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Abstract. The function that counts the number of ways to place nonattacking identical
chess or fairy chess pieces in a rectangular strip of fixed height and variable width, as a
function of the width, is a piecewise polynomial which is eventually a polynomial and whose
behavior can be described in some detail. We deduce this by converting the problem to one
of counting lattice points outside an affinographic hyperplane arrangement, which Forge
and Zaslavsky solved by means of weighted integral gain graphs. We extend their work
by developing both generating functions and a detailed analysis of deletion and contraction
for weighted integral gain graphs. For chess pieces we find the asymptotic probability
that a random configuration is nonattacking, and we obtain exact counts of nonattacking
configurations of small numbers of queens, bishops, knights, and nightriders.
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1. Nonattacking pieces

A classic enumeration problem is that of counting the configurations of eight nonattacking
queens on a chessboard, and more generally of n nonattacking queens on an n × n board.
While thinking about how to represent this problem geometrically we realized that a similar
problem, a generalization in which the height of the board is fixed but the board’s width
can vary, is amenable to treatment by a recent geometrical counting method of Forge and
Zaslavsky [2].

Here is our variant question: Place m nonattacking chess queens in a rectangular strip of
fixed height m and variable width n. In how many ways can this be done? We show that,
as n increases, the answer νm(n) becomes a polynomial in n. Indeed, the number of ways is
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a sum of more and more terms as n increases from 0, each term being zero until n reaches
a threshold after which the term is a product of linear factors. There is one term, nm, with
largest degree, and this term is present for all nonnegative n; thus one may say that the
number of nonattacking placements is a piecewise polynomial of degree m. Furthermore,
the signs of the terms are such that there is no cancellation between terms. All this applies
to any chess piece with centrally symmetric moves, placed one to a row; that is, to all but
the pawn. Indeed it applies to any fairy chess piece with suitable moves. A fairy chess piece
is an imaginary chess piece with an arbitrary movement rule; many such pieces have been
tried and some found exciting; we mention the queen with a knight’s move added to its usual
repertory, or the nightrider, which extends a knight’s move indefinitely.

Forge and Zaslavsky counted lattice points inside a hypercube of variable side length but
not lying in any of a finite set of affinographic hyperplanes (hyperplanes determined by
constancy of the difference of two coordinates), by converting the problem into one about
weighted integral gain graphs (which will be defined later). Their principal result is that the
counting function is a piecewise polynomial with predictable leading term, and is eventually
a polynomial. This yields our basic theorem because, in the space of configurations of chess
pieces, attack is an affinographic property.

From knowing the moves of our piece we also get more detailed information about the
counting function. For pieces like the queen, bishop, and nightrider, we find the exact value
of m at which the function becomes a polynomial (Proposition 3). When there is one piece
in each row, the magnitude of the second coefficient of the counting polynomial has a simple
combinatorial interpretation; it equals half the maximum total number of squares attacked
nonhorizontally if the pieces are placed on a wide board and they do not attack any of the
same squares (this is a special case of Proposition 6). This second coefficient is important
because it determines the asymptotic probability that a random placement of one piece in
each row will be nonattacking (Corollary 7).

Besides this, we extend the general theory of weighted integral gain graphs to treat gener-
ating functions and the details of the method of deletion and contraction; then we apply the
latter to get exact formulas and generating functions for the number of nonattacking con-
figurations with fixed small height for four chess and fairy chess pieces: the queen, bishop,
knight, and nightrider. We do not find any general formula for the counting function; that
seems impractically difficult, on the order of finding the chromatic number of a graph.

2. Fundamentals

Here is the exact setup in complete generality. We have a rectangular board with m rows
and n columns, m being a fixed and n a variable positive integer. We think of the board as
the set [n] × [m] ⊆ R2, where [n] := {1, 2, . . . , n}. We have a chess piece P—a fairy chess
piece, which means its moves are arbitrary (subject to two rules to be stated); the set of
moves is AP ⊆ Z2 and signifies that if P is located at a position (j, k) ∈ Z2, then it attacks
all the squares in (j, k) + AP := {(j, k) + (h, i) : (h, i) ∈ AP} that lie in the board. (We
say “moves to” as a synonym of “attacks”; the actual moves, if different from the attacked
squares, as with a pawn, are irrelevant to our problem.) We need not assume (0, 0) ∈ AP ;
but we do have two requirements for the moves. First, only finitely many moves can have
any one nonzero value of the vertical displacement. Second, the set of horizontal moves,
{(h, 0) ∈ AP}, should be either finite or the infinite set Z× {0}. We shall also assume that
AP is centrally symmetric, but this is just a technical convenience to ensure that if one piece



NONATTACKING QUEENS IN A RECTANGULAR STRIP 3

(a copy of P ) attacks another, the attack is reciprocal, and we can ensure it, if necessary,
through replacing AP by AP ∪ (−AP ). Besides this, for each row j we specify a number qj
which is the exact number of pieces to occupy that row. (The case qj > 1 is possible only
if P has a finite set of horizontal moves. Then the “move” (0, 0) is important. It prevents
two pieces from occupying the same square, and if it is not in the move set, the number of
pieces on a square is limited only by the number of pieces in the row.)

Thus, we can describe the entire configuration of q := q1+q2+· · ·+qm pieces by q variables
xrj , where 1 ≤ j ≤ m and 1 ≤ r ≤ qj and

xrj = the column occupied by the rth piece in row j.

We call the vector x := (xrj) a labelled configuration. Since the pieces are identical but the
setup treats them as distinguishable, two labelled configurations describe the same configu-
ration of pieces if they have the same occupied positions, that is, the same multiset of values
of the variables in each row. Thus, the number of nonattacking configurations, νm(n), is the
number of labelled configurations, λm(n), divided by the number of labellings:

(1) νm(n) =
λm(n)

q1!q2! · · · qm!
.

Treating a labelled configuration as a point in [n]q ⊆ Rq, the rules of nonattack are simple.
A configuration is nonattacking precisely when:

(N1) if 1 ≤ i < j ≤ m, then (xsj − xri , j − i) /∈ AP for all r ∈ [qi] and s ∈ [qj], and
(N2) when r < s in [qj], then (xsj − xrj , 0) /∈ AP .

Rule (N1) is a finite list of requirements because j − i is bounded by m − 1. Write
j − i = k 6= 0. Suppose there are tk moves with height k and they are (µk1, k), . . . , (µktk , k).
(Possibly tk = 0.) Then (N1) says

xsi+k 6= xri + µkl

for l ∈ [tk] and i ∈ [m− k].
Rule (N2) is also finite. If the set of horizontal moves is finite, say ±(µ01, 0), . . . ,±(µ0t0 , 0),

(N2) says

xsj 6= xrj ± µ0l

for l ∈ [t0]. If it is infinite, then it is Z× {0} so (N2) simply requires that all qj ≤ 1.

Theorem 1. The number of nonattacking configurations of pieces having qj pieces in row j
for each j ∈ [m] is a piecewise polynomial function of n and is a polynomial if n is sufficiently
large. The piecewise polynomial has degree q =

∑
qj and leading coefficient (q1!q2! · · · qm!)−1 .

A sufficient condition for n to be sufficiently large is

n ≥ (q − 1) ·max{|µ| : (µ, k) ∈ AP , 0 ≤ k < m},

(but we take 1 ≤ k < m if P has unbounded horizontal moves or if all qj ≤ 1).

Later on, in Corollary 5, we get a more detailed description of this counting function.
For a piece with bounded horizontal moves, the total number of nonattacking configura-

tions of q pieces is a piecewise polynomial given by summing the values given by Theorem 1
for all weak compositions q1 + · · ·+ qm of q. Thus:
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Corollary 2. The number of nonattacking configurations of q pieces with a finite number of
horizontal moves is, for large n, a polynomial which has degree q and leading coefficient∑

q1+···+qm=q
qi≥0

1

q1!q2! · · · qm!
.

The simplest case is that in which every row has one piece, i.e., all qi = 1 and q = m.
Then the factor q1!q2! · · · qm! = 1, νm(n) = λm(n), and the piecewise polynomial is monic.
We solved this case for four different pieces, the queen, bishop, knight, and nightrider (a fairy
chess piece with indefinitely extended knight’s move) for small numbers of rows; see the last
section for the results. The calculations quickly become too complicated for hand solution.
Hanusa has prepared a pair of computer programs that manipulate weighted integral gain
graphs to produce exact answers and generating functions; they are available on the Web [4].
The first phase, in Java, carries out operations on weighted integral gain graphs. The second
phase, in Maple, uses John Stembridge’s symmetric function package SF [6] to produce
generating functions. The calculations uncovered an unexpected fact: in the polynomial
that gives the number of configurations for large n, the second coefficient has a simple
combinatorial meaning. See Proposition 6.

3. Gain graphs, affinographic hyperplanes, and the integral chromatic
function

An affinographic hyperplane in Rq is a hyperplane whose equation has the form xj = xi+c;
it is called integral when c is an integer. An arrangement of hyperplanes is a finite set,
considered in conjunction with the way it decomposes Rq into d-dimensional pieces (called
regions of the arrangement).

An integral gain graph Φ consists of an underlying graph ‖Φ‖, with vertex set V =
{v1, . . . , vq} and edge set E, and a gain function ϕ, which assigns an integer to each oriented
edge e, with the rule that ϕ(e−1) = −ϕ(e) where e−1 denotes the same edge e with the
opposite orientation. There are two kinds of edge: a link has two different endpoints, while
a loop has both ends at the same vertex. The gain of a path P , ϕ(P ), is the sum of the gains
of the edges, which must be oriented in a consistent direction along the path. For brevity
we write µvjvj′ for an edge with endpoints vj, vj′ and gain µ in the direction from vj to vj′ .

In [2] integral gain graphs were used to treat integral affinographic hyperplane arrange-
ments. To each edge e, with endpoints vi and vj, there is a corresponding affinographic
hyperplane in Rq whose equation is xj = xi + ϕ(e) if we calculate the gain with e oriented
from vi to vj. This hyperplane does not depend on the orientation of e because, taking
the opposite orientation e−1 from vj to vi, one gets the same equation. Thus every integral
gain graph has a corresponding affinographic hyperplane arrangement, and conversely every
integral affinographic hyperplane arrangement has a corresponding integral gain graph.

We define χZ
Φ(n), the integral chromatic function of Φ, as the number of mappings x :

V → [n] such that xj′ 6= xj + µ for each edge µvjvj′ . (We may think of a function x as an
integer lattice point in the hypercube [n]m that is not in any of the affinographic hyperplanes
that correspond to the edges of Φ.) Let

n0(Φ) := max{ϕ(P ) : P is a path in Φ},
the largest gain of any path. According to [2, Corollary 3.2 and the following paragraph],
χZ

Φ(n) is a polynomial on the domain n ≥ n0(Φ) but not on n ≥ n0(Φ)− 1.
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To calculate χZ
Φ(n) by deleting and contracting edges, as we do in Section 5, we need

an added feature: vertex weights. A weighted integral gain graph (Φ, h) (which we shall
herein call a “gain graph” for short) is an integral gain graph Φ which also has an integer
weight hi assigned to each vertex vi. The integral gain graphs introduced earlier, and any
integral gain graphs without explicit weights, implicitly have weight 0 at every vertex. Given
a weighted integral gain graph, χZ

(Φ,h)(n) denotes the number of functions x : V → Z such

that xj 6= xi + ϕ(f) for each edge f from vi to vj, and hi < xi ≤ n for every vertex. We call
χZ

(Φ,h) the integral chromatic function of the gain graph.

The deletion-contraction identity to be stated in Equation (3) later in the paper requires
definitions of deletion and contraction of an edge e in a weighted integral gain graph. The
definition of deletion is that e is removed from the graph with no other change; we write
(Φ, h)\ e for the deleted gain graph. Contraction is more complicated. We write (Φ, h)/e for
the contracted gain graph; but for computations a simpler notation is (Φ′′, h′′) := (Φ, h)/e,
in which the underlying graph is (V ′′, E ′′) and the gain function is ϕ′′.

Before defining contraction we must define switching. Write V = {v1, . . . , vq}. A function
η : V → Z is called a switching function. Switching by η changes the gain graph (Φ, h), with
gain function ϕ and weight function h, to (Φη, hη) with the same underlying graph but with
gain function ϕη(f) := ϕ(f) − ηi + ηj, where f is an edge oriented from vi to vj, and with
weights hηk := hk + ηk.

Now fix an edge e with endpoints vi and vj and suppose it has nonnegative gain ϕ(e)
when oriented from vi to vj. One may think of contraction as a two-step process wherein
one modifies vi and its incident edges and then merges vi into vj. To do this we define a
switching function η by ηk := 0 for k 6= i and ηi := ϕ(e). To contract e,

(1) first switch (Φ, h) by η, which changes the gain of e to 0 and that of each other edge f
to ϕ′′(f) := ϕ(f)−ϕ(e) if f is a link incident with vi (we consider e, f to be oriented
away from vi) and to ϕ′′(f) := ϕ(f) otherwise; the weight of every vertex stays the
same except for hi, which changes to hηi = hi + ϕ(e);

(2) then coalesce the endpoints of e to form a new vertex v′′ij ∈ V ′′ and delete e, retaining
the switched gains of all edges f 6= e and the weights of all vertices vk 6= vi, vj; and set
the weight h′′ij of the contracted vertex v′′ij equal to max(hηi , h

η
j ) = max(hi +ϕ(e), hj).

(All this is from [2, Section 2], except that we have updated [2]’s rooted integral gain graphs
to [3]’s more versatile weighted integral gain graphs.) Parallel edges with the same gain can
be combined into one, because they represent the same constraint on coloring.

4. Formulas for non-attacking configurations

The particular integral gain graph Φ we need for the chess problem has q vertices, one for
each piece, labelled vjl for 1 ≤ j ≤ m and l ∈ [qj] (representing piece (j, l), i.e., piece l in row
j). There is an edge called µvjlvj′l′ for each l ∈ [qj], l

′ ∈ [qj′ ], each distinct j and j′ = j + k
in [m], and each µ such that (µ, k) ∈ AP (representing a possible attack (µ, k) from piece
(j, l) to piece (j′, l′)). There is also an edge called µvjlvjl′ for each l 6= l′ in [qj] and each µ
such that (µ, 0) ∈ AP (i.e., for each potential attack (µ, 0) from piece l to piece l′ in row j).
The number µ is the gain of the edge; that is, ϕ(µvjlvjl′) = µ. These edges are directed but
they always come in opposite pairs, µvjlvj′l′ and (−µ)vj′l′vjl; one should consider each pair
as a single undirected edge.
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Define hyperplanes in Rq, with coordinates xrj , by the equations

(H1) xsi+k − xri = µkl for k ∈ [m− 1], i ∈ [m− k], l ∈ [tk], r ∈ [qi], s ∈ [qi+k],

and, if AP is horizontally finite,

(H2) xsj − xrj = ±µ0l for j ∈ [m], 1 ≤ r < s ≤ qj, l ∈ [t0].

The set H of all these hyperplanes is the arrangement of affinographic hyperplanes that
corresponds to the integral gain graph Φ of the preceding paragraph.

Proof of Theorem 1. A nonattacking labelled configuration is a point x ∈ [n]q \
(⋃

H
)
, and

conversely. The main result of [2], Theorem 3.1, gives a formula for the number of such
points, our λm(n). The formula shows that λm(n) is a monic polynomial in n of degree equal
to the dimension of the hypercube [n]q, if n is large. Moreover, [2, Corollary 3.2] shows how
λm(n) behaves when n is not large; it is λm(n) = χZ

Φ(n) where

(2) χZ
Φ(n) =

r0∑
r=1

(−1)q−drcr

dr∏
i=1

max(0, n− nri),

in which r0 is a positive integer, the nri are nonnegative integers, d1 = q and the first term
is nq, the other dr < q, and cr is a positive integer with c1 = 1; that explains our earlier
remark that λm(n) is a sum of more and more terms, all of degree less than q, as n increases.
(Corollary 5, below, shows furthermore that mini nri = 0.) This justifies the description of
λm(n) as given by finitely many polynomials of the same degree and leading coefficient over
the whole range n ≥ 0.

One gets νm(n) immediately from λm(n) via Equation (1).
To prove the sufficient condition for n to be large enough we employ the integral gain

graph Φ. We can easily bound n0(Φ). The maximum gain of any edge is the maximum
abscissa magnitude |µ| of any (µ, k) ∈ AP that could represent an attack on the m-row
board, which means that |k| < m. By symmetry it is sufficient to consider 0 ≤ k < m. If all
qj ≤ 1, no horizontal attack is possible so we can restrict k to be positive. As a path has no
more than q − 1 edges, all path gains are ≤ (q − 1) ·max |µ|. �

The strip interpretation of n0(Φ) is that it is the greatest breadth that can be attained,
within the available height of m rows, by a sequence of moves that hits each row j at most
qj times.

We can find n0(Φ) exactly for some kinds of piece, including queens, bishops, and nightrid-
ers. We suppose the nonhorizontal moves are all contained in the upper and lower of the
four quadrants formed by the lines y = ±αx, where α−1 is a positive integer b. That means
any move (x, y) satisfies |x|/|y| ≤ b if y 6= 0. (P may have bounded or unbounded hori-
zontal moves.) For instance, α = b−1 = 1 for a queen or bishop. We further suppose that
(x,±bx) ∈ AP for every nonzero integer x. Finally, we assume there is exactly one piece in
each row, so q = m.

Proposition 3. With P as described and with all qj = 1, νm(n) is a polynomial of degree

m on the domain n ≥ n0(Φ) = bbm2−2
2
c but not on n ≥ n0(Φ)− 1.

Proof. The gain graph has vertex set {v1, . . . , vm} and edges (±bh)ei,i+h for i, i + h ∈ [m]
and h 6= 0. We want the maximum gain of a path; we do that by characterizing the paths
of largest gain. Let W be such a path. Note that V is ordered by subscript and that, by
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maximality, every edge in W is of the form |bh|ei,i+h. Thus we need only consider such edges,
omitting any others; we may then simplify the notation to ei,i+h.

There are three kinds of internal vertices of W . At a zig, both neighbors are higher vertices.
At a zag, both neighbors are lower. At a smooth vertex, one neighbor is higher and the other
is lower. There are also the two end vertices of W and there might be isolated vertices, not
in W .

If vk is a smooth vertex, it is in edges eik, ekj of W with i < k < j or i > k > j. Replacing
eikekj by eij leaves the gain unchanged. Thus, we may assume W has no smooth vertices.

Suppose that after eliminating smooth vertices there is a vertex vk /∈ V (W ). We can
extend W from an endpoint vi by the edge eik with gain b|k − i|. That increases the gain,
contradicting the maximality of W . Consequently, no vk can exist, so V (W ) = V , and
indeed no path with maximum gain can have a smooth vertex.

All zigs are lower than all zags. If not, say k < k′, vk is a zag, and vk′ a zig. Thus W
contains paths eikekj with i, j < k and ei′k′ek′j′ with i′, j′ > k′. Replace these paths with
eik′ek′j and ei′kekj′ . This increases the gain.

There are now two cases depending on the parity of m. The endpoints vi, vj of W are
both zigs, or both are zags, if m is odd, and one is of each kind if m is even.

Suppose m is even. Extend W by the edge eij. Now we have a cycle C in which every
vertex is a zig or a zag. All zigs have lower indices, so they are v1, . . . , vr−1, vr where r = m/2;
and the zags are vm, vm−1, . . . , vm+r+1. It is easy to calculate that ϕ(C) = b

[
4
(
r
2

)
+ m

]
=

bm2/2. We recover W by removing the edge of least gain, which is er,r+1 of gain b; thus,
n0(Φ) = b(m2 − 2)/2.

If m is odd, we may suppose vi, vj ∈ L. If there is vk ∈ L with i < k, then interchanging
vi with vk in W increases the gain. It follows that the zigs are v1, . . . , v(m−3)/2, vi = v(m−1)/2,
and vj = v(m+1)/2. Therefore,

n0(Φ) = ϕ(W ) = b

{[
2

(
m+1

2

2

)
− 1

]
+ 2

(
m−1

2

2

)
+ (m− 1)

}
,

which simplifies to b(m2 − 3)/2. �

Suppose the inverted slope α−1 is not an integer. Then n0(Φ) < α−1bm2−1
2
c because the

gain of eij is the greatest width attainable with height j− i, that is, bα−1(j− i)c. Thus, the
gain of an edge in a path of maximum gain is sometimes < α−1(j−i). (This unavoidable fact
requires some proof, which we omit.) A consequence is that νm(n) may be a polynomial on

a domain including n ≥ α−1bm2−4
2
c − 1, contrary to Proposition 3. Nevertheless, we obtain

a more general bound than that of Theorem 1. It is no longer necessary to assume a piece
appears in every row but we do assume any row has at most one piece; thus q, the number
of pieces, is also the number of occupied rows.

Proposition 4. If all nonhorizontal moves are contained between the lines y = ±αx where
α > 0, and if all qj ≤ 1, then νm(n) is a polynomial of degree q on the range n ≥ α−1bm2−2

2
c.

The proof is similar enough to that of Proposition 3 that it can be omitted.
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5. The method of deletion and contraction

To calculate the integral chromatic function we need vertex weights and the formula for
deletion and contraction of an edge in a weighted integral gain graph:

(3) χZ
(Φ,h)(n) = χZ

(Φ,h)\e(n)− χZ
(Φ,h)/e(n).

This formula is valid for any link e, by [2, Theorem 3.4], and translates into a formula for
νm(n) by Equation (1).

Another useful formula is multiplicativity. If Φ is the disjoint union of Φ1, . . . ,Φr, then

χZ
(Φ,h) = χZ

(Φ1,h) · · ·χZ
(Φr,h).

Now we begin to compute χZ
(Φ,h). In our calculations the notation x+ means the positive

part of the real number x, that is,

x+ := max(x, 0).

The effect of a loop is simple. If it has nonzero gain k, it can be discarded because it
stands for a constraint xi 6= xi+k, which is always satisfied. A loop with zero gain, however,
forces χZ

Φ(n) = 0 for all n because the corresponding constraint is unsatisfiable.

Example 1 (A Vertex with Loops). If Φ has one vertex v1, all edges are loops. Thus,

χZ
(Φ,h)(n) =

{
(n− h1)+ if there is no zero loop,

0 if there is a zero loop.

Example 2 (Isolated Vertices with Loops). If Φ has no edges other than loops, then every
component has a single vertex. By Example 1 and multiplicativity of the integral chromatic
function,

χZ
(Φ,h)(n) =

{
(n− h1)+ · · · (n− hq)+ if there are no zero loops,

0 if there is a zero loop.

This gain graph is the basic type to which we reduce all other gain graphs by deletion and
contraction.

Example 3 (A Multiple Edge). Suppose Φ has two vertices and all its edges have the form
ei = µiv1v2, no two gains being equal. Let M = {µi} be the set of gains. If we contract
one edge, the other edges become loops with nonzero gain, so may be ignored. The switched
weights are (h1 + µi, h2) if µi ≥ 0 and (h1, h2 + |µi|) if µi ≤ 0; the contracted weight is the
greater of the two switched weights. Thus, the deletion-contraction formula gives

χZ
(Φ,h)(n) = (n− h1)+(n− h2)+

−

{∑
i:µi≥0

(
n−max(h1 + µi, h2)

)+
+
∑
i:µi<0

(
n−max(h1, h2 + |µi|)

)+

}
.

If the original weights are both 0, this simplifies to

χZ
(Φ,0)(n) = (n+)2 −

∑
i

(n− |µi|)+.
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Figures 1 and 2 give examples of the deletion-contraction process symbolically, in the form
of graph equations, and show the details of the contraction process with its two stages of
switching (except for a zero edge) and contracting. Symbolically, Q2 is the difference between
the deletion and the contraction of e, and so forth.

v
2

v
12

v
2

= −11

1

0

−
0

1 1

2B Q2  / e

v0

0 −11

Q2

0 1
v

0

Figure 1. The weighted integral gain graph Q2, of order 2 with edges having
gains −1, 0, 1 from v1 to v2 and vertex weights all 0, reduced by deletion and
contraction of e = 0v1v2. B2 denotes Q2 \ e.

Example 4 (A Small Problem of Queens and Bishops). To further explain the contraction-
deletion method, we treat in detail the cases of queens and bishops with m = 2 and q1 =
q2 = 1, that is, one piece in each of two rows, so that the (weighted integral) gain graph has
order 2. Since there is one piece per row, νm(n) = χZ

Φ(n).
The gain graph for each has vertices v1 and v2, one for each row, and all vertex weights

equal to 0. The gain graph Q2 for queens (see Figure 1) has edges 0v1v2, 1v1v2, −1v1v2

corresponding to the constraints x2 6= x1, x2 6= x1 + 1, x2 6= x1 − 1 because a queen going
up one row moves 0, 1, or −1 squares to the right. The gain graph B2 for bishops (Figure
2(a)) has the same edges but without the one with zero gain since a bishop cannot move
vertically. From Example 3 we get the formulas

νB2(n) = χZ
B2

(n) = n2 − 2(n− 1)+,(4)

νQ2(n) = χZ
Q2

(n) = n2 − n− 2(n− 1)+.(5)

In the contraction-deletion process, the first step is to reduce the queens graph to the
bishops graph by deleting and contracting 0v1v2. Figure 1 shows this reduction. The loops,
which do not influence the integral chromatic function, can be deleted. We deduce the
formula

χZ
Q2

(n) = χZ
B2

(n)− n,
because the contracted weight is max(0, 0).

The next edge to go is 1v1v2. In order to contract it we have to switch by η′1 = 1, η′2 = 0,

giving the switched graph Bη′

2 shown in Figure 2(b). Then we can contract, as shown in
the figure. The weight in the contraction is h12 = max(1, 0) = 1 because the corresponding

variable x12 has to satisfy both bounds xη
′

1 > 1 and xη
′

2 > 0. We deduce that

χZ
B2

(n) = χZ
−1v1v2

(n)− (n− 1)+.

The notation −1v1v2 here signifies a graph with two vertices and one edge whose gain is −1
from v1 to v2, or +1 in the opposite direction.
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contract

contract

v2

v2v2

v2

v12

v12

v2 v2

v12

1

2

v20

0 1v

v12

−

1

v12

−

1 2

switch

switch

−20

B

1

0

0

0 1v

1

−1

0 1v

0

−11

0 1v

0

1

2 − e’ − e’ (

=

1 2

−11

B2

0 1v

0
(a)

(b)

(c)

by (b)
−1

0 1v

0

− =

B2 − e’

2

B2 2

)
η’’

η’

v1

by (c)

B B

Figure 2. (a) The weighted integral gain graph B2, of order 2 with edges
having gains −1, 1 from v1 to v2 and zero weights, reduced by successive dele-
tion and contraction of e′ = 1v1v2, then e′′ = −1v1v2. (b) B2 switched by
(η′1, η

′
2) = (1, 0) so e′ can be contracted. (c) The contraction process for e′′,

switching B2 \ e′ by (η′′1 , η
′′
2) = (0, 1) so e′′ has gain 0, then contracting e′′.

We delete and contract −1v1v2 in Figure 2(a) and (c). Switching by η′′1 = 0, η′′2 = 1 (since
the positive direction of the edge is from v2 to v1) gives the gains and weights in Figure
2(c), whence comes the symbolic reduction formula in the figure (again, the loops should be
ignored) and thence the formula

χZ
−2v1v2

(n) = n2 − (n− 1)+.

Combining the steps we obtain (4), as we ought.

The contraction-deletion formula implies a slightly more precise description of the inte-
gral chromatic function, and thence of the counting function νm(n), than that stated in [2,
Corollary 3.2], quoted earlier at Equation (2). The improvement comes from giving a new
proof of (2) based on deletion and contraction.
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Corollary 5. The integral chromatic function χZ
(Φ,0)(n) of a nonempty 0-weighted integral

gain graph has the form of Equation (2) where the nri are nonnegative integers with all
n1i = 0.

Proof. In (3), deletion preserves the order of the graph and the coefficient sign, while con-
traction changes the sign and the parity of the order. Thus, after eliminating all links by
repeated deletion and contraction, we have an alternating sum of integral chromatic func-
tions χZ

(Ψj ,hj) of linkless integral gain graphs. The sign of a term depends on the number of

vertices lost in contraction. Only one of the graphs has q vertices; that is the one obtained
by deleting every edge, and in it the weights remain 0 as in the original gain graph. It follows
that

(6) χZ
(Φ,0)(n) =

∑
j

(−1)q−djχZ
(Ψj ,hj)(n),

summed over all the linkless gain graphs that result from the deletion-contraction process,
where dj is the order of Ψj. Every one of these graphs has at least one vertex so dj > 0.

The way weights contract ensures that the weights in each Ψj are nonnegative, and also,
since the original weights are all zero, that the minimum weight in Ψj is 0. The integral
chromatic function of a linkless graph (Ψ, h) equals

∏
v∈V (n−hv)+ unless it is identically zero

(see Example 2). The corollary follows by substituting this expression in (6) and collecting
equal expressions. �

For sufficiently large integers n, the superscripts + can be dropped. When all the terms
are multiplied out, there is no cancellation; the resulting formula is

(7) χZ
(Φ,0)(n) =

q∑
d=0

(−1)q−dnd
k∑
j=1

cjσdj−d(nj1, . . . , njdj
) for n ≥ maxnji,

where σdj−d denotes the elementary symmetric function of degree dj − d (identically 0 if
d < 0 or d > dj, 1 if d = dj), all cj > 0, and all nji ≥ 0.

6. Generating functions

As we have seen, the counting functions νm(n) that we get, and more generally those that
arise in counting lattice points outside an integral affinographic hyperplane arrangement [2],
are integer-weighted sums of terms of the form

(8) an = (n− n1)+(n− n2)+ · · · (n− nr)+

where n1 ≤ n2 ≤ · · · ≤ nr. The generating function of such a term has a simple form,
p(t)/(1− t)r+1, where p(t) is a polynomial which we can calculate exactly. That enables us
to write down the generating function of νm, which is

Nm(t) :=
∞∑
n=0

νm(n)tn =
P (t)

(1− t)q+1
,

where q is the number of vertices of the gain graph, i.e., the number of pieces on the board.
This is a special case of the general behavior of the generating function of lattice-point
counts of a weighted integral gain graph, X(Φ,h)(t) :=

∑∞
n=0 χ

Z
(Φ,h)(n)tn, which has the



12 SETH CHAIKEN, CHRISTOPHER R.H. HANUSA, AND THOMAS ZASLAVSKY

form X(Φ,h)(t) = P(Ψ,h)(t)/(1 − t)q+1 where the numerator is a polynomial. The deletion-
contraction formula (3) extends immediately to generating functions:

X(Φ,h)(t) = X(Φ,h)\e(t)−X(Φ,h)/e(t)

for a link e; hence, the numerator polynomials satisfy

P(Ψ,h)(t) = P(Ψ,h)\e(t)− (1− t)P(Ψ,h)/e(t).

Let us develop the generating function of a term of the form (8). Let di = nr − ni for
1 ≤ i < r and let sk be the kth elementary symmetric function of d1, . . . , dr−1. Then

(9)
∞∑
n=0

ant
n = tnr

r∑
j=1

(−1)r−jsr−j
Aj(t)

(1− t)j+1

where Aj(t) is the Eulerian polynomial, i.e., the polynomial such that

∞∑
n=0

njtn =
Aj(t)

(1− t)j+1

(see [1, 5]). The first few Eulerian polynomials are A0(t) = 1, A1(t) = t, A2(t) = t2 + t,
A3(t) = t3 + 4t2 + t, and A4(t) = t4 + 11t3 + 11t2 + t.

The proof of (9) is by substituting for n the variable p := n− nr and multiplying out the
resulting product p(p+ d1) · · · (p+ dr−1), in which the coefficient of pj is sr−j.

The most useful cases for our examples are the generating function of (n− n1)+, which is

tn1+1

(1− t)2
,

that of n(n− n2)+, which is

tn2+1[(n2 + 1)t− (n2 − 1)]

(1− t)3
,

and that of n2(n− n3)+, which is

tn3+1[(n3 + 1)2t2 − 2(n2
3 − 2) + (n3 − 1)2]

(1− t)4
.

Example 5 (A Small Problem of Queens and Bishops, continued from Example 4). The
generating functions are, for bishops,

NB2(t) =
A2(t)

(1− t)3
− 2

t2

(1− t)2
=

2t3 − t2 + t

(1− t)3
,

and for queens,

NQ2(t) =
2t3 − t2 + t

(1− t)3
− t

(1− t)2
=

2t3

(1− t)3
.
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7. Some chess pieces, real and fairy

Let us look at some more examples. We assume in all of them that m ≥ 1 and there
is one piece in each row (all qj = 1). We write νm(n) for the number of nonattacking
arrangements with m rows, Nm(t) :=

∑∞
n=0 νm(n)tn for its generating function, and ν̄m(n)

for the polynomial when n is large. In all the formulas, we assume n ≥ 0.
Every example has ν1(n) = n for n ≥ 0, and N1(t) = t/(1− t)m+1. Also, all vertex weights

are zero in the weighted integral gain graph for each piece.
What we would most like would be to find a pattern in the generating function numerator

for a fixed piece as the height m varies; but one would expect any regularity to show up
only when the height is somewhat large because when it is small the moves are strongly
constrained by the narrowness of the strip. The solutions we calculate are, unfortunately,
too small to show a pattern.

We calculated the function χZ
Φ(n) in several examples by reducing to gain graphs whose

edges are all loops (and consequently may be discarded, unless a loop gain is zero, in which
case the graph itself may be discarded), using deletion and contraction, as illustrated in
Examples 4 and 5. The relationship between the graph quantity χZ

Φ and νm is that they
are equal, according to Equation (1). We were able to do hand calculations for bishops and
queens with m ≤ 3 and knights with m ≤ 4; we verified and extended these results by a
computer package that carries out deletion and contraction of weighted integral gain graphs
[4] with the appropriate simplifications; that is, it discards nonzero loops and graphs with
zero loops.

Example 6 (Rooks). Rooks, of course, are classically easy: νm(n) = (n)m, the falling factorial.
The theorem says this is a polynomial for n > 0, which is true. The generating function is
Nm(t) =

∑∞
n=0(n)mt

n = tmm!/(1− t)m+1, as is well known.

Example 7 (Bishops). Proposition 3 applies with b = 1. Thus, νm(n) is a polynomial for
n ≥ 1

2
(m2 − 3) but not if we extend the domain by one more integer, to n ≥ 1

2
(m2 − 5).

The bishops gain graph Bm has edges µvivj with gains ±(j − i) for i < j. We found that

ν2(n) = n2 − 2(n− 1)+,

ν3(n) = n3 − n
{

4(n− 1)+ + 2(n− 2)+
}

+
{

2(n− 1)+ + 4(n− 2)+ + 4(n− 3)+
}
,

ν4(n) = n4 − n2
{

6(n− 1)+ + 4(n− 2)+ + 2(n− 3)+
}

+ n
{

4(n− 1)+ + 12(n− 2)+ + 16(n− 3)+ + 4(n− 4)+ + 4(n− 5)+
}

+
{

4
[
(n− 1)+

]2
+ 4(n− 1)+(n− 3)+ + 4

[
(n− 2)+

]2}
−
{

2(n− 1)+ + 8(n− 2)+ + 34(n− 3)+ + 12(n− 4)+

+ 20(n− 5)+ + 4(n− 6)+ + 2(n− 7)+
}
.

The polynomials for large n are

ν̄2(n) = n2 − 2n+ 2 for n ≥ 1,

ν̄3(n) = n3 − 6n2 + 18n− 22 for n ≥ 3,

ν̄4(n) = n4 − 12n3 + 72n2 − 234n+ 338 for n ≥ 7,
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ν̄5(n) = n5 − 20n4 + 200n3 − 1192n2 + 4132n− 6562 for n ≥ 11,

ν̄6(n) = n6 − 30n5 + 450n4 − 4198n3 + 25238n2 − 91572n+ 155220 for n ≥ 17.

The lower limits of validity can be read off from the piecewise-polynomial formulas (shown
for m ≤ 4; we computed m = 5, 6 as well) and are as predicted by Proposition 3. The

coefficients of nm−1 and nm−2 in the polynomials ν̄m(n) are the values −2
(
m
2

)
and 2

(
m
2

)2
.

The first can be explained intuitively by the fact that when n is large a bishop in row i
blocks 2(m − i) squares in higher rows (see Proposition 6). We have no explanation of the
second.

Generating functions are

N2(t) =
2t3 − t2 + t

(1− t)3
, N3(t) =

4t6 − 4t5 − 2t4 − t3 + 22t2 − 13t

(1− t)4
,

N4(t) =
2t11 − 2t10 + 14t9 − 38t8 + 54t7 − 74t6 + 64t5 − 43t4 + 213t3 − 247t2 + 81t

(1− t)5
.

As a further illustration of the method of gain graphs we give some details of the solution
for ν3. The gain graph B3, shown in Figure 3(a), has vertices v1, v2, v3 with vivj-edges having
gains ±(j − i) for i < j. We delete and contract edges in the arbitrarily chosen order 1v1v2,
−1v1v2, 1v2v3, −1v2v3, after which each component is a vertex or a multiple edge. The
treatment of these multiple edges is as in Example 3, so is not shown here.

Example 8 (Queens). As with bishops, Proposition 3 applies with b = 1. Thus, νm(n) is a
polynomial for n ≥ 1

2
(m2 − 3) but not for n ≥ 1

2
(m2 − 5).

The queens gain graph Qm has edges µvivj with gains µ = 0,±(j − i) for i < j; it is the
bishops graph Bm together with 0 edges. The results are:

ν2(n) = n2 −
{
n+ 2(n− 1)+

}
,

ν3(n) = n3 − n
{

3n+ 4(n− 1)+ + 2(n− 2)+
}

+
{

2n+ 8(n− 1)+ + 8(n− 2)+ + 4(n− 3)+
}
,

ν4(n) = n4 − n2
{

6n+ 6(n− 1)+ + 4(n− 2)+ + 2(n− 3)+
}

+ n
{

11n+ 30(n− 1)+ + 32(n− 2)+ + 26(n− 3)+ + 4(n− 4)+ + 4(n− 5)+
}

+
{

4
[
(n− 1)+

]2
+ 4(n− 1)+(n− 3)+ + 4

[
(n− 2)+

]2}
−
{

6n+ 40(n− 1)+ + 72(n− 2)+ + 94(n− 3)+ + 36(n− 4)+

+ 32(n− 5)+ + 4(n− 6)+ + 2(n− 7)+
}
.

The polynomials for large n are

ν̄2(n) = n2 − 3n+ 2 for n ≥ 1,

ν̄3(n) = n3 − 9n2 + 30n− 36 for n ≥ 3,

ν̄4(n) = n4 − 18n3 + 139n2 − 534n+ 840 for n ≥ 7,

ν̄5(n) = n5 − 30n4 + 407n3 − 3098n2 + 13104n− 24332 for n ≥ 11,

ν̄6(n) = n6 − 45n5 + 943n4 − 11755n3 + 91480n2 − 418390n+ 870920 for n ≥ 17.

The ranges of validity of the polynomials agree with Proposition 3. The second term in the
polynomial has coefficient −3

(
m
2

)
, which as with bishops is the sum of the number of squares
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1v

v3
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B3
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0
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0

0
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by (c)

=

0

0

0

−2, 2

by (e)

=

0

0

0
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by (d)

−1

(a)

−

1

0

−2, 0, 2 −

1

0

−3, −1, 1

−

1

0

−2, 0, 2−

0

1

−2, 2

−

0

1

−1, 3 −

0

1

−2, 2 −

1

0

−2, 0, 2 −

1

0

−3, −1, 1

−

1

0

−3, −1, 1

Figure 3. (a) The weighted integral gain graph for 3 bishops in 3 rows,
showing the contraction process for (b) the first, (c) the second, (d) the third,
and (e) fourth steps of deletion and contraction. e denotes 1v1v2, e′ = −1v1v2,
and e′′ = 1v2v3. For simplicity, parallel edges are drawn as a single edge with
multiple gains. Nonzero loops are omitted.

excluded by each piece in rows higher than itself. The third coefficient does not follow an
easily identifiable pattern.

The generating functions of the exact numbers are

N2(t) =
2t3

(1− t)3
, N3(t) =

4t6 − 4t4 − 4t3 + 24t2 − 14t

(1− t)4
,

N4(t) =
2t11 − 2t10 + 26t9 − 50t8 + 78t7 − 130t6 + 66t5 − 42t4 + 484t3 − 640t2 + 232t

(1− t)5
.

Example 9 (Knights). A widest knight’s path lets the knight rise from the bottom row to
the top, one row at a time, moving 2 steps to the right at each row. There are m− 1 moves
that cover a width of 2m− 2. We conclude that νm(n) is a polynomial for n ≥ 2m− 2 but
not for n ≥ 2m− 3.
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The knights gain graph Ktm has edges ±2vivi+1 and ±1vivi+2.
We calculated the first few cases, m ≤ 3 by hand and m ≤ 6 on the computer, via gain

graphs.

ν2(n) = n2 − 2(n− 2)+,

ν3(n) = n3 − n
{

2(n− 1)+ + 4(n− 2)+
}

+
{

6(n− 2)+ + 4(n− 3)+ + 2(n− 4)+
}
,

ν4(n) = n4 −
{

4n2(n− 1)+ + 6n2(n− 2)+
}

+
{

16n(n− 2)+ + 12n(n− 3)+ + 4n(n− 4)+ + 4[(n− 1)+]2 + 4[(n− 2)+]2
}

−
{

12(n− 2)+ + 24(n− 3)+ + 18(n− 4)+ + 4(n− 5)+ + 2(n− 6)+
}
.

The polynomials for large n are

ν̄2(n) = n2 − 2n+ 4 for n ≥ 2,



NONATTACKING QUEENS IN A RECTANGULAR STRIP 17

ν̄3(n) = n3 − 6n2 + 22n− 32 for n ≥ 4,

ν̄4(n) = n4 − 10n3 + 56n2 − 168n+ 220 for n ≥ 6,

ν̄5(n) = n5 − 14n4 + 106n3 − 478n2 + 1248n− 1480 for n ≥ 8,

ν̄6(n) = n6 − 18n5 + 172n4 − 1028n3 + 3956n2 − 9154n+ 9852 for n ≥ 10.

The ranges of validity, read off from the piecewise-polynomial formulas, agree with the
preceding calculation. The size of the second coefficient, as with bishops and queens, is
c1 = 4m − 6, which is the number of squares excluded in higher rows as well-separated
knights are inserted from the bottom row up, that is, 4 squares for each knight except the
one in the next-to-last row, which excludes 2 squares in the last row, and the last knight,
which excludes no squares since there are no rows below it. (See Proposition 6.) The third
coefficient appears to be a quadratic function of m, c2 = 8m2− 22m+ 16. (As with bishops,
we have not proved this.)

As for generating functions, we have

N2(t) =
2t4 − 2t3 + t2 + t

(1− t)3
, N3(t) =

2t7 − 8t4 + 3t3 + 24t2 − 15t

(1− t)4
,

N4(t) =
2t10 − 2t9 + 12t8 − 20t7 − 6t6 + 18t5 − 25t4 + 181t3 − 199t2 + 63t

(1− t)5
.

Example 10 (Nightriders). This fairy chess piece has the move of a knight extended indef-
initely in a straight line; that is, it moves along lines of slope ±2±1. Therefore Proposi-
tion 3 applies with b = 2, and νm(n) is a polynomial for n ≥ 2bm2/2c − 2 but not for
n ≥ 2bm2/2c − 3.

The gain graph Nrm for nightriders has edges ±2(j − i)vivj if j − i is nonzero, and edges
±1

2
(j − i)vivj if j − i is nonzero and even. The former correspond to moves of any number

of rows in the directions ±(±2, 1) and the latter to moves of an even number of rows in the
steeper directions ±(±1, 2).

Using the computer, we calculated the same data as in the previous examples for m ≤ 6.
The counting functions for m = 1, 2 are the same as for the knight. For 2 ≤ m ≤ 4, they are

ν2(n) = n2 − 2(n− 2)+,

ν3(n) = n3 − n
{

2(n− 1)+ + 6(n− 2)+
}

+
{

10(n− 2)+ + 4(n− 3)+ + 2(n− 4)+
}
,

ν4(n) = n4 −
{

4n2(n− 1)+ + 12n2(n− 2)+
}

+
{

40n(n− 2)+ + 16n(n− 3)+ + 24n(n− 4)+

+ 4[(n− 1)+]2 + 8(n− 1)+(n− 2)+ + 12[(n− 2)+]2
}

−
{

58(n− 2)+ + 56(n− 3)+ + 100(n− 4)+ + 24(n− 5)+ + 24(n− 6)+
}
.

The polynomials for large n are

ν̄2(n) = n2 − 2n+ 4 for n ≥ 2,

ν̄3(n) = n3 − 8n2 + 34n− 56 for n ≥ 4,

ν̄4(n) = n4 − 16n3 + 132n2 − 566n+ 1016 for n ≥ 6,

ν̄5(n) = n5 − 28n4 + 390n3 − 3100n2 + 13600n− 25676 for n ≥ 8,
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ν̄6(n) = n6 − 42n5 + 876n4 − 10974n3 + 84720n2 − 374678n+ 730408 for n ≥ 10.

The second coefficient, up to sign, is 2
(
m
2

)
+ 2
(b(m+1)/2c

2

)
+ 2
(bm/2c

2

)
, as Proposition 6 implies.

For nightriders, as with queens, the third coefficient c2 does not have a discernable pattern.
The generating functions are

N2(t) =
2t4 − 2t3 + t2 + t

(1− t)3
, N3(t) =

6t7 − 8t6 + 8t5 − 16t4 + 5t3 + 32t2 − 21t

(1− t)4
,

N4(t) =
24t10 − 48t9 + 100t8 − 196t7 + 178t6 − 114t5 + 15t4 + 144t3 − 585t2 + 209t

(1− t)5
.

8. The polynomial

We observed in the examples that the polynomial ν̄m(n) which gives νm(n) for wide boards,
i.e., for large values of n, has second term −c1n

m−1 where c1 is the sum over all rows i of
the number of squares attacked in higher rows by a piece in row i. There is a general result
here. Suppose there are qi pieces in row i. The polynomial can be written in the form

ν̄m(n) =
nq − c1n

q−1 + c2n
q−2 + · · ·

q1! · · · qm!

with q = q1 + · · ·+ qm.

Proposition 6. Assume that (0, 0) is a move. Then the magnitude of the second coefficient
of ν̄m(n) is

c1 =
m∑
i=1

[(
qi
2

)
+ qi

m∑
j=i+1

qjaij

]
,

where aij is the number of squares in row j that are attacked by a piece in row i. When every
row has one piece,

c1 =
m∑
i=1

ai,

where ai is the number of squares in rows i+ 1, . . . ,m that are attacked by a piece in row i;
thus, c1 equals half the maximum total number of squares attacked (nonhorizontally) by one
piece placed in each of the m rows.

One calculates the number of squares attacked ignoring any limitations due to inadequate
board width.

Proof. The proof is by inclusion and exclusion using labelled pieces. Let w be the greatest
width of a nonhorizontal move that is possible on a board of height m, and assume n is very
large compared to w. Number the pieces P1, P2, . . . , Pq so that the pieces in higher rows have
higher numbers.

Imagine the board extended indefinitely to left and right by “imaginary” squares supple-
menting the “real” squares of the m × n strip. Let U be the set of all placements of the q
pieces, attacking or not, and let Akl be the set of placements in which Pk attacks Pl and the
latter is in a higher row. Let i be the row of Pk and j that of Pl. Then

|U | =
m∏
h=1

(n)qh = nq −
m∑
h=1

(
qh
2

)
nq−1 + terms of lower degree,
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where (n)r is the falling factorial.
To calculate |Akl| we place all pieces except Pl, and then we put Pl into any square (in

row j) attacked by Pk, including occupied and imaginary squares. Call the set of all such
arrangements, in which Pk attacks Pl and the other pieces may be attacking, A′. Some of
these arrangements have Pl in an imaginary square; call the set of those arrangements B.
Some of the arrangements have Pl in an occupied square; call the set of those arrangements
C. Since B and C are disjoint, |Akl| = |A′| − |B| − |C|. We estimate |A′|, |B|, and |C| in
order to estimate |A|.

First, |A′| is the number of ways to place qh pieces in each row h, except that only qi − 1
pieces appear in row i, and then to put Pl in any of the aij real or imaginary squares in row
j that are attacked by Pk. Thus,

|A′| = (n)q1 · · · (n)qj−1
(n)qj−1(n)qj+1

· · · (n)qmaij = aijn
q−1 + lower terms.

Second, |B| counts only placements where Pk lies within distance w from the ends of the
strip, because it must be able to attack an imaginary square. If we count such arrangements
by placing Pk and Pl last, there are no more than nq−2 ways to place the other pieces in real
squares and then at most 2w ways to lay down Pk and aij ways to put down Pl. That is, |B|
is bounded by a polynomial in n of degree less than q − 1.

Third, |C| counts placements where Pl is attacked by Pk and overlies another piece in its
row. Let us again lay down Pk and Pl last. The number of places for Pk is not more than
aij(qj − 1), because Pk has to be attacked by one of the qj − 1 pieces already placed in row
j, and because aji = aij by symmetry of moves. Then the number of places for Pl is also no
more than qj − 1. Thus, |C| is bounded by a polynomial in n of degree less than q − 1.

It follows that |Akl| = aijn
q−1 + a quantity bounded by a polynomial of degree at most

nq−2.
The size of the intersection of two sets of bad placements, |Akl ∩Ak′l′ |, is bounded by the

number of placements in which Pl and Pl′ are attacked by Pk and Pk′ , respectively, which
is in turn bounded by aijai′j′n

q−2, a polynomial of degree less than q − 1. Likewise, the
intersection of more than two sets Akl is bounded in size by a polynomial of degree less than
q − 1.

The proposition now follows from the formula of inclusion and exclusion combined with
the fact that ν̄m(n) is known to be a polynomial of degree q. Taking only the terms of highest
order, and letting (k, l) range over pairs of piece indices for which Pk is in row i and Pl is in
row j with i < j,∣∣∣⋂

k,l

Ākl

∣∣∣ = |U | −
∑
k,l

|Akl|+ lower terms

=
[
nq −

m∑
h=1

(
qh
2

)
nq−1

]
−
∑
i<j≤m

qiqjaij n
q−1 + lower terms. �

The especial importance of c1 is shown by a probabilistic application.1

Corollary 7. The probability that a random assignment of one piece in each row is nonat-
tacking is asymptotic to 1 − c1n

−1. Assuming that (0, 0) is a move, the probability that a
random assignment of qi pieces in distinct positions in row i is nonattacking is asymptotic
to 1− n−1

∑∑
i<j qiqjaij.

1We thank undergraduate student Christian Noack for raising this question.
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Proof. The first probability is νm(n)/nm = 1− c1n
−1 +O(n−2).

The second probability is

νm(n)∏m
h=1

(
n
qh

) =
1− c1n

−1 +O(n−2)

1− n−1
∑m

i=1

(
qi
2

)
+O(n−2)

=
[
1− c1n

−1 +O(n−2)
][

1 + n−1

m∑
i=1

(
qi
2

)
+O(n−2)

]
by the geometric series (when n is sufficiently large),

= 1− n−1
[
c1 −

m∑
i=1

(
qi
2

)]
+O(n−2). �

We did not find a formula for c2. The solution for bishops and the proof of Proposition 6
suggest there may be one but that it is not usually simple.
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