊢n

∞
∏

j=1

(nM)µj

µj!(j − 1)!µj
.

We get much simpler evaluations in the planar case by applying Corollaries 10.5 and 10.6,
in which q = (M + 1)

(

n

2

)

, s2 = 3(M + 1)2
(

n+1
4

)

, and t = t0 =
(

n

3

)

.

Example 11.4. The solid and dashed lines in Figure 11.2 show a gain graph and generic
Pythagorean arrangement of lines of the kind in Section 11.3. The balanced circles lie in the
set Z of edges with gain 0. Since q = 9, s2 = 27, and t = 1, Corollary 10.5 says there are 36
regions of which 18 are bounded.

11.4. Symmetric, uniform Pythagorean hyperplanes: odd case. (Composed parti-
tions.) For positive integers k and n, let Φn = [−k, k]Kn be the additive real gain graph on
n vertices that has an edge of gain i between each pair of vertices for every i = 0,±1, . . . ,±k.
This gain graph, or any other obtained through multiplying all gains by a positive constant
δ, gives the odd number 2k+1 of perpendiculars to each reference line, placed symmetrically
about the bisector and equally spaced, and—in Pythagorean coordinates—identically spaced
along all reference lines.

We can easily show that [−k, k]Kn has balanced chromatic polynomial

(11.1) χb
[−k,k]Kn

(λ) = λ(λ− nk − 1)n−1,
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where (x)r is the falling factorial x(x− 1) · · · (x− r+ 1), whence Cn(k) = Latb[−k, k]Kn has
characteristic polynomial

(11.2) pCn(k)(λ) = (λ− nk − 1)n−1.

Applying Theorem 10.3 to Equation (11.1), in Ed the number of regions, fd, will equal the
sum of the magnitudes of the coefficients of λn, . . . , λn−d in χb

[−k,k]Kn
(λ). The number of

bounded regions, bd, will equal the magnitude of the sum of the same coefficients. Further-
more, by [30, Thm. III.5.2], the characteristic polynomial of the complete lift is

(11.3) pLat L0([−k,k]Kn)(λ) = (λ− 1)(λ− nk − 1)n−1.

To prove (11.2) we treat the gains modulo N , where N > nk, and employ gain graph
coloring [30, §III.4]. Taking gains in Zn does not change the balanced circles because the
largest possible sum of gains around a circle is nk. A zero-free proper coloring of Φ is a
function c : [n] → ZN such that c(i) and c(j) differ by more than k whenever i 6= j. ([n] is
{1, 2, . . . , n}.) We obtain every such function by choosing its image, which can be done in

N
N−nk

(

N−nk

n

)

ways by [9, Formula [9b]], and then choosing the coloring with that image in
any of n! ways. Thus there are N(N −nk−1)n−1 proper colorings. That is, with gain group
ZN we have balanced chromatic polynomial χ∗

N for which χ∗
N (N + 1) = N(N − nk − 1)n−1.

Since by [30, Thms. III.4.2 and III.5.3] the balanced chromatic polynomial depends only on
which circles are balanced and it equals (up to a factor of λ) the characteristic polynomial of
Latb Φ, we have Equation (11.2). (This proof is from [31, Ch. III]. Later others gave various
proofs. Apparently the first published was that of Edelman and Reiner, whose proof is by

an induction table for their arrangement A
(l)
r,I with I = [−l, l] [11, p. 321]; this arrangement

(with their l, r = our k, n) is the canonical linear hyperplane representation of L0([−k, k]Kn)
[30, §IV.4], whose characteristic polynomial is given by (11.3). Athanasiadis’ proof in [2,
Thm. 5.1] is essentially the same as ours.)

The geometric semilattice Cn(k) and related geometric lattices are very interesting objects.
Here I will merely point out that an element of Cn(k) can be regarded as a kind of structured
partition I call a weakly composed partition of [n] (more specifically, a k-composed partition;
strictly composed if k = 1). To explain this we first define a k-composition of a set B: it is
an ordered weak partition of B, that is, a sequence (S0, S1, S2, . . .) of pairwise disjoint sets
whose union is B, in which there is no consecutive subsequence of k empty sets except in the
infinite terminal string of nulls; for normalization we also require S0 6= ∅ unless all Si = ∅.
If k = 1 this is just a (strict) composition of B, i.e., an ordered partition (S0, S1, . . . , Sl), with
a terminal string of null sets attached for notational consistency. A k-composed partition
of [n] is a partition of [n] together with a k-composition of each block. One can explicitly
describe the refinement ordering, interval structure, and characteristic polynomial of Cn(k),
LatL0([−k, k]Kn) (which consists of all k-composed partitions and ordinary partitions of
[n]), and other related lattices and semilattices in terms of k-composed partial partitions
[31, Ch. III].

Recently Gill [15, 16] has studied the weakly composed partition semilattice Cn(k) in the
guise of the intersection semilattice of the canonical affine hyperplanar lift representation of
[−k, k]Kn. In particular, pH(λ) = λ2 − (2k + 1)

(

n

2

)

λ+
[

3k(k + 1)n+ 3n−1
4

](

n

3

)

generically.

Example 11.5. Figure 11.3 displays Φ4 = [−2, 2]K4 and the generic planar arrangement
H(Φ4;Q) with Q1 = (0, 0), Q2 = (0, 2), Q3 = (2, 1), Q4 = (3, 2). Since χb

Φ4
(λ) = λ(λ − 9)3,
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Figure 11.3. The gain graph Φ4 = [−2, 2]K4 and a portion of the Pythago-
rean line arrangement of Example 11.5. The heavy lines are the perpendicular
bisectors. In the gain graph, in each set of parallel edges the gains are the
same; they are only marked for edges e12.
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the characteristic polynomial pH(λ) = λ2 − 39λ + 299. Thus there are 330 regions, 270 of
them bounded.

From Corollary 10.5 and Lemma 10.7 with q = (2k + 1)
(

n

2

)

, s2 = 3(2k + 1)2
(

n+1
4

)

, and

t = (3k2 + 3k + 1)
(

n

3

)

(or with greater difficulty from (11.2)) we get the first few Whitney
numbers of Cn(k) and the face and flat numbers in two dimensions.

11.5. The same, without bisectors. We take Φ′
n = {±1,±2, . . . ,±k}Kn to be the addi-

tive real gain graph on n vertices that has an edge of gain i between each pair of vertices
for every i = ±1, . . . ,±k. That is, it is the example of Section 11.4 without the bisectors
of the reference segments. This Pythagorean gain graph gives us 2k perpendiculars to each
reference line, placed symmetrically about the bisector and equally spaced on each side of it,
identically spaced—in Pythagorean coordinates—along all reference lines, but omitting the
bisector.

The balanced chromatic polynomial, χb
Φ′

n
(λ), can be computed from (11.1) by [31, Prop.

I.4.4]. Omitting the details, which will appear in [31, Ch. III], the result is that

(11.4)
∞
∑

n=1

χb
Φ′

n
(λ)

zn

n!
= eλf(z) − 1,

where f(z) is determined by

f ′(z) =
∞
∑

j=0

(

λ−jk−1
j

)

zj and f(0) = 0.

From this one can extract the balanced chromatic polynomial itself and thus the Whitney
numbers of the first kind and, by the methods of Section 10, the region and bounded region
numbers in any dimension d.

Replacing z by −z, if we set λ = −1 Equation (11.4) becomes the exponential generating
function for rn, the number of regions of H(Φ′

n;Q) when d = n − 1. If we set λ = 1 it
becomes the exponential generating function for the number of bounded regions.

In the plane we can compute all Whitney number from Lemma 10.7 and the values q =
2k
(

n

2

)

, s2 = 12k2
(

n+1
4

)

, and t = k(k + 1)
(

n

3

)

. Then pH(λ) = λ2 − 2k
(

n

2

)

λ+ 3k(kn+ 1)
(

n

3

)

.

Example 11.6. In Figure 11.4 are Φ′
4 = {±1,±2}K4 and its Pythagorean line arrangement

H(Φ′
4;Q). From the general planar characteristic poynomial we have pH(λ) = λ2−24λ+216.

There are 241 regions and 193 are bounded.

Example 11.7. Just two perpendiculars to each reference line. We specialize to the case
k = 1, that is, Φ′

n = {+1,−1}Kn. We may look upon Φ′
n as a directed graph, an edge e with

ϕ′
n(e; i, j) = +1 being interpreted as an arc directed from i to j. Thus we are discussing

the poise lift matroid of the complete digraph. (See the definition of poise bias in [30, Ex.
I.6.5].)

Here the exponential generating function of rn has a remarkable expression. The Cata-
lan numbers Cn = 1

n+1

(

2n

n

)

have ordinary generating function fC(z) =
∑∞

0 Cnz
n =

(

1 −√
1− 4z

)

/2z, as is well known. Then f(−z)
∣

∣

λ=−1
= fC(z)− 1 so

1 +
∞
∑

n=1

rn

zn

n!
= efC(z)−1 = exp

(

1−
√

1− 4z

2z
− 1

)

.
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Figure 11.4. The gain graph Φ′
4 = {±1,±2}K4 and part of the Pythagorean

line arrangement from Example 11.6. The heavy lines are the perpendicular
bisectors.
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The explanation is found in the observation of Postnikov and Stanley that (in our language)
H([−1, 1]Kn;Q) with the affinographic reference points of Example 3.2—equivalently, any
affinely independent reference points—has n!Cn regions [21, Prop. 7.2]. Thus they call it
and H({±1}Kn;Q) with similar reference points Catalan arrangements [21, (3.8)].

We mention that Athanasiadis [2, Thm. 5.3] has a different formula from ours for con-
verting the exponential generating function of p(Latb[−1, 1]Kn;λ) to that for p(Latb Φ′

n;λ),
as do Postnikov and Stanley though stated there only for the number of regions ([21, Thm.
7.1], announced in [25, Thm. 2.3]. The application to the characteristic polynomial follows
from the exponential formula of [25, Thm. 1.2]).

11.6. Symmetric, uniform Pythagorean hyperplanes: even case. Here the Pythago-
rean gain graph is Φ′′

n = {±1,±3, . . . ,±(2k − 1)}Kn, in which each pair of vertices is joined
by 2k edges whose gain values are ±i for every odd i ≤ 2k (or, what is essentially the same,
±δi for any fixed δ > 0). This gain graph corresponds to an arrangement of 2k perpendic-
ulars to each reference line, symmetrically placed around the bisector and—in Pythagorean
coordinates—identically spaced along all reference lines.

Athanasiadis [2, Thm. 5.2] has produced a remarkable expression for pLatb Φ(λ) (that is,
χb

Φ′′

n
(λ)/λ) when Φ has a form that includes our examples from Sections 11.4, 11.5, and

11.6. For A a finite set of positive integers and A0 = A ∪ {0}, let Φn = (±A)Kn and
Φ0

n = (±A0)Kn. By taking A = {1, 3, . . . , 2k− 1} in Athanasiadis’ theorem we find that, for
sufficiently large integers λ, p(Latb Φ′′

n
0;λ) is the coefficient of xλ−2n in the expression

(n− 1)!

(

1 + x2k−1

1− x2

)n

.

The conclusion is that Latb Φ′′
n
0 has characteristic polynomial

p′′n
0
(λ) =

n
∑

i=0
even

(

n

i

)

(

λ+i
2
− 1− ki

)

n−1

=
n
∑

i=0
odd

(

n

i

)

(

λ+i
2
− 1− ki

)

n−1

and therefore

p′′n
0
(λ) = 1

2

n
∑

i=0

(

n

i

)

(

λ+i
2
− 1− ki

)

n−1

for n > 0. Now we apply the argument of Athanasiadis [2, Thm. 5.3] to obtain the polynomial
of Latb Φ′′

n:

p′′n(λ) =
n
∑

l=1

S(n, l)p′′l
0
(λ)

= 1
2

n
∑

l=1

l
∑

i=0

S(n, l)

(

l

i

)

(

λ+i
2
− 1− ki

)

l−1

for n > 0. From this the characteristic polynomial of a generic arrangement H(Φ;Q) in Ed

can be found via Theorem 10.3.
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For applications probably the most significant case is that in which k = 1. This case is
easier to analyze because it is the same as Example 11.7.

A triangle cannot be balanced in this example, no matter what value k has. Hence t = 0,
q = 2k

(

n

2

)

, and s2 = 12k2
(

n+1
4

)

in Corollary 10.5; these give the face and flat numbers

of a generic planar H(Φ′′
n;Q). Thus pH(λ) = λ2 − 2k

(

n

2

)

λ + 12k2
(

n+1
4

)

generically. In this
example we can go further: since there are no balanced triangles we can compute the number
of balanced quadrilaterals and use this to get the Whitney numbers needed for the face and
flat numbers in E3. Omitting the somewhat lengthy details, the Whitney numbers wi3 are
given by Lemma 10.7 with Fn−3 = k3(n3 − 5n− 12)

(

n

3

)

and t′ = 6
[

16
(

k+1
3

)

+ 3k
](

n

4

)

.

Example 11.8. We take k = 2 and n = 4 so that we need Φ′′
4 = {±1,±3}K4. However,

so that perpendiculars of each parallel class will be separated by the same distance as in
Example 11.5, we divide the gains by 2, giving gain graph 1

2
Φ′′

4 = {±1
2
,±3

2
}K4. This has no

effect on balance, so the face and flat counts remain the same. The solid lines in Figure 11.5
display the gain graph and corresponding generic Pythagorean arrangement. Adding in the
dashed lines we have 1

2
Φ′′

4
0 = {0,±1

2
,±3

2
}K4 and the associated Pythagorean arrangement.

12. The voter debates

Once Good and Tideman had introduced the geometrical model of bisecting hyperplanes5

it was easy to imagine more elaborate but also plausible variations and to ask for the num-
ber of possible outcomes. In the more elaborate models, an outcome may no longer be a
simple preference ranking. For example, one of the variations is to allow discrete degrees of
preference; an outcome is then the whole set of degrees of preference the voter feels between
each pair of candidates.

In the Good–Tideman model, the voter must choose one over the other for every pair of
candidates. (We ignore borderline cases.) A more sophisticated voter would expect to see
a measurable difference before forming a preference. We can grade models by the degree
of sophistication the voter shows in comparing two candidates. A voter at the lowest level
simply chooses one of the two. At the second level she has three options: prefer the candidate
who is significantly superior or remain neutral if neither is.6 A voter in the third level of
sophistication distinguishes four choices: strong or weak preference for either candidate. One
at the fourth level adds the option of remaining neutral. And so forth.

Each level of sophistication can lead to a variety of models depending on how the voter
chooses to define the boundaris between different options. Let us assume the choice is always
made on the basis of modified Pythagorean coordinates as in Equation (3.1): in other words,
the regions within which the voter chooses a particular option for evaluating Qi vis-á-vis Qj

are demarcated by hyperplanes perpendicular to the line QiQj, measured by Pythagorean
coordinate times some power of the distance between the candidates. (Otherwise we need
a new theory.) Then we have to consider how the voter might place the choice boundaries.

5The general idea of bisecting hyperplanes’ modeling voter choice was well known. As an application of
Voronoi diagrams, it uses only parts of hyperplanes. It was the new idea of Good and Tideman to consider
the entire candidate ranking that gave a role to whole hyperplanes. I am not aware of any other similar
work.

6The idea of an “indifference region” appeared (independently and somewhat earlier) in the nearest-
neighbor study of Cacoullos [7, §5]. The delimiting hyperplanes of Cacoullos’ indifference region are fixed by
proportional distance, not Pythagorean coordinate, and are based on affinely independent reference points.
Still, this is the only place I know of that treats what we would call unbalanced gains.
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Figure 11.5. The gain graphs and line arrangements of Example 11.8. The
heavy lines (which are dashed) are the perpendicular bisectors.
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There are several directions of classification. First is the rule of placement: the rule may
specify for each hyperplane its Pythagorean coordinate, its actual distance from the mid-
point of segment [Qi, Qj], its proportional distance as a fraction of d(Qi, Qj), or some other
exponent α in (3.1). Second is homogeneity: the same rule of location may be used for every
pair of candidates, or the voter may emplace boundaries at random (random, of course, to
the observing sociometrician, who does not know the voter’s reasons). Third is symmetry:
the boundaries for comparing Qi with Qj may be symmetrical, or they may not. Fourth
is uniformity: the boundary hyperplanes for a given pair of candidates may be uniformly
spaced (in the chosen measurement scheme) or they may not.

Thus there are five dimensions along which we can classify voting models of our general
type. Fortunately for us, they lead to just a few mathematical situations.

Let us suppose the voter is at a definite level of sophistication, say the M -th level, where
there are M + 1 options divided by M hyperplanes between each pair of candidates.

If the voter applies the distance or proportional rule of placement or any other rule of
type (3.1) with α 6= 0, then (in general) the only thing that matters is whether she chooses
to use bisecting hyperplanes. (That is what we learn from Theorem 8.1.) If she follows a
symmetrical demarcation scheme with odd M , there will be a bisector between each pair of
candidates and we are in the situation of Section 11.3 (Section 11.1 if M = 1). Otherwise
she will not (in general) take any bisectors and we have the example of Section 11.2 with
m = M .

If the voter uses a placement rule with random hyperplanes, the same remarks apply. We
will be in Section 11.2 with m = M unless she deliberately chooses bisectors, when Section
11.3 or 11.1 applies.

A homogeneous Pythagorean placement rule leads to more varied mathematics.
A uniform symmetrical rule puts us in Section 11.1 (Corollary 11.3) if M = 1: this

is the original case where there is one dividing hyperplane for each pair and it is the bi-
sector (since it is symmetrically placed). When M > 1, the voter is using dividing hy-
perplanes with coordinates ψij(h) = 0,±δ, . . . ,±lδ when M is odd, M = 2l + 1, but
ψij(h) = ±δ,±3δ, . . . ,±(2l − 1)δ when M = 2l is even. This puts us in Section 11.4 if
M is odd and Section 11.6 if M is even, Example 11.7 if M = 2.

Asymmetric rules in general seem implausible, but there is one that deserves attention.
That is where the voter always prefers one in each pair of candidates (M = 1, the first
level of sophistication) but has a biased decision rule instead of simply choosing the nearer
candidate. Even an unsymmetrical decision rule gives an arrangement of hyperplanes with
balanced Pythagorean gain graph, if the voter has for each candidate Qi what we might call
a “prior bias” qi (whether a preference or a prejudice) and the dividing hyperplane hij has
Pythagorean coordinate ψij(hij) = qi − qj; that is, it is offset due to the bias. The more qj

exceeds qi, the more hij will retreat from Qj in the direction of Qi, so favoring Qj. Then
Corollary 11.1 tells us that the voter has the same number of possible rankings as in Good
and Tideman’s original model.

The actual preference rankings that correspond to the regions of H are wholly unknown,
although they must be somehow related to the oriented matroid structure of H.

Research Problem 4. (a) What structure is there to the set O of preference orderings that
is realized by a generic arrangement of all the perpendicular bisectors of n reference points
in d-space? (O is not, as (1.1) suggests, the set of all permutations of {1, . . . , n} that have
at least n − d cycles. An easy example of 4 planar points suffices to disprove that.) (b)
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Which orderings correspond to unbounded regions? (c) Which new orderings appear as the
dimension rises? (d) Characterize the sets O that arise from all different possible generic
reference points in fixed dimension.

Research Problem 5. Generalize Research Problem 4 to arrangements of only some perpen-
dicular bisectors.

Research Problem 6. Generalize Research Problem 4 to arrangements with indifference re-
gions or degrees of preference.

13. Further research

13.1. Nongenericity. We observed in the introduction that an exact description of generic
reference points is unknown. This is unsatisfactory.

Research Problem 7. Given a real, additive gain graph Φ, characterize genericity (with re-
spect to Φ) of reference points. That is, what are the properties of Q that guarantee that
L(H(Φ;Q)) is generic? At a minimum, characterize genericity amongst those Q having ideal
general position.

13.2. Special position. Suppose we require certain subsets of the Qi to be affinely depen-
dent but ask for genericity in other respects; or suppose we even prescribe certain paral-
lelisms. It should still be possible to deduce the number of resulting regions by abstract
combinatorial means, similar to those of this paper but considerably more complex. Prob-
ably, the essential information about the reference points Qi is specified by their affine
dependencies and the configuration at infinity of the lines they determine. Abstractly these
would be described by their affine dependence matroid and a comap of that matroid to
account for behavior at infinity.

Research Problem 8. Develop the structure theory of L(H(Φ,Q)) and L(HP(Φ,Q)) for ref-
erence points that have (a) specified affine dependencies, (b) simple position but specified
behavior at infinity, or (c) both specified affine dependencies and specified behavior at infin-
ity, but are otherwise generic. Especially, compare their (semi)lattice structures to those of
Latb Φ and LatL0(Φ).

Part (a) will be solved by defining the complete lift matroid of a biased graph with a
matroid given on the vertex set, which is a problem of great intrinsic interest.

Research Problem 9. Develop the enumerative theory of perpendicular dissections whose
reference points have affine or infinite special position or both, but are otherwise generic.

13.3. Hyperbolic dissections. The way Good and Tideman argued for their arrangement
of bisectors was this: The voter prefers the nearer of two candidates. The boundary between
preference domains is the locus of points equidistant from both candidates. That is the
perpendicular bisector of the connecting line segment.

If we apply the same reasoning to a more sophisticated voter, it leads us to a hyperbolic
rather than a hyperplanar dissection. Suppose the voter has second-level sophistication with
the rule that she prefers one candidate only if its nearness exceeds the other’s by some
threshold δ. That is, if the voter falls in the domain where |d(P,Qj) − d(P,Qi)| < δ, she
is neutral. If d(P,Qj) − d(P,Qi) > δ, she prefers Qi. This mathematics gives us three
preference domains separated by the hyperboloid of revolution |d(P,Qj) − d(P,Qi)| = δ.
The theory of hyperplane dissections does not apply.
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Problems of dissection by entire curved subspaces are little studied. The planar hyperbolic
Dirichlet tessellations (that is, Voronoi diagrams) of [1, §2] are closely related, though in their
subject (that of generalized Voronoi diagrams) only parts of curves and surfaces are employed.
There is a partial theory of topological dissections [28], which are more complicated than
linear dissections because one has to determine not only the semilattice of intersections but
also the topology of each intersection and each region, or at least their Euler characteristics.
It does seem possible that the special properties of hyperboloids on shared foci may make it
possible to solve some cases at least of the hyperbolic preference ranking problem.

Research Problem 10. Solve the second-level hyperbolic voter ranking problem in the plane.
The problem is to determine the maximum number of possible preference rankings if the
voter P prefers the nearer of candidates Qi and Qj if |d(P,Qi) − d(P,Qj)| > δij and is
neutral otherwise. The δij are positive numbers that may be taken all equal if that helps the
solution.

Research Problem 11. Decide whether the solution to Problem 10 is generic. That is, is the
set of choices of candidates for which the maximum is attained dense in (E2)n?

13.4. Other scalar fields. Let us speculate about an inner product space over an arbi-
trary field F . (All the opinions in this section are unverified wish and hope.) Our results
should largely apply to any ordered field. Regions, faces, and the intersection semilattice are
defined; the field is topologized so generic position exists; everything seems to work except
for a possible difficulty with gains, explained below. Over an unordered field there is an
intersection lattice but there are no regions or faces. The fundamental problem there is
that of genericity. Defining it would seem to call for a topology on F , but it would be very
interesting to see a definition that avoids this, perhaps by basing genericity on a suitable
subfield like Q or the p-adics.

Finite fields would require an altogether different approach.
The appropriate gain group for an arbitrary inner product space might not be F+. Let D

be the set of values of 〈v, v〉 − 〈w,w〉 for v, w ∈ F d, where 〈x, y〉 is the inner product. The
gains of a Pythagorean gain graph over F must be chosen in D. As long as D is an additive
group (as for instance when F = Q or R, so D = F ; or when F = C, so D = R), the parts
of our theory that involve switching, as required for cross-sections and induced arrangments
(Section 7), should carry over.

Complex space is especially interesting. Every coefficient of the characteristic polynomial
of H has meaning. The integral cohomology of the complement of the arrangement is
determined by the intersection semilattice L(H) and the rank of the ith cohomology group
equals |wd−i(L(H))|, the magnitude of the (d − i)th Whitney number of the first kind, by
the theorems of Orlik and Solomon ([19], [20, Ch. 5]).
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