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Abstract. We present new criteria for a multary (or polyadic) quasigroup to be isotopic
to an iterated group operation. The criteria are consequences of a structural analysis of
biased expansion graphs. We mention applications to transversal designs and generalized
Dowling geometries.

1. Associativity in multary quasigroups

A multary quasigroup is a set with an n-ary operation for some finite n ≥ 2, say f : Qn →
Q, such that the equation f(x1, x2, . . . , xn) = x0 is uniquely solvable for any one variable
given the values of the other n variables. An (associative) factorization is an expression

f(x1, . . . , xn) = g(x1, . . . , xi, h(xi+1, . . . , xj), . . . , xn) (1)

where g and h are multary quasigroup operations. For instance, if f is constructed by
iterating a group operation,

f(x1, . . . , xn) = x1 · x2 · · · · · xn,

then it has every possible factorization. We study the degree to which an arbitrary multary
quasigroup with some known factorizations is an iterated group. We employ a new method,
the structural analysis of biased expansion graphs.

An operation may be disguised by isotopy, which means relabelling each variable sepa-
rately; or by conjugation, which means permuting the variables. Precisely, we call operations
f and f ′ isotopic if there exist bijections αi : Q → Q such that

f ′(x1, . . . , xn)α0 = f(xα1
1 , . . . , xαn

n );

we call them circularly conjugate if

x0 = f ′(x1, . . . , xn) ⇐⇒ xi = f(xi+1, . . . , xn, x0, x1, . . . , xi−1)

or

x0 = f ′(x1, . . . , xn) ⇐⇒ xi = f(xi−1, . . . , x1, x0, xn, . . . , xi+1)

for some i = 0, 1, . . . , n. Neither isotopy nor circular conjugation affects the existence of
factorizations. The exact factorization formulas may change under circular conjugation, but
the factorizations of f and f ′ correspond.

If a ternary quasigroup factors in both possible ways,

f(x1, x2, x3) = g1(h1(x1, x2), x3) = g2(x1, h2(x2, x3)) (2)
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(this is known as generalized associativity), then g1, g2, h1, h2 are all isotopic to a single group
multiplication, so f is isotopic to an iterated group operation [3, 8, 1]. To generalize this
result to higher n, we create an undirected factorization graph ∆(f). The vertex set is
{v0, v1, . . . , vn} and the edge set contains e01, e12, . . . , en−1,n, en0 (where eij denotes an edge
whose endpoints are vi and vj) as well as an edge eij for every factorization (1). It follows
easily from the theorem of generalized associativity that, if ∆ is complete, then f is an
iterated group isotope (and the converse is obvious). According to Dudek [6], V.D. Belousov,
who introduced the notion of n-ary quasigroup in a paper with Sandik [4], conjectured that
the same conclusion follows if ∆ is any 3-connected graph. (I have not been able to locate
this conjecture anywhere.) I can prove the conjecture.

Theorem 1. An n-ary quasigroup operation f such that ∆(f) is 3-connected is isotopic to
an iterated group operation.

An immediate corollary (mentioned by a referee) is a characterization of iterated group
isotopes among all n-ary operations of whatever kind.

Corollary 2. An n-ary operation is isotopic to an iterated group operation if and only if it
is an n-ary quasigroup operation whose factorization graph is 3-connected.

Theorem 1 is the best possible result. A factorization graph can have a 2-separation.
Indeed we can explicitly describe all possible factorization graphs. Edge amalgamation of
two disjoint graphs means identifying one edge in the first graph with one in the second
graph.

Theorem 3. A finite, simple graph with at least 3 vertices is a factorization graph of a
multary quasigroup if and only if it has a Hamiltonian circuit and is obtained by edge amal-
gamation of circuits and complete graphs.

If |Q| is very small, f may be obliged to factor in every way. According to Dudek [6],
Belousov and collaborator(s) proved that ∆(f) is complete when |Q| = 2, and also when
|Q| = 3 although this proof was too long to publish. On the other hand, one can construct
a multary quasigroup of order |Q| = 4 whose factorization graph is any graph satisfying
Theorem 3 because there exist irreducible n-ary quasigroups with |Q| = 4 for all n ≥ 3,
by [4, Section 5] and [7]; see [2]. One can deduce the results for |Q| ≤ 3 from a second
general criterion for group isotopy. A residual multary quasigroup of a multary quasigroup
is obtained by fixing the values of some of the independent variables.

Theorem 4. If f has arity at least three and each residual ternary quasigroup is an iterated
group isotope (not necessarily of the same group), then f is isotopic to an iterated group
operation.

Corollary 5. If |Q| ≤ 3, then f is isotopic to an iterated group operation.

2. Biased expansion graphs

The approach we take to proving these results is that of biased graphs, and more specif-
ically, biased expansions of a graph. Intuitively, a biased expansion of a graph ∆ is a kind
of branched covering of ∆, whose branch points are the vertices. The precise definition is
somewhat complicated.

First we define a biased graph [11, Part I]. It is a pair Ω = (Γ, B) where Γ is a graph
(multiple edges being allowed) and B is a linear subclass of the class of all circuits: this
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means that, whenever B1, B2 are circuits in B whose union B1 ∪B2 consists of three simple
paths that are internally disjoint and have the same endpoints, then the third circuit in
B1 ∪B2 also belongs to B. Circuits in B are called balanced.

The prototype of a biased graph is a gain graph. Let us assign to each oriented edge ẽ of
Γ a value ϕ(ẽ) in some fixed group G, in such a way that the same edge with the opposite
orientation, which we denote by ẽ−1, has value ϕ(ẽ−1) = ϕ(ẽ)−1. Then (Γ, ϕ) is called a gain
graph and ϕ(ẽ) is the gain of ẽ. We obtain a biased graph by taking as balanced circuits all
those circuits C̃ = ẽ1ẽ2 · · · ẽl such that, after orienting the edges in the indicated direction
around the circuit, the gain product ϕ(C̃) = ϕ(ẽ1)ϕ(ẽ2) · · ·ϕ(ẽl) = 1, the group identity. It
is easy to see that, although the actual value of ϕ(C̃) may depend on the chosen orientation
and starting point, the class B of balanced circuits is independent of the choices. (Gain
graphs are called “voltage graphs” in topological graph theory; however, our problems and
methods are quite different, having their origin in matroid theory.)

A biased expansion of ∆ [11, Example III.3.8 and Part V], written Ω ↓ ∆, consists of ∆
(called the base graph), a biased graph Ω with the same vertex set as ∆, and a projection
mapping p : Ω → ∆ which maps vertices to vertices and edges to edges (and preserves
incidence of vertices and edges), is the identity on vertices, is surjective on edges, maps no
balanced digon onto a single edge, and has a property we call the circle lifting property. This
is the property that, whenever C is a circuit in ∆, e is an edge in C, and P̃ is a path in Ω
that projects bijectively onto C\e (that is, p|P̃ : P̃ → C\e is a graph isomorphism), then

there exists exactly one edge ẽ ∈ p−1(e) for which the circuit P̃ ∪ {ẽ} is balanced.
The prototype of a biased expansion is a group expansion of ∆ by a group G [11, Example

I.6.7]. Here Ω is a gain graph with vertex set V (∆) and edge set G× E(∆); the projection
takes (g, e) ∈ E(Ω) to e ∈ E(∆). To define the gain function ϕ we fix an arbitrary orientation
of ∆ and carry it over to Ω, orienting (g, e) the same way as e. An edge ẽ = (g, e) of Ω has
gain ϕ(ẽ) = g if ẽ is directed as in the fixed orientation and g−1 if not. The general rule for
gain graphs makes Ω a biased graph, which one can verify is a biased expansion of ∆.

3. Expansions and quasigroups

Biased expansions of a circuit Cn+1 of length n+1 are equivalent to equivalence classes of
n-ary quasigroups under isotopy and circular conjugation. To show this, first we construct an
n-ary quasigroup (Q, f) from a biased expansion Ω ↓ Cn+1. It is not hard to show that every
edge fiber p−1(e) has the same cardinality. Suppose Cn+1 = e01e12 · · · en−1,ne0n on vertex set
{v0, v1, . . . , vn}. (This involves a choice of base edge e01 and direction around C.) Choose a
set Q and bijections βi : Q → p−1(ei−1,i) and β0 : Q → p−1(e0n). For x1, . . . , xn ∈ Q define

f(x1, . . . , xn) = β−1
0 (ẽ0n)

where ẽ0n is the unique edge in p−1(e0n) that makes the circuit β1(x1)β2(x2) · · · βn(xn)ẽ0n

balanced in Ω. It is easy to verify that f defines an n-ary quasigroup. The quasigroup is
well defined only up to isotopy, because of the arbitrariness of the bijections βi, and circular
conjugacy, because of the arbitrariness of the base edge and direction.

Conversely, given an n-ary quasigroup (Q, f) it is easy to construct Ω ↓ Cn+1 that corre-
sponds to (Q, f) in the previous manner. Let Qi = Q × {i} for i = 0, 1, . . . , n. Label the
edges of Cn+1 as before. Define Ω to have vertex set V (Cn+1) and edge set Q0∪Q1∪· · ·∪Qn,
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and let the endpoints of (x, i) ∈ Qi be vi−1 and vi with subscripts modulo n + 1. The pro-
jection of an edge is p(x, i) = ei−1,i. Define a circle (x0, 0)(x1, 1) · · · (xn, n) to be balanced if
x0 = f(x1, . . . , xn).

The connection between factorization and expansions is through extensions. Formally, an
extension of Ω ↓ ∆ (assuming ∆ is simple, which is the only case of importance) is a biased
expansion Ω′ ↓ ∆′ such that ∆ ⊆ ∆′, V (∆′) = V (∆), ∆′ is simple, Ω ⊆ Ω′, p = p′|Ω, and
(p′)−1(∆) = p−1(∆) = Ω. Informally, an extension of Ω ↓ ∆ is a biased expansion Ω′ ↓ ∆′

such that Ω′ contains Ω and covers ∆ in the same way as does Ω (this is what the conditions
on p and p′ mean), but Ω′ may also cover additional edges not in ∆, namely, those in ∆′ that
are not in ∆. A biased expansion is maximal if it has no proper extensions. For instance, it
is maximal if ∆ is a complete graph. A central point of this work is that there are maximal
extensions where ∆ is incomplete.

The usefulness of extensions depends on the next result.

Theorem 6. Every biased expansion of a 2-connected graph has a unique maximal extension
(up to isomorphism).

The connection between maximal extensions and factorizations of a multary quasigroup
operation is this:

Theorem 7. If Ω ↓ Cn+1 is the biased expansion corresponding to an n-ary quasigroup
(Q, f), then the maximal extension of Ω ↓ Cn+1 has for base graph the factorization graph
∆(f).

In order to prove Theorems 1 and 3 we need to know what a maximal extension of a biased
expansion looks like. Call a graph theta-complete if any two vertices that are joined by three
internally disjoint paths are adjacent. (The graph formed by the three paths is called a theta
graph.) Our most difficult result is

Theorem 8. If Ω ↓ ∆ is maximal, then ∆ is theta-complete. Equivalently (if ∆ is 2-
connected), ∆ is obtained by edge amalgamation from complete graphs and circuits.

To suggest the course of the proof we state the three principal lemmas. By saying that
Ω ↓ ∆ extends to e, we mean that e is an edge on the vertex set of ∆ and there is an
extension Ω′ ↓ ∆′ of Ω ↓ ∆ for which ∆′ = ∆∪ {e}. It is convenient to allow the trivial case
in which e is in ∆.

Lemma 9 (Common Extension). If Ω ↓ ∆ extends to e1 and to e2, then it extends to
Ω′ ↓ (∆ ∪ {e1, e2}).

Lemma 10 (Theta Extension). Any biased expansion of a theta graph with trivalent vertices
v and w extends to the edge evw.

Lemma 11 (Chordal Extension). Suppose Ω is a biased expansion of a 2-connected graph
∆ and e 6∈ E(∆). For any circuit C ⊆ ∆ of which e is a chord, Ω extends to e if and only
if the restricted expansion p−1(C) ↓ C extends to e.

A chord of C is an edge whose endpoints are vertices of C that are not adjacent in C.
Lemma 9 is the core of the proof of Theorem 6. The other two lemmas are the key to
Theorem 8. Lemma 10 shows that a theta subgraph Θ ⊆ ∆ admits an extension of the
restricted biased expansion p−1(Θ) ↓ Θ to an edge evw that joins the trivalent vertices of Θ.
By Lemma 11, this extendibility applies to the whole biased expansion Ω ↓ ∆.
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Corollary 12. If Ω ↓ ∆ is maximal and ∆ is 3-connected on 4 or more vertices, then ∆ is
a complete graph and Ω is a group expansion.

The last part, that Ω ↓ Kn implies Ω is a group expansion when n ≥ 4, is essentially due
to [9, pp. 490–492] and is also implicit in the theorem of generalized associativity. We have
a new proof that is particularly suited to biased expansion graphs.

As for graphs with 2-separations, we have a construction.

Theorem 13. Let ∆1 and ∆2 be finite base graphs of maximal biased expansions, assumed
disjoint; let ei ∈ E(∆i); and form ∆ by amalgamating ∆1 and ∆2 along e1 and e2. There exist
finite expansions Ω1 ↓ ∆1 and Ω1 ↓ ∆2, with |p−1

1 (e1)| = |p−1
2 (e2)|, which can be amalgamated

along p−1
1 (e1) and p−1

2 (e2) so as to form a maximal biased expansion of ∆.

Belousov’s conjecture (Theorem 1) is a special case of Corollary 12, by Theorem 7. The-
orem 3 is a consequence of Theorems 7 and 13, Corollary 12, and Tutte’s 3-decomposition
of graphs (see [10, Chapter IV]). Theorem 4 follows from a general property of biased and
group expansions. A minor is a contraction of a subgraph.

Theorem 14. A 2-connected biased expansion graph of order at least four, such that each
minor with four vertices is a group expansion, is itself a group expansion.

Full proofs are in [12].

4. Transversal designs and generalized Dowling geometries

We mention two other ways of interpreting our results.
An n-ary quasigroup is equivalent to a transversal t-design with n + 1 point classes of size

|Q|, strength t = n, and index λ = 1. Our results can be interpreted as indicating how such
a design can be decomposed into smaller ones and, in some cases, into designs constructed
from groups. Details are in [12].

To each biased graph is associated a matroid called the bias matroid [11, Section II.2].
The well-known Dowling geometries of a group [5] are bias matroids associated with group
expansions of complete graphs. The matroids of biased expansions, and especially of those
that are maximal, are therefore a generalization of Dowling geometries. In that connection,
in [11, Example III.3.8] I stated that it was not known which (simple) graphs have a biased
expansion that is not a group expansion. This question can now be answered: the graphs
are those that have a block of order three, or a 2-separable block of order at least four, or
more than one block of order at least four. The proof is the same as that of Theorem 3.
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