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Abstract. A biased graph is a graph together with a class of polygons such that no theta subgraph 
contains exactly two members of the class. To a biased graph ~2 are naturally associated three edge 
matroids: G(I~), L(12), Lo(D). We determine all biased graphs for which any of these matroids is 
isomorphic to the Fang plane, the polygon matroid ofK~, K 5, or Ka.3, any of their duals, Bixby's 
regular matroid Rto, or the polygon matroid of K,  for m > 5. In each ease thebias is derived from 
edge signs. We conclude by finding the biased graphs 12 for which Lo(D ) is not a graphic [or, 
regular] matroid but every proper contraction is. 

Introduction 

A biased graph 12 = (F, ~) consists of an underlying graph F = IlOII = (V, E) and a 
class of polygons ~ = &(12) such that, if the union of C1, C2 ~ ~ is a theta graph, 
then the third polygon in C1 U (72 is in ~ .  We call a subgraph (or edge set) S of lit211 
balanced if every polygon in S belongs to &, contrabalanced if none does. A biased 
graph has three naturally associated matroids which we call the "bias", "lift", and 
"complete lift', matroids. The bias matroid G(12) has E for point set; its circuits are 
the balanced polygons and the minimal contrabalancext, connected edge sets with 
cyclomatic number two. The lift matroid L(12) has point set E and circuits the 
balanced polygons and the minimal contrabalanced edge sets of cyclomatic number 
two (not necessarily connected). The complete lift matroid Lo(I2) has point set 
Eo = E U {eo}, where the extra point eo is not in F; its circuits are those of L(f2) and 
the sets of the form C U {eo} where C is an unbalanced polygon. Biased graphs and 
the bias matroid were introduced in [13; 14]. The lift and complete lift are special 
cases of the general matroid lift construction, dual to elementary strong maps and 
one-point extension respectively. An important kind of biased graph is a sign-biased 
graph, whose bias is obtained by labelling the edges of F with signs and letting 
consist of the polygons whose edge sign product is positive. In particular a biased 
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graph is antibalanced if it is all-negatively sign-biased; then its balanced polygon 
class consists of the even polygons in F. 

The purpose of this article is to find the biased graphs having a matroid G, L, 
or Lo isomorphic to any of the special binary matroids of importance in charac- 
terizing regular, graphic, planar-graphic, and series-parallel-network matroids. 
These matroids are the Fano plane F7 and its dual F~, Bixby's regular matroid Rio, 
the polygon matroids G(Ka, a) and G(Ks) and their duals, and the polygon matroid 
G(K4). We also find the biased graphs having a matroid isomorphic to G(Km) where 
m > 5. It is noteworthy that for each matroid all the biased graphs arc sign-biased. 

These results should help to give new proofs of characterizations, recently found 
using a different method by Lov~sz et al. [2, 3], of sign-biased graphs whose lift 
matroid is regular, graphic, or cographic and of sign-biased graphs having no two 
vertex-disjoint unbalanced polygons or no subdivision of an antibalanced K4. The 
first of these characterizations to be found was that of sign-biased graphs whose lift 
matroid is graphic; this is due to C.-H. Shih [5, Theorem 1], whose approach seems 
to be quite different from that initiated herein. 

The corresponding problems for the bias matroid and for biased graphs belong 
to the future, but a problem we do solve here is to find all t2 for which Lo(f2) is not 
a graphic matroid but every proper contraction is. This is of interest in connection 
with the isomorphism problem for complete lift matroids of biased graphs [17]. We 
also develop corollaries that display useful properties of the special graphs and 
which take small steps towards characterizing biased graphs having particular types 
of matroids. Results of this article were also used in [16] to help prove that G(F, 0), 
which is the bicircular matroid of SimSes-Pereira, is a series-parallel matroid if it is 
binary, thus slightly improving a result of Matthews. 

1. Def'mitions and General Lemmas 

This section begin s with the defmitions of the objects and operations we need, 
continues with Useful Lemmas, and concludes with a brief outline of the general 
approach we take in the examples. 

The sum (that is, symmetric difference) of sets is written S + T. 
Our graphs are finite and undirected; loops and multiple edges are allowed 

(except where explicitly excluded). A link is an edge .with two distinct endpoints; a 
loop has coincident endpoints. For the vertex and edge sets of a graph A we write 
V(A) and E(A); or we say "let A = (W,F) be a graph"to mean V(A) = IV, E(A)= F. 
We always let F b e  the graph (V,E) and denote the order [V[ by n. The vertex set 
V equals {vl, v2,..., %} unless we say otherwise. We use several notations for edges, 
in part to differentiate those of different graphs; thus euv = e~, = uv = vu is an edge 
between u and v, e~j joins vl and vj (or x~ and xj, ff the vertex set of the graph is 
{xl,x2,...}). A special notation ij for edges of a bipartite graph is described (fo r 
Ka, a) in Section 4. A bond in a graph is a minimal edge cutset. 

By mA, where m is a positive integer, we mean d with each link replaced by m 
parallel copies. Particular graphs are the familiar K, and Kl,m (with left set of ! 
vertices and right set of m vertices), the n-edge polygon graph Cn, the wheel IV, = 
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Cn + v (where F + v means / "  with an additional hub vertex v, simply adjacent to 
every vertex of F). By subdividing an edge e,, we mean replacing it by two edges in 
series. A subdivision of F is any graph obtained!from F by subdividing edges, 
including F itself as a trivial subdivision. A theta:graph is a subdivision of 3K2. A 
tight handcuff is a subdivision of two loops at a vertex. A loose handcuff is a 
subdivision of K2 with a loop at each vertex. The restriction ~'IS o f / ' t o  S ~ E is 
the spanning subgraph (V, S); the contraction F/S o f F b y  S is obtained by shrinking 
to a point every edge in S. A minor o f / "  is any contraction of a subgraph of F, 
including F itself, which is the improper minor. If W ~_ V, F \ W  denotes (V\W,S) 
where S consists of all edges with both ends in V\W. We write F\v  =/ ' \ {v} .  

If W _~ V, a bridge of Wis a maximal subgraph A of Fwhich  is connected through 
vertices not in W. For  instance, an edge whose endpoints lie in W is a bridge. A 
cutpair in a 2-connected graph is a pair of vertices having at least three bridges or 
two bridges each larger than a single edge. 

A signed graph 27 consists of an nndedying graph 1127 I1 together with a sign 
labelling of its edges. Some types of signed graphs are + A and - A, which are zl 
with all edges positive or negative, respectively, and _ A, whose nnderlying graph 
is 23 with one edge of each pair labelled positive and the other negative. We indicate 
the sign of an edge by a superscript: e.g., e~ and e:j are distinct edges with the same 
endpoints and the indicated signs. The biased graph (1127 I[, 8(27)) derived from 27 
by setting 8(27) = the set Of polygons having positive sign product is denoted by 
1-27]. (We call any biased graph of this form sign-biased.) In particular we write 
I-F] = I + F ] ;  also, the antibalanced graph equals 1 - - / ' ] .  Switching 27 means 
choosing an X ~_ V and changing the signs of the edges crossing between X and its 
complement. Clearly, switching leaves 1-27] invariant; conversely one can easily 
prove that, if 271 and 272 have [271] = 1-272], then 271 switches to 272- The rule for 
contracting an edge in 27 is this: if e is a link, switch so it is positive, then coalesce 
its vertices and delete e; if e is a positive loop, delete it; if e is a negative loop at v, 
delete it and v and any other loops at v, then change each link uv to a negative loop 
at u. The contraction 27/e is well-defined up to switching (that is, [27/e] is well- 
defined). A minor of 27 is any contraction o f a  subgraph. We abbreviate G(1-27]), etc., 
sometimes by G(27), etc. 

Here is the first Useful Lemma. A set ~ of polygons in 27 spans if every polygon 
can be written as the symmetric difference of polygons in ~. 

I .emma 1A. Let 1" be a graph and ~ a spanning set of  polygons. Let ~ ~_ ~ be given 
such that, i f  ~ '  ~_ ~ has symmetric difference equal to the null set, then ~ fq ~ is even. 
Then there exists a unique sign-biased graph (F, 8 )  such that ~ tq ~ = ~.  

Proof This is part of I'1 1, Theorem 2]. []  

We let 1"2 always denote the biased graph (/', ~), where F = (V, E) and n = I Vl. 
A subdivision of I2 is a subdivision of F with the obvious bias. The restriction I2[S 
of£2 to S ~ E is F[S with the subgraphbias ~(12[S) = {C ~ 8 :  C _~ S}. The contrac- 
tion t2/e (ire is a link)is Fie with ~(t2/e) = {C e ~(a\{e}): c remains a polygon in 
F/e} U {C\{e}: e e C e ~(I2)}. If e is a balanced loop, O/e = O\{e}. If e is an un- 
balanced loop at v, t2/e = (t2\v) U {euv ~ E, regarded as an unbalanced loop at u, for 
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u # v}. (This definition is simplified from [13].) A minor of t2 is any result of 
contracting edges of a subgraph. We have [Z/e] = [27]/e and [27 IS] = [27]1S, so 
biased and signed graph minors are consistent with each other. 

If f21, • •., Ok are biased graphs, each with an ordered pair (ui, vi) of distinguished 
vertices, their unbalanced parallel connection t2 =/~(121 .. . .  , t2k) is obtained by iden- 
tifying all u~ to u and all vl to v and taking & = &l U'-" U &k" (We implicitly assume 
the f2~ are pairwise disjoint.) 

We assume acquaintance with relevant parts of matroid theory as for instance 
in Welsh [8]. Our matroids are all finite. We write rk for rank. The n-point line Ln, 
for n > 2, is the n-point uniform matroid of rank two. The Fang plane F 7 is the 
matroid of the projective plane of order 2. The Bixby matroid Rlo (called "Type R" 
by Bixby [11 Rto by Seymour [4], who also states the definition given here [4, p. 
328]) is the linear dependence matroid of the ten vectors in GF(2) 5 having exactly 
three non-zero coordinates. We write MIS for the submatroid of a matroid M on 
a point subset S, called the restriction of M to S, M \ S  for M restricted to the 
complement of S, and M/S for the contraction by S, which is also called the 
contraction of M to the complementary point subset. A minor of M is any contrac- 
tion of a restriction, including the improper minor M itself. We sometimes write 
M1 > M2 to mean M1 has a minor isomorphic to M2. I fP  is a property of matroids, 
we call M minimally non-P if M lacks P but every proper minor has P. Major 
properties are binarity, regularity, graphicity, cographicity (see [8] for definitions), 
and being the matroid of a planar graph or of a series-parallel network. A very 
Useful Lemma indeed and the basis for this paper is the following: 

Lemma lB. Let M be a matroid. 
(1) M is b inary~  M ~= L, .  
(2) M is regular ~ M :~ L , ,  F7, F~. 
(3) M is graphic ~ M ~z L, ,  FT, F7 x, G±(Ka, a), G±(Ks). 
(4) M is planar-graphic ~ M * L , ,  FT, G(Ka,a), G(Ks) , and their duals. 
(5) M is series-parallel¢~ M ~: L , ,  G(K,).  
Each matroid listed on the right is minimally non-P for P = the property on the 
left. 

Proof. These are due to Tutte (see [7]) except for (5), which is due in essence to 
Duttin (see [8, p. 237, Theorem 14.2.2]). [] 

The bias matroid G(f2) has for circuits the balanced polygons and the con- 
trabalanced thetas and handcuffs. Its rank function is rk~(S)= n -  b(S), where 
b(S) = the number of balanced connected components of(V, S). It has the properties 
that G(12)IS = G(QIS) and G(12)/S = G(I2/S) with perhaps some matroid loops 
deleted. (See [14].) 

The lift matroid L(K2) has for circuits the balanced polygons and the con- 
trabalanced thetas, tight handcuffs, and pairs of vertex-disjoint polygons. Its rank 
function is rkL(S ) = n -- c(S) if S is balanced, = n + 1 - c(S) if S is unbalanced, 
where c(S) = the number of connected components of (V, S). A copoint of L(I2) is 
either a copoint of G(I2), that is to say the complement of a bond ofF, or is a maximal 
balanced edge set (if f2 is not balanced; if I2 is balanced, there are no copoints of 
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the latter kind). The lift has the properties that L(f2)IS = L(f21S ) and that L(f2)/S = 
L(f2/S) if S is balanced, = G(F/S) if S is unbalanced. (See [14].) 

The complete lift Lo(Q ) has the circuits of L(f2) and also those of the form 
C U {eo} where C is an unbalanced polygon. For $ _ E, rk(S U { e o } )  = n + 1 - c(S). 
A copoint of Lo(f2 ) is a maximal balanced edge set or a set F U  {co} where F is a 
copoint of G(F) that is not balanced in f2. (See [14].) L o has the properties that 
Lo(f2)IS = L(f2]S ) and Lo(Q)](SU {eo}) = Lo(f2]S) if S _c E and that Lo(f2)/S = 
Lo(f2/S) if S is a balanced edge set, = G(F/(S\eo)) if S is any other subset of E o. 

Consider the operations on a biased graph g2 of (1) attaching two connected 
components at a vertex, or splitting a cut vertex in two so the new vertices are in 
different components, and (2) separating a connected component into two discon- 
nected parts f21 and g2 z by splitting two vertices u and v (that form a cutpair) into 
ui, v~ ~ V(f2i) and reconnecting them in reverse by identifying ut with v2 and u2 with 
v 1. The class ~ remains the same as it was. We call f2 and f2' 2-isomorphic if one is 
obtained from the other by operations of types (1) and (2). Whitney [9] observed 
that 2-isomo.rphi¢ graphs have the same polygon matroid and he proved that, 
conversely, graphs with the same matroid are 2-isomorphic. The first (but not the 
second) statement generalizes to lift matroids of biased graphs. 

].,emma 1C. I f  f2 and fY are 2-isomorphic biased graphs, then L0(f2) = Lo(f2' ) with 
e o corresponding to e' o. 

Proof. Obvious from the definition of L o. []  

Several more Useful L~mmas are the following. By G(F) 0) eo we mean the direct 
sum of G(F) with a matroid isthmus eo. 

Lemma 1D. I f  f2 is balanced, then G(~) = L(12) = G(F) and Lo(£2) = G(F) ~) e o are 
graphic matroids. Conversely, i f  eo is a direct summand of  Lo(12), then ~ is balanced. 

Proof. Easy from the definitions. []  

Lemma 1E. We have L(Q) = G(K2) i f  and only i f  ~2 has no two vertex-disjoint 
unbalanced polygons. 

Proof. If  there are no such pairs of polygons, all circuits in L(~2) are connected. If 
there are two such polygons, they form a circuit in L(Q) but are independent in G(D). 

[]  

Lemma 1F. Let F be a graph and e an edge on vertices of  L. Let I = + F  U {e-}. 
Then G(I /e - )  = L ( I / e - )  = G(F). I f  e is a link, then Lo ( I / e -  ) = G ( I U  {e}), where 
F O {e} means F with e added (even i f  that creates a multiple edge). 

Proof. Since e is in no circuit of L ( / )  or G(I) ,  it is an isthmus and G(1) = L ( I )  = 
G(r) e. 

In ( + F U {e +, e-  })/e -, e + becomes an unbalanced loop. Taking the lift matroid, 
e + functions like e o in Lo(I/e-) .  [] 

A balancing vertex of f2 is a vertex v such that f2\v is balanced, but ~ is not. 
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Lenuna 1G. I f  f2 is sign-biased and is either balanced or has a balancing vertex, then 
G(I2) = L(f2) and Lo(O ) are all graphic. 

Proof. From [15, Corollary 11 we know that I2 has the form [ + F  U {e-}l/e- for 
some graph F and edge e-. Then we apply Lemma 1F. [] 

Lemma 1H. Let M denote any of FT, Rio, G(K3.3), O(Ks), G(K,~), and their duals. 
I f  L(O) or Lo(f2) _~ M, then t2 is sign-biased and F is edge-2-connected and has 

no cutpoint. Moreover, i f  L(f2) -~ M then 1" is edge-3-connected. 
We have G(O) "~ M i f  and only i f  L(O) = M and t2 has no two vertex-disjoint 

unbalanced polygons. 

Proof. See [16, Corollary 4.3] and Lemma 1E. The edge connectedness follows from 
the 3-connectedness of every M. [] 

Here is an outline of our general approach. We are trying to determine all 12 for 
which Lo(12), L(I2), or G(s'2) ~ M, where M is one of the matroids listed in Lemma 
1H. That lemma reduces the problem for G(I2) to that for L(f2) and shows that we 
need only consider sign-biased f2. In most cases this is not enough to determine f2. 
If we have Lo(f2 ) ~ M, then G(F) ~- M/e o gives information about F. In general, 
we may assume I2 is unbalanced (since otherwise the solution is known) and, by 
Lemma 1H, connected, so n = rk M. We then argue individually for each different 
M to determine I2, making use of symmetries of M to simplify the argument. Finally, 
we have to verify the actual isomorphism of M with the appropriate matroid of t2. 
Since 0"2 is sign-biased, both M and Lo(f2), hence also L(~2), are binary; therefore we 
can employ either the basis or the circuit (or copoint) method stated in the final two 
lemmas. 

Lemma 1I. I f  M1 and M2 are binary matroids on the same set A and B is a basis of 
both, and i f  for every e ~ A \B  the (unique) circuit B(e) contained in B U {e) is the same 
in M1 and Ms, then M 1 = M s. 

Proof. (This result is well known.) We can choose coordinates for Mx and M2 in 
GF(2) Inl so B consists of the unit basis vectors. Then B(e) completely determines the 
vector representing e. [] 

Lemma 1J. I f  M1 and M2 are binary matroids of the same rank on the same set A 
and every circuit [or, copoint] of M~ is a circuit [copoint I of M2, then M1 = M2. 

Proof for circuits. Since both have n points and rank r, the cycle space of each (the 
space spanned by the circuits under symmetric difference) has the same dimension, 
Hence, the cycle space c¢ 1 of M~ spans ~2, the cycle space of M2. So each circuit C2 
of M2 has a representation C2 = Clx + C12 + "'" + Clm where the Cli are circuits 
of MI. The latter sum is a disjoint union of circuits of M1 because M1 is binary 
(Whitney [10, pp. 530-5331; or see [8, Theorem 10.1.31). But each such circuit is 
also a circuit of M2; since it is contained in (72, it equals (72. So Cs is a circuit of 
M1. 
• Proof for copoints. DualiTe the result for circuits. [] 
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2. Series-Parallel: the Matroid G(K4) 

Proposition 2A. For a biased oraph 12 we have 

G(12) ~- G(K4)'~12 = [K,t] or [ + K 3 ]  or [( + Ka Ueaa)\e12 ]. 

I f  12 has no loops, 

L(12) ~-G(IG).~12 = [ K , ]  or [ + K 3 ] ,  

Lo(12) ~ G ( K , ) ~  12 = [ + K3]\edge. 

Proof. For balanced/2 the results are obvious. Let 12 be unbalanced; thus n = 3. 
Suppose L(12) ~ G(K,). Since 12 has six edges and is sign-biased, it is [ + K a ] .  

It is easy to verify by inspection that e~ ~ e,j, e~ ~ eka (where k # i, j)  is an 
isomorphism of L(12) with G(K,). 

Suppose Lo(12) ~ G(K,). Then G(F) ~ Lo(12)/eo -~ G(Kdea,),  say. Thus, F is 
Ka with two edges (e13 and e23) doubled; whence 12 = [ + K a ] \ e d g e .  Tracing the 
isomorphisms, e~ --, e 0 and e73---, evt, also eo ~ e34. To prove we have the right 
matroid, let F = K ,  and e = ea4 and take L(X/e-)  in Lemma IF. 

Suppose that G(12) _~ G(K4). Then 12 is one of the L examples, neither of which 
has vertex-disjoint unbalanced polygons, or is the Lo example with a negative loop 
at v3. [ ]  

3. Regularity." the Matroids F 7 and F7 ~ 

Proposition 3A. I f  Q is a biased graph, then G(12) ~- F7 or F~ is impossible. I f  12 
has no loops, then 

Lo(12) ---- F ~ ~ 1 2  = [_+K3], 

L0(12 ) ~ Fl.~-12 = [ - - K , ] ;  

also, L(12) ~- F7 is impossible and 

L(12) ~- F~ o 1 2  = [ + G]\edge.  

Proof. Since F7 and F~ are not graphic, 12 is unbalanced. Let the points ofF7 be Pl, 
P2, P3 (collinear), q, and r i collinear with p,q. 

In the case ofFT, n = 3. Since seven edges are required, L(12) cannot be FT. With 
seven edges,/2 must have vertex-disjoint unbalanced polygons. This implies that 
G(12) ~ F7 is not possible. The one possible ease is Lo(+K3)  ~- FT. To verify that 
this is an example, let eo ~ q, e + - ,  Pk, and eTi -~ rk (where k # i,j). We emily confirm 
that Lo(+K3)  has the seven lines P,P2Pa, p~qr,, and p~rsr , OfF7 and no morn. 

In the case of F~, n = 4 and there are no 3-point circuits. Suppose L(12) ~ F~. 
Since G(12) cannot equal L(/2) (by [16, Corollary 4,2]), 12 must contain vertex- 
disjoint unbalanced polygons. It therefore contains two opposite digons, say e~2 
and e~,, which form a circuit; we may fix the isomorphism to be e~2 --* pl, e~-2 -* r,, 
ea4 ~ Pa, e-~4 ~ ra. Since plrlp2r~ and p2r2Psrs are circuitS, p2r2 must correspond 
to another digon in 12, say e2"a ~ P2 and e~a ~ r2. In order for 1"2 to be edge-3- 
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connected, the last edge must be e~-a (or etA), corresponding to q. Thus, t2 = 
[ +  Ca]\edge. To complete the labelled isomorphism we have been constructing, we 
must choose e~-4; then the circuit qr 1 r2r3 is an all-positive CA and pipjqr k is a C4 with 
two negative edges. 

Let Q be loopless such that Lo(f2) ~ F~. Then G(F) ~ F~/q ~ G(Ka)so F = Ka. 
Since F~ has no 3-element circuits, g2 = I - K 4 ] .  Examining the isomorphism 
FTX/q _~ G(K,), we see that rar2r3 form a triangle and p, is independent of r~. One 
can easily verify that the seven circuits of F7 -L are indeed circuits of Lo(-K4). [] 

Corollary 3A. I f  L(f2) ~ F~, then Lo(f2)/e _~ F 7 for some edge e. [] 

Let a cycle of  unbalanced polygons be any biased graph f2 consisting of 
k _ 2 unbalanced polygons ca , . . . ,  C a and k pairwise vertex-disjoint simple con- 
necting paths P' for 1 < i _ k, where P' meets C ' and C ~+1 at its endpoints and meets 
no other C j. (Superscripts are modulo k.) Each two polygons C ' and C j are vertex- 
disjoint unlessj = i + I and PZ has length zero (and then they have a single common 
vertex). 

Corollary 3B. Let f2 be a loop-free biased graph. Lo(f2 ) is regular i f  and only i f  f2 is 
sign-biased and has no subgraph that is a subdivision of [ - K a l  or a cycle of three 
unbalanced polygons. 

Proof. We know by Tutte's characterization that Lo(Q) is regular if and only if it is 
binary and :~ FT, F7 -L. Thus g2 is sign-biased and has no subgraph contracting to 
[ - -g4] ,  [__.K33, or  [_+Ca]\edge. Since the latter contracts to [+K3] ,  we may 
ignore it. Since K4 is cubic, a subgraph contracting to [ - K a ]  is a subdivision of it. 

A subgraph g" such that ~contracts to [ + K3], if not a cycle of three unbalanced 
polygons, must contract to [27] where 27 is +K4 with e~'2 doubled by e~ z and with 
eaa and e2a made negative. (C27] is obtained from [__.Ks] by splitting a vertex so 
as not to form a cycle of unbalanced polygons.) But [27]\e~-2 = C-K4],  so [27] 
need not be specifically excluded. [] 

Corollary 3C. Let f2 be a loopless biased graph. For L(F2) to be regular it is necessary 
and sufficient that t2 be either (1) an unbalanced triple parallel connection of balanced 
graphs or else (2) sign-biased containing no subgraph contracting to [___K3]U 
{unbalanced loop} or [ - K 4 l  t3 {unbalanced loop} and containing no cycle of three 
unbalanced polygons unless it be a subdivision of [ _  K3]. 

Proof. This follows from results of [16] and Proposition 3A, except that we have 
to prove it suffices to exclude any cycle of three unbalanced polygons having a 
nontrivial path pa rather than having to exclude any subgraph contracting to 
q~ = [_+ C4]\edge. Suppose some subgraph, not a cycle of three unbalanced poly- 
gons with nontrivialP a, contracts to ~. Then it can be contracted to ~ obtained 
from [ - K 4 ]  by replacing one edge by a path of length 2 with one edge e + doubled 
by e- having opposite sign. (This is the result of splitting a tetravalent vertex of 
so as not to have a cycle of polygons.) But ~'contracted by e + or e- is [ - K 4 I  U 
{unbalanced loop}. [] 
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Corollary 3D. I f  a biased graph ~2 has no two vertex-disjoint unbalanced polygons, 
then either L(I2) is regular or else it is not binary and 12 is not sign-biased. 

Proof IlL(12)is binary and I2 is not sign-biased, then L(12) is graphic (from 1163). 
If £2 is sign-biased but L(f2) is not regular, then L(t2) has a minor L(~)  that is 

minimally non-regular. We apply Proposition 3A to ~ to deduce that it has two 
vertex-disjoint unbalanced polygons, one of which might be a loop. They can only 
be contractions of vertex-disjoint unbalanced polygons in I2, contrary to hypothesis. 

[] 

The sign-biased case of Corollary 3D was observed first by Lovfisz and Schrijver 
[23. 

4. Graphicity: the Matroids G±(K3,3) and GZ(Ks) 

We need some special graphs for this section. The graph / I  6 is the prism: two 
vertex-disjoint triangles joined by three independent edges. The signed graph 274 is 
derived from +K4 by doubling two op0sitive edges with negative edges and 
negating the sign of one simple edge. By +K4\E(+K3) we mean ±K4 with a 
balanced triangle removed; this equals the contraction ( -  Ks)/e, where e is any edge. 
Two six-vertex signed graphs are 276o, which is +K3, a (whose edges we label ij, 
meaning from left vertex xi to right vertex y~) with the edges 13 and 31 made negative 
and a negative edge 11- doubling 11 +, and 276b, which is obtained from 276a through 
replacing 31- by an edge 33- doubling 33 + . 

Proposition 4A. Let I2 be a biased graph. We have 

G(I2)-~ GX(Ka,s)c*-Q = [ + K , \E(  + K3)], 

G(f2) ~ G±(Ks),=-I2 = [ -  Ws] o r  [Z6a 3. 

I f  £2 is loop free, then 

L(a) ~ G±(K3,3)oa = [+K4\E(+K3)],  

L(a) = G-t(Ks)c>a = F-Ws] or [Z6a] or [z6~], 
and for the complete lift, 

Lo(O) ~ GZ(Kz,a)-~g2 = [ Z 4 ]  , 

L0(O) ~ GZ(Ks)~:~,f2 = E--A6]. 

Proof. In no case can £2 be balanced. 
Consider the case of G-t(Ka,s). Then n = 4. Suppose first that Lo(t2) - G±(K3,3) 

with eo ~ 33, say. Then G(F) = Lo(t2)/eo ~- GI(K3,3\33) implies by planar duality 
that F is K4 with two opposite edges doubled in parallel. The parallel pairs 
correspond to {13, 23} and to {31, 32}. The remaining edges form a circuit in F i n  
the order 12, 22, 21, 11. The vertex stars of Ka,a give six circuits of Lo(g2) which 
imply that the edges corresponding to {13, 23} and {31, 32} form unbalanced digons 
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and those corresponding to {11, 21, 31}, {11, 12, 13}, {12, 22, 32}, and {21, 22, 23} 
form balanced triangles. These six polygons can be drawn as the faces of a plane 
embedding of F; hence they span the cycle space. Since their balance properties are 
compatible with Lemma IA (they have one linear relation under symmetric differ- 
ence: they sum to ~; and an even number are unbalanced), they determine the bias 
of O. In fact, f2 = [274]. 

To verify that Lo(274) - G-L(Ka,a)we note that, for the basis B = {11, 21, 12, 22} 
of the latter, whose corresponding edges are a basis oflo(274), the fundamental 
circuit of any edge is the same in both matroids. Let B(e) be the bond of Ka.a 
contained in E(Ka,a)\B\e , for e ¢ B. The verification that, for each f = e o or 
f ~ E(274)\B, its fundamental circuit in Lo(274)is B(e), is an easy matter of inspection 
that we leave to the reader. 

Suppose that L(I2) ~ G-~(K3,3). A bond of F, if its complement is unbalanced 
(and therefore a copoint of L(I2)), corresponds to a circuit of K3,a, which is even. 
Therefore,/~ cannot contain a subgraph 2Ka or a pair of  vertex-disjoint double 
edges. It follows that ~2 is K 4 with a triangle removed, say + K 3 or - K  3 on vertices 
v 1 t~21; 3. There are six balanced triangles at v 4 in t2, corresponding to the six vertex 
stars of K3. ~; since G ± (K a. a) has no other 3-circuits, it must be + Ka that is removed. 
The three left vertex stars S(xi) of Ka. a, being disjoint, correspond to disjoint 
balanced triangles in I2; similarly for the right vertex stars S(yi). Without loss of 
generality we may say S(x~)~ {e,.,+t, ei+4, ei-+t.4} and S(y~)~-~ {e,~,+ t, e,~4, e,++t,4}. 
Thus we have the edge correspondence ii ~ ei-,i+t, (i, i - 1) ~ eL, (i 1, i) ~ e~. 

We must show this really is an isomorphism. It suffices to show that the 
complement of a polygon in K3.3 is a plane (a copoint) in L(~2). The complement 
of a hexagon is a perfect matching. This could be {11, 22, 33}, which corresponds 
to the induced subgraph of ~2 on vt v203, which is an unbalanced plane; or { 12, 23, 
31} [or {21, 32, 13}], corresponding to the negative [or positive] star at v4, which 
is a maximal balanced set and therefore a plane. The complement of a quadrilateral 
is the undeleted neighborhood of an edge, N~ = S(x~) U S(yj). N~i corresponds to the 
induced subgraph of Q on vivi+t v4, which is an unbalanced plane. Ni.i-t corresponds 
to the balanced plane {e~-_l. i, e~-.~+t, ei-l,4, e~, e~-+1,4} and Ni-l,i is similar, with the 
signs of the last three edges reversed. Thus L(~2) is isomorphic to Gl(Ka,3) by our 
edge correspondence. 

If G(~2) _- G±(K3.a), where ~ may have loops, there is only the example ~2 = 
[+_.K4\E(+Ka)], because 274 already (without the extra loop needed for G(~2)) has 
vertex-disjoint unbalanced polygons. 

Now we treat G±(Ks). Since it is not graphic, ~2 is unbalanced and n = 6. An 
important fact is that G±(Ks) has no 3-circuits. Its circuits are the vertex stars St 
and the bonds D!t = {e~, ejk: k ~ i,j}, having respectively four and six elements. 

If Lo(~2) - G (Ks), eo corresponding (let us say) to the edge et2 of Ks, then 
G(F) ~- GX(Ks\et2), which by planar duality gives F = Ar. Let f :  E(Ks) ~ E(Ar) U 
{eo} be the edge correspondence. The triangles of A6 correspond to eta, et4, ets 
and e2a, e24, e2s in Ks .  The connecting edge f(eo), where g = 34, 35, or 45, is 
adjacent to f(eu), f(e2,), f(et~), f(e2~). Both triangles in A6 are unbalanced; with 
eo they correspond to St and $2. The three quadrilaterals of A6 correspond to Sa, 
$4, and S~; consequently, they are balanced. We now know everything about 



Biased Graphs Whose Matroids Are Special Binary Matroids 87 

balance in ~ :  it is indeed I - A s ] .  To verify the isomorphism we check that each 
f(D,j) is a circuit in Lo(~2). D12 corresponds to the two triangles, which are a circuit. 
f(D13) is a pentagon of ~2 (unbalanced)together with eo. f (O3, ) i s  a hexagon in t2, 
balanced, hence a circuit. These three represent all cases. So the isomorphism does 
hold. 

Suppose L(f2) ~ G±(Ks). Since F is edge-3-connected, its minimum degree is 
three and it has, besides trivalent vertices, either one pentavalent or two tetravalent 
vertices. If it has a double edge, it can have no triangles, for if it did, there would be 
an odd circuit: either a balanced triangle (this must happen with a triangle that 
shares one of the double edges), or a 5-circuit composed of the double edge and the 
triangle. Let the vertices o f F b e  vl, v2 . . . .  on the left and Ws, w2 . . . .  on the right. 

There cannot be three double edges in F, because any two edge pairs would 
form a circuit corresponding to a vertex star St and two of these circuits would meet 
in two edges, which is impossible in G±(Ks). 

Suppose F has two double edges. If we contract each pair we get a graph with 
4 vertices and 6 edges that is edge-3-connected. This can only be K4. Thus F must 
have one edge between each two of the two double edge pairs and remaining two 
vertices. Since F is triangle-free, F must be 112;6~11. Let the two double edges 
constitute the circuit f(S1), say. The other 4-circuits f(Si)must be balanced qua d r i -  
laterals in f2. There are only two quadrilaterals on each edge in f(S1). If, say, f(e12) 
and f(ez3) are parallel in F, we must assign one quadrilateral on f(el2)  to be f(S2) 
and the unique edge-disjoint quadrilateral on f(e13)to be f(S3). Similarly we assign 
f(S,) and f(Ss). The choices here, which do not sacrifice generality, determine the 
edge labellings and the balance of all polygons. One such choice gives the edge 
correspondence f defined by 

e12 --* I1 +, els --* 11-, e l ,  ~ 33 +, els ~ 33-, e23 --* 21 +, 

e24 ~ 22 +, e2s "* 12 +, es ,  -* 23 +, e3s -* 32 +, e,s ~ 13-. 

This implies that g2 = [Z'6~ ]. 
We must prove this is an isomorphism of G±(Ks) with L(2~fb ). For  thi s purpose 

we choose the basis B = E\SI of G±(Ks); clearly f(B)is a basis of L(.Efb ). We have 
to verify that the circuit in f(B) U {f(li)} is the set corresponding to Sv This is 
immediate by inspection. Thus, we have one example of f2. 

If F has just one double edge, contracting it gives a graph F '  with 5 vertices and 
8 edges, none doubled, and which is edge-3-connected. Since the minimum degree 
is three, the two edges of K s not present in F '  are non-adjacent. We conclude that 
F '  = W,. If the vertex representing the contracted double edge were not the hub, F 
would have a triangle. It follows that F = 112:6a11. Of  the two quadrilaterals on 
vl v2 wl w2 in F, one must be balanced. Let us sign it all positive and arbitrarily call 
i t  f(S1), specifically letting f(e12) = 11 +, f(els) = 12 +, f(ev,) = 22 +, f(els) = 21+. 
The only other quadrilateral on 22 + that can be balanced, that is the one on 
vzv3w2w3, must therefore be f(S,). We may declare it all positive. At w2 we have 
f(e13) = 12 +, f(ex,)= 22+; the quadrilateral f(S3) must therefore continue at w2 
with the edge 32 + which consequently = f(e3,,). Similarly f(eas) = 23 +, leaving 
f (e2 ,  ) = 33 +. To complete f(S3) we can only use 12- and the edge, necessarily 
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negative for balance of f(Sa), 31-. Similarly 12-, 13- e f(Ss). So we have f(ea5 ) = 
12-, hence f(e2a ) = 31-, f(e2s ) = 13-. This determines f and consequently f(S2), 
which is fortunately a balanced quadrilateral. We now have £2 = [276°.]. 

In order to verify that f is an isomorphism we choose the same basis B = E\S1 
of GX(K5). It corresponds to a basis of L(276o ). We should verify that the circuit in 
f(B)U {f(eu)} is f(Si); the slight labor we leave to the reader. 

Suppose now that Fhas n o double edges. If it has two tetravalent vertices which 
are nonadjacent, it must have the form of two independent vertices vl, v 2 joined to 
all vertices of a two-edge matching. Then every quadrilateral passes through v~ and 
v2; every two quadrilaterals meet in 0 or 2 edges. But this is impossible for balanced 
quadrilaterals, if £2 exists. So there is no possible £2 here. If F has two tetravalent 
vertices v~, v 2 that are adjacent, they may have the same neighbors. Then Fis  Ka, a 
with an added edge VlV2. The added edge lies in no quadrilateral, hence it cannot 
be in a 4-circuit of L(Q). This is therefore another impossible form ofF. But suppose 
v l, v2 do not have the same neighbors. Then F consists of a path w ~ w2 w3 w4 and vl 
adjacent to all but Wa, v2 adjacent to all but w2. Here edge wlw2 lies in only one 
quadrilateral so it cannot be in two 4-edge circuits. Thus no I2 can exist on this F 
either. 

Therefore F has a vertex of degree 5 and equals the wheel W s = C 5 + v. There 
are exactly five quadrilaterals. We arbitrarily choose f(Si) to be the set {Vi-lV~, v~vi+l, 
vvi-1, vv~+l }. This determines f on edges: it is given by 

f ( i , i  + l) = vivi+l, f ( i  -- l , i  + l) = vvv 

Since all triangles are unbalanced, £2 = [ -  Ws"]. 
To establish isomorphism we note that the 4-edge circuits of G-t(Ks) are balanced 

quadrilaterals and the 6-edge circuits D 0 are balanced hexagons in £2. 
Suppose G(Q) ~- G±(Ks). If £2 has no loop, then L(~2) must equal G(Q). This 

occurs only for £2 = [--Ws. ] and [276o.]. If~2 has a loop, Q without its loop must 
have Lo = G±(Ks) and must also have no two vertex-disjoint unbalanced triangles. 
Our results show this to be impossible. [] 

Corollary 4A..I f  ~' is a biased graph, without loops or balanced dioons, having [-274] 
or [ - 3 6 ]  as a spanning proper subgraph, then Lo( ~ ) is not regular. 

Proof. Suppose ~ D [274" ]. Adding any edge that keeps the graph sign-biased (so its 
matroid remains binary) gives a subgraph ['_+ C4]\edge, which contracts to [ + K3 ]. 

If ~ D_ I--A6. ] and ~v is sign-biased (so Lo(~ v) is binary) there are three cases. 
Let the triangles ofA 6 have vertex sets vlv2v 3 and wlw2w 3 and let vi, wt be adjacent 
for each i. Doubling an existing edge (with opposite sign) creates a subgraph that 
is a subdivision of [+C4]\edge. Adding a simple positive edge, say vlw2 +, and 
deleting vlw 1- gives a graph that contracts to I-+C4.]\edge. Adding a negative 
simple edge, say vlw2-,  and contracting by v~v2- and vlw2-  creates a subgraph 
[" + C4.]\edge. In each case the enlarged graph ~O {edge} has non-regular complete 
lift matroid, [] 

Coronary 4n. (1) If G± (K3.3), then Lo( ) contains a submatroid isomorphic 
to F~ and Lo(f2)/e, for some edge e, contains a submatroid isomorphic to FT. 
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(2) I f  L(£2) ~ G±(Ks) and, for every edge e, Lo(£2)/e is regular, then £2 ~ [2~6~]. 
Lo(X6b) itself is regular but not every contraction of it by an edge is graphic. 

Proof. (1) The first part is obvious. For the second, contract an edge of the simple 
triangle in £2 to get a graph containing [ + Ks]. 

(2) If £2 = [-- Ws], then deleting two consecutive spokes and contracting by two 
of the three resulting series edges gives [--K4]. 

If £2 = [X6~], contracting by the edge 33 + gives a graph containing [ + K3]. 
If £2 = [X6b], contracting by 32 + and 21 + gives [X4], whose Lo is regular but 

not graphic. No contraction of [X6b] by a balanced edge set contains either [ + Ks] 
or I - K 4 ] ;  thus Lo(X6~) is regular. To prove this, we first consider [ - K , ] .  To find 
a subdivision of K,  in ]]X6b[] we can ignore the parallel edges; the simplified [[X6~[[ 
is a subdivision of K 4 and this is the only such subdivision in ][X6~[[. By choosing 
which of the parallel edges to drop we can choose the signs of two edges in the 
simplified X6b, but we cannot choose them so as to make all (subdivided) triangles 
unbalanced. 

If [X6~] contained a subdivision of [_+ K s ], it would contain three edge-disjoint 
unbalanced polygons. The only such polygons in X6b are the two digons and {12 +, 
22 +, 23 +, 13-}. But these are joined in an open chain, not a cycle, by their vertices 
of pairwise intersection. So there is no subdivided [ + Ks]. If a subgraph ~ of [X6~] 
contracted to [ + K 3 ]  but were not a subdivision, it would contract (perhaps 
trivially) to either [ + C4]\edge or [ - K  4 O e + ] (where e + is any positive edge). We 
have shown the latter to be impossible. The former is impossible because it would 
imply Gt(Ks) ~ L(.~v'6b) ~ L( +_ C4kedge) ~- F~. [] 

Corollary 4C. Let ~ be a biased graph without balanced loops or digons. I f  ~/ contains 
a spanning proper subgraph £2 with G(£2) or L(£2) isomorphic to G±(Ks,3), then G(~) 
and L(~) are not regular. 

Proof. If ~ i s  not sign-biased, then L ( ~ ) a n d  G(~)are not binary, by the theorems 
of [16]. If it is sign-biased then adding an edge to £2 creates a [_+ C4]\edge. Then 
G(~) is not binary and L(~) is  binary but not regular. [] 

The analogous proposition for G(£2) or L(Q) Gl(r ) is false. A counter- 
example is [~5], where ~ = +_W,,,kE(+Cm), that is, a negative wheel with all 
spokes doubled by positive edges. Any contraction of ~,~ by a spoke edge has a 
balancing vertex. Thus by Lemma 1G the L and G of this contraction are graphic. 
The contraction of [ ~ , j  by a rim edge is [~,.-1], if we simplify balanced digons to 
single edges. Since G(~a) = L(~a) = G±(Ka,a) by Proposition 4A, an argument by 

induction demonstrates that all L(~m) = G(~m) are regular. 

5. Cographicity: the Matroids G(K3,3) and G(K~), m _> S 

For this section we need some more special signed graphs. If W, = C4 + v is the 
wheel with hub v, let W~ v) be the wheel with a loop at v. By ~ ' -1  we denote 
(+KmU {e~m})/e~m; this has the single loop ei~ (which is negative), and by ~m-1 we 

t + mean ~,_~\{e!~ }. Another description of ~,,_~ is as +K,,,_~\E(-K,,,_2), that is, 
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+Km_~ with the edges of a negative Krn_ 2 removed (on vertices v2, v3 . . . .  , v~,_~, to 
be precise); then ~ '_~ is #m-t with a negative loop adjoined to 01. By ~5 we mean 
+__K2. 3 wi th  the three negative edges at one left vertex removed; equivalently, 
~5 = (+K3,a  O {/)1/)2--})//)1/)2 ~. Let v be the vertex of ~5 corresponding to {v~, v2} 
in K3.3. Then {v, v3} is a cutpair in ~5. If we reverse one of its bridges we get ~s~ 
(a "twisted" ~5). 

Proposition 5A. Let I2 be a biased graph and let m >_ 5. Then 

G(f2) ~- G(K3.3),~£2 = [K3.3], [-Ks]\edge, [~5],  or [-W4t~],  

--- = [ K . ]  or 

If t2 has no loops, then 

L(O) G(K3,3), O = [K3.3] ,  [-Ks]\edge, or W , , ] ,  

L(I2) = G(Km).¢~ I2 = [K,n], 

and also 

Lo(~'/) ~ G(K3 ,3 )~  1"/= [ -  W4], 

Lo(Q) ~- G(Km) ~Y2 = [~m]. 

Remark. Comparing Propositions 4A and 5A shows some coincidences. The example 
giving L0(Q ) = G(Ks) is the negation of that giving g(l'/) - GJ-(K3,3). Replacing 
the simple triangle in either by a claw gives [~vs], whose lift matroid is G(K3,3). I 
do not know whether there is any systematic reason for these similarities. 

Proof. We may as well assume t ' / is  unbalanced, for if it is balanced then L(t'/) = 
G(IIf211) implies I2 = [Km] or [K3,3] and Lo(t2) = G(II~II) • eo shows there is no 
possible O. 

Consider the ease of G(K,~). Then we have n = m - 1. If Lo(O) ~ G(Km), then 
G(F) ~ Lo(t2)/eo ~- G(Km/elm) (where we take e0 ~ e l m  in K.) ,  whence F is Kin-1 
with all edges at v~ doubled. The simple Kin-2 in F corresponds to a complete 
subgraph in Kin, so it is balanced. Thus, t2 = [~m-1]. To establish isomorphism we 
apply Lemma 1F to F = K,~\{elm} and e = el,~. 

If L(t2) - G(Ks), we have 10 edges on 4 vertices in 12 so there are at least four 
double edges. One can easily see that F must therefore contain 2C4\edge. Since 
G(Ks) is regular, f2 cannot contain [ +__ C4]\edge (by Proposition 3A). But this is an 
inconsistency, so no I2 exists. 

Suppose f is an isomorphism G(K.) ~ L(Y2) where m > 5 and I2 is unbalanced. 
Let V(Km) = {xl, x2, . . . ,  xm }. By induction on m every subgraph of f2 corresponding 
to E, = E(K.,\x,)is balanced. For  example, the edges in f(Em) constitute a balanced 
Kin-1 ;let us say (by switching) it is + Kin-1 on vertex set {vl , . . . ,  vm-1 } = V(t2) and 
let f(eo) = e .+. The edge set f(E~) is also a balanced K._~ meeting +K~,-1 in the t/" 
edges of + K._I\V~; hence their union is E(+__K._~)\E(-K._2), where -Kin-2  is 
on the vertices v 2 . . . . .  vm-1. But we have a contradiction: f(E3) contains the un- 
balanced edge pair e~2 = f(e12), e~2 = f{e2m). So t2 could not have been unbalanced. 

In the case of G(K3,3) we have n = 5. All circuits have four or six edges. 
If Lo(t2)_~ G(Ka,3), let e0 correspond to 33 in K3.3; then G(F)= Lo(t2)/eo 
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G(K3,3/33), so F ~ K3,a/33 - V¢4. Since all triangles are unbalanced, I2 = [ -  V¢4]. 
To prove isomorphism we apply Lemma 1F to (+K3.  ~ U {33-})/33-. 

If L(t2) ~ G(K3,3), w e  have 9 edges on 5 vertices. Suppose r is simple. Then 
F = Ks \edge  and f2 = - F  becuase there are no 3-edge circuits. To prove isomor- 
phism we let the edge of Ks not in F b e  e,5 and we define f :  E(K3.3) --, E(F) by 

f ( i l ) =  e,4, f(i2) = ei5, 

f(13) = e23, f ( 2 3 ) =  ela, f(33) = e12. 

The set B = {11, 12, 13, 21, 31} is a basis fo r G(K3,3)and f(B)is one for L(f2). It is 
easy to verify by inspection that the fundamental circuits B(e) of e ¢ B with respect 
to B are preserved by f. 

Suppose F is not simple. In that case f2 is bipartite; for if it had a balanced odd 
polygon it would have an odd circuit, while an unbalanced odd polgyon C and a 
double edge {e +, e- ~ give either a balanced polygon if, say, e + ~ C, or an odd circuit 
C U {e +, e-}. Edge-a-connectedess of g2 obliges the bipartition of V(f2) to have left 
set of order two, say {vl, v2}, and right set {w 1, w2, w3}. There cannot be four double 
edges because that would imply a quadrilateral in K3, 3 having the same two edges 
in common with two other quadrilaterals, which is impossible. So F contains a 
complete bipartite graph K2, 3 and three double edges. If the double edges are 
distributed one to each bridge of {Vl ,V2}  , w e  have £2 = [ ~ s ]  or [~s ']-  Otherwise, 
we would have two double edges, say ea+le~-i and + - e 2 1 e 2 1  , at wt, one at w2 (say 
e~2e72), and no more. No w again we have a quadrilateral sharing the same two 
edges with two other quadrilaterals: it is C 1 = {e~, e~x: i = 1, 2}. By switching we 
may assume the simple edges are all positive. Then C2 = {e+: i = 1, 2; j = 1, 2} and 

e +-  C3 { ~. i = 1, 2;j = 1, 3} are the two other quadrilaterals. So we have found all 
the possible I2. 

We still have to prove L(~5) and L( ~s,) isomorphic to G(K3, 3)- For  ~5 we apply 
Lemma IF  to Ka, a and e = an edge within the left side of K3,3. As for ~st, it is 
2-isomorphic to ~5, so their matroids are isomorphic by Lemma 1C. []  

6. The Matroid Rio 

In GF(2) s let bl denote the i-th basis vector, j the all ones vector, and xij = j + bi + bj. 
Rio by definition is the linear dependence matroid of {xo: 1 < i < j  < 5}. 

Proposition 6A. For a biased graph £2 we have 

G(f2) ~- R~o.~L(t2) ~- R~o.~a  = E - K s ]  

and Lo(Y2 ) _~ Rio is impossible. 

We begin with a Lemma demonstrating that - -K  s is an example. 

Lemma 6A. We have G ( - K s )  = Rio. 

Proof. We show that the circuits in R~ o are the same as those of G ( - K  s). We identify 
x 0 with the edge U in Ks; thus each subset of Rio is an edge subset of Ks. Suppose 
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S ~ E(Ks) gives a linear relation 

Equivalently, 

xij = 0. 
qeS 

~ j + ~ b , (  ~ I)=0. 
ij~S i \j:~/ S 

Either S is even and has all even degrees, or S is odd and has all odd degrees. Since 
K 5 has odd order, the latter is not possible. If S has degrees 0 and 2 only, it is a 
polygon, necessarily of length four. If it has a vertex of degree greater than 2, say 
vs, it has the form E(T + vs) where Tis a subgraph o fK  4 of odd degree. Thus Tis 
a pair of independent edges and S consists of two triangles joined at a vertex, or 
T = K4 and S = E(Ks). We see that the circuits of Rio are exactly those of G ( -  Ks). 

[] 

Proof of Proposition 6A. We use the fact that, if e is any point of Rio, then 
Rlo\e g G(K3.3) and R~o/e ~- G±(K3,3)(see [4]; these facts are also corollaries of 
Lemma 6A and Propositions 4A and 5A). Note that R~o\e spans R~o and all circuits 
in Rio have even size 4 or 6. 

IfZo(f2) = Rxo, then G(II~II) ~ Lo(12)/eo ~- Rio/eo ~ G±(K3,a), a contradiction 
because G±(Ka.a)is not graphic. 

Let L(12)~ Rio where 12 is loopless. Since R10 is not graphic, I2 is un- 
balanced and n = rk Rio = 5. By Proposition 5A, for each e ~ E(I2) we have t2\e 
[ - K s ] \ e d g e ,  or [~5], or [~g~]. Ifl2 has no double edge, t2 = [ - K s ]  is the only 
possibility. Suppose 12 has a double edge {e+,e-}. Then some 12\e has a double 
edge, hence three double edges; consequently 12 is bipartite with left set of order two 
and has four double edges. But then some edge deletion has four double edges and 
is therefore not isomorphic to [~s]  or [~s~], a contradiction. [] 

7. If Every Contraction of the Complete Lift is Graphic 

For the isomorphism theory of the complete lift [17] we want to know all pairs 
(f2,e) such that e ~ E and Lo(f2)/e is graphic. The foregoing propositions do not 
solve that problem but they do suffice to decide which 12 have the property that 
every Lo(Q)/e is graphic. 

Proposition 7A. Let t2 be a biased graph without loops or balanced digons. 
(1) Every contraction Lo(f2)/e, e ~ E, is graphic if and only if Lo(I2) is graphic or 

12 = [+Ka] ,  [--K43, E-d6] ,  [Z43, or (inK2, ~ ), m > 3. 
(2) Every  on action e E, is regular i f  and only if  Lo(O) regular or 

t2 = [+K3] ,  I - K 4 ] ,  or (mK2, J~), m > 3. 
(3) Every contraction Lo(O)/e, e ~ E, is binary if and only if Lo(Q ) is binary or 

a = (mr2,  m >_ 3. 

Proof. (3)is obvious. We therefore assume that f2 is sign-biased so Lo(t2 ) is binary. 
It is also obvious, since Lo(t2) is a minimal non-graphic [or, non-regular] matroid, 
that each example listed is an example. 
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Suppose t2 is non-graphic [or, non-regular] but every proper  contraction is 
graphic [regular]. Then, by Proposition 3A (on L(f2) =/77) and Corollaries 3A and 
4B, I2 contains one of the listed examples a s a  spanning subgraph ~. If ~ = i _  Ka] ,  
there is no room for more edges, so I2 = ~g. If ~ = I -  K4],  then adding a positive 
edge to - K 4  allows contracting to give +__ Ks,  so t'2 = ~. This settles (2). 

For  ~ =  [274] or I---A6] the result follows from Corollary 4A, noting that Lo(t2) 
has rank greater than 4 = rk F7 -t > rk F7. []  

The corresponding problem for the bias or lift matroid seems (from partial 
calculations we do not reproduce here) to have a much more complicated solution. 
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