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2 Thomas Zaslavsky

1. The Beginning

Deservedly a favorite in graph theory, the Petersen graph P illustrates many of the im-
portant properties of graphs, either as a non-trivial example or, remarkably often, as a
counterexample. For instance, it is cubic and has large girth for its size but it is neither
vertex nor edge 3-colorable. It is very highly symmetric and strongly regular but not Hamil-
tonian. It is nonplanar, which is obvious from Kuratowski’s theorem, but its crossing number
is greater than 1. It is so interesting that it has been the subject of a book [15], which uses
it as a springboard to introduce many areas of graph theory. And it distinguishes the flag
of the CombinaTexas conference [8].
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Figure 1.1. The Petersen graph. (Traditional.) The vertex labels are derived

from its representation as L(K5).

The Petersen graph is also a beautiful example in the theory of signed graphs. A signed
graph is a graph with signed edges; that is, each edge is either positive or negative. A simple
graph Γ can be treated as a signed graph in four natural ways. There are +Γ, where all edges
are positive; −Γ, where all edges are negative; KΓ, the complete graph of the same order
whose negative subgraph is Γ and whose positive subgraph is the complement Γ̄; and of course
KΓ̄, which is the negative of KΓ. Each of these is interesting for different reasons. Usually,
+Γ behaves just like the unsigned graph Γ. −Γ, on the contrary, is quite a different animal.
KΓ seems to live in another universe; still, it does have certain subtle connections with Γ. Yet
other signatures arise from nonorientable surface embeddings. These constructions applied
to the Petersen graph produce signed graphs that exemplify a great many of the significant
and interesting properties of and questions about signed graphs. I will survey some of them
here, and even produce a few new general (though small) results.
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Part I. Graph Theory

2. Sets, Graphs, and Signed Graphs: Definitions

We’ll need a few definitions right away.
The ‘canonical’ set of n elements is [n] := {1, 2, . . . , n}. The power set of E is P(E). The

class of k-element subsets of E is Pk(E). The class of all partitions of a set V is ΠV . The
trivial partition of a set has just one block. A partition of a graph is simply a partition of
its vertex set.

Some notation I use more or less frequently:

∗ Γ := (V,E) and n := |V |, the order of Γ; sometimes I will number the vertices
V = {v1, . . . , vn}, but often they will be numbered differently, as is convenient.
∗ The number of connected components is c(Γ). π(Γ) denotes the partition of V into

the vertex sets of the components of Γ; this partition has c(Γ) blocks.
∗ The union of graphs, Γ1 ∪ Γ2, is not disjoint unless their vertex sets are disjoint.

We may unite two graphs on the same or overlapping vertex sets. Disjoint union is
Γ1∪· Γ2.
∗ The (open) neighborhood of a vertex u in Γ is N(u) := NΓ(u). The closed neighbor-

hood is N [u] := N(u)∪{u}. The open and closed neighborhoods of a set X ⊆ V are
N(X) :=

(⋃
u∈X N(u)

)
\X and N [X] :=

⋃
u∈X N [u].

∗ A circle is a 2-regular connected graph, or its edge set.
∗ A path of length l is Pl.
∗ A cut is a nonvoid edge set E(X,Xc) that consists of all edges between a vertex

subset X ⊆ V and its complement Xc.
∗ A vertex star is one kind of cut: it is the set of all edges incident to a vertex.
∗ A walk is a sequence of vertices and edges, v0e1v1e2 · · · vl−1elvl, such that ei has

endpoints vi−1, vi. A path is a walk without repeated edges or vertices.
∗ A graph is k-regular if every vertex has degree k. If there are loops, they count

double in the degree.
∗ The distance between two edges is the number of vertices in a shortest path that

joins a vertex of one edge to a vertex of the other edge. For instance, adjacent edges
have distance 1. This is the same as distance in the line graph.
∗ The contraction of Γ by an edge set S is written Γ/S.

A signed graph is a pair Σ = (|Σ|, σ) consisting of an underlying graph |Σ| = (V,E) and
a signature σ : E → {+1,−1}. For the most part we think of {+1,−1} as a multiplicative
group, not as numbers. Again, the order of the graph is n := |V |. The graph need not be
simple, but if it is, I call Σ a signed simple graph. Do not confuse this with a simply signed
graph, which is a signed graph in which there are no parallel edges with the same sign; a
simply signed graph may have vertices joined simultaneously by a positive and a negative
edge, and it may have negative (but not positive) loops. I will often assume that all graphs
are without loops; that makes many things simpler than they would otherwise be.

In a signed graph, E+ and E− are the sets of positive and negative edges. Σ+ and Σ− are
the spanning subgraphs (unsigned) whose edges sets are E+ and E−, respectively.

Signed graphs Σ and Σ′ are isomorphic, Σ ∼= Σ′, when there is a sign-preserving isomor-
phism of underlying graphs.

The number of connected components of Σ that are balanced is b(Σ).
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3. The Petersen Graph

I like to think that what makes the Petersen graph so good, and certainly what gives it
its high symmetry, is that it has a simple and elegant technical description. In P2([5]), write
a subset of [5] as ij, without set notation. Let us call ij and kl adjacent when they are
disjoint. The graph with V = P2([5]) and the disjointness adjacency relation is the Petersen
graph P . (This is not the original definition; see [15, Section 9.7].)

With this definition it’s obvious that P is trivalent, is edge transitive, and has the entire
symmetric group of degree 5 as an automorphism group (and note that this is the whole
automorphism group). Some other properties are not as easy to detect; for instance, the
chromatic number χ(P ) = 3 and the chromatic index χ′(P ) = 4, and non-Hamiltonicity.

Another way to state the definition is that P = L(K5), the complement of the line graph
of K5; thus we may write −KP = KP̄ = KL(K5).

The Petersen graph has lovely combinatorial properties that will be very useful to us.

Lemma 3.1. For each edge e in P there are exactly two edges at distance 3, and they are
at distance 3 from each other. All other edges have distance at most 2 from e. Furthermore,
any two sets of three edges at mutual distances 3 are equivalent by an automorphism of P .

1 1

2 2

2 2
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2 2

2 2

e

3

3

Figure 3.1. The distances from e of edges in the Petersen graph.

Proof. Specifically, the edges at distance 3 from e = {ij, kl} are {ik, jl} and {il, jk}.
For a pictorial proof, due to edge transitivity we need to consider only one edge e. The

lemma is visible in Figure 3.1: the two edges at distance 3 from e are unique. Any auto-
morphism that carries e to an edge f also carries the two distance-3 edges of e to those of
f . �

Lemma 3.2. A vertex set in P has all or none of the following properties.

(i) It consists of the four vertices labelled ij for a fixed i and all j 6= i.
(ii) It is a maximum independent set.

(iii) It is N(u, v) for an edge uv.
(iv) It consists of the four vertices that are not covered by three edges at mutual distance

3.
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Proof. We rely on the edge and vertex transitivity of P to make the proof pictorial.
Since we know the clique structure of a line graph—a clique comes from a triangle or a

vertex star in the base graph—this gives us the exact independence number α(P ) = 4 and
identifies all the maximum-sized independent vertex sets: they have the form V (i) := {ij :
j 6= i} for some fixed i as in (i).

By inspection, the vertices at distance 1 from edge {12, 34}, for instance, are those of the
form 5j, again as in (i).

Also by inspection, a set V (5), for example, is precisely the set of vertices not covered by
the edges {12, 34}, {13, 24}, {14, 23}. �

Signatures of P .
There are many ways to associate a signed graph to the Petersen graph, but I will focus my

attention on four, or rather seven since they come in pairs: +P and −P (which are actually
quite different), KP and −KP (which are not very different), the signature PD shown in
Figure 3.2 and its negative −PD (which are also less different than they appear; see Figure
4.2), and P (e), which has just one negative edge e. Plainly, P has many other signatures,
but only six are essential; Section 8 lists them.

34

35

2515

24 13

14 23

45

12

Figure 3.2. The Petersen graph drawn with three-fold symmetry around a
central vertex. The dashed edges are negative in the signed graph PD; they
are alternate edges of the “special hexagon” 15, 24, 13, 25, 14, 23, 15.

Let’s count the positive and negative short circles in the various signed graphs. The
numbers for signed Petersens are easy; bear in mind that in −P , as compared with +P , the
circles of odd length change sign while those of even length do not.

We want to count negative triangles inKP . A triangle is negative when it contains precisely
one negative edge. There are 15 negative edges and for each one there are 4 vertices that
are positively adjacent to both endpoints; that makes 60 negative triangles.

We also want the number of negative quadrilaterals. Such a quadrilateral could have either
one or three negative edges. A negative quadrilateral with one negative edge is a path of
length 3 with a negative edge in the middle, together with a last edge that isn’t negative. To
construct this we choose a Petersen edge e; that leaves a set X of 4 vertices that are positively
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adjacent to both endpoints of e. We need two of them to complete the quadrilateral, but
we need two that do not support a Petersen edge. Since X supports only edges at distance
3 from e, there are two such edges; that means we have 4 choices of two vertices from X,
each of which makes two quadrilaterals with e. That gives 120 quadrilaterals of this type.
As for a negative quadrilateral with three negative edges, it is simply a path of length 3 in
P , completed by a non-Petersen edge. There are 60 such paths. Thus we have a total of 180
negative quadrilaterals.

+P −P PD −PD
+C5’s 12 0 6 6
−C5’s 0 12 6 6
+C6’s 10 10 0 0
−C6’s 0 0 10 10

+K10 −K10 KP −KP

+C3’s 120 0 60 60
−C3’s 0 120 60 60
+C4’s 630 630 450 450
−C4’s 0 0 180 180

Table 3.1. Census of short circles in Petersen signed graphs and K10.

I will define three more signatures on P in Section 8. In a sense they and +P , −P , and
PD are all that exist; see Theorem 8.1.

The circle compatibility graph.
Here are two important observations about the even circles in P , all of which are hexagons

and octagons. Let’s define two circles to be compatible if their intersection does not include
a path of length 2. This relation defines a compatibility graph on C(P ), the class of all circles
in P , and in particular on the class Cl(P ) of circles of length l.

Lemma 3.3. Each vertex v determines a hexagon H(v) which is the unique Hamiltonian
circle in P \N [v]. The mapping H is an isomorphism of P onto the compatibility graph of
C6(P ).

Proof. If vw is an edge, H(v)∩H(w) is P1∪· P1. If v and w are not adjacent, H(v)∩H(w) =
P2. �

Lemma 3.4. Each edge vw determines an octagon O(vw) which is the unique Hamiltonian
circle in P\{v, w}, and this gives a bijection E(P )↔ C8(P ). No two octagons are compatible.
The octagon O(vw) and hexagon H(x) are compatible if and only if x has distance 2 from v
and w.

Proof. The first part is true by inspection. Deleting two adjacent vertices leaves divalent
vertices that force the Hamilton circle. Deleting two nonadjacent vertices creates a leaf so
no octagon remains.

There are two possible relationships between two octagons O(e) and O(f). If e and f are
adjacent, then O(e) ∩ O(f) = P1∪· P1∪· P2. The intersection if e and f are not adjacent is
P1∪· P3.

There are three possible relationships between an octagon O(vw) and a hexagon H(x). If
x = v, O(vw) ∩H(x) is P2∪· P2. If x ∈ N(v) (and x 6= w), O(vw) ∩H(x) = P4. Otherwise,
v has distance 2 from v and w; then O(vw) ∩ H(x) = P1∪· P1, which makes the circles
compatible. �
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The four vertices at distance 2 from vw are independent in P ; therefore, by Lemma 3.3 they
are incompatible. Thus, the graph of compatibilities amongst the hexagons and octagons is
P with an extra vertex ve adjoined for each edge e, with neighborhood the set of vertices at
distance 2 from e. The degree of each P vertex in this graph is 3 + 4 = 7 while the degree
of ve is 4. The graph has girth 4.
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Part II. Balance and Imbalance

4. Switching

An essential operation on a signed graph is switching. There are two ways to express
it. Switching a vertex set X ⊆ V in Σ means reversing the signs of all edges between X
and its complement Xc. In particular, switching a vertex v is the same as switching the
set {v}, switching X is equivalent to switching all of its vertices, one after the other, and
switching Xc is equivalent to switching X. Now, take a switching function τ : V → {+1,−1}.
Switching Σ by τ means replacing the signature σ by a new signature στ whose definition
is στ (eij) := τ(vi)

−1σ(eij)τ(vj). (I inserted the inversion to suggest that switching is like
conjugation—which it is.) Evidently, switching by τ is the same as switching by −τ , and
also as switching either τ−1(−1) or τ−1(+1).

A notation for switching that is often convenient is to list the switched vertex set. For
U ⊆ V , define the signed characteristic function τU(v) := − if v ∈ U , + if v /∈ U . Then ΣU

is short for ΣτU . That is, σU(e) = σ(e) if the endpoints of e are both in U or both not in U ,
but if one endpoint is in U and the other is not, then σU(e) = −σ(e).

The relation defined by Σ ∼ Σ′ if Σ′ is obtained by switching Σ is clearly an equivalence
relation on signed graphs. I say Σ and Σ′ are switching equivalent. An equivalence class is
called a switching class.

Switching preserves the signs of circles and therefore preserves balance. The implication
is two-way.

Proposition 4.1 (Sozański [24], Zaslavsky [29]). Two signatures of the same underlying
graph are switching equivalent if and only if they have the same list of positive circles.

A coarser equivalence relation is Σ ' Σ′, meaning that Σ′ is isomorphic to a switching
of Σ. I call Σ and Σ′ switching isomorphic and I call an equivalence class a switching
isomorphism class. (I should say that most authors do not make this distinction between
switching equivalence and switching isomorphism. The difference is only apparent when one
has labelled graphs. Graph types, like P and KP for instance, are unlabelled unless one
specifies a vertex labelling, so there is no difference between equality and isomorphism.) It
is plain to see that two signed graphs can only be switching isomorphic if their underlying
graphs are isomorphic. The real meaning of switching isomorphism is in terms of the signs
of circles.

Proposition 4.2. If τ is a switching function on Σ and ψ is an isomorphism |Σ| → |Σ′|, and
if (Στ )α = Σ′, then α preserves the signs of circles. Conversely, if α is such an isomorphism
|Σ| → |Σ′|, there is a switching function τ such that (Στ )α = Σ′, which is unique up to
negation on components of Σ.

Theorem 4.3. +P , −P , and PD are not switching isomorphic. However, KP and −KP are
switching isomorphic, and PD and −PD are switching isomorphic.

The switching isomorphisms explain why the census of signed circles in Table 3.1 is the
same for PD and −PD as well as for KP and −KP .

Proof. The first part is elementary, my dear reader, as +P is balanced but −P is not. As for
PD, its census of signed pentagons or of hexagons (Table 3.1) shows it cannot switch to either
+P or −P . A direct proof is that it has a positive pentagon with vertices 12, 34, 15, 23, 45, in
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which it differs from −P , and a negative hexagon with vertices 15, 24, 35, 14, 25, 34, differing
from +P .

X

X

X

XX

Figure 4.1. How to get KP from −KP by switching. Solid lines: the positive
edges of −KP before switching. Dashed lines: the negative edges of (−KP )X ,
i.e., after switching the five outer vertices; since they are P , (−KP )X ' KP .

There is a cute way to switch −KP to KP . P is made up of two pentagons C5 (not at
all uniquely, of course), joined by a perfect matching; this is obvious in the conventional
drawing with one pentagon inside and the other one outside. Let X := the vertex set of
one of those pentagons and switch −KP by X. Switching reverses the signs of all edges
between the inner and outer pentagons. If we have a drawing of the positive subgraph of
−KP (see Figure 4.1), the negative subgraph of (−KP )X consists of the five matching edges
and the complements of the inner and outer pentagons. But the complement of a pentagon
is another pentagon. Thus the negative subgraph after switching is precisely P .

A similar argument applies to −PD. Figure 4.2 shows the vertices to switch in −PD, and
the vertex relabelling, to get PD. �

Having shown that KP switches to be isomorphic to its own negation, as does PD, we
might like to know whether a labelled KP is switching equivalent to −KP , and similarly for
PD and −PD. This is a more stringent question: we are asking whether the signs of all edges
of KP , or PD, can be negated by switching. They cannot. This illustrates a general fact.

Proposition 4.4. A signed graph switches to its negation if and only if it is bipartite.

Proof. Supposing Σ is bipartite, switching one of the two color classes negates every edge.
If we want to negate every edge, then the switching set X has to contain exactly one

endpoint of each edge. There is such an X if and only if the graph is bipartite. �

Note that this switching does not involve an isomorphism.
We’ve seen how to represent a signed Kn by its positive or negative subgraph. This

was how Seidel thought of switching: as changing the adjacencies in a graph by reversing
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Figure 4.2. How to get −PD from PD: Switch the neighbors (circled) of the
vertex 12 farthest from the special hexagon.

those between a vertex set X and Xc; this operation is now called Seidel switching or graph
switching. Some of the graphs that are obtained from P by graph switching, or from the
signed standpoint, which appear as the negative subgraphs of switchings of KP , are shown
in Figure 4.3; another is −KP , as we saw in Theorem 4.3.

The graph of Figure 4.3 in which a vertex is isolated—i.e., its edges are all positive in the
signed complete graph—call it K1∪· Γ9, is especially interesting. (By symmetry of P , there
is only one such graph, up to isomorphism.) Γ9 is strongly regular; it is the Paley graph of
order 9 [12, Section 10.3]. I will discuss this more deeply in Section ??.

Finally, in Figure 4.3 I show some of the graphs obtained by graph switching of P , i.e.,
the negative subgraphs of some switchings of KP . Notice that there are two ways to get KP

back: X or Xc must be either ∅ or N(u,w) for vertices that are adjacent in P . This will be
proved in Lemma 6.5.

5. Balance and Antibalance

The fundamental concept of signed graph theory is the sign of a circle C. This is the
product of the signs of its edges, written σ(C). Switching does not change the sign of a
circle; in fact, it is easy to prove that two different signatures on the same graph have the
same circle signs if and only if they are related by switching. Thus, a fundamental property
of a signed graph is whether its circles all have positive sign. If they do, we call it balanced.
The obvious balanced graph is +Γ, with all edges positive; but any switching of +Γ is
also balanced. The first theorem of signed graphs, due to Frank Harary, involves switching
implicitly:

Theorem 5.1 (Harary [13]). Σ is balanced if and only if V can be bipartitioned into subsets
V1 and V2 so that every negative edge has one endpoint in each subset and each positive edge
has both endpoints in the same subset.
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N  v(  )

v

K
v{  }

P

v

KP

{     }u,w

v

e

w u

KP

N u,w(     )

v

e
w u

e

v

u w

KP

N u,w[     ]
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v
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Figure 4.3. Some graphs that are negative subgraphs of switchings of KP .

Switched vertices are circled, except in K
N [x,y]
P where the unswitched vertices

are circled.
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I call such a bipartition a Harary bipartition of Σ. Stated in terms of switching: Σ is
balanced if and only if it can be switched to be all positive. (This is implicit in work of E.
Sampathkumar [20] and explicit in [30, Cor. 3.3].)

A further characterization is:

Theorem 5.2 (Harary [14]). A signed 2-connected graph is balanced if and only if every
circle through a fixed vertex is positive.

The Petersen signed graphs, +P , −P , KP , and −KP , are all 2-connected, and only the
first is balanced. We can conclude either from Theorem 5.2 or the symmetry of P that in
each of the latter three, every vertex lies on some negative circle.

An opposite property of Σ is balance of −Σ. That is, if we negate all the signs in Σ, do
we get a balanced graph? If we do, we call Σ antibalanced. More directly, Σ is antibalanced
when circles of even length are positive and those of odd length are negative; in a formula,
σ(C) = (−1)|C|. The canonical example is −Γ, where all edges are negative. It is fair to
say that antibalance is the signed-graph generalization of biparticity. From Theorem 5.1 it
is obvious that:

Corollary 5.3. Σ is antibalanced if and only if V = V1∪· V2 in such a way that every negative
edge crosses between V1 and V2 and each positive edge has both endpoints in one of V1 and
V2.

Corollary 5.4. For a signed graph, any two of the following properties imply the third:
balance, antibalance, and biparticity of the underlying graph.

6. Measurement of Imbalance: Frustration

As balance is the fundamental concept of signed graph theory, we want ways to measure
how far from balance a signed graph is. Probably the commonest and most useful measure
is the frustration index l(Σ), which is defined as the smallest number of edges whose deletion
leaves a balanced subgraph—or, equivalently, whose sign reversal makes the graph balanced
(the equivalence was proved by Harary (1959b)). An edge set whose deletion leaves a bal-
anced subgraph is a balancing set of Σ. A balancing edge is a single edge that constitutes
a balancing set in an unbalanced signed graph. Determining frustration index includes the
Max-Cut problem, i.e., finding the largest edge set of the form E(X,Xc) in a graph, since a
maximum cut in Γ is the complement of a minimum balancing set in −Γ (see Lemma 6.1);
it follows that frustration index is NP-hard. However, it is clear that l(Σ) ≤ |E−|, and there
are stronger results.

Lemma 6.1. The minimal balancing sets in −Γ are the complements of the maximal cuts
in Γ.

Proof. A bipartite subgraph in −Γ is precisely what is a balanced subgraph. A minimal
balancing set is the complement of a maximal bipartite subgraph. A maximal bipartite
subgraph is a maximal cut. �

Lemma 6.2. l(Σ) = minX |E−(ΣX)|.
Proof. Let S be a minimal balancing set. (It need not have minimum cardinality.) Since
Σ \ S is balanced, it switches to ΣX \ S which is all positive. Restore S with the same
switching. Every edge of S must be negative, or else there would be a smaller balancing
set. �
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Proposition 6.3. If every cut in Σ has at least as many positive as negative edges, then
l(Σ) = |E−|. If some cut has more negative than positive edges, then l(Σ) < |E−|.
Proof. If |E−(X,Xc)| > |E+(X,Xc)|, then switching X reduces the number of negative
edges. If |E−(X,Xc)| ≤ |E+(X,Xc)| for every X, then no switching can reduce the number
of negative edges; so l(Σ) = |E−| by Lemma 6.2. �

Some Petersens.
Let’s apply Proposition 6.3 to Petersen signed graphs. Of course, for any graph l(+Γ) = 0,

so I’ll omit the all-positive Petersen, and l(P (e)) = 1. A structural lemma for −P is helpful.

Lemma 6.4. −P switches to have just three negative edges, all at mutual distances 3.

Proof. Switch an independent set of four vertices (which is the four neighbors of an edge)
and observe the result. �

Lemma 6.5. A switching KX
P is isomorphic to KP if and only if X or Xc is either ∅ or

N(u,w) for some edge uw of the Petersen graph. For every other X, |E−(KX
P )| > 15.

Proof. Sufficiency is visible in Figure 4.3.
Now, consider the effect of switching X on the number of negative edges. Here we ap-

ply the method of Proposition 6.3. We have to examine all the cuts E(X,Xc), where
E := E(K10), and show that |E(P )(X,Xc)| ≤ 1

2
E(X,Xc) in every case. If |X| = k ≤ 3,

|E(X,Xc)| = k(10 − k) but |E(P )(X,Xc)| ≤ 3k < 1
2
k(10 − k). If k = 5, |E(X,Xc)| = 25,

while |E(P )(X,Xc)| ≤ 15− 4 < 1
2
(25) because the subgraph of P induced by X contains at

least 2 edges. (We know this from Lemma 3.2. A maximum independent vertex set has 4
vertices and has the form V (i) := {ij : j 6= i}. Adding a fifth vertex creates at least 2 edges
within X. If X has fewer than 4 independent vertices, it also contains at least 2 edges.) That
leaves |X| = 4. Then |E(X,Xc)| = 24 and |E(P )(X,Xc)| ≤ 3 · 4 = 1

2
24. Thus, KX

P has at
least 15 negative edges, and the only way it can have as few as 15 is for |E(P )(X,Xc)| = 3 ·4,
so X has to be independent. �

Proposition 6.6. l(−P ) = 3 and l(KP ) = l(−KP ) = |E(P )| = 15, and the minimum
balancing sets are unique up to symmetry of P .

Proof. Each graph has to be treated separately, except that l(−KP ) = l(KP ) because they
are switching isomorphic, and l(−PD) = l(PD) similarly. The good part is that −P and KP

illustrate different approaches.
The frustration index of −P follows from the known fact that the maximum size of a cut

in P is 12; but it will be more interesting to show directly why l(−P ) = 3 and to find the
structure of all minimum balancing sets.

In −P there are four pentagons on each edge, all of which are negative. There are 15 edges
and 5 edges in each pentagon; it follows that there are 12 pentagons. By deleting k edges
we can eliminate at most 4k pentagons. Therefore, no balancing set can be smaller than 3
edges. A balancing set of three edges e, f, g must not have two of its edges in one pentagon.
If we look closely, we see that the four pentagons on e cover all but two edges of P . These
two edges are the only possible choices for f and g. Note that these edges all have distance
3 from each other; we have seen that this configuration is unique up to symmetries of P
(Lemma 3.1). Let’s delete all three edges. We get a bipartite graph, which is balanced (by
Corollary 5.4) because it is all negative. Figure 6.1 shows −P switched so that, as promised
by Lemma 6.2, only the three edges of a minimum balancing set are negative.
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X X

X X

Figure 6.1. −P , switched by X so that E− is a minimum balancing set (of
three edges). Notice that X is a maximum independent vertex set.

The minimum balancing set B is unique once the first edge is chosen. Since P is edge
transitive, B is unique up to symmetry.

The other example, KP , is solved by Lemma 6.5. �

The switching behavior of PD is unexpectedly complex. In a hexagon H = uvwxyzu label
the edges alternately a and b. There are two kinds of pentagon: those whose intersection
with H contains one a edge and either 0 or 2 b edges, and those with the opposite property.
Let Ca5(H) be the set of pentagons of the first type.

Lemma 6.7. The bipartition {Ca5(H),Cb5(H)} is independent of the hexagon H.

According to Lemma 6.7 we can unambiguously label every hexagon with an a triple and
a b triple so that Ca5(H) is the same for all hexagons. Therefore we can drop the H in the
notation and simply divide the pentagons into the class Ca5 of a pentagons and the class Cb5
of b pentagons. Which class is a and which is b is arbitrary. In any particular exemplar of
PD, the three negative edges are either an a triple or a b triple of P ; let us call these two
types of signed graph P a

D and P b
D. Write P a

D(H) for the particular signature in which the a
edges of the hexagon H are the negative edges, and similarly for P b

D(H).

Lemma 6.8. All P a
D signatures are switching equivalent, as are all P b

D signatures, but P a
D 6∼

P b
D. Furthermore, −P a

D ∼ P b
D and −P b

D ∼ P a
D.

That is, by switching P a
D one can make any a triple the negative edge set, but no other

triple and in particular no b triple.

Proof of Lemmas 6.7 and 6.8. Start with a fixed hexagon H0 and the signature P a
D(H0).

Consider a hexagon H, adjacent to H0 in the compatibility graph of P (Section 3). The
hexagons intersect in two opposite edges of each, one of which is negative. Let that be e,
and switch V (e). The result is P a

D(H), as in Figure 6.2(a). This shows that by switching
we can transform P a

D(H0) into P a
D(H) for any adjacent pair of hexagons, and by repeated

switching for any pair of hexagons since the hexagon compatibility graph is connected.
Now, consider what distinguishes the a edges in H0. They are the edges f such that the

pentagon P0 that meets H0 in only the one edge f , or a three-edge path of which the middle
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edge is f , is negative. It follows that Ca5 is the class of negative pentagons, and Cb5 is the
class of positive pentagons. This is invariant under switching, so only the a triples can be
made into negative triples by switching. We have proved Lemma 6.7.

Finally, consider the switching of −P a
D shown in Figure 6.2(b). This proves −P a

D(H)
switches to P b

D(H). �

a a

(a) (b)

a

b b

a

a

a

bb b b

Figure 6.2. The vertices (circled) to switch to change (a) P a
D(H0) into P a

D(H)
where H0 (the outer hexagon) and H (railroad tracks) are adjacent, and (b)
−P a

D(H0) into P b
D(H0). The a and b edges of H0 are marked.

Theorem 6.9. l(PD) = l(−PD) = 3. There are 12 minimum balancing sets; they are the a
triples (if P a

D), or else the b triples (if P b
D), in the twelve hexagons.

Proof. As with KP , l(−PD) = l(PD) because −PD ' PD.
The upper bound of 3 on the frustration index of PD is visible in Figure 3.2. The index

cannot be < 2 because an edge is in exactly four pentagons, so no one negative edge can
give the six negative pentagons of PD. Suppose there is a minimum balancing set S of two
edges at distance 2. They cannot be adjacent, or else switching the common vertex would
give a smaller balancing set. If their distance is 2 they generate six negative hexagons, and
if it is 3 they generate four negative hexagons; therefore they cannot switch to PD. Thus,
l(PD) > 2, which solves l(PD).

The rest follows from Lemmas 6.7 and 6.8, once we prove there are no other balancing sets
of three edges than the a or b triples. To settle this, consider the effect on PD of switching a
set X so as to keep the number of negative edges at 3. Let H0 be the special hexagon (see
Figure 6.3). Call vertices equivalent if they are both in X or both in Xc.

The cut E(X,Xc) must have equally many positive and negative edges, and up to 3
negative edges. Negating one negative edge will increase |E−| because P is edge 3-connected.

If switching negates exactly two negative edges, those edges must have exactly one end-
point in X and the third must have either no endpoints or both in X. For definiteness, say
the switched negative edges are uv and yz, so their endpoints are inequivalent, while those
of wx are equivalent. The picture will look like Figure 6.3(a) or (b, c), where X vertices
are circled and Xc vertices are boxed. The difference is that in (a) the endpoints of uz are
inequivalent, while in (b, c) they are equivalent. In (b) the endpoints of vw are equivalent,
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v y

w x

q

a b

(b)

zu

c

v y

w x

q

a b

(c)

zu

c

v y

w x

q

a b

(a)

zu

c

Figure 6.3. Switching PD to maintain 3 negative edges of which wx is orig-
inally negative.

in (c) they are inequivalent. The edges of H0 that switch to become negative, if any, are
drawn with heavy lines.

To test these configurations we look at paths in P+
D \ H0 between inequivalent vertices.

Any such path contains at least one edge that becomes negative after switching. Thus, the
number of such paths is a lower bound for the number of new negative edges. If this bound is
too high, after switching |E−| > 3, and the configuration is ruled out. In (a) we may without
loss of generality assign w and x to Xc. Then the path wbz makes for a fourth negative
edge after switching, along with the unswitched edge wx and the switched edges vw and
uz. This case, therefore, is impossible. In (b) the three heavy paths uaqcv, uax, and zbw
connect inequivalent vertices, so they each contain a new negative edge. Since wx remains
negative, there are only two negative edges for the three paths; thus, ua must be switched.
Similarly, zb must be switched. This tells us that X = {u, z}, or else there will be more than
three negative edges after switching. Case (c) is impossible because after switching there are
already three negative edges in H0 and one more in the heavy path ycqbz.

Suppose all three negative edges in H0 are made positive by switching. Then X must
occupy alternating vertices around H0, as in Figure 6.4(a), or not, in which case we have
the configuration of Figure 6.4(b). The first of these is ruled out by the need for a fourth
negative edge in the path vcy, after switching. The second is a possible case. H0 switches
to have one negative edge, vw. The five paths uax and wbqcv, wbqcy, zbqcv, zbqcy all need
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(a)

v y

w x

q

a b

zu

c

(b)

v y

w x

q

a b

zu

c

Figure 6.4. Switching PD to keep 3 negative edges.

to have a negative edge while using only two negative edges among them; thus, ua or xa
must be negative, and qb or qc must be negative, after switching. The path uaqcy shows
that these edges cannot be xa and qb. The path xaqbz shows they cannot be ua and qc.
Thus, either ua, qb are negative, or xa, qc are negative. These two cases are symmetrical by
the reflection u, v, w ↔ z, y, x, so we take only the first of them.

Here X = {u, z, b, w}. This is the vertex set of a path in P+
D of length 3, starting with

a positive edge in H0 and ending at an opposite vertex of H0. Now, in P
{u,z}
D , the special

hexagon has bw as a positive edge, so it can be switched to produce an isomorph of PD. Thus,

viewing PX
D as (P

{u,z}
D ){b,w}. Thus, we have a proof of Theorem 6.9 as well as a complete

description of the switchings that produce copies of PD. �

Proposition 6.10. PX
D
∼= PD if and only if X = ∅, or X is the vertex set of a positive edge

in the special hexagon of PD, or X is the vertex set of an all-positive path from a positive
edge in the special hexagon to another vertex in the special hexagon.

The process of switching the vertex set of a positive edge in the special hexagon will trans-
form any P a

D to any other in at most two steps. �

7. Maximum Frustration

We found two unbalanced signatures of P whose frustration index is 3. Could this be the
maximum frustration possible for any signature? The maximum frustration of signatures of
a simple graph has been studied at length by Akiyama, Avis, Chvátal, and Era (1981a) and
subsequent writers, but it is hard; almost all results are only asymptotic, which will not help
us with our Petersen examples.

The most elementary general statements are upper bounds. Write lmax(Γ) := maxσ l(Γ, σ)
for the maximum frustration index of signatures of Γ.

Proposition 7.1. A minimum balancing set S of Σ satisfies degS(v) ≤ 1
2

deg|Σ|(v) at every

vertex. Thus, lmax(Γ) ≤ 1
2
|E|.

Proof. Assume by switching that S = E−. If degS(v) > 1
2

deg|Σ|(v) at a vertex, switch v.

This reduces the size of E−, but that gives a smaller balancing set. Thus the first statement
is true. The second is an immediate consequence. �
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This is a weak result, even though useful. A vertex star is a cut; a similar conclusion holds
for every cut.

For a cubic graph like P Proposition 7.1 means that lmax(Γ) ≤ 1
2
|V | and a minimum

balancing set is a matching (not necessarily a perfect matching). For a signed K10 it means
lmax(K10) ≤ 20.

Almost the only known general exact solution is Petersdorf’s.

Proposition 7.2 (Petersdorf (1966a)). For complete graphs there is the exact upper bound

lmax(Kn) =
⌊(n− 1

2

)2⌋
.

Furthermore, l(Kn, σ) achieves this value if and only if (Kn, σ) is antibalanced, e.g., −Kn.

Proof. First, −Kn. A maximum cut in Kn is e(X,Xc) where |X| = b(n + 1)/2c. The
complement of E(X,Xc) has b(1

2
(n− 1))2c edges, which is therefore the value of l(−Kn).

Now we have to prove this is the maximum. Suppose Σ := (Kn, σ) is signed so that
E− = lmax(Kn) = maxσ l(Kn, σ). By Proposition 7.1, degΣ−(v) ≤ b(n − 1)/2c for every
vertex. That means |E−| ≤ 1

2
nb(n− 1)/2c.

If n is even, |E−| ≤ n(n− 2)/4 = b(1
2
[n− 1])2c.

The odd case n = 2k + 1 is more complicated. Suppose no two vertices of negative
degree k are adjacent. Then at most k + 1 vertices have degree k and at least k have
degree k − 1 in Σ−. Therefore, |E−| ≤ 1

2
[(k + 1)k + k(k − 1)] = ([n − 1]/2)2. In the

opposite case there are non-neighboring vertices v, w of degree k. By switching v we change
k negative edges at v to positive and k positive edges to negative, thereby not changing
|E−|. However, we do increase the degree of w to k+1 > 1

2
n, which means that by switching

w we can reduce the size of |E−|. By Proposition 7.1, this contradicts the hypothesis that
|E−(Σ)| = l(Kn, σ) = maxσ l(Kn, σ). Therefore, no two such vertices can exist, which proves
that −Kn does indeed maximize l(Kn, σ).

I omit proving that the switching class of −Kn uniquely maximizes frustration index.
The proof so far contains hints of how to proceed by comparing degrees in the negative
subgraph. �

For K10 the exact bound is indeed 20 as Proposition 7.1 suggests. KP falls well short of
that.

Let’s examine the Petersen graph.

Proposition 7.3. lmax(P ) = 3. Any signed Petersen graph with frustration index 3 is switch-
ing isomorphic to −P or PD.

Proof. Assume we have (P, σ) with maximum frustration index, switched so that E− is a
minimum balancing set. Thus, E− is a matching of some size ≤ 5 (and at least 3).

We dispose of |E−| = 5 quickly. A 5-edge matching M is a cut separating two pentagons.
(The proof is that P \M is 2-regular. Since P has girth 5 and is not Hamiltonian, P \M is
the union of two pentagons.) If |S| = 5, switching one side of the cut makes the graph all
positive; that is, (, σ) is balanced. Thus, E− cannot have 5 edges.

For smaller E− we study the structure. Recall that we have (P, σ) with |E−| = l(P, σ).
Let’s assume first that E− contains a pair of edges at distance 2. Up to symmetry there

is only one way to have them, since they are the end edges of a 4-arc and P is 4-arc
transitive. (See Figure 7.1(a).) To fix the notation, let them be uv, wx where v, w are
adjacent and the other neighbors of v and w are u, u′ and x, x′, respectively. Any edge
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incident to any of u, v, w, x cannot be in E−. The same holds for u′, x′, for the following
reason. Switching {v, w} replaces uv, wx in E− by u′v, wx′ without changing its size; thus
the switched negative edge set cannot be smaller than |E−|. If E− contained an edge u′t, say,
then the switched negative edge set would contain two adjacent edges u′t, u′v and therefore
be reducible by switching, contradicting the assumption that |E−| = l(P, σ). That leaves
only two possible edges for E−: a, b in Figure 7.1(a). But if a ∈ E−, then switching {u, x, y}
reduces the number of negative edges, contrary to assumption. If b ∈ E−, the negative edges
are alternate edges of a hexagon so we have PD.

(b)(a)

u
b

y

x

wv

u’ x’

a

Figure 7.1. Possible edge pairs in a largest minimal balancing set of a signed
P . (a) Negative edges, uv and wx, at distance 2. (b) No such edges.

If E− has no two edges as close as distance 2, by Lemma 3.1 it can only be a set of three
edges with mutual distance 3, as in Figure 7.1(b). This switches to −P (see Figure 3.2).

We have proved that a signed P has maximum frustration 3 and the only examples are
PD and −P (up to switching). �

8. A Census of Signed Petersen Graphs

With the tools we have now we can prove there are exactly six inequivalent ways, up to
switching isomorphism, to sign P . We know three of them; the remaining three are

P (e), with one negative edge;
P2,2, with two negative edges at distance 2; and
P2,3, with two negative edges at distance 3.

Theorem 8.1. There are exactly six switching isomorphism types of signed Petersen graphs.
They are +P , −P , P (e), P2,2, P2,3 ' −P (e), and PD. The frustration indices are as in Table
8.1.

Proof. The frustration index of P (e) is obvious, since P (e) is unbalanced. The frustration
index of P2,2 or P2,3 is not less than 2 because in each of them there are two vertex-disjoint
negative pentagons.

The census of small circles in Table 8.1, which can be verified by inspection, shows that
the six signed Petersens are switching nonisomorphic. It remains to show they represent all
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the switching isomorphism classes. That is obvious for frustration index 0 or 1. For index 3
or more it is Proposition 7.3.

Thus, let’s assume we have (P, σ) with l(P, σ) = 2. We can assume by switching that
there are two negative edges. If these edges are adjacent at v, switching v reduces |D−| to
1, contrary to our assumption on frustration index. If these edges are at distance 2, we have
P2,2. There is only one way to have edges at distance 2, because with the connecting edge
they form a path of length 3, and P is 4-arc transitive. That shows P2,2 is unique. Similarly,
any two negative edges at distance 3 are symmetric, by Lemma 3.1. Thus P2,3 is unique. �

(P, σ) = +P P (e) P2,2 P2,3 PD −P
' −P2,3 −P2,2 −P (e) −PD

l(P, σ) 0 1 2 2 3 3

+C5’s 12 4 6 8 6 0

−C5’s 0 8 6 4 6 12

+C6’s 10 6 4 6 0 10

−C6’s 0 4 6 4 10 0

Table 8.1. The six switching isomorphism classes of signed Petersen graphs (P, σ).

A kind of signature that one may naturally be curious about is P (Cl), where the negative
edges are a circle of length l, for l = 5, 6, 8, 9. Of course, they are switching isomorphic to
signatures in Table 8.1.

Proposition 8.2. P (C5) ' PD, P (C6) ' −P , P (C8) ' +P , and P (C9) ' P2,2.

The proofs are a pleasant and easy exercise. For instance, P (C9) ∼ −P2,2 ' P2,2.

9. Measurement of Imbalance: Vertex Deletion

The vertex version of frustration index is the vertex deletion number l0(Σ), the least num-
ber of vertices whose deletion leaves a balanced subgraph, or if you prefer, the complement of
the largest order of a balanced induced subgraph. Call X ⊆ V a balancing vertex set if Σ\X
is balanced. There is much less literature on balancing vertex sets and the vertex deletion
number than on edge frustration, possibly because the removal of an object is inappropriate
to social and physical applications. Still, there is enough to say. The first and rather obvious
facts are:

Proposition 9.1. The vertex deletion number depends only on the switching class of Σ. It
satisfies l0(Σ) ≤ l(Σ). �

It is apparent that l0(Σ) = 0 if Σ is balanced and 1 if Σ has a balancing edge. To get a
complete list of values we can use a result similar to Lemma 6.2. The vertex cover number
of a graph is β(Γ) := the least number of vertices such that are collectively incident to every
edge. The largest order of an induced bipartite subgraph is b0(Γ).
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Lemma 9.2. The vertex frustration number satisfies

l0(Σ) = min
U⊆V

β((ΣU)−).

In particular, l0(+Γ) = 0 and l0(−Γ) = n− b0(Γ).

Proof. We show that, for any vertex subset X, the deleted subgraph Σ \ X is balanced if
and only if X is a vertex cover of the negative subgraph (ΣU)− in some switching ΣU .

Sufficiency of the vertex cover property is obvious: ΣU \X is all positive, hence balanced.
Conversely, suppose Σ \X is balanced. Choose U ⊆ Xc so that (Σ \X)U is all positive.

Since ΣU \X is all positive, X covers all negative edges of ΣU .
The value for an all-negative graph depends on the fact that such a graph is balanced if

and only if it is bipartite. �

Lemma 9.2 can be greatly strengthened for a signed complete graph. Let’s switch KΓ so
that a vertex u becomes isolated in the negative subgraph. In order to do this, we switch
exactly the neighbors of u in Γ.

Theorem 9.3. The vertex deletion number of a signed complete graph (Kn, σ) satisfies

l0(KΓ) = min
u∈V

β
(
(K

NΓ(u)
Γ )−

)
.

Proof. We prove a slightly stronger fact: The minimal balancing vertex sets of KΓ are
precisely the vertex covers in switchings of KΓ such that the negative subgraph has an
isolated vertex.

A minimal balancing vertex set X is smaller than V , so there is a vertex u /∈ X. Switch
by NΓ(u), so u becomes isolated in the negative subgraph. Now X must cover every negative
edge xy, since otherwise {u, x, y} supports a negative triangle. On the other hand, for any

vertex set Y that covers all negative edges of the switched graph, K
NΓ(u)
Γ \ Y is all positive,

hence balanced. �

Proposition 9.4. The vertex deletion numbers of Petersen signed graphs are as in Table
9.1.

Σ +P P (e) P2,2 P2,3 PD −P KP

l0(Σ) 0 1 2 2 3 3 6

Table 9.1. The vertex deletion numbers of Petersen signed graphs.

Proof. The first two numbers are obvious.
The values for P2,3 and P2,2 are clear: l0 ≤ l = 2, and the two vertex-disjoint negative

circles imply l0 ≥ 2.
Similarly, 2 ≤ l0(PD) ≤ 3. Suppose l0(PD) = 2. Then there are vertices u, v such that,

in some switching of PD, u and v cover all the negative edges. By switching u and v as
necessary we can ensure that neither has negative degree > 1. The inevitable conclusion is
that l(PD) ≤ 2; but we know this is not so (Proposition 6.6).
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The value for −P derives from the fact that there are no two vertices whose deletion from
P gives a bipartite graph. On the other hand, deleting the neighborhood of any vertex leaves
C6∪· K1, which is very bipartite.

To verify the vertex deletion number of KP we examine K
NP (u)
P for every vertex. Of course,

there is only one vertex up to symmetry, so this is easy. The resulting negative subgraph,
shown in Figure 4.3(??), has β = 6. That solves KP . (It’s interesting that P itself has the
same vertex cover number, so the right answer could be obtained without switching, but we
could not prove it was correct.) �

10. Measurement of Imbalance: Clusterability

Clusterability is a generalization of balance based on Harary’s Balance Theorem 5.1. In
this connection, I think of the blocks of a partition of Σ (that is, of V ) as clusters of vertices.
(The name is meant to suggest cohesion within a block.) A clustering of a signed graph Σ is
a partition π of Σ such that every edge within a cluster is positive and every edge between
clusters is negative. Σ is called clusterable if it has a clustering, and r-clusterable if there is
a clustering with at most r clusters.

Clearly, 2-clusterability is balance. The psychologist James A. Davis proved the analog of
Harary’s balance theorem:

Theorem 10.1 (Davis [9]). Σ is clusterable if and only if no circle has exactly one negative
edge.

Clusterability differs from all other measures of imbalance, and most other properties of
signed graphs, in that it is not invariant under switching. That is because signs of circles
are not the essential property. This entails, for example, that we cannot treat −KP as an
equivalent variant of KP .

Write E−:π for the set of negative edges within clusters and E+(π) for the set of positive
edges between clusters. These edges are incompatible with π. An optimal partition of Σ is
a partition π of V such that Σ has the fewest possible edges that are incompatible with π.
An optimal partition is a clustering if (and only if) Σ has any clustering at all. The cluster
analog of frustration index is the clusterability index,

cli(Σ) := min
π
|E−:π|+ |E+(π)|, where cliπ(Σ) := |E−:π|+ |E+(π)|

is the inclusterability of the partition π, i.e., the number of incompatible edges. (When
π = {X,Xc}, this equals |E−(ΣX)|. To get a switching-like formula in general, write Σπ for
the signed graph obtained from Σ by negating all edges outside the clusters of the partition
π; then cliπ(Σ), is the number of negative edges in Σπ. The operation Σ 7→ Σπ has no use I
know of.) The clusterability index of Σ is the number of edges that are incompatible with
an optimal partition, so it is a measure of how far Σ is from being clusterable. We could
merely specify the number of clusters, defining

clir(Σ) := min
π:|π|=r

cliπ(Σ).

(The use of the clusterability and r-clusterability indices to find optimal clusterings is due to
Doreian and Mrvar (1996a), who have a hill-climbing algorithm for probabilistic solution.)

The clusterability indices of +P and −P are easy to determine. The cluster number cln(Σ)
is the minimum r such that Σ is r-clusterable, i.e.,

cln(Σ) := min{r : clir(Σ) = 0}.
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This is a finite number if and only if Σ is clusterable. Recall that π(Γ) is the partition
of V into the c(Γ) vertex sets of the components of Γ. An r-colored clustering of Σ is a
clustering whose clusters are colored by elements of an r-element set, so that clusters joined
by a (negative) edge are colored differently.

Theorem 10.2. The number of r-colored clusterings of a signed graph Σ is equal to the
chromatic polynomial χ|Σ|/E+(r). Σ is clusterable if and only if the contraction |Σ|/E+ has
no negative loops.

The clustering number cln(Σ) = χ(|Σ|/E+), the chromatic number. Σ is r-clusterable if
and only if χ(|Σ|/E+) ≤ r ≤ c(Σ+).

An all-positive signed graph is r-clusterable if and only if 1 ≤ r ≤ c(Γ). For an all-
negative signed graph, cln(−Γ) = χ(Γ), the chromatic number, and −Γ is r-clusterable for
χ(Γ) ≤ r ≤ |V |.

Proof. To get an r-colored clustering of Σ we simply have to color each component of Σ+ with
one of r colors, in such a way that components that are adjacent (negatively, of necessity)
have different colors. This is the number of proper r-colorings of the graph which results
from contracting the positive edges in Σ.

There exists a clustering ⇐⇒ there is a colored clustering for some number of colors
⇐⇒ χ|Σ|/E+(r) is not identically 0 ⇐⇒ |Σ|/E+ has no negative loops. Furthermore,
the smallest number of clusters in a clustering is the smallest number of colors in a proper
coloring of the contracted graph. The largest number is c(Σ+) because a clustering of Σ
partitions the components of Σ+.

The all-positive and all-negative cases are easy deductions because E+(+Γ) = E and
E+(−Γ) = ∅. �

Corollary 10.3. +P , −P , −P (e), and −PD are clusterable. +P is r-clusterable only for
r = 1; −P is r-clusterable for r ≥ χ(P ) = 3; −P (e) is r-clusterable for 3 ≤ r ≤ 9; and −PD
is r-clusterable for 4 ≤ r ≤ 7.

Proof. Since −P (e) and −PD are all negative except for a matching Mm of m = 1 or 3 edges,
respectively, they are r-clusterable for χ(P/M) ≤ r ≤ 10−m. The chromatic numbers are
χ(P/e) = 3 and χ(P/M3) = 4, because M3 consists of alternating edges of a hexagon. �

Measurement of inclusterability.
With an inclusterable signed graph we can only look for a best approximation to a clus-

tering. That has to be calculated in each case and there may be several optimal partitions.
There may be several optimal partitions, but they are constrained.

Theorem 10.4 (Doreian, Batagelj, Ferligoj, and Martin Everett [11, Theorem 10.6]). The
minimum clusterability index of Σ is attained on partitions of V whose sizes form a consec-
utive set of integers.

The optimal partition sizes in Petersen examples may be one integer or several consecutive
integers: see Corollary 10.3, Proposition 10.5, and Theorems 10.6 and 10.7.

Clustering of P (e), or rather its failure, is easy to describe exactly. A less elementary
example is PD. Recall that the negative edges of PD are alternating edges of a hexagon,
which I will call the ‘special hexagon’ (uvwxyzu in Figure 10.1(o)). The special hexagon has
three chordal paths of length 2 that connect opposite vertices of the hexagon.
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Proposition 10.5. The clusterability index cli(P (e)) = 1; the only optimal partition is the
trivial one.

Proof. Any partition of P (e) other than the trivial one has at least 2 incompatible edges
because P is edge 3-connected. �

Theorem 10.6. The index cli(PD) = 3, from three types of partition: the trivial partition,
π = {X,Xc} where X is the vertex set of a negative edge, and π = {Y, Y c} where Y is the
vertex set of a path uvwx such that uv is a positive edge in the special hexagon and vwx is
a chordal path.

Proof. To show no partition π can have fewer than three incompatible edges we consider
cases. Let e = yz, f = uv, g = wx be the negative edges, where v and w are adjacent; see
Figure 10.1(o).

uv wx

yz

u x

yz

f g

(o)

x

v w

yz

(i) (ii)

u

e

wv

Figure 10.1. Cases 0–2 in the cluster analysis of PD. (o) PD with labels on
the negative edges and their endpoints. (i) PD/fg \ e. (ii) PD/e \ fg.

The general method is to pick some negative edges to be within clusters, the others to
be outside the clusters (interclustral edges). We contract the former and look at the edge
connectivity between the endpoints of a negative interclustral edge to see whether only 3
edges can be incompatible with π. If a negative edge e connected two clusters, then any
all-positive path between its endpoints must contain a positive interclustral edge, i.e., an
incompatible positive edge. This lets us isolate the edges that must be incompatible, given
the choice of interclustral negative edges.
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Since P has automorphisms that permute e, f, g arbitrarily, every choice of a fixed number
of edges to be within clusters behaves the same way. Thus, there are four cases, depending
on how many negative edges are interclustral.

Case 0. All negative edges are within clusters. If π has more than one block, there are
positive incompatible edges as well as the three negative ones. Thus, only the trivial partition
is optimal.

Case 1. Two negative edges are within clusters, say f and g. Contracting f and g as shown
in Figure 10.1(i), π is effectively partitioning V (P/fg) so as to have e between clusters, i.e.,
its endpoints y and z should be in different clusters. These vertices are edge 2-connected
within (P/fg) \ e, so there will be at least two incompatible positive edges; such a partition
cannot be optimal.

Case 2. One negative edge is within a cluster, say e. Contracting e as in Figure 10.1(ii),
we are effectively partitioning V (P/e) so as to have f, g outside the clusters; that is, u, v are
in different clusters and w, x are in different clusters. We study the structure of an optimal
partition π.

In P ′′ := P/e \ {f, g}, u, v are joined by two edge-disjoint paths. Thus, to have them in
different clusters there must be at least one edge from each path that is not in incompatible
positive edges, we must pick two edges that separate both pairs and choose π so those edges
are the only ones of P ′ outside clusters. The same two edges must separate v, w, since we are
allowed only two positive edges between clusters. Consider the three paths uvev

′v, xvew
′w,

and utt′v′v. The only way to disconnect all of them with two edges is for vv′ to be one of
the edges. Similarly, ww′ must be one of the edges. Deleting these two separates V ′′ into
X := {v, w} and V ′′\X. Since each of them is connected in P ′′, π can only have two clusters,
which are X and V \X.

Case 3. All negative edges are between clusters. Then π partitions V so the endpoints of
each negative edge are in different clusters; see Figure 10.2(a). Call vertices equivalent (rela-
tive to π) if they lie in the same cluster. Only three positive edges can be incompatible with
π, i.e., interclustral. However, every uv, wx, or yz path in P+

D must contain an interclustral
positive edge, since the endpoints are inequivalent. This is the basis of the solution.

x=xy−      

v=vw−       

−      u=uz x=xy−      u=uz−      

u x

z y

v w v w

q

a b

cc

q

a b

(a) (b) (c)

Figure 10.2. Case 3 in the cluster analysis of PD. (a) The initial PD. (b)
Contracted by xy, uz; (c) and by vw.
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At most one of the positive edges in the special hexagon, vw, xy, and uz, can be inter-
clustral. If two of them were, say uz and vw, then in P+

D one edge would have to cut the
paths uaqbv, wcqax, and ybqcz. However, no one edge is common to all these paths.

Thus, at least two positive edges in the special hexagon have equivalent endpoints; assume
they are xy and uz. Contract them, as in Figure 10.2(b); let Q be the contraction. We need
three edges whose deletion disconnects x̄ from ū and w and also ū from v in Q+.

If none of those edges is vw, we can contract vw to v̄, as in Figure 10.2(c), and then it is
impossible with three edges to separate every pair amongst ū, v̄, and x̄ in Q+.

The only sets of three edges in Q+ that include vw and separate the endpoints of every
negative edge in Q are {vw, x̄c, bq} and {xy, ūc, aq}. In PD these correspond to the sets
{vw, xc, bq} and {vw, uc, aq}, which are equivalent under symmetry of PD. The optimal
partition corresponding to {vw, xc, bq} is a bipartition {Y, Y c} with Y = {v, x, y, b}, in other
words, the vertices of an all-positive path of length 3 that starts with a positive edge of the
special hexagon and ends at a vertex of that hexagon. This, up to symmetry, is the only
optimal partition of PD in which every negative edge is interclustral.

The conclusion is that no partition of PD can have fewer than three incompatible edges,
and we have found every optimal partition. �

Signed complete graphs are highly interesting.

Theorem 10.7. Neither KP nor −KP is clusterable. cli(KP ) = 15, from just six partitions:
the trivial partition, and the five partitions {X,Xc} such that X = N(u,w) for an edge
uw ∈ E(P ). cli(−KP ) = 10; an optimal partition of −KP is obtained by taking the clusters
to be the endpoints of the edges of a perfect matching in P , and in no other way.

Proof. Both graphs have obvious examples of circles with one negative edge; that proves
they cannot be clustered.

The trivial partition, with one cluster, shows that KP has clusterability index at most
15. This cannot be improved with two clusters, because of the frustration index. Suppose
π = {X,Xc}. Then (E−:π) ∪ E+(π) is the set of edges incompatible with π. Switching
X, this same set becomes the set of negative edges, which is no smaller than l(KP ) = 15
(Proposition 6.6). We know from Lemma 6.5 that we get as few as 15 negative edges only
by switching X = N(u,w) for a Petersen edge uw.

There is a similar analysis for partitions into more than two parts, but it cannot be stated in
terms of switching. When Σ = KΓ, the inclusterability of π is cliπ(Σ) = |E(Γ):π|+|E(Γ̄)(π)|.

Lemma 10.8. If a graph Γ of order n has the property that, for every X ⊆ V , the number
of edges in the cut E(Γ)(X,Xc) is ≤ 1

2
|X|(n− |X|), then cli(KΓ) = |E(Γ)|.

Proof. In the preceding analysis of Σ, in the case Σ = KΓ the inclusterability is cliπ(KΓ) =
|E(Γ):π| + |E(Γ̄)(π)|. The hypothesis implies that |E(Γ)(X,Xc)| ≤ |E(Γ̄)(X,Xc)|. Hence,
cliπ(KΓ) ≤ |E−(KΓ):π|+ |E−(KΓ)(π)| = |E(Γ)|. �

To treat KP we only have to show that P satisfies the hypothesis of Lemma 10.8. Since
every vertex has degree 3, this is easy for any cut except for a cut E(KP )(X,Xc) with
|X| = 5. The number of Petersen edges contained within X is at least two, because either X
has independence number ≤ 3, in which case it certainly contains at least two edges, or its
independence number is 4, in which case it must be (up to symmetry) {12, 13, 14, 15}, and
any additional vertex is joined to these four by at least two edges. Since X contains at least
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two Petersen edges, the cut E(KP )(X,Xc) contains at most 3|X|−2(2) < 1
2
|E(KP )(X,Xc)|

Petersen edges. That solves KP .
A partition that proves cli(−KP ) ≤ 10 is the partition given by a perfect matching, say

π5 =
{
{12, 35}, {34, 25}, {15, 24}, {23, 14}, {45, 13}

}
.

Here E−:π5 = ∅ and E+(π5) consists of the 10 (positive) edges of P that are not within the
clusters. To analyze further we cannot use Lemma 10.8, since P̄ plainly fails to satisfy the
hypothesis. Instead, we analyze the contribution of each cluster to the total degree of the
graph of incompatible edges.

That graph is Γπ :=
(
V, (E−:π) ∪ E+(π)

)
. The number of incompatible edges is half the

total degree of Γπ. If every cluster contributes at least twice its own size to the total degree,
then the number of incompatible edges is not less than |V | = 10. Let’s consider a cluster X of
k vertices. Within X there are m positive edges; that makes a contribution of 2

[(
k
2

)
−m

]
to

the total degree of Γπ. The number of incompatible (positive) edges departing X is 3k−2m,
since P is cubic. The total contribution of X is therefore k2 + 2k − 4m. Subtracting 2k we
have k2 − 4m, which we hope will always be nonnegative. If it is, then the only way to get
as few as 10 incompatible edges is to have a partition with k2 − 4m = 0 for every cluster.

Now the girth of P , namely 5, enters the picture. If k ≤ 4, m ≤ k−1, so k2−4m ≥ (k−2)2,
which is positive with one exception: when k = 2 and m = 1, i.e., when X is the vertex set
of one Petersen edge. If 5 ≤ k ≤ 7, m ≤ k; then k2 − 4m ≥ k(k − 2) > 0. If k = 8, the
number of negative edges within the cluster is at least

(
8
2

)
−m, where m ≤ 10 because at

least 5 edges must be outside X; hence there are at least 18 incompatible edges within the
cluster. When k > 8 there are only more negative incompatible edges. Thus, a cluster with
k ≥ 8 is itself more than enough to make cliπ > 10.

Thus, any partition with a cluster of size other than 2, or with a cluster of size 2 that does
not support a Petersen edge, has clusterability > 10. The optimal partitions are anything of
the same form as π5, and nothing else. All these partitions are equivalent under symmetries
of P . �
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Part III. Algebra

11. The Positive Binary Cycle Subspace

From a certain algebraic viewpoint upon signatures of a graph the signed Petersen graphs
are a peculiar family.

The characteristic vectors of edge sets in Γ form a vector space over F2, where we identify
a set with its characteristic vector. The binary cycle space, Z(Γ; F2), is the span of all circles,
and it is also the set of all even-degree edge sets. The positive circles of a signature σ span
a subspace Z(Σ; F2), which we call the positive binary cycle space.

Theorem 11.1 (See, e.g., [29]). Given a signed graph Σ with underlying graph Γ, a circle is
positive in Σ if and only if it is in the positive binary cycle space Z(Σ; F2). The codimension
of Z(Σ; F2) in Z(Γ; F2) is 0 if Σ is balanced and 1 otherwise.

Conversely, given a graph Γ, for any subspace Z of codimension 1 there is a signature σ
such that Z(Σ; F2) = Z.

Outline of Proof. Reinterpret the signs +1,−1 as 0, 1 ∈ F2. For the first half, apply the fact
that, if the union of two circles is a theta graph, the sign of the third circle in the theta
graph is the product of those of the first two.

For the second half, put positive signs on a maximal forest and sign any other edge e
positive if its fundamental circle is in Z, negative if not. �

We draw two conclusions.
First, for a signed graph Σ on underlying graph Γ, Z(Γ; F2)/Z(Σ; F2) is at most 1-

dimensional. Therefore it can be regarded as ⊆ F2. The quotient map

Z(Γ; F2)→ Z(Γ; F2)/Z(Σ; F2) ↪→ F2

is the sign function on circles. Thus, a switching class of signatures of Γ is equivalent to
both a homomorphism Z(Γ; F2) → F2 and a subspace Z of Z(Γ; F2) whose codimension is
at most 1.

Second, all circle signs are determined if we know those of circles that span Z(Γ; F2). In
particular, if the girth circles (the circles of minimum length in Γ) span the binary cycle
space, their signs determine those of all circles. For instance, in Kn, n ≥ 3, the signs of
triangles determine those of all circles—which, truth to tell, is obvious from inspection. In
particular, KP is determined (up to switching) by its negative triangles.

In the Petersen graph, however, the pentagons do not span the binary cycle space. The
dimension of the latter is 9, but:

Lemma 11.2. The pentagons of P span a 5-dimensional subspace of Z(P ; F2).

Proof. In the standard picture of P (Figure 1.1) there are four kinds of pentagons: the inner
and outer pentagons CI and CO, five ‘doubly outer pentagons’ Co

j with two edges in CO,

and five ‘singly outer pentagons’ with one edge in CI .
We show that the doubly outer pentagons generate all others. Their sum is CO. The

sum of the singly outer pentagons is CI . Figure 11.1 shows that CO and the doubly outer
pentagons generate the singly outer ones. We conclude that dim〈pentagons〉 ≤ 5. To prove
the five doubly outer pentagons are linearly independent, notice that each contains one edge
of CI , which is not in any other doubly outer pentagon; thus there can be no dependencies
amongst them. �
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Figure 11.1. Pentagon dependencies in the Petersen graph. CO is the sum
of the three pentagons shown.

The lemma demonstrates that, after specifying the signs of all pentagons, there is still a
3-dimensional choice to be made to get an 8-dimensional positive cycle subspace Z. There-
fore, there ought to be several signatures of P , not switching equivalent, for each choice
of pentagon signs. Strangely, this is not what happens. Table 8.1 shows immediately that
most choices of pentagon signs extend to circle signs in only one way, up to switching
isomorphism. Only P2,2 and PD might conceivably have isomorphic pentagon signs and
switching-nonisomorphic signatures. But, in fact, they do not.

Lemma 11.3. There is no automorphism of P under which the set of negative pentagons of
P2,2 is carried to that of PD.

Proof. The pentagons of P come in vertex-disjoint pairs, such as CO and CI . One can check
visually that the six negative pentagons in P2,2 include two vertex-disjoint pairs but those
of PD do not include any vertex-disjoint pair. The proposition follows. �

This gives the main result, which is surprising in view of the preceding theoretical analysis.

Proposition 11.4. A signature of P is determined up to switching isomorphism by its
pentagon signs.

Problem 11.1. Explain why the Petersen graph does not have more switching-nonisomorphic
signatures for each pentagon signature. Is there a general reason that applies to other graphs?
Is the key the difference between switching equivalence and switching isomorphism? Does
Proposition 11.4 hold even up to switching equivalence?

12. Automorphisms [Incomplete]

An automorphism of a signed graph Σ is simply an automorphism of the underlying graph
that preserves edge signs. This is not usually so interesting, because the focus on edge signs
misses the main point of signed graphs, which is the circle signs, equivalently the switching
class (cf. Proposition 4.1). Thus, I give most of my attention to switching automorphisms,
which (naturally) are switching isomorphisms of Σ with itself. I write automorphisms on the
right, as in Σα. The group identity is ε; for instance, in AutP ε is the trivial permutation.
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Automorphisms without switching.
Automorphisms of a signed graph without switching can be significant, e.g., when dealing

with clusterability (Section 10), and they are generally easier to find as well. So we begin
with them. Aut(Σ) denotes the automorphism group of Σ. The first, and very obvious,
result takes care of most of our Petersen examples.

Proposition 12.1. For any signed graph, Aut(Σ) = Aut(−Σ) = Aut(Σ+) ∩ Aut(Σ−).
For any graph, Aut(+Γ) = Aut(−Γ) = Aut(Γ).
For a simple graph, Aut(KΓ) = Aut(−KΓ) = Aut(Γ). �

An inhomogeneously signed graph is rather different from a homogeneous one; Σ may have
many fewer automorphisms than |Σ|. That is certainly the case with P (e) and PD. The task
is to find the exact automorphism group. The symmetric group of degree k is Sk. The full
permutation group of a set X is SX .

Proposition 12.2. AutP (e) ∼= S2 oS2 (the wreath product) and AutPD ∼= S3.

Lemma 12.3. Let H be a hexagon in P . Any automorphism of H extends uniquely to an
automorphism of P .

Proof. Let αH be the automorphism of H. Fix a 4-arc A (a directed path of length 3) in H.
Clearly, αH is determined by its restriction to A. There is a unique automorphism α of P
that moves A to AαH . This automorphism preserves H (that is, Hα = H) because any 4-arc
lies in a unique hexagon. Therefore, α is the required unique extension. �

Proof of Proposition 12.2. First consider P (e) with negative edge e := {12, 34}. An auto-
morphism of P (e) is simply an automorphism of P that fixes e. (It may interchange the
endpoints.) Thus, it is a permutation of [5] that fixes 5 and can independently exchange
1↔ 2, 3↔ 4, and {1, 2} ↔ {3, 4}.

More precisely, if the automorphism α fixes the vertices 12 and 34, it may exchange 35
and 45 and, independently, 15 and 25. Thus, it belongs to the group G := S{3,4} ×S{1,2}.
An automorphism that exchanges 12 and 34, such as ψ := (13)(24), belongs to the coset
ψG. The whole of AutP (e) therefore is the semidirect product of 〈ψ〉 and G, i.e., S2 oS2.

In PD, the three negative edges e1, e2, e3 are alternating edges of a hexagon H. Any
permutation of E− determines a unique automorphism of H, which by the lemma extends
uniquely to an automorphism of P , which clearly belongs to AutPD. Therefore, AutPD
contains ΣE− . On the other hand, an automorphism α of PD must preserve E−; thus, it is
determined by its action on E−. We conclude that AutPD = ΣE−

∼= S3. �

Switching automorphisms.
When we come to switching automorphisms the picture is quite different. First we have

to define one precisely. I will give a definition that is suitable to simple graphs like P .
A switching permutation of V is a pair (τ, α) of a switching function τ ∈ {+1,−1}V and

α ∈ SV . Its action on Σ is defined as the permutation α applied to the switched graph
Σ, i.e., as Στα. (Thus, I will write τα := (τ, α) from now on.) This gives a switching
isomorphic graph in the sense of Section 4: isomorphic as a signed graph to a switching of
Σ. When Στα is Σ itself then we say the action of τα is a switching automorphism of Σ. Let
SwPerm := {τα : Στα = Σ}.

These are not yet switching automorphisms. The necessary and sufficient condition for
Στ = Σ is that τ be constant on each component of Σ. Thus, the subgroup K := {τεV :
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Στ = Σ} ≤ SwPerm(Σ) has a trivial action on Σ. The group of switching automorphisms
of Σ is therefore the quotient SwAut Σ := {(SwPerm Σ)/K. In concrete terms, a switching
automorphism is a coset of K in SwPerm Σ. Perhaps even more concretely, it is a coset of K
in {+1,−1}V ×SV , acting on the class of signed simple graphs on vertex set V , which fixes
Σ.

Despite this technical discussion I shall often call τα a switching automorphism when it
is really the coset ταK that is the switching automorphism.

The significance of switching automorphisms concerns circle signs (cf. Proposition 4.2).

Proposition 12.4. If τα is a switching automorphism of Σ, then α is an automorphism of
|Σ| that preserves the signs of circles. Conversely, if α is such an automorphism of |Σ|, there
is a switching function τ such that τα is a switching automorphism of Σ, and τ is unique
up to negation on components of Σ.

The automorphisms of Σ form a subgroup of the switching automorphisms, but it need
not be normal (cf. KP , for instance). No nontrivial switching is a switching automorphism,
as long as the underlying graph is simple. (With multiple edges of opposite sign, a switching
can be a nontrivial automorphism; but that does not apply to any Petersen signed graph.)
Half the work is saved by noticing the simple behavior of negation:

Proposition 12.5. SwAut(−Σ) = SwAut(Σ). �

For a homogeneous signed graph like +P or −P there is nothing new here. There can be
no nontrivial switching, with or without an automorphism of the signed graph, because the
result would not be homogeneous with the same sign.

Proposition 12.6. SwAut(+Γ) = SwAut(−Γ) = Aut Γ. �

However, as soon as Σ is inhomogeneous there may be switching automorphisms that are
not automorphisms—or, there may not.

Proposition 12.7. SwAutP (e) = AutP .

Proof. In P (e), nontrivial switching makes more than one negative edge because no cut has
fewer than three edges. Hence, if τ is nontrivial, P (e)τα cannot be P (e). �

Switching automorphisms of PD.

Theorem 12.8. SwAutPD =???.

Proof. �
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Switching automorphisms of KP .
Now we move on to KP . Let’s set up some notation. The permutation of V := V (P ) =

P2([5]) induced by a permutation ψ of [5] is αψ; it is an automorphism of P . In particular,
αij is induced by the transposition (i j). Another permutation of V is defined directly on
V . Let i, j, k, l,m be the five elements of [5] in any order. Then

γi := (jk lm)(jl km)(jm kl),

the product of transpositions on V .
Each maximum independent set has the form Xi := {ij : j ∈ [5] \ i}. Define τi := τXi

to
be the function that switches Xi, i.e., τ−1

i (−1) = Xi. Now, let

βi := τiγi for i = 1, . . . , 5,

β0 := ε for i = 0.

These functions are switching automorphisms of KP , as we have already seen less explicitly
in Lemma 6.5.

Lemma 12.9. Let X ⊆ V (KP ). (KP )X is isomorphic to KP if and only if X = ∅ or Xi for
some i = 1, 2, . . . , 5. When X = Xi the isomorphism is any element of the coset γi AutP in
the symmetric group on V .
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Figure 12.1. The action of βi = τiγi in two stages, for i = 4.

Proof. Comparing with the proof of Lemma 6.5, the only thing lacking is that γi itself is an
isomorphism (KP )τi → KP , which is easy enough to check. �
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Now define θ : S6 → SwAutKP by extending

θ
(
(i j)

)
= αij for a transposition (i j) ∈ S5,

θ
(
(i 6)

)
= βi for i ∈ [5].

Theorem 12.10. The group SwAutKP is isomorphic to S6 under the mapping θ. The
subgroup AutKP corresponds to S5 ≤ S6.

The switching automorphisms of KP have the form βiα where i = 0, 1, . . . , 5 and α ∈
AutP .

We need to prove θ is well defined, one-to-one, and onto. All this is done by combinatorial
group formulas. Thus, our first task is to set up the elementary relations amongst the α’s,
β’s, γ’s, and τ ’s. A reader who isn’t entertained by the elementary algebraic manipulations
involved in the set-up can prove Equations (12.2) from the definitions, if desired, or go
directly to the proof of Theorem 12.10.

The important operations for the group description are the αij and βi. The tools for
working with them are the γi and τi. Thus, we begin with relations amongst the latter two
and the αij.

Remember that τ{ij} is the function that switches the vertex ij. Assume that i, j, k, l,m
are distinct elements of [5] unless stated otherwise.

(12.1a) γ2
i = ε ;

(12.1b)
τ{ij}γm = γmτ{kl},

τ{ij}γi = γiτ{ij} ;

(12.1c) αij = γiγjγi = γjγiγj ;

(12.1d) γiγj = αijγi = γjαij ;

(12.1e)
γiαij = αijγj,

γiαkl = αklγi ;

(12.1f)
γiτi = τiγi,

γiτj = τjτiγi.

These have easy direct proofs using cycle or 1- or 2-line forms of the permutations involved,
but I want to show how one can set up a calculus that avoids having to work with such
explicit details.

Equation (12.1a) is obvious from the definition. Equation (12.1b) is a most basic identity,
proved by

τ{ij}γm = τ{ij}(ij kl)(ik jl)(il jk) = (ij kl)(ik jl)(il jk)τ{kl} = γmτ{kl}

and

τ{ij}γi = τ{ij}(jk lm)(jl km)(jm kl) = (jk lm)(jl km)(jm kl)τ{ij} = γiτ{ij}.

Equation (12.1c) is also most basic; its proof is another easy direct calculation:

γiγjγi = (kl mj)(km lj)(kj lm)(kl mi)(km li)(ki lm)(kl mj)(km lj)(kj lm)

= (ki kj)(li lj)(mi mj)(ij) = αij.
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From now on I apply these tools as needed to prove other formulas.
For instance, (12.1d) is simply a rearrangement of (12.1c) using (12.1a). The first case of

(12.1e) is a rearrangement of (12.1d), but the second case involves (12.1c) and (12.1d):

γiαkl = γiγkγlγk = αikγiγlγk = · · · = αikαilαikγi = αklγi

because of properties of transpositions, which satisfy (i k)(i l)(i k) = (k l).
The first case of (12.1f) holds true because γi leaves Xi fixed. In the second case I employ

the fact that τXτY = τX⊕Y (where ⊕ denotes set summation):

γiτj = γiτ{ij}τ{jk}τ{jl}τ{jm}

= τ{ij}τ{lm}τ{km}τ{kl}γi

= τjτ{jk,jl,jm,kl,km,lm}γi

= τjτiγi

because Xi = {jk, jl, jm, kl, km, lm}c.
From Equations (12.1) we deduce that

(12.2a)
τiαij = αijτj,

τkαij = αijτk ;

(12.2b) β2
i = ε ;

(12.2c) βiβjβi = βjβiβi = αij ;

(12.2d)
βiαij = αijβj,

βiαkl = αklβi.

For instance,

β2
i = τiγiτiγi = τ 2

i γ
2
i = ε

from (12.1f) in particular. For (12.2a), extract the τ ’s and apply (12.1c):

αijτi = γiγj(γiτi) = γi(γjτi)γi = (γiτiτj)γjγi = τj(γiγjγi) = τjαij

and

αijτk = γiγj(γiτk) = γi(γjτkτi)γi = (γiτkτi)γjγi = τk(γiγjγi) = τkαij.

For (12.2c), also move the τ ’s around and apply (12.1c):

βiβjβi = τi(γiτjγjγi)τi = (τjγi)γjγiτi = τjαijτi = αij

by (12.2a). For (12.2d) employ the commutation relations of (12.1d) and (12.2a).

Proof of Theorem 12.10. For well definition of θ we show that βi ∈ SwAutKP and (i 6) ∈ S6

have the same order and the same commutation relations with the corresponding transposi-
tional elements of their groups, αij and (i j). For these relations see, e.g., [19, ???].

The order of βi is given by (12.2b). The commutation relations contained in (12.2c, d) are
the same as the fundamental relations of the transpositions (i 6). It follows that θ is well
defined and a homomorphism, hence an epimorphism.

To show θ is injective it suffices to prove that all βi are different. This is obvious: each
one both switches and permutes V differently. �
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There is another, relatively simple way to prove that S6 is the automorphism group of
KP . The construction of KP as the quotient of the Johnson graph J(6, 3) modulo the
complementation involution (Section 17) implies it. This proof is in Section ??.
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Part IV. Matrices

13. Adjacency Matrix

The adjacency matrix of a signed simple graph, A(Σ), is the V × V matrix whose entry
aij = σ(eij) if vi and vj are adjacent and 0 if they are not. More generally, if Σ has parallel
edges then aij is the sum of the signs of all edges vivj. For instance, A(+Γ) = A(Γ) and
A(−Γ) = −A(Γ). The matrices of graphs KΓ are almost as simple:

A(KΓ) = J − I − 2A(Γ),

where J is the all-ones matrix. It will be no surprise, then, that the matrix and eigenvalue
properties of signed graphs of any of these types are intimately related to those of Γ.

Obvious properties are that A(Σ) is a symmetric, integral matrix with zero diagonal.
Powers of A count walks of given length between vertices, but here there is a modification:
the (i, j) entry of Al is the number of walks of length l from vi to vj that are positive, less
the number that are negative. This can easily equal 0 even when walks exist.

Switching has a nicely simple effect on the adjacency matrix. Suppose τ : V → {+1,−1}
is a switching function. Let D(τ) be the diagonal matrices with entries given by τ . Then

(13.1) A(Στ ) = D(τ)−1A(Σ)D(τ).

(Since D(τ)−1 = D(τ), the inversion is merely ideological, to show that A is being conju-
gated.)

Many properties of A(Σ) resemble those of an unsigned graph, but with little differences.
For instance, powers Al count walks of length l between pairs of vertices, though the count
is distorted by the fact that positive and negative walks cancel. The diagonal entries of A2,
if A has no loops, are the vertex degrees in |Σ|. The diagonal entries of A3 get interesting.
If |Σ| has girth > 3, as does P , the diagonal is zero. If Σ = KΓ, the diagonal entry of vertex
v is the number of positive triangles on v less the number of negative ones; switching so all
edges at v are positive, it is the number of negative edges in the switched graph. We say
more about signed complete graphs in Section ??.

14. Incidence Matrix

A graph has two common incidence matrices. The unsigned incidence matrix has two
+1’s in each column, and the oriented incidence matrix has one +1 and one −1. Both are
examples of the incidence matrix of a signed graph.

The incidence matrix of Σ is a V ×E matrix H(Σ) = (ηve)v,e (read H as “Eta”) in which
the column of an edge eij has ±1 in the row of vi and ±σ(eij) in the row of vj, and is 0
elsewhere. (The ± must be the same in both rows.) Obviously, this is not unique, since
negating a column gives a different matrix for Σ, but the difference, which is a matter of
choice of orientation, will not matter for the time being. This definition applies to edges
that are not loops. The column of a positive loop is all 0 and that of negative loop eii is 0
except for a ±2 in the row of vi.

As examples, the incidence matrix of +Γ is the oriented incidence matrix of Γ and H(−Γ)
is (after choosing the column signs suitably) the unsigned incidence matrix of Γ.

The incidence matrix satisfies some of the usual properties. Let ∆(Γ) be the diagonal
degree matrix of Γ. (A loop counts twice in the degree.)
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Theorem 14.1. For a signed graph, H(Σ)H(Σ)T = ∆(|Σ|)−A(Σ). If |Σ| is k-regular, then
A(Σ) = kI − H(Σ)H(Σ)T.

The proof is standard: compare the two sides, element by element. The matrix K(Σ) :=
∆(|Σ|) − A(Σ) is the Kirchhoff matrix of Σ. (It is often called the Laplacian matrix but
other matrices are also called that.) For an unsigned graph, the theorem says that

(14.1)
A(Γ) = A(+Γ) = ∆(Γ)− H(+Γ)H(+Γ)T,

A(Γ) = −A(−Γ) = H(−Γ)H(−Γ)T −∆(Γ).

Thus we have two standard graphical formulas in one package.
The columns of the incidence matrix give a vector representation of Σ whose linear de-

pendencies can be described in strictly graphical terms. This is matroid theory, which I
omit. Here I observe that the column vectors belong to a well-known set: a root system Cn.
Rather than giving a general definition I will state the canonical form of each type we need
here. The standard orthonormal basis of Rn is the set {b1, . . . ,bn}. These are three of the
“classical” root systems:

An−1 is the set of all vectors in Rn of the form bj − bi where i 6= j.
Dn is An−1 ∪ {±(bj + bi) : i 6= j}.
Cn is Dn ∪ {±2bi}.

The column of a positive non-loop edge belongs to An−1, that of any non-loop to Dn, and
that of any edge except a positive loop to Cn. The zero vector, corresponding to a positive
loop, does not belong to any root system.

Recall that b(Σ) is the number of balanced components of Σ. A main theorem of signed
graph theory is:

Theorem 14.2 ([30, Theorem 8A.1]). The rank of H(Σ) equals n− b(Σ).

Thus, all the incidence matrices of Petersen signed graphs have rank 10, except for +P ,
where the rank is 9 since the graph is balanced.
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Part V. Covering Graphs and Surface Embedding

15. Signed Covering Graphs

The signed covering graph of Σ (also known as the derived graph; cf. Biggs (1974a),

Exercise 19A) is the unsigned graph Σ̃ whose vertex set is Ṽ := V × {+1,−1} with edges
ẽij, joining (vi,+1) to (vj,+σ(eij)), and ẽ ∗ij, joining (vi,−1) to (vj,−σ(eij)). The mapping
∗ defined by (vi, ε)

∗ := (vi,−ε) and (ẽ ∗ij)
∗ := ẽij is an automorphism of Σ̃ of period 2,

with no fixed points. The covering projection p : Σ̃ → Σ defined by p(vi, ε) = vi and

p(ẽij) = p(ẽ ∗ij) := eij is a graph homomorphism. If we forget the vertex signs in Σ̃ we

have a double covering graph of Σ that we write Γ̃; then ∗ is a fixed-point-free, involutory

automorphism of Γ̃.

Conversely, if Γ̃ is any graph with a fixed-point-free, involutory automorphism ∗, then Γ̃/∗

is a signed graph. Actually, that is a bit of an overstatement. In order to get a signed graph

we have to choose one of each pair of corresponding vertices of Γ̃, v and v∗, to be called
positive and call the other one negative. Then we can define the sign of an edge in the
quotient graph, i.e., σ({ẽ, ẽ ∗}), to be the product of the signs of the endpoints of ẽ (or of

ẽ ∗; it’s the same sign). This construction gives us a signed graph Σ of which Γ̃ is the double
covering graph (if we are not too pedantic about notation).

This construction in different terminology is well known. See for instance [2, Problem
19A]. It is a special case of constructions of interest to group theorists [2, Chapter 19] and
topological graph theorists (cf. Gross (1974a)). Our interest is more specialized; but these
two topics will be the subject of Sections ?? and 16.

Changing the choice of how to sign the vertex pairs in Γ̃ corresponds to switching the

changed vertices in Σ. Thus, Γ̃/∗ is really not a signed graph but a switching equivalence
class. The reason is that, in the signed covering, we identify vertices within a covering pair
as positive and negative, but in the double covering we do not; if we supply this additional

information along with Γ̃ the projection is a unique signed graph.
The natural next question is: What are the signed covering graphs of various signatures

of P? I will answer this as well as I can in the following sections. The discussion shows
that a switching class of signed graphs is equivalent to an ordinary graph together with
an involutory automorphism without fixed vertices, and a signed graph is equivalent to an
ordinary graph, a fixed-vertex-free involutory automorphism, and a sign labelling of pairs of
automorphically equivalent vertices. We have two uses for this observation: one in relation
to surface embedding (Section 16) and one directly concerning automorphisms (Section 17).
Each approach demonstrates a double covering of a Petersen signed graph.

There is one special case to dispose of at once. If Σ is balanced, Σ̃ consists of two identical
copies of |Σ| and ∗ is the natural bijection between the copies. The proof is that Σ switches

to all positive, and then Σ̃ has one copy of |Σ| on the positive vertices and another on the

negative ones. This is not very interesting. In particular, +̃P consists of two copies of P
with an isomorphism α : (v,+) 7→ (v,−) serving as the involution. A simple special case is
important:

Lemma 15.1. Let C be a circle in Σ. Then p−1(C) is one circle if C is negative and it is
two circles, each isomorphic to C, if C is positive. �
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A more interesting special case is an antibalanced Σ. The signed covering is bipartite,

as one can see by switching Σ to be all negative and observing that then every edge in Σ̃
has one positive endpoint and one negative endpoint. Such graphs can be quite interesting.
−P is a case in point. Its double covering graph is the Desargues graph, which is the point-
line incidence graph of the Desargues configuration from projective geometry. It is a cubic
distance-regular graph of order 20, bipartite, with girth 6, and it is the Cartesian product
K2�P . (How we know this might require explanation. A.E. Brouwer [3] observes that the
Desargues graph is the “bipartite double” of P , which means K2�P . This in turn is simply

−̃P , if we take the vertex set of K2 to be {+1,−1} and compare definitions.)

The signed cover of a graph with one negative edge, like P̃ (e), is easy to describe. Suppose

the negative edge of P (e) is u1w1. In +̃P , replace u1w1 in the first copy and u2w2 in the

second copy by edges u1w2 and u2w1. The involution of this graph is α. This gives P̃ (e).
We shall see in Section 16 that the double covering of PD is the dodecahedral graph

D—whence the notation for this signature.

Section 17 will show what is interesting about K̃P .

16. Surface Embedding

There is more than one way to define surface embedding of a signed graph, but that which
seems to me the most natural is what I call orientation embedding. The basic ideas here
are due, independently, to Gerhart Ringel [18], Saul Stahl [25], and me ([31], on which I
mainly rely here). (Gross and Tucker’s book (1987a) has extensive treatment of orientation
embedding in different terminology.)

We need notation for the closed surfaces; I call them Tg for the g-fold torus, the orientable
surface with g handles (g ≥ 0) and Uh for the nonorientable surface with h crosscaps. The
sphere is T0, the torus is T1, the projective plane is U1, the Klein bottle is U2; these are the
most fun. The most important fact to know is that Tg has an involutory self-homeomorphism
under which it is the unique orientable double covering surface of Uh, where g = 2h − 2;
for example, the unit sphere has the antipodal mapping given by its central symmetry, and

the quotient surface is U1. Thereby any graph Γ̃ embedded in T2h−2 in conformity with the
involution projects to a signed graph Σ in Uh, and by comparing the definitions one can see

that Γ̃ is the double covering of Σ.
A signed graph Σ is orientation embedded in a surface S if its underlying graph is topo-

logically embedded in S so that a positive circle preserves orientation and a negative circle
reverses it. Obviously, Σ embeds in some orientable surface if and only if it is balanced;
consequently, orientation embedding of a balanced signed graph is the same as orientable-
surface embedding of the underlying graph. There is always a unique minimal surface S(Σ)
in which Σ can be orientation embedded; this surface is orientable if and only if Σ is bal-
anced. The demigenus d(S) of a surface (also called Euler genus or nonorientable genus)
is defined as 2 − Euler characteristic). The demigenus of Σ, d(Σ), is the demigenus of its
minimal surface. Thus, the minimal surface of Σ is uniquely determined if we know two
things about Σ: its demigenus and whether it is balanced or not.

Each nonorientable topological embedding of |Σ| determines circle signs, hence a switching
class of signed graphs (Proposition 4.1). There is a simple and convenient way to derive
edge signs from a topological embedding: draw the embedding in a polygonal diagram of
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the surface with boundary identification scheme a1a1a2a2 · · · ah, with no vertices on the
boundary. The sign of e is (−1)κ where κ is the number of times e crosses the boundary.

Let’s apply all this to signed Petersen graphs.

Proposition 16.1. The demigenera of some signed Petersen graphs are d(+P ) = 2, d(PD) =
1, d(−P ) = 4, and d(P (e)) = 3.

Proof. +P is obviously nonplanar (who can help noticing how it contracts to K5?) but it
does embed in the torus (see [15, Figure 9.5]) so d(+P ) = 2. (The fact that P embeds in
the projective plane as an unsigned graph is immaterial to +P because all circles in the
latter must be orientation preserving, which forces the minimal embedding surface to be
orientable.)
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Figure 16.1. Two views of P , signed as PD, embedded in the projective
plane. Left: The central circle and twiddle represent a crosscap; the edges
through the crosscap are the negative ones. Right: The outer circle represents
the crosscap; the six pentagonal regions show duality with K6.

The unsigned Petersen graph embeds in the projective plane U1 (see Figure 16.1), uniquely
because it is the surface dual graph of K6, whose embedding in U1 is unique (cf. [15, Section
9.9]). This embedding gives the signs of PD. The striking fact is that this embedding of
P is the projection of an antipodal embedding in the sphere of the dodecahedral graph D
(whence my notation PD). Therefore, the double covering graph of PD is D, and PD is the
projection of (D, ∗) where ∗ is the well-known antipodal involution on D.

Now let’s think about −P . It does not embed in the projective plane, because it has two
vertex-disjoint negative circles. It does embed in U4, as in FIgure 16.2. I will first show
that the Klein bottle is too small for it. A walk around a face boundary must preserve
orientation, so it is a positive closed walk; that is, it has even length. The shortest positive
closed walk is a hexagon; therefore, the least possible length of a face boundary walk is 6.
Euler’s polyhedral formula implies that the number of faces of −P embedded in U2 is 5. The
sum of all face boundary lengths is 2|E| = 30. Thus, the only way to embed −P in U2 is
to have five hexagonal faces, bounded by hexagons of P . This is where the difficulty arises.
Two hexagons of P can only be face boundaries in the same embedding if they do not share
a path of length 2; if they do, the middle vertex cannot have a third edge. A hexagon shares
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such a path with all but three other hexagons (see Lemma 3.3). It follows that there is no
embedding of −P in the Klein bottle.

To prove −P cannot embed in U3 I employ the circle compatibility graph from Section
3. Once more, every face boundary has even length. A face boundary of length < 10 has
to be a circle, because of the girth of P . By Euler’s formula there are f = 4 faces. If fl =
the number of faces with boundary length l, 6f + 2(f8 + 2f10 + 3f12 + 4f14 + · · · ) = 30. We
deduce that f8 + 2f10 + 3f12 + 4f14 + · · · = 3. This rules out faces of degree 14 or more, and
gives the following possibilities for the face vector (f6, f8, f10, f12):

(3, 0, 0, 1), (2, 1, 1, 0), (1, 3, 0, 0).

The compatibility graph excludes all, because every face vector requires at least a triple of
compatible hexagons and octagons, but there are no triangles in their compatibility graph.
It follows that −P has no orientation embedding in U3.

One other Petersen signed graph, which nicely illustrates a different argument for demi-
genus, is P (e), with one negative edge, say e. Since P \ e is not planar, but P (e) \ e is
balanced, that part of P (e) needs a torus in order to embed. Adding the edge e can be done
in the torus, but to make it orientation reversing requires a crosscap. Therefore U3 is the
minimal surface for orientation embedding of P (e). �

Problem 16.1. Orientation embed a signed graph like PD in the projective plane P. By
shifting vertices around one can get a different signature, which is switching equivalent to
the original, because according to the boundary-crossing rule for edge signs, pushing a vertex
across the boundary switches that vertex. Is it possible to get every switching of Σ by moving
the vertices around in P? A different statement is: Given an orientation embedding Σ ↪→ P
and a switching function τ , is it possible to find a noncontractible, non-self-intersecting curve
γ in P such that the edges crossing γ are precisely the negative ones? This is unknown.

I would like to know the answer, and also how to generalize the question to higher unori-
entable surfaces.

a
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b b

~

~

Figure 16.2. −P embedded in U4. The boundary polygon of the torus is
outside and there are two crosscaps inside.
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17. Johnson Quotients

In Section 15 we saw that a switching class of signed graphs is the quotient of an ordinary

graph Γ̃ modulo a fixed-point-free involutory automorphism ∗. I will now show that KP is
an interesting quotient graph.

The Johnson graph J(m, l) is the graph with vertex set Pl([m]), in which vertices A,B
are adjacent when they differ in only one element, i.e., when |A ∩ B| = l − 1 ([15, p. 300],
[12, Sect. 1.6]). Identifying a triple in V (Km) = [m] with the triangle it supports, J(m, 3) is
the triangle graph of Km: the graph of triangles in Km, in which two triangles are adjacent
if they have a common edge. Let’s look at two of these graphs J(m, 3).

Consider J(5, 3) first. Two triples, {u, v, w} and {x, y, z}, are adjacent if and only if their
complementary vertex sets, which are edges of K5, have empty intersection. Thus by a
natural isomorphism J(5, 3) ∼= L(K5) = P .

Now comes the surprising part. In J(6, 3) write a triple A = {6, i, j} containing 6 in terms
of its complement T := [6] \ A, as −T , and write T as +T . T is a subset of [5]; so the
vertices of J(6, 3) are the signed triples +T and −T for T ∈ V (J(5, 3)). It is easy to check
that, when T, T ′ ∈ V (J(5, 3)), then in J(6, 3) either +T,+T ′ and −T,−T ′ are two pairs of
adjacent triples (if |T ∩ T ′| = 2), or else +T,−T ′ and −T,+T ′ are two pairs of adjacent
triples (if |T ∩ T ′| = 1). Thus, J(6, 3) expressed this way is the signed covering graph of a
signed graph; we call the signed graph T3.

For any two triples T, T ′, one of these two situations holds. Thus we are signing the
complete graph K10 on vertex set P3([5]) using the following rule: An edge TT ′ is positive if
|T \ T ′| = 1, and negative if |T \ T ′| = 2. The resulting signed graph T3 is the quotient of
J(6, 3) modulo its antipodal automorphism T ↔ [6] \ T .

Now compare the graph J(6, 3) with the signed graph T3 on P3([5]). It is clear that
J(6, 3) is the signed covering graph of T3, and that p(+T ) = p(−T ) = T ∈ V (J(5, 3)).
Furthermore, the positive part of T3 is J(5, 3), or equivalently L(K5), which is P̄ . Thus we
have the promised interesting interpretation of KP .

Proposition 17.1. The signed graph KP is (naturally isomorphic to) T3 and its signed

covering graph K̃P is (naturally isomorphic to) J(6, 3). �

Here is the natural generalization of the construction of T3 = KP from J(6, 3). In
J(2m,m) there is a fixed-point-free, involutory automorphism by complementing m-element
sets. Therefore, J(2m,m) is a double covering graph of a signed graph Tm. The underlying
graph |Tm| is sometimes called the even graph [15, Section 9.8]. It can be defined as having
vertex set Pm([2m− 1]) and edges AB if |A \B| = 1 or |A∩B| = 1. Define J(2m− 1,m, 1)
to have the same vertices as J(2m− 1,m), with vertices adjacent when their intersection is
a singleton. Then |Tm| = J(2m − 1,m) ∪ J(2m − 1,m, 1) (which is K10 if m = 3 but not
otherwise). But what is the signature? The argument for T3 shows that σ(AB) := +1 if
|A \B| = 1, and −1 if |A ∩B| = 1. Thus,

Proposition 17.2. For m ≥ 2, the Johnson graph J(2m,m) is the signed covering graph of
the signed graph Tm defined by

T+
m = J(2m− 1,m) and T−m = J(2m− 1,m, 1).

�

The cases m = 1, 2 are exceptional in not being simple graphs. Since J(3, 2) ∼= J(3, 2, 1) ∼=
K3, T2

∼= (+K3)∪ (−K3). Because J(2, 1) ∼= K2, the quotient graph T1
∼= J(2, 1)/∗ has one
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Figure 17.1. The construction of T3, the signed K10, from J(6, 3). Between
ijk, i′j′k′ ∈ P3([5]), there is a positive edge when |{i, j, k} ∩ {i′, j′, k′}| = 2
and a negative edge when |{i, j, k} ∩ (−{i′, j′, k′})| = 2.
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vertex and one half edge. (I apologetically refer the reader to [30] for an explanation of half
edges, which would lead us far astray. Suffice it to say that a half edge appears in Σ when

a single edge exists between ṽ and ṽ∗ in Σ̃.)
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Part VI. The End

18. The Future

There have been attempts to generalize the Petersen graph, but as a rule they lack the
properties that make P interesting. Working on signed graphs inspired by P led me to believe
that the simplest generalization is the best. Thus, the next step should be to investigate the
complement of the line graph of Kp, i.e., L(Kp) = J(n, 2, 0), or J(2k + 1, k, 0) (Section 17).
The obvious signed graphs, the all-negative ones and the signed complete graphs, should be
joined by some generalization, not evident to me, of PD.

The strongest reasons I think L(Kp) and J(2k + 1, k, 0 are good directions to go in are
switching automorphisms and eigenvalue properties. Both seem ripe for generalization to
p > 5. Other questions like frustration index will be harder, but tempting.

19. The Past

Signed graphs were invented by Frank Harary in [13] in order to handle both positive
and negative relations in a small group of people, a question he studied along with the
psychologist Dorwin Cartwright [6]. Balance was postulated to be a stable state, with an
unbalanced state tending towards balance. it is debatable how effective this model has
been; there is an extensive literature and new ideas are still appearing, some of them quite
interesting mathematically.

An oddity of mathematical history is that Denes König came quite close to defining signed
graphs in his pioneering textbook [16]. He had the notion of a distinguished edge set (the
negative edge set) and distinguishing between circles (his word: Kreis) which meet that set
an even or an odd number of times. He also had switching in the form of set summation
with a cut (since switching X is equivalent to replacing E− by the set sum (the symmetric
difference) E− ⊕ E(X,Xc)). He even proved Harary’s fundamental theorem of balance (see
Section 5). But he never took the fundamental conceptual step of assigning multiplicative
signs to edges. That is more essential than it may seem at first, and this is why I say he did
not invent signed graphs.

The frustration index was introduced by the social psychologists Abelson and Rosenberg
[1]. The l in the notation is from Harary’s original name for it, “line index of balance”.

About two decades later, the physicist Gérard Toulouse rediscovered signed graphs in
connection with the general Ising model in the theory of spin glasses [26]. He modeled a
spin glass as a signed graph Σ together with a changeable “state” s : V → {+1,−1}. With
respect to the state, an edge is colorfully called satisfied if σ(eij) = s(vi)s(vj) and frustrated
otherwise. The number of frustrated edges corresponds to the energy of the state; a ground
state has the fewest such edges. In terms of switching, the number of frustrated edges in
state s equals the number of negative edges in the switched signed graph σs. For more, see
Section 6.

The first person to carry out switching in a way that clearly connects with signed graphs
(although he did not make that connection) was J.J. Seidel in numerous papers [22]. Seidel
developed the technique that is now known as Seidel switching; see Section 4. He simul-
taneously introduced the matrix now known as the Seidel matrix of a graph (that is, the
adjacency matrix of KΓ; see Section 13) and showed how valuable it is in the study of strongly
regular graphs and regular two-graphs; see [21] and Section ??. Seidel was also one of the
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authors of the fundamental paper on line graphs and their eigenvalue bound [5], in which
signed graphs implicitly play an essential role (see Section ??).

Explicit treatment of signed graphs in the context of eigenvalue bounds, however, had to
await the work of G.R. Vijayakumar and his collaborators in [27, 7, 28] et al.
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References in the form Name (datex) are to entries in [33].
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