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A graph 1 is parity embedded in a surface if a closed path in the graph is orienta-
tion preserving or reversing according as its length is even or odd. The parity
demigenus of 1 is the minimum of 2&/(S) (where / is Euler characteristic) over all
surfaces S in which 1 can be parity embedded. We calculate the maximum parity
demigenus over all loopless graphs of order n. As a corollary we strengthen the
calculation by Jungerman, Stahl, and White of the genus of Kn, n with a perfect
matching removed. We conclude by discussing numerous related problems. � 1997

Academic Press

1. INTRODUCTION AND THEOREMS

Suppose we have a graph 1 without loops, embedded in a surface so that
every odd polygon (the graph of a simple closed path of odd length),
regarded as a path in the surface, reverses orientation while every even
polygon preserves it. What is the smallest surface in which this is possible?
That is, what is the minimum demigenus d(S)=2&/(S) over all embedd-
ing surfaces S? We call this kind of embedding parity embedding1 and the
smallest d(S) the parity demigenus of 1, written d(&1 ). Euler's polyhedral
formula, together with the obvious fact that a face boundary must (with
trivial exceptions) have length at least 4, implies that

d(&1 )��m
2 |&n+2 (1)

if 1 is connected and has no multiple edges and m�2, where n=|V |, the
order of 1, and m=|E|, the number of edges. Contrariwise, the obvious
upper bound on d(&1) in terms of the order is d(&Kn), as multiple edges
do not affect parity embeddability. Here we establish the value of this
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upper bound by proving that, if n�6, d(&Kn) equals the lower bound
imposed by Euler's polyhedral formula.

Theorem. For every simple graph 1 of order n,

0, if n=1, 2,

d(&1 )�d(&Kn)={3, if n=5, and (2)

W 1
4n(n&5)X+2, if n�3 and n{5.

One can interpret this as a theorem about symmetric embedding in
orientable surfaces. Let 1� be a bipartite graph with bipartition
V=V1 _ V2 , embedded in Tg (the sphere with g handles) so that an
involutory autohomeomorphism { of Tg whose quotient is Ug+1 (the
sphere with g+1 crosscaps) carries 1� to itself while interchanging the two
independent vertex sets V1 and V2 . The minimum possible g��call it the
antipodal genus of 1� with respect to the automorphism induced by
{��equals d(&1 )&1, where 1 is the quotient of 1� by {, provided that 1�
is connected. Now suppose that 1� is Kn, n with a perfect matching Mn

removed and with the automorphism : associated to Mn , that is, which
exchanges the endpoints of each deleted edge. Then the antipodal genus is
d(&Kn)&1, if n�3. How does this compare with the genus of Kn, n"Mn ,
which is the minimum g when the embedding is unrestricted? It turns out,
rather surprisingly, that they are almost always the same.

Corollary 1. Let n�1, let Mn be a perfect matching in Kn, n , and let
: be the associated automorphism of Kn, n"Mn . Then the genus of Kn, n "Mn

and its antipodal genus with respect to : both equal W 1
4 (n&1)(n&4)X ,

except that the antipodal genus is 2 when n=5.

The genus was previously evaluated by Jungerman, Stahl, and White by
a different method in [3] (or see [8, Section 13�7]). However, since their
proof for the case n#1 (mod 4) (the only case they published) does not
provide an antipodal embedding, their work does not yield the antipodal
genus.

Since in parity embedding, multiple edges have no effect but loops, on
the contrary, can alter the minimal surface, one would naturally ask also
the largest parity demigenus of an arbitrary graph of order n, not
necessarily simple. It obviously is d(&K%n), where K%n denotes Kn with a
loop at every vertex. That quantity equals W 1

4n(n&3)X+2 for n�6 (as we
showed in the companion paper [11]), larger by about 1

2n than the loop-
free upper bound d(&Kn).

Before the proof, let us see how parity embedding fits into the more
general scheme of orientation embedding of signed graphs. A signed graph
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(a graph with signed edges) is said to be orientation embedded in a surface
if it is embedded so that a closed path preserves orientation if and only if
its sign product is positive. Parity embedding is therefore the same as
orientation embedding of &1, the all-negative signing of 1. Let us call the
demigenus d(7) of a signed graph 7 the smallest demigenus of any surface
in which it orientation embeds. I propose that d(&Kn) is the greatest value
attained by d(1 ) over all signed simple graphs of order n. Equivalently,

Conjecture 1. d(&Kn) is the largest demigenus of any signed Kn .

I discuss the meaning and the plausibility of this conjecture in Section 4a.

2. THE PROOF OF THE THEOREM

For the proof we need two things: a lower bound on the parity
demigenus of Kn and a minimal parity embedding. Let =n denote the right-
hand side of (2).

Proof that d(&Kn)�=n . From (1) we get Euler's lower bound,

d(&Kn)��n(n&5)
4 |+2 (3)

when n�3. This takes care of all nontrivial cases except n=5, where the
right side of (3) falls short of the actual parity demigenus =5 . We need to
prove there is no parity embedding of K5 in U2 . We do so by demon-
strating that any such embedding must have every face a quadrilateral.
Since K5 has only one quadrilateral embedding, which is orientable2 so it
is in T1 rather than U2 , it follows that d(&K5)�3.

Suppose K5 did have a parity embedding in U2 . Being minimal the
embedding would be cellular: every face would be an open 2-cell. Let fi

denote the number of faces whose boundaries have length i. (We think of
the boundary �F of a face F as a walk in the graph. If an edge appears
twice on a face boundary we therefore count it as two edges in �F.)
Then fi=0 unless i=4, 6, 8, ... because a complete walk around a face
boundary must preserve orientation. Consequently 2m=4 f4+6f6+ } } } =
4f +2( f6+2 f8+ } } } ). Since by Euler's formula f =m&n+/(U2)=5, all
faces must be quadrilaterals.

Proof that d(&Kn)�=n . Figures 1 to 11 show the existence of a parity
embedding of Kn in U=n for all n�3 by exhibiting embeddings for 3�n�8
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and inductive enlargements to handle n�9, one series for odd order and
another for even order. We begin with instructions for reading the
diagrams.

A crosscap is a hole whose opposite boundary points are identified. It is
drawn as a circle or oval with a twiddly curve inside. In Fig. 1 the outer
circular boundary also denotes a crosscap; that is, opposite points on it are
identified.

A handle is drawn as a pair of circular holes (called its ends) whose
boundaries are identified with each other in opposite senses or in the same
sense. In the former case the handle preserves orientation with respect to
the plane of the figure, which means that a closed path passing through
that handle and no other handle or crosscap is orientation-preserving. Such
a handle is a prohandle. In the latter case the handle reverses orientation;
it is an antihandle. (Usually only one of the two ends is depicted��this is
the case for the ``outside handles'' to be defined later.)

A crossed quad is a union of two closed quadrilateral faces that is
homeomorphic to the surface figure consisting of a quadrilateral region,
bounded, say, by a polygon wxyzw, that contains one crosscap and edges

Fig. 1. A parity embedding of K4 in the projective plane U1 , containing a parity embedding
of K3 .

328 THOMAS ZASLAVSKY



File: 582B 176605 . By:XX . Date:02:07:01 . Time:04:46 LOP8M. V8.0. Page 01:01
Codes: 1391 Signs: 972 . Length: 45 pic 0 pts, 190 mm

Fig. 2. A parity embedding of K5 in U3 . (This figure is atypical in having a vertex on the
boundary. That makes it harder to verify its correctness, but the drawing has pleasing
symmetry.)

wy and xz that pass through the crosscap. These edges divide the region
into two faces bounded by the polygons wxzyw and wyxzw. (See Fig. 7a for
an example. The faces in a crossed quad are convenient to use as attach-
ment faces��to be defined later��because two vertices that are adjacent
along the crossed quad's boundary are diagonally opposite in one of its
constituent faces.)

Any path has a sign, calculated by starting with a + sign and negating
once for each crosscap or antihandle through which the path passes. Thus
a closed path has positive sign if and only if it preserves orientation. Also,
the sign of a concatenation of two paths (say from P to Q and Q to R)
equals the product of the signs of the paths. In particular, the sign of a
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Fig. 3. A parity embedding of K6 in U4 . It is presented as an orientation embedding of
&K [2, 4, 6]

6 , which consists of +K 3, 3 and two &K3 's. (In Figs. 3 to 10, positive edges are solid
and negative ones are dashed.)

polygon of length l in the graph is (&1) l if it has evenly many positive
edges. Thus we have a parity embedding if we make every edge negative,
but more generally, also, if we arrange things so that the positive edges
form a complete bipartite graph on V=V(Kn) and, as a consequence, the
negative edges form two complete subgraphs on complementary vertex
subsets X and Y=V"X. Such a signing is called antibalanced. We denote
it by &K X

n or, equivalently, &K Y
n . It is this kind of signing that I employ

in Figures 3 to 10 to keep track of the edge signs. The significant vertices
are bicolored, by solid or hollow circles. An edge should be negative, as
calculated by the path sign rule above, precisely when its endpoints have
the same color. (The coloring is not consistent from diagram to diagram;
its purpose is solely to help verify the correctness of the edge signs within
each figure.)
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Fig. 4. K7 , parity embedded in U6 . It is presented as &K [1, 2, 3, 5]
7 , i.e., +K4, 3 and a &K4

and (in the face 245637 of the +K4, 3) a &K3 . The initial pairing is 16; F16 is the attachment
face. The letters a, b, c indicate the alignment of the first odd gadget.

Now we describe the minimal parity embeddings. Embeddings for
3�n�8 are shown in Figs. 1 to 5. We construct embeddings for higher
order inductively. In outline, starting from an embedding of K7 or K8 we
repeatedly add a two-vertex ``gadget'' to get embeddings for all larger odd
or even orders. As the induction proceeds we alternate between two types
of gadget: a ``hex'' gadget, which requires a hexagonal face, is added to Kn

when n#7 or 10 (mod 4) (see Figs. 6, 8, and 10), and a ``quad'' gadget,
which needs only quadrilateral faces, is added when n#9 or 8 (in which
cases there is no hexagonal face anyway) (Figures 7 and 9). In each em-
bedding the parity property is assured by making the edge signing
antibalanced. Note that the odd hex gadget has a special form when n=7
(Fig. 6).
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Fig. 5. A parity embedding of K8 . It is presented as an orientation embedding of
&K [1, 4, 5, 8]

8 . The embedding begins with +K4, 4 in the torus (solid lines). Crosscaps and an
antihandle are added to accomodate the two &K4 's that complete &K [1, 4, 5, 8]

8 . The initial
pairing is 12, 34, 56, with corresponding attachment faces Fij . The environment for the initial
even quad gadget is the crossed quad Q _ Fab . The gadget is attached in Q to vertices a=7
and b=8.

In greater detail, a gadget added to an embedded Kn is inserted in a
suitable environment, which is a portion of the embedding having a certain
shape (which, with an exception at n=7, is constant within each residue
class of n modulo 4). The environment is a union of closed faces of the
embedded graph; its boundary therefore consists of some edges and vertices
of Kn and its interior consists of open faces and edges (but no vertices, as
it happens). The environments are shown in Figs. 4, 5, 7, 8, 9, and 10.
Notice that some vertices are unlabelled: they play no part in adding a
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Fig. 6. The special odd hex gadget, embedded in its environment in K7 . The initial pairing
is 16 with attachment face F16 . At the next induction step, 24 and 37 will be paired with
attachment faces F24 and F37 .

gadget, so they can be anything. On the other vertices, different labels
signify that the vertices are actually different.

Gadget insertion can be viewed as a two-step process. First, the interior
of the environment is removed and replaced by a surface which contains a
signed K2 and edges joining the new vertices to some of those on the
boundary of the environment. (We call these latter vertices direct. The
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Fig. 7. (a) The odd quad gadget to be inserted in the parity embedding of K9+4s . Here the
gadget is in its environment, the latter being the face of K9+4s that is surrounded by the outer
boundary of this picture. The environment for the next odd hex gadget is H _ H$ _ Fbh . The
pairing for that gadget is the same as for this one. At the subsequent step, when the next odd
quad gadget is added, Fbh will be the attachment face for the pair bh. (b) The environment
for the odd hex gadget, from Fig. 7a, redrawn to resemble Fig. 8a. The asterisked letters
correspond to the letter labels in Fig. 8a.

remaining old vertices are called indirect.) This replacement surface con-
tains crosscaps and possibly a handle to permit all the connecting edges to
be drawn with appropriate sign and no crossings.

In the second step one adds outside handles to carry edges from the new
vertices to the indirect old ones. Each such handle carries edges to two
indirect vertices. The two indirect vertices, say p and q, must therefore be
on a common face Fpq , called their attachment face, which the handle
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Fig. 7��Continued

reaches from a suitable face of the replacement surface. To make all this
possible one wants in advance, besides the environment, a pairing of the
indirect vertices such that all the attachment faces are distinct. In order to
guarantee suitable edge signs we choose an Fpq in which p and q are
diagonally opposite. We place in Fpq one end of the handle carrying edges
to p and q (see Fig. 11); from there the handle edges can be distributed to
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Fig. 8. (a) The environment in K11+4s for the general odd hex gadget. It consists of the
hexagonal face H and the crossed quad H$ _ Fde . The two parts of the environment share
some vertices and edges, but only the common vertex c plays any role in the induction.
(b) The odd hex gadget, embedded in its environment. At the next induction step, ac and de
will be paired with Fac and Fde as attachment faces. The next gadget, an odd quad gadget, will
be inserted in face Q; its direct vertices will be the unpaired vertices g, b, h.
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Fig. 8��continued

p and q so that the sign contribution to an edge at this end of the handle,
when calculated within Fpq , will be the same for p and for q. At the gadget
end of the handle we arrange things so that the two edges from the two
new vertices (call them z1 and z2) to each of p and q have the same sign
if z1z2 is negative, but opposite signs if z1 z2 is positive. Thus the polygons
pz1z2 p and qz1z2q will be negative, just as parity embedding requires. (It
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Fig. 9. The even quad gadget for K8+4s , shown inserted in its environment (a crossed quad
of K8+4s) and attached at vertices a and b. The new vertices are e=9+4s and f =10+4s.
Fab and Fef will be the attachment faces for the pairs ab and ef, ab at the next step (inserting an
even hex gadget in face H) and ef at the subsequent one (inserting the next even quad gadget).

makes no matter whether the handle itself is a pro- or antihandle, so in the
drawings we can ignore the exact orientation type of the outside handles.)

Now we come to the last crucial point. In order to make induction
possible, adding the gadget must produce an environment for the next
gadget insertion: the hex gadget must generate the environment for the
quad gadget, and vice versa. Furthermore, it must admit a suitable pairing
of vertices which are outside the new environment. To explain how we
meet these requirements we note that the new surface consists of two parts,
the replacement surface and the remnant of the old surface, both modified
by the addition of outside handles. The boundary between the two parts we
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Fig. 10. The even hex gadget, shown inserted in the face H=aef bcd of K10+4s . (These
a, b, c, d, e, f, as well as the face Fab , are the same as in Fig. 9.) The next even quad gadget
will go into the environment Q _ Fgh ; a*= g and b*=h will be the attaching vertices.

call the border. Bear in mind that each outside handle consists of two cir-
cular holes with identified boundaries, one hole in the remnant and one in
the replacement surface; thus it is topologically a circle. The border there-
fore consists of the original environment's boundary and the outside
handles. Note that the border is transverse to the embedded Kn+2; they
intersect in a finite set of points, none a vertex.

The border may cut a face F of the new embedding into components,
each of which is clearly a topological disk. A component is a pseudopod if
its boundary consists of a path in the border and a path in �F and contains
exactly one vertex. One can check in Figs. 6, 7a, 8b, 9, 10, and 11 that
every face cut by the border has exactly one component that is not a
pseudopod.

Figures 6, 7, 8b, 9, and 10 show the new environments, which lie within
the replacement surface except, in the odd case, for a pseudopod. The new
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Fig. 11. An attachment face Fpq , showing the indirect vertices p and q, the end in Fpq of the
outside handle, the four edges (dashed) that run through the handle to p and q, and the new
attachment face F*pq . (The choice of F*pq is arbitrary: either half of Fpq will do equally well.)

pairing is chosen to be the old one, together with up to two new pairs tu
whose attachment faces Ftu are in the replacement surface (again, except for
pseudopods). An old attachment face Fpq is broken up by the outside
handle and its edges but a new attachment face F*pq can be found by taking
a part of Fpq , as split up. (See Fig. 11.) The new face F*pq is outside the
replacement surface (aside from pseudopods). It follows that the new
attachment faces are all distinct.

The final verification of all requirements is by the reader's inspection of
Figs. 4 to 10.

We still should verify the demigenus of the surface resulting from addi-
tion of the gadget to a minimal parity embedding of Kn for n�7. A quad
gadget has one or two crosscaps and 1

2 (n&2) or 1
2 (n&3) outside handles

(one for each vertex pair), depending on whether n is even or odd. The
total increment to d(&Kn) is therefore n&1. Assuming d(&Kn)==n , we
have Kn+2 embedded in demigenus =n+(n&1)==n+2, as we wanted.
A hex gadget contains 2 crosscaps and 1

2 (n&4) outside handles if n is even,
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or 1 crosscap, 1 internal handle, and 1
2(n&5) outside handles if n is odd.

The total demigenus increment is therefore n&2. Assuming d(&Kn)=
=n , Kn+2 is embedded in demigenus =n+(n&2)==n+2 . Thus in every case
we have Kn+2 parity embedded in the correct surface. K

3. THE PROOF OF COROLLARY 1

Assume n�3, since n=1 and 2 are trivial. The antipodal genus follows
from the theorem. The genus of Kn, n"Mn is bounded below by
W 1

4n(n&5)X+1 because all faces have four or more sides, and, of course,
it is not greater than the antipodal genus. That leaves to be proved only the
possibility of embedding K5, 5"M5 in T1 , for which we refer to Fig. 12. K

Fig. 12. A toroidal embedding of K5, 5 "M5 .
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More is true: the quadrilateral embedding of K5, 5 "M5 is unique, a fact
that directly implies both the impossibility of an antipodal toroidal embed-
ding and, as well, the uniqueness of the quadrilateral embedding of K5 .
I intend to go more deeply elsewhere into this and other aspects of anti-
podal embedding, including a full proof of the basic fact that d(7)&1 is
the minimum genus for antipodal embedding.

4. DISCUSSION

4a. The Biggest Demigenus? Commentary on Conjecture 1

First of all, what does Conjecture 1 mean? Say we want to embed a
graph 1 in a surface so that certain polygons reverse orientation while the
remainder preserve it. It is not hard to show that, if this is possible at all,
then the orientation requirements amount to asking for an orientation
embedding of a signing _ of 1, whence the minimal surface has demigenus
d(1, _). Conjecture 1 therefore means that d(&Kn) is the smallest
demigenus that suffices to meet every feasible prescription of polygon
orientabilities in Kn .

I have both philosophical and observational reasons for believing the
conjecture. The philosophical reasons derive from the fact that &Kn is the
most unbalanced signing of Kn . A signed graph is balanced if every polygon
has positive sign. (Topologically, this means that every polygon should be
orientably embedded.) Two natural measures of imbalance are the frustra-
tion index (or line index of imbalance), l(Kn , _), which is the smallest
number of edges whose deletion results in a balanced graph, and the number
of unbalanced triangles, u3(Kn , _). Intuitively, one would expect more
negative edges to require more crosscaps and therefore a larger surface.
Petersdorf proved that &Kn maximizes l(Kn , _) [5]. As for unbalanced tri-
angles, &Kn maximizes u3(Kn , _), indeed it has no positive triangles at all.
Since a face boundary has to be positive, &Kn can have no triangular
faces, unlike any other signing of Kn ; from which it is plausible to believe
that a minimal orientation embedding of &Kn , as compared to any other
signed Kn , has the fewest faces and so (by Euler's polyhedral formula) the
largest demigenus. Of course, none of this is definitive.

I have observed, however, a remarkable fact: for n�7, there is an
enveloping graph for Kn : a signed graph 0n such that (i) d(0n)�d(&Kn)
and (ii) every signing (Kn , _), possibly excepting &Kn , is essentially a sub-
graph of 0n . (To be exact, every (Kn , _) is switching isomorphic to a sub-
graph of 0n or to &Kn . This means that, by switching _, i.e., by reversing
the signs of all edges between a vertex subset and its complement, one
creates a sign-preserving isomorphism between (Kn , _) and a subgraph of
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0n . Switching does not alter polygon signs, so it does not affect any orien-
tation-embedding properties of (Kn , _).) Evidently, the existence of 0n

immediately implies Conjecture 1. I propose:

Conjecture 2. For every n, an enveloping graph 0n exists with proper-
ties (i) and (ii).

Just to add a little more weight to the conjectures, I found that the
analogous properties of the Petersen graph P are true. That is, d(&P) is
the largest demigenus of any signing of P. Furthermore, P has an enve-
loping graph.

4b. Complete-Graph Analogs
A referee of [11] remarked that it is interesting that a simple induction

suffices to establish the parity demigenus of K%n��just as it does for Kn��yet
no such proof is known for the genus of Kn . I believe one can understand
this as analogous to the relative ease (as seen in [6]) of establishing the
genus of Kr, s . There are several reasons for regarding both antibalanced
and bipartite signed graphs as the nearest signed analogs of bipartite
graphs. This would lead one to suspect that they are relatively easy to treat.
The true signed analogs of the complete graph Kn are the complete signed
graph \K%n , which has all possible positive and negative links (nonloop
edges) and negative loops, and to a lesser extent the complete signed link
graph \Kn , which is the same without the loops. I believe that these have
demigenus equal or almost equal to the Eulerian lower bound, and that
proving this will be hard.

Conjecture 3. If n�4, then

d(\K%n)=�n(n&3)
3 |+2.

Conjecture 4. If n�2, then

d(\Kn)=�n(n&4)
3 |+2+\n ,

where \n=0 usually but in a few cases \n=1.

That the conjectured values (with \n=0) are lower bounds follows from
Euler's polyhedral formula. I have proved Conjecture 3 for n�9 by ad hoc
drawings and for n#3 (mod 12) by building on the known minimal orien-
table embedding of K12s+3 (for which see [7]). Also, I proved Conjecture 4
for n�7 (with \4=\5=\6=1 and the other \n=0) and for n#3
(mod 12) (with \n=0). However, I have no general method.
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On the other hand, I was able to solve \Kr, s , the complete signed bipar-
tite graph, which consists of two sets of r and s vertices and all positive and
negative links between them; so all the natural signed analogs of Kr, s ,
namely &K%n , &Kn , and \Kr, s , are now solved. (The proof is fairly
simple��much more so than Ringel's proof of the genus of Kr, s , although
of a similar nature. It will appear separately.)

4c. Forbidden Minors
We call &Kn a forbidden link minor for orientation embedding (in

Ud(&Kn)&1) if deleting any edge reduces the demigenus and contracting any
edge does the same. (The contraction of &Kn by an edge consists of
&Kn&1 , together with positive edges paralleling all the negative edges at
one vertex. For general definitions of link contraction and forbidden link
minors consult [9, Sections 1 and 10] or [10, Section 1].)

One at least of the all-negative complete graphs is known to be a for-
bidden link minor: &K5 (according to [10, Section 12, Example 8]). Could
any others be, as well? Euler's lower bound for n�6, and a glance at the
graphs with n�4, show that the only possibilities are those of orders
n=6, 7, 10, 11, 14, 15, ... . I proved that &K6 is not a forbidden link minor;
which led me to doubt that any larger &Kn 's could be. However, &K6 is
the sole exception. Elizabeth Klipsch has found that &Kn is after all a for-
bidden minor for all n#6, 7 (mod 4) with n�7. Moreover, &Kn"edge is
a forbidden link minor for n=6 and for all n#8, 9 (mod 4) with n�8. The
proofs are based largely on modifying the constructions used herein. The
details will appear elsewhere.

4d. Triangle-free Embedding
The lower bound (3) depends only on the fact that every face has at least

four sides. Thus we have a second corollary. Define #~ 4(1 ) to be the smallest
positive number h such that 1 has an embedding in Uh in which every face
has four or more sides.

Corollary 2. If n�3, then #~ 4(Kn)=d(&Kn).

Proof. It is clear that #~ 4(1)�d(&1 ) as long as 1 has an odd polygon.
Since #~ 4(&Kn) has the lower bound (3), our theorem implies that
#~ 4(Kn)=d(&Kn) when n�3 and n{5. As for n=5, we know that
2�#~ 4(K5)�d(&K5)=3. If #~ 4(K5) were less than d(&K5), K5 would have
a nonorientable quadrilateral embedding; but it does not. So equality
holds. K

In other words, relaxing the parity constraint on an embedding of Kn by
requiring just that there be no triangular faces and that the embedding sur-
face be nonorientable does not lower the number of necessary crosscaps.
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Hartsfield and Ringel [2] and Hartsfield [1] have previously evaluated
#~ 4(Kn) for n=4t+1�13 and n=4t�8 (the case n=4 being well known)
by providing current graphs for quadrilateral embeddings [2] or by induc-
tive constructions [1]. Thus Corollary 2 extends that result to all n�3.
Their embeddings in [2] and (apparently, but I did not completely verify
this) in [1] have the nice property, not shared by our parity embeddings,
that no two faces have more than one edge in common; but with the sole
exception of n=17, they are not parity embeddings.
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