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Coloring a signed graph by signed colors, one has a chromatic polynomial with the same
enumerative znd algebraic properties as for ordinary graphs. New phenomena are the inter-
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zero-iree colormgs The generalization to voltage graphs is outlined.

Introduction

A signed graph (a graph whose arcs have been labelled by signs) has, like an
ordinary graph, a chromatic polynomial which appears combinatorially as the

function which unts proper colormgs the graph and algebraically essentially
as the charac /TIOM f th i matroid. In this article we show

vrel tlonsh s to acyclic orientations.

The key idea is a simple one: tc color a signed graph one needs signed coiors
What is remarkable is how closely the development resembles ordinary graph
theory. The proper colorings are connted by a polynomial function of the number
of colors, a function related to the signed-graphic matroid. Negative arguments
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orientation. This is exactly as with ordinary graphs. What is different is that one
musi use an odd number of signed colors, namely 0, 1, ..., +p, interpreting, the

chromatiic polynomial only at odd arguments, and that there is a parallel coloring
theory distinguished merely by not using the color 0, having its own ‘balanced’
chromatic polynomial which is interpretable only at even arguments. The int:rac-
tion these two tneorles and how it provmes aigebraic means of compuun 2 the

(o7
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repiaces the sign group {+}) we sketch at the end of this paper.

We restate below most of the necessary definitions and results concerning
~ graphs, signs, and orientations. (Procfs appear in [4] and [5], as do a few omitted
definitions of lesser iraportancz.) Thus we hope that this article can be read
without prior knowledge oi signed graphs.
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16 T. Zaslavsky

In conclusion we remark, pro forma, that all graphs considered in coloring
theory are finite.

1. Signed graphs and signed colors

1.1. Reminiscences of signed graphs

We shali consistently deno‘e by 3 a signed graph, by N its node set, and by n
the number of nodes.
A signed graph 3 consists of an unsigned graph, denoted |3|, whose node and

£31 ' shinsrlh Lalaal '
arc sets are denoted N(2) and E(X), and a sign function o which labels each arc

(except a half arc) pesitive or negative. Sometimes we write 3 = (I, ) or (N, E, o)
to indicate that |3|=T" or that N(3)= N and E(3) = E. The underlying graph |Z|
may have not only multiple arcs and loops but also half arcs (which have but one
end point, and are not sign-labelled) and free loops (which have no =ndpoints and
are required to be labelled +). By 3™ we mean X with its half arcs and free loops
removed.

An ordinary graph is an unsigned graph v'ithout half arcs or free loops. For an
ordinary graph I' we employ the following rotations:

I1(I') = the set of partitions of the node set into connected blocks,

(') = the number of ways o color I properly using exactlv k unlabelled
colors,

xr-(A) = the chromatic polynomial =} ¢, (I")(A),, where (A), is the falling
factorial A(A—1)- - - (A —k+1).

An arc set S is balanced if it contains no half arcs and each circilar path in it
has posiiive product of signs. We write m,(S)={W: W is the node set of a
valanced component of S, and W# @8} and b(S) = #m,(S). The rank of S is given
by rk § = n—b(S). The rank function determines a matroid G(33 on the arc set;
its latticc of clased sets or flats is denoted Lat 3. The poset of baianced flats is
Lat® 3. N(S) is the set of nodes of arcs of S; N,(S) is the set of nodes of
unbalanced components. A node is full if it supports a half arc or regative loop,
otherwise empty. ¥ is full if all its nodes are. By 3" we mean 3 wita each empty
node filled by an added half arc or negative loop.

Switching 5 by v:N—{+1} means reversing the sign of any link whose
endpoints have opposite v values. It does not alter balance.

The restriction to an arc set S is the subgraph ¥, S=(N, S, ¢ | S). The contrac-
tion 2/S is obtained by switching I so every bulanced componeat of S is all
positive, coalescing all the nodes o¢ each balarced component, and discarding the
remaining nodes and all the arcs in S. Thus N(3/S)=m,(S). The subgraph
induced by XcN is 3:X=(XE:X,o|E:X), where E:X=
{ecE:@# N(e)c X).

The signed covering graph of 3 is the unsigned (or, all-positive) graph 3 whose
node set s £N(X)={ev: ve N(Z). e e{x}} and which has two arcs covering each
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one of 3 as follows. A link or loop e:vw, with sign ¢, is covered by two arcs,
é,:+v, ew rnd é,:—v, —ew. A free loop is covered by two frec loops. A haif arc
e:v is covered by two half arcs, e,:+v and e,:—uv. The covering projection

p:E..)Z 1 olven b

1S gven Jy p(in}:ﬂ and if & covere 2 nl{2Y=p The annncite ic ihe

UV oGy 11 LUVLID ©y P Uy T LAV UppuLHit D i

involutory automorphism % — %* of 3 which interchanges the two objects cover-
ing each x€ 3. A modified 3, which has no half arcs yet behaves just like the
original 2 in respect to closure, orientation, and coloring, covers each half arc e : v
by one link é: +v, —v. The opposite then fixes &

We employ the signed covering (basic or modified) to reduce questions about
signed graphs to ones about ordinary graphs. The first relevant fact is this:

Lemma 1.1 [4, Theorem 6.5(i)]. An arc set S< E(Y) is closed in G(2)<p~'(S) is
closed in G(Z).

An orientation T of 3 (cf. [5]) is obtained by orienting all arcs except free loops.
A link or loop, e:vw, is oriented by giving to each of its incidences, (v, e) and
(w, e), signs 7(v, e) and 7(w, e), subject to their product being —o(e). (The two
incidences of a loop must be distinguished; their signs may differ.) A half arc e:v
is oriented by giving its incidence (v, e) a sign 7(v, e). The meaning of (v, e) >0 is
that ¢ points inte v, while 7(v,e)<0 means the reverse. Thus a positive arc
orients in the usual way. If 7 oriznts 3, there is a unique covering orientation 7 of
3 determined by

7(ev, €) = et(v, p(€)).

The arcs of 3 are oriented by 7 :n the way suitable for unsigned (or positive) arcs.
A cycle of 7 is a circuit in G(X) which, as a subgraph, has neither sources nor
sinks. The cyclic part of 7, C(7}, is the union of all cycles.

Lemma 1.2 [S, Theorem 2.1 and Corollary 2.4]. We have C(7) = p Y C(7)); thus
7 is acyclic 4> 7 is. Also C(7) is closed in G(Z).

One tricky point about unsigne¢ graphs must be emphasized. For ordinary
graphs the absence of half arcs means that the ordinary theory of graph coloring
applies. It is not quite general enough for all unsigned graphs; for coloring
purposes they car be regaided as vcltage graphs labelled by the trivial group (.
Section 5), or as having their half arcs replaced by links to an extra node v, and
their free loops bv loops at vg.

1.2. Signed colorings

A coloring of an ordinary graph in A colors is customarily taken to be a
mapping of the nodes into :he set [1,A]={1,2,...,A}. This convention is
unsuitable for signed grashs because it does not admit a definition of proper
coloring across a negative arc. For signed graphs one must have signed colors.
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Thus if X is a signed graph, we define a (signed) coloring of % in u colors, or in
21+ 1 signed colors, to be a mapping

k:N—=[-w,pul={-m,—pn-1,...,0,...,u—1, n}

A coloring is zero-free if it never assumes the value 0. One of the themes of this
wc.k is the interplay between colorings and zero-frce colorings through the
chromatic polynomials.

A second theme is propriety of colorings and their improper sets. An arc e is
improper for a coloring k « e:vw is a link or loop with endpoints colored
k(w) = a(e)k(v) (thus every Lalanced loop is improper), or e: v is a half arc with
endpoint colored k(v)=0, or e is a free loop. The set of improper arcs of a
coloring k, denoted I(k), may also be called the set of impropriety of k. Counting
colorings without improper arcs or those with specified improprieties is the heart
of signed as ordinary coloring theory. We shall pursue this topic in Section 2. iFirst
we must study sets of impropriety and correspondences between proper and
improper colorings.

A coloring k of 3 lifts to a unique coloring k of the signed covering graph by
the rule

k(ev)= ek(v).

The important point is the relationship between the two improper sets. (The proof
is a matter of inspection.)

Lemma 1.3. We have I(k)=p~'(I{k)).

Like a graph, a coloring can be switched; indeed whenever we switch a signed
2raph 2 we implicitly switch its colorings as well. The mechanism is this: if v is a
switching function on N(X), we define

kY (v)y=v(v)k(v).

That is, if a node v is switched (v(v)= —1), then k(v) is negated to —k(v). The
most important thing to notice is that switching preserves sets of impropriety:

I(k")=I(k).

Switching k to k" entails switching k also; we call the result k”.

Lemma 1.4. The set of impropriety of a coloring k is a closed set of arcs, balanced if
k is zero free. For ¢very node v in an unbalanced co nponent of I(k), k(v) = 0. For v
in a balanced component I(k): X, k(v)#0, eccept possibly when I(k):X=
E(2): X

Proof. That I(k) is closed {ollows from the same property for ordinary graphs
because of Lemmas 2 ard 1. To illustrate the proof of the description of k,



Signed graph coloring 219

suppose T to be an unnalinced circle in I(k). Say C=ee, - - - ¢, where ¢, :v,_,v,
and v, =0, By the impropriety of C, k(v,)=0o(e)k(v, )= =0(C)k(v,); but
o(C)=--1, so k(vy) =0. The other proofs are similar. [J

1.3. Proper colorings

A coloring is proper if its set of impropriety is void; in other words, if
() k(v)# o(e)k(w) whenever there is an arc e:ow;

(ii) k(v)# 0 whenever there is a half arc at v; and

(iii) & has no free loops.
The first constraint implies k(v) # 0 whenever there is a negative loop at v (take
v =w). The first and third imply the impossibility of properly coloring a signed
graph which has a balanced loop. By Lemma 3, the lifted coloring k is proper if
and only if & is proper.

The colorings of 3 can be regarded as proper colorings of the contractions of 3.

Lemma 1.5. Let 3 be a signed graph and u.=0 an integer. There is a one-to-one
correspondence between all signed colorings of 3 in w colors and all proper signed
colorings of contractions of X, in which the zero-free signed colorings correspond to
the zero-free proper colorings of contractions by balanced sets.

A coloring k of 3 corresponds to the proper coloring k' of 3/I(k) determined by
first switching 3, (and k) until every balanced component of I(k) is positive, then
defining k'(B) = k{(v) for ve B € w,(I(k)).

A proper coloring k' of 3/ A corresponds to the coloring k of 3 determined by first
switching 3. until every balenced component of A is positive, then defining k | B =
k'(B) for each Be m,(A) and k | N,(A) =0, then reversing the switching of 3 and
k.

Note that the correspondence, to be well defined, requires that the switching
scheme used on ¥ in the first part (where k is given) depend only on the set I(k),
while that in the second part depend only on A, not k'. But given this, it does not
«natter whict. switching scheme is chosen for each set.

The proo. is straightforward and is omitted.

2. Counting the coloring ways

2.1. Polynomials

The chromatic polvnomial xs(A) of a signed graph ¥ is the function defined for
odd positive arguments A =2u +1 whose value equals the number of proper
signed colorings of 3 in w colors. The balanced chromatic polynomicl x%(A),
defined for even positive arguments A = 2u, is the function which counts zero-free
proper signed colorings in u colors. That both functions are polynomials will be
proved shortly.
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The Whimey polynomial of 3 is the generating function of all colorings,
classified by the rank of the set of impropriety:

ws(x,2u+1)= Z xR 100,
k

summed over all signed colorings in w colors. The coefficient of x", the number of
colorings whose set of impropriety has rank », may equally be regarded as the
number of proper signed colorings in u colors of contractions %/A having n—r
nodes—-this follows from Lemma 1.5. The balanced Whitney polynomial,

. k*
wlx, Z‘L)zzxrkl( )
k‘k

is sumrned over zero-free colorings only. Its coefficient of x" is both the number
of zero-free colorings k* whose improper set has rank r, and the number of
zcro-free proper signed colorings of (n—r)-node contractions 3/A where A is
balanced.

By interpreting the Whitney polynomials in terms of contractions of 3 we see
that

w6, A= 2 x™ %A (), (2.1)
ACEER

b _ rtk A_ b ,

wiL )= 2 X AxE ), (2.2)
AcE(X)
balanced

if A is positive and is odd in the first equation, even in the second. (It is sufficient
to sum over closed A, since otherwise the contribution of 3/A is 0.) Since wy and
wy are polynomials—a consequence of (2.1), (2.2), and Theorem 2—these
identities are valid for all numbers A.

Balanced and ordinary graphs. If X = (I, o) is balanced we can assume, switching
as necessary, that it is all-positive. Then a signed coloring k has the same set of
impropriety whether regarded as a coloring of 3 or of the underlying graph I
Thus we see that a balanced signed graph and its underlying unsigned graph have
the same chromatic and Whitney polynomials (and it is easy to see that the
balanced poiynomials equal the unbalanced ones as well). Note that the Whitney
polynomiat of ar unsigned graph is defined like tha* o! a signed graph and satisfies
an identity analogous to (2.1).

2.2, Exaci coloring

To prove that the chromatic and balanced chromatic functions are polynomials
we shall stucly exact colorings: signed colorings of & .n w colors which use all the
magnitudes 1,2, ..., u. (Whether 0 is used or not is immaterial.)
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Rather than colorings themselves we shall count symmetry <lasses. A symmetry
class may be regarded as an unlabelled signed coloring. A coloring k using the
signed colors 0, +1,...,+u is acted on by the permutations « €@, and the
reflections p, 1<i<p, in the following manner: a permutes the color mag-
nitudes, while p; reverses the sign of every color whose magnitude is i. Thus the
hyperoctahedral group ©,, generated by &, and the reflections, acts as a
symmetry group on colorings. It is easy to check that I(k¥) = I(k) for any ye O, ;
thus propriety is preserved. Furtherimore, if k is exact, then k¥ = k only if vy is the
identity. Hence exact color ngs come in symmetry classes of size 2*u!, the order
of O,. Let

¥, (2) = the number of symmetry classes of exact proper
signed colorings of % in w colors,

¢*(2) = the number which are zero-free.
Clearly there is only one class using w =n colors and it is zero-free, thus
U, (2)=¢%(Z)=1; and there are none using more than n colors.

We shall compute xs and x% in terms of the ¢,(3) and ¢}(2), and vice versa.
We need the double falling factorial:

2A), =AA=2) - (A -2r+2).
Lemma 2.1. We have (if A =0 and is odd for xs, even for x%::

sM)= Y 4 (3)-,A-1),,

k=0

X2 = Y $HE) ).

k=0

Conversely if u=0 is integral:

n@=55 8 ot

=208 oM

'K()

To prove this we can imitate the method used for ordinary graphs (cf. [1]). We
omit the details.

2.3. Properties of the chromatic polynomials
In perfect analogy to ordinary chromatic theory (as in[ 1]) we have from Lemma 1

Theorem 2.2. If 3 is a signed graph with n nodes, then x.(A) and x%(A) are
polynomial functions of A, monic of degree n.



222 T. Zaslavsky

Now the chromatic polynomials can be evaluated for aii numbers A and the
parenthetical reservation in Lemma [ can be ignored.

Continuing the analogy with ordinary chromatic theory is the behavior of the
signed-graphic polynomials under deletion and contraction. It can be proved by
counting proper colorings.

Theorem 2.3. Let 3 be a signed graph and e € E(3). Then
Xz (M) = xae (A = X5/ (D)
and, if e is not a half arc or negative loop,

X3 = x5 (A= x3(A).

On the colorirg interpretation. We have seen that xs(A) for a positive integer A is
the number of colorings of X in A colors, but only when A is odd. To suggest why
more cannot be expected let us consider the signed graph + K3, consisting of two
nodes linked by one positive and one negative arc, with a negative loop at each
rode. Since ¢, =, =0, Lemma 1 yields

X:xs(A)=(A=1)(A-3).
We sce that x.ks5(2) = — 1, demolishing the hope that xs(A) counts colorings for
all positive integral A. Just what xx(A) can mean for even arguments is a delicate
question, not to be considered here.

2.4. The algebra’s connection

As in ordinary graph theory there is an alternative algebraic definition of the
chromatic polynomial. That and the connection with the matrcid G(3) are the
content of the following theorem. Let u be the Mobius function of Lat 3 (cf. [2])
and let p(A) be the characteristic polynomial of G(3). (We remind the reader of
the convention that u{@, A)=0 if the null set is not closed.)

Theorem 2.4. The chromatic polynomial of a signed graph 3. satisfies the equation

xs(A) = Z /\b(S)(_l)#S

ScE(3)
(2.3)
- Z [.L(Q,A}AMA):AME)[)(A).
Aelat 3
The balanced chromatic polynomial satisfies
X3 = X ANO(=D#S = F u(@, e AP, (2.4)

S<E(X) Aclat’s
balanced
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These equations show that the chromatic and Whitney polynomials arc in-
variants of switching classes, because they depend only on the matroid, which
depends only on the switching ciass of 3 (by [4, Corollary 5.4]).

Proof. The subset and flat versions of each formula are equivalent by a standard
expaiision of the Mobius function. We prove the balanced Mobius formula (2.4)
by Mobius inversion (cf. [2]); (2.3) is similar. That x(A) and p(A) are related
follows from the known Mobius expansion of p(X).

By Lemma 1.5, the number of zero-free signed colorings of 3 using « colors
whose set of improprietv equals S is »%,(2k). Since the set of impropriety is
closed and balanced (Lemma 1.4),

Z X%/S(ZK) = (2x)".

Selat"x

In order to invert we mus. have a similar identity for every contraction /A
where A is a balanced flat. We get it by replacing 3 by /A ; thus

T xys(2K) == (26)7 2,
S=A
summed over flats 5 for which S/A is balanced in 3/A. By Lemma 5 below that
means § is really varying over ail 5 « Lat®3 such that S = A. Iaverting and setting
A =0 yields (2.4)—excep! in the trivial case when § is not closed. [0

Lemma 2.5 [+, Lemma 4.1]. Suppose A is balanced in 3 and S2A. Then S is
balanced in £<> S/A is balanced in 3/A.

3. Pairs of colorings and orientations

Following the pioneering work of Staaley [3] we can interpret the chromatic
polynomial evaluated at negative as well as positive odd integers. Let us first
observe that a signed coloring k determines an orientation of each proper arc if
w. require that, for a haif arc e:v,

7(v, e)k(v)>0,
while for an arc e:vw,
(v, e)k(v)+ 7w, e)k(w)>0.

Since the left side of the latter equals 7(v, e)[k(v)—a(e)k(w)], which is non-zero
precisely because k is proper on e, there is a unique orientation of the desived
kind. If k was proper. we have now oriznted the entire signed graph. Note that
the lifted coloring k determines by this rule the lifted orientation 7.
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P-oper pairs. An orientation 7 and a ccloring k are a prooer pair if, for any arc
e:uw,

(v, e)k(v)+ 7(w, e)k(w)>0,
and for any half arc e:v,

7(v, e)k(v)>0.

One can easily calculate that (k, 7) is a proper pair if and only if (k, 7) is.

Theorem 3.1. If k is a proper signed coloring of the signed graph X, there is a
unique orientation 7 of 2 such that (k, 7) is a proper pair; and 7 is acyclic. If k is not
proper, it is in no proper pair. The number of proper puirs allowing u colors is
xs (2 + 1). The number involving only zero-free colorings is x%(2w).

The only new statement, that 7 is acyclic, follows from Theorem 3 below.

Compatible pairs. A coloring k and an orientation T are compatible if
7(v, 2)kiv)+7(w, e)k{w) =

whenever e:vw is a whole arc and
(v, e)k(v)=0

whenever e:v is a half arc. (If e:vv is a negative loop the first constraint entails
7(v, e)k(v)=0. Thus a half arc is equivalent to a negative loop.) Compatibility,
like propriety, is preserved by switching. The lift (k, 7) is compatible if and only if
(k, ) is.

A proper pair is just a compatible pair involving a proper coloring. We have
counted proper pairs; now we wish to count compatibie pairs. The starting point is
a lenuna which shows how compatibility of pairs, propriety of colorings, and
cyclicity of orientations are related to each other.

Lemma 3.2. Let k be a coloring and 7 an orientation of %, let S < I(k), and let k'
and 7' be the induced coloring and orientation of 3/S. Then (k, ) is compatible
©(k',7') is. In c1se S =I(k), (k, T) is compatible & (k', T') is proper.

Proof. The definition of k' on /S is like that on 3/I(k) given in Lemma 1.5. The
prcof depends on the switching invariance of compatibility. Thus one can switch,
then verify that each arc is equally compatible in 3 and £/S. As for thc case
S =1(k), since k' is proper (by Lemma 1.5), ¢&' ') is proper if it is
compatible. [

Theorem 3.3. If (k, 7) is a compatible pair, then C(t)=2I(k), 7 induces an acyclic
orientation 7’ on 3/I(k), and if k' is the induced coloring « ¥ Z/I(k), then (k', ') is a
prcper pair.
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Proof. We lift the problem to the signed covering graph. For an ordinary graph
like ¥ it is easy to prove, by tracing inequalities around a cycle of 7, that k is
constant on each cycle. Hence I(k) 2 C(7). Then I(k) 2 C(7) by Lemmas 1.2 and
1.3.

If (k, ) is proper therefore 7 is acyclic. But by Lemma 2, (k', 7") is a proper
pair. That completes the proof. []

T.emma 3.4. Let e be an arc of X, k a coloring, and k' the induced coloring of 3 /e,
if there is one. If 7 is an orientation of 3, let 7, be T with e reversed.

If (k,7) and (k,7.) are both compatible, then k is improper on e and both
(k, T\¢€) and (k', 1/e) are compatible pairs in 3\e and 3 /e, respectively.

If (k, ) is compatible but (k, 7.) is not, then (k, 7\e) is compatible but k is proper
on e so does not induce a coloring of 3/e.

If neither (k,7) nor (k, t,) is compatible, then (k, 7\e) is incompatible and, if
there is a k', (k', 1/e) is incompatible.

Proof. In the first case, k is clearly improper on e. The rest is from Lemma 2. The
second case is obvious. In the third case, clearly (k, 7\ e) must be incompatible. If
k' exists, it does so because e € I(k). Then (k', 7/e) is incompatible by Lemma

2. 0

Theorem 3.5. Let 3 be a signed graph and w a nonnegative integer. The number of
compatible pairs (k, ) in which 1 is an acvclic orientation and k is a signed coloring
in p colors is (—1)"xs(—(2u+1)). The number in which k is also zero-free is
(—=1D"x3(=2w).

Proof. All the compatibie pairs in 3 correspond to all those of 3\e and X/e (by
Lemma 4; the corresponderce is clearly bijeciive), as shown in the following
table:

Compatible in ¥ Compatibie in X\e Z/e

{(k,7) and (k, 7,) — (k,7\e) and (K', 7/e),
(k, 1), not (k, 7,) —  (k,T\e), not (k', 7/e),
neither neither

We can deduce from Theorem 3.1 of [5] that in the first line the same number of
pairs on each side involve acyclic orientations. In the second line 7\ e is acyciic if
7 is; conversely we must show that, if 7\ e is acyclic, 7 has to be too.

Suppose that (k, 7) is compatible but (k, 7.) is not, and that 7, is acyclic but 7 is
not. The cuinipatibilities require (if e:vw is a link or loop; the balf-arc case is
similar)

7(v, e)k(v)+ 7(w, e)k(w)>0.
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That entails k is proper on e. But on the other hand the acyclicities require
e C(1), whence ec I(k) by Theorem 3. But this is a contradiction. Thus the
troublesome case cannot exist.

Let P(X) = the sct of all compatible pairs (k, 7) in which 7 is acyclic. We have
shown that P(X) is in one-to-one correspondence with the disjoint union
P(Z\e)U P(3/e). Now a standard inductive argument using Theorem 2.3 proves
the general case of the theorem.

If we restrict to zero-free pairs we still have the same one-to-one correspon-
dence, so long as € is a link Thus this case too follows by induction. [

Colored and ocrienied contractions. From Theorem 3.5 we immediately get in-
terpretations of the Whitney polynomial and the balanced ‘Whitney polynomial.

Corollary 3.6. The number of compatible triples (k, 7.%/A), where 3/ A is a c-node
contraction of %, 7 ic an acyclic orientation of X/A, and k is a signed coloring of
3/A in w colers which is coinpatible with T, equals the coefficient of <" in
(—=D)"wg(—x, —(2u +1)). The number involving only zero-free colorings equals the
coefficient of x" ¢ in (—1)"wh(—x, —2p).

4. Orientations, hyperplanes, and the acyclotope

The number of acyclic orientations of a signed graph and its contractiors is an
immediate consequence of Theorem 3.5 and Corollary 3.6. We simply set p. =0.

Corollary 4.1. The number of acyclic orientations of %, o(X), is given by
o(2)=(-1)"xs(-1). (4.1)

If 0,(X) denotes the number of acyclic orientations of all contraction graphs 3/A
which have k nodes, then

Y 0 (Z)x" k= (=1)"wg(-x, —1). 4.2)
k=0
Alternative interpretations of Corollary 1 follow from the representations of ¥
in R" as an arrangcment of hyperplanes H[X’ aud as a zonotope Z[3], the
acyclotope of 2. Frorn [5] we recall the definitions. et the standard basis of R" be
incexed by the nodes, so it is {b,: ve N}. Eact arc e:vw determines a line
segment S, =conv{+ (b, — o (e)b,)}; a half arc e : v determines S, “conv{:t:b} and
a free locp e:{) determines S, ={0}. Then the de initions are :

H[3]={St:ec E(X)), 2Z[3]=).S..
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By Theorem 4.2 and Corollary 4.5 of [5] the regions and, more generally, the
k-dimensional faces of H[X] are in one-to-one correspondence respectively with
the acyclic orientations of 3 and of the k-node contractions. Thus we can

reformulate r‘r\rn“ary 1 as a statement

Viiiaeaie AJAUiG: 3 Wwild

Corollary 4.1". Corollary 1 remains true if o(3) is interpreted as the number of
regions of H[3] and 0,(3) as the number of k-dimensional faces.

H[ZX], we also have a statement about the faces of Z[3].

Corollary 4.1". Corollary 1 remains true if o(2) is interpreted as the number of
vertices of Z[3] and 0,(X) as the number of (n— k)-dimensional faces.

In [6], the continuation of this article, we shall find explicit expressions for o(3)
and 0,(2) in a number of interesting examples.

S. Appendix on voltage graph coloring

A voltage graph @ consists of an uns'igncd graph I'={N, E) together with a
voltage group & and a voltage, a mapping ¢ : E* — . We assume that ¢(e ') =
e(e)”!, where e”! denotes the arc e taken in the opposite direction, and that
¢ | {free loops}=1.

Since the notion of balance applies to voltage graphs one can define both
ordinary and balanced chromatic polynomials by the algebraic formulas of
Theorem 2.4. There is also a concrete interpretation by means of $-labeiled
colorings of @®. Say % has order m. The color set with p colors (or mu + 1 labelled
colors) is

K, =({0,1,..., s}x®)/{0}x );
in other words we regard all (0. g) as the same color. In an obvious way & acts
from the right on k,. A &-coloring of @ in = colors is a mapping k: N— K, ; it is

proper if, for each arc e:v—w, k(w)# k(v)e(e), and for each half arc e: v,
k(v)#(0, g), and there are no free loops. The function

Xo(mu + 1) = the number of proper &-colorings of @ in w colors
equals the algebraically defined chromatic polynomial;
x3»(mp) = the number of zero-free proper colorings

equals the algebraic balanced polyromial. The proofs are exactly as for signed
graphs. Moreover the two polynomiais are related just as are those of signed
graphs (see the balanced etpansion formula in [6]). The big difference is that
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voliage graphs do not in general have orientations. Thus only positive arguments
have combinatorial interpretations.
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