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1. GRAPHS

Set sum, or symmetric difference: A® B :=(A\ B)U (B \ A).
Graph:

o ['=(V,E), where V :=V(I'), E:= E(T"). All graphs are finite.

e n := |V|, the order.

e V(e) := multiset of vertices of edge e.

e VV(5) := set of endpoints of edges in S C F.

e Complement of X CV: X¢:=V\ X.
e Complement of S C E: S¢:=FE\ V.

Edges:
e Multiple edges, loops, half and loose edges.
— Link: two distinct endpoints. D S
— Loop: two equal endpoints. — >
— Ordinary edge: a link or a loop.
— Half edge: one endpoint. o
— Loose edge: no endpoints. TN

o Fy(I") := set of loose edges.
o F,:= E,(I') := set of ordinary edges.
e Parallel edges have the same endpoints. e— e
e Ordinary graph: every edge is a link or a loop.
Link graph: all edges are links.
Stmple graph: a link graph with no parallel edges.

§1.0
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Various:
e F(X,Y) :=set of edges with one endpoint in X
and the other in Y.
e Cut or cutset: any E(X, X) that is nonempty.

e An isolated verter has degree 0.
e X C V is stable or independent if no edge has all
endpoints in X (excluding loose edges).

e Degree: d(v) = dr(v). A loop counts twice.
e [' is reqular if d(v) = constant.

Walks, trails, paths, circles:
o Walk: voeivy - - - equy where V(e;) = {v;_1,v;} and [ > 0.
Also written ejey - -+ €, or vyuy - - - ;.
Length: 1.
e Closed walk: a walk with [ > 1 and vy = v;.
e Trail: a walk with no repeated edges.
e Path or open path: a trail with no repeated vertex.
e Closed path: a closed trail with no repeated vertex except vy = vy.
(A closed path is not a path.)
e Circle (‘cycle’, ‘polygon’, etc.): the graph or edge set of a closed path.
Equivalently: a connected, regular graph with degree 2, or its edge set.
e C = C(I"): the class of all circles in I'.
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Examples:

e K,: complete graph of order n.

e K, : complete bipartite graph.

e ['“: complement of I', if I' is simple.
o K°: edgeless graph of order n.

e P: a path of length [.

e (). a circle of length [.

Types of subgraph: InI', let X CV and S C E.

e Component: a maximal connected subgraph, excluding loose edges.

e ¢(I') := number of components of T

e A component of S means a component of (V,.5). c(S) :=¢(V,9).
e Spanning subgraph: T" C T" such that V' = V.

o '|S = (V,S5). (A spanning subgraph.)

o Induced edge set S:X :={eec S:@#V(e) C X}. S:X = (X, 5:X).
e Induced subgraph I':X = (X, E:X). E:X = (X, EX).
o ['\S:=(V,E\S) =T]|5“
e '\ X: subgraph with
V(I\X) = X¢,
ET\X):={ecE|V(e) CV\X}
X is deleted from I'.
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Graph structures and types:

e Theta graph: union of 3 internally disjoint @

paths with the same endpoints.

e Block of I': maximal subgraph without loose edges, such that every pair of edges is in
a circle together. The simplest kinds of block are an isolated vertex, and ({v}, {e})
where e is a loop or half edge at vertex v. A loose edge is not in any block of T'.

e [nseparable graph: has only one block.

e Cutpoint: v € more than one block.

Fundamental system of circles:

e T a maximal forest in I'.
e (Veec E,\T): T circle C. CT U{e}.
e The fundamental system of circles for I' is

{Ce:e€ E,\T}.

Proposition 1.1.  Choose a maximal forest T'.
Fvery circle in I is the set sum of fundamental circles with respect to T'.

Proof. C'= @.covr Cr(e). O
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2. SIGNED GRAPHS

Signed graph: ¥ = (I',o0) = (V, E, 0) Vl/"\—f 2
where o : E, — {+,—}. 2y J N b
Notations: {+,—}, or {+1,—1}, \ N
or Zy :={0,1}mod2, or .... N NI
V4 c Y3
e 0: the signature or sign function.
e |X|: the underlying graph.
o £t :={e€ F:o(e) =+}. The positive subgraph: ¥ := (V, ET).
E~:={e€ E:o0(e) = —}. The negative subgraph: ¥~ = (V, E7).
o +I':= (', +): all-positive signed graph.
o —I':= (', —): all-negative signed graph.
Vi o) N S —
o £ = (+I" U (-T):
the signed expansion of T \\ Nk
E(+l') =+F = (+E)U(—-E). " ., S SO
r +T

® >* = ) with a half edge or negative loop Pt
at every vertex. g ‘
>* is called a full signed graph. .
>° := X with a negative loop at every vertex. e




8 82 LECTURES ON SIGNED GRAPHS AND GEOMETRY | THOMAS ZASLAVSKY §2.0

Isomorphism.

Y1 and Xy are isomorphic, 31 = Yo, if 3 6 1 |31] = |, that preserves signs.

Example: 3 = 3o 22 35.

tl/‘
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2.1. Balance.
o o(W) =[], o(e;) = product of signs of edges in walk W, with repetition.
e 0(.5) := product of the signs of edges in set S, without repetition.
e The class of positive circles:

B =B(X) = {C € () : a(C) = +1.

e X, or a subgraph, or an edge set, is balanced if:
no half edges, and every circle is positive.
e A circle is balanced <= it is positive.
A walk cannot be balanced because it is not a graph or edge set.

o m,(X) :={V(¥') : ¥ is a balanced component of ¥}.
e b(X) := |m,(X)| = # of balanced components of ¥.
o (X)) :=V\ UWEwb(E) w

= {vertices of unbalanced components of >}.

)
Vl VS )

, "7' B Gl
’ N ! :
Example: E N T

wb(Z) = {Bl,BQ} and
Vo(X) =V \ (B1U By).
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A bipartition of a set X is {X1, Xp} such that X; U Xy = X and X; N X, = ).
X7 or X5 could be empty.

Theorem 2.1 (Harary’s Balance Theorem, 1953).
> 18 balanced <—
it has no half edges and there is a bipartition V = ViU Vs such that E= = E(V1,Va).

Vi = {v1,vs},

I like to call {V;, Vo} a Harary bipartition of 3.
.12} vy Vo = {va, vy, 05}

Corollary 2.2. —TI' 15 balanced <= T’ is bipartite.
Thus, balance is a generalization of bipartiteness.
Proposition 2.3. X is balanced <= every block is balanced.

Deciding balance:
Deciding whether ¥ is balanced is easy. (Soon!)
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Types of vertex and edge:

e Balancing vertex: v such that ¥ \ v is balanced but X is unbalanced.
e Partial balancing edge: e such that b(X \ e) > b(X).
e Total balancing edge: e such that ¥ \ e is balanced but ¥ is not balanced.

Proposition 2.4. e is a partial balancing edge of > <= 1t is

(a) an isthmus between two components of X\ e, of which at least one is balanced, or

(b) a negative loop or half edge in a component X' such that 3"\ e is balanced, or

(¢) a link with endpoints v,w, which is not an isthmus, in a component X' such that X'\ e
is balanced and every vw-path in X'\ e has sign —o(e).

In the diagram, ‘b’ denotes a partial balancing edge.

Determining whether 3. has a partial balancing edge is easy.
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LECTURE 2
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2.2. Switching.
e Switching function: ¢ :V — {4+, -} Ne—— 2 ",
e Switched signature: A /
o¢(e) == ((v)o(e)¢(w), where e = vw.
o Switched signed graph: X := (|%], 0°).
Note: ¥¢ = %7¢.
e Switching X C V means: negate every edge in E(X, X°¢).
e The switched graph is X% = ¥4°,
¥X = ¥¢ where ((v) == — iff v € X.

L

V4 V3 V4

Proposition 2.5.
(a) Switching preserves the signs of closed walks. So, B(X¢) = B(X).
(b) If |21] = |Z2| and B(X,) = B(Z2), then 3 ¢ such that Sy = 35,

Proof of (a) by formula.
Let W = vgeguie1v9 - - - v,,—16,—109 be a closed walk. Then
o (W) = [¢(vo)a(eo)¢(v1)] [¢(v1)a(en)C(va)] - .. [C(vn-1)o(en—1)¢(v0)]
= o(eg)o(er) - o(ep—1) = a(W). O

Proof of (b) by defining a switching function.
Pick a spanning tree T" and a vertex vy. Define

C(v) == 01(Topw)o2(Togw)
where T,,, is the path in 7" from vy to v. It is easy to calculate that 2§ = Y. ]
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Equivalence relations:
e Y1 and Xy are switching equivalent, > ~ Yo,
if [21] = 22| and 3 ¢ such that £ = 5.
e The equivalence class [X] is the switching class of X.

e X, and Xy are switching isomorphic, 21 >~ Yo,
if 331 is isomorphic to a switching of Y.
e The equivalence class of ¥ is its switching isomorphism class.

Example: 22 ~ 23 but 21 7(/ 22, 23. 21 ~ 22 ~ 23.
1% 1% V.
1] —————o 1 «=—————e W
e S |
v, . Vv \ll—\\V\
4 V3 4 V3
Z"1 22

Proposition 2.6.
~ 1s an equivalence relation on signatures of a fixed underlying graph.
~ is an equivalence relation on signed graphs.

Proof. Obvious! O]
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Corollary 2.7. 3 is balanced <= it has no half edges and it is ~ +|%].

Two consequences of Corollary 2.7.

Short Proof of Harary’s Balance Theorem.
¥ has the form stated in the theorem <= it is (+|X|)"
<> it is a switching of +|X| <= (by Proposition 2.5) it is balanced. O

Algorithm to detect balance.

Assume Y is connected.

Apply the proof of Proposition 2.5(ii) to determine whether 3 can be switched to all
positive. That is:

(1) Choose a spanning tree T and a vertex vy.
(2) Calculate the function ((v) = o(7},,) of that proof.
(3) Switch by (.
(4) Look for negative non-tree edges.
Y’ is balanced <= all non-tree edges are positive.

3
4
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2.3. Deletion, contraction, and minors.
R,SCEFE.

e The deletion of S'is X\ S := (V,S% o

5).

e The contraction of S is /S, to be defined in the next slides.
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2.3.1. Contracting an edge e.
e A positive link:
Delete e, identify its endpoints;
do not change any edge signs.
(= contraction in an unsigned graph.)

e A negative link:
Switch X by a switching function (,
chosen so e is positive in X¢.
Then contract e (as a positive link).

M ()2

/ \\ |
:/ \\\f i _
\\ AN : g

\ N |

\‘ N :,——:
V4 V.

y 3

§2.3

17
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e A positive loop or a loose edge: Delete e.

® A negative loop or half edge at v:
Delete v and e.

Other edges at v lose their endpoint v.

Lemma 2.8. In X any two contractions of a link e are switching equivalent.
The contraction of a link in a switching class is a well defined switching class.
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2.3.2. Contracting an edge set S.

E(X/S):=FE\S,

V(3/9) :=m(X|S) = my(.9),
Vss(f) ={W € my(S) :w € Vx(f) and w € W € m,(5)}.

Switch ¥ to X¢ so every balanced component of S is all positive. Then

oy/s(e) = o (e).
Lemma 2.9.

(a) All contractions 3/S (by different choices of ¢) are switching equivalent. Any switching
of one contraction is another contraction. Any contraction of a switching of ¥ is a
contraction of .

(b) If |%:1| = |22, S C E is balanced in 31 and Yo, and 31/S ~ ¥X9/S, then ¥y ~ 3.
(c) Fore e E, [X/e] = [¥/{e}].
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2.3.3. Minors.
A minor is any contraction of any subgraph.

Theorem 2.10 (Zaslavsky, 1982).  The result of any sequence of deletions and contrac-
tions of edge and vertex sets of X 1s a minor of X.

Proof. Technical but not deep. ]
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2.4. Frame circuits.
A frame circuit of X is

e a positive circle or a loose edge, or T )

e a pair of negative circles that intersect
in precisely one vertex and no edges
(a tight handcuff circuit), or

e a pair of disjoint negative circles together s /‘(_)\

with a minimal path that connects them = %

(a loose handcuff circuit).

A half edge = a negative loop in everything that concerns frame circuits.

A frame circuit in +1I" is a circle.

Proposition 2.11. X contains a loose handcuff circuit
<= there is a component of X that contains two disjoint negative circles.

Proof. Elementary (my dear Watson). H

But the next is less elementary.
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Proposition 2.12. Let e € an unbalanced component of 3.
e € a frame circuit <= e is not a partial balancing edge.

Proof. Nec. Suppose e € frame circuit C.
e If ¢ is an isthmus of C: If ¥\ e is connected,

it contains the negative circles of C. If ¥\ e .-

is disconnected, each of its two components ;:"
contains one negative circle of C. Therefore,
e is not a partial balancing edge.

o If e € a circle in C, then ¥ \ e is con-
nected. C' is unbalanced = C'\eis .-~
unbalanced = X\ e is unbalanced - \
—> e is not a partial balancing edge.

e But suppose C is a positive circle. As e

there is a negative circle D in ¥/, for e to .~
be a partial balancing edge it must belong ¢ +)
to D; this leads to a contradiction. '

Suff. If e is not a partial balancing edge; we produce a frame

Then

circuit C

§2.4
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2.5. Closure and closed sets.
Ordinary graphs: Closure of an edge set is an important operation, and is easy.
Signed graphs: Closure exists, but more complicated.

2.5.1. Closure in signed graphs.
For S C E:

Balance-closure:

§2.

bel(S) := S U {e € S¢: 3 a positive circle C C S U e such that e € C} U Ey(X).

Closure: Sy, ..., S are the balanced components of .S:

clos(S) := (E:Vp(9)) U (chl(Si)) U Ep(2).

S is closed if clos S = 5. We write
Lat > :={S C E : S is closed},
Lat X is a lattice, partially ordered by set inclusion.

A half edge = a negative loop in everything that concerns closure.

23
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Properties.

Lemma 2.14.
bel(S) is balanced <= S is balanced.
If S is balanced, bel(bel S) = bel(S) = clos(S).

Lemma 2.15. m,(closS) = m,(bclS) = m,(S) and Vy(clos S) = Vo(bel §) = Vi(9).

Power set P(E): the class of all subsets of F.

An abstract closure operator is J : P(E) — P(FE) such that
(C1) J(S) 2 S for every S C E (increase).

(C2) RCS = J(R) C J(S) (isotonicity).

(C3) J(J(5)) = J(S) (idempotence).

Theorem 2.16. clos is an abstract closure operator on E(X).

closy, has the exchange property of matroid theory, which means:
Theorem 2.17. For S C FE,
closS=5SU{e ¢ S:3 a frame circuit C' such that e € C C SUe}.
Proof. Necessity. Assume e € clos S. We must find C. It takes some effort.
Sufficiency. Assuming a circuit C' exists, we want to prove that e € clos.S. Not difficult.

Both parts depend on Proposition 2.12. ]
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2.6. Oriented signed graphs = bidirected graphs.

e Bidirected graph: each end of each edge has an independent direction.
— B (‘Beta’) = (I', 7) where 7 : {edge ends} — {+, —}.
— The directions on e agree when 7(v,e) = —7(w, €).
— |B| = underlying graph.

e Orientation of X: a direction for each end of
each edge. \
— Positive e: the directions on e agree.
— Negative e: the directions on e disagree:
* Both point towards the middle of e (an
introverted edge) or
* both away from the middle (an ez-
traverted edge).

e op(e) := —7(v,e)T(w,e).
e Y3 = signed graph (|B|, op).
e Switching: B¢ := (|B], 7%) where 7%(v, e) := (v, e)((v).

Lemma 2.18. Yy = (Xp)°.

e Source vertex: All arrows point in: 7(v,e) = +, V (v, e).
e Sink vertex: All arrows point away: 7(v,e) = —, V (v,e).
o Acyclic orientation: Every frame circuit C in (X, 7) has a source or a sink.
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3. GEOMETRY AND MATRICES
V =A{vy,v9,...,0.}, E={ey,e9,...,e,}. Fis any field.

3.1. Vectors for edges. e — vector x(e) € F™

0 0 0
: 0] (0]
0 0 0
i | +1 +1 +1
0 0 0 0 0
, i |£1Fo(e) i |1
: 0 0
0 0 0
j |Fole) F1 +1
0 0 0 0] | 0
0 | 0 K

link exvvj,  + link, — link, loop e:w;v;, half edge e:v;,

§3.1
o
0
0
loose edge.
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Define x(S) := {x(e) : e € S} CF".

Theorem 3.1. Let S C E(Y).

(a) If char F # 2, x(95) is linearly dependent <= S contains a frame circuit.
(b) If char F = 2, x(S) is linearly dependent <= S contains a circle or loose edge.

Corollary 3.2. If charF # 2, the minimal linearly dependent subsets of x(F) are the
sets x(C') where C' is a frame circuit.

Call S C FE(X) independent if x(S) is linearly independent over F when char F # 2.

Corollary 3.3. S C E(X) is independent <= it does not contain a frame circuit.

Define (X) := vector subspace generated by X C F".
Then the set of subspaces generated by subsets of F,

Lr(X) = {(X) : X S x(E)},
is a lattice, partially ordered by set inclusion.

Corollary 3.4. Assume charF # 2.
Then x(E) N (x(5)) = x(clos S).
Thus, Lr(X) = Lat X.
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Rank function:
rk S :=n — b(9) for S C F.
kY =1k £ =n—bX).
Theorem 3.5. [fcharF # 2, dim(x(S5)) =1k S.

Proof. Use Corollary 3.3 to compare

e the minimum number of edges required to generate S by closure in X,
e the minimum number of vectors x(e) required to generate (x(.5)). ]
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Orientation.
Choosing x(e) or —x(e) «— choosing an orientation of .

Orient X as B = (|X]|, 7), and define
(3.1) n(v,e) := Z 7(v,e€).

incidences (v, €)

Then x(e), = n(v,e).
Conversely, if we choose x(e) first and then define 7 to orient X, 7 will satisfy (3.1).

29
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LECTURE 3
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3.2. The incidence matrix H(X). (‘Eta’.)

H(X) = [X(el) x(egy) - x(em)} ,

where m := |E|.
ppa— vy a b ¢ d e f h
N 1 00 1 -1-10
di e b HE)= [-11 0 0 0 0 0
Sk 01 100 —11
v T, 0 0-111 0 0

C

Theorem 3.6. [f charF # 2, then
rank(H(X)) =rk¥X :=n—-0(X) and rank(H(X|S))=rkS.
Proof.

Column rank = dim(span of the columns corresponding to S) = dim(span of x(.5)).

Apply Theorem 3.5. ]
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3.3. Frame matroid G(Y).
An abstract way of describing vector-like closure properties including closure in signed
graphs.
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3.4. Adjacency and Laplacian (Kirchhoff) matrices.

o Adjacency matriz A(X) = (aj)nxn, Where
a;; »= 0, and a;; := (# positive edges v;v;) — (# negative edges v;v;) if ¢ # j.

o A does not change if a a negative digon is deleted from .
o X is reduced if it has no negative digon.
o 3 the reduced signed graph with A(X) = A(X).
® Degree matriz D(]X|): the diagonal matrix with d;; = djx(v;).
e Laplacian matriz L(X) := D(|X]) — A(2).

vl/,,\L,v2
) |
Yoal e b
\\\ \\\: h
| S TN
V4 c 3
0 1 -1 0 4 -1 1 0
1 0 -1 0 -1 2 1 0
A(Zg) = -1 -1 1 1} L(x4) = 1 1 3 -1
0O 0 1 0 0O 0 —-1 3
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Graphic examples:
o A(T'") = A(+1D).
e Laplacian matrix of I': L(+T).
o Signless Laplacian matrix of I L(—T").

Proposition 3.7. L(¥) = H(Z)H(X)T,

Theorem 3.8.
The eigenvalues of A(X) are real.
The eigenvalues of L(X) are real and non-negative.

Proof.
A(XY) is symmetric.
H(X)H(X)? is positive semidefinite.

A use for the Laplacian (off topic).
Theorem 3.9 (Matrix-Tree Theorem for Signed Graphs).  Let

b; :== number of sets of n independent edges in ¥ that contain exactly i circles.

Then det L(X) = >, 4'D;.

§3.4
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3.5. Arrangements of hyperplanes.
o Arrangement of hyperplanes H = {hy, ha, ..., hy,}: finite set of hyperplanes in R”.

e Region of H: a connected component of R"\ (", h).
e r(H) := number of regions.

e Intersection lattice L(JH): set of all intersections of subsets of H,
partially ordered by s <t <= t C s.

e Characteristic polynomaial:

(3.2) pac(A) =Y (—1)BIxdms, where dim$ := dim ( (7] /).
SCH hiL€8

Theorem 3.10. 7(H) = (—1)"py(—1).
(In T.Z.’s Ph.D. thesis.)
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Signed-graphic hyperplane arrangement:
Y with E = {ey,es,...,e,} forms H[X]| := {hy, ho,..., hy} where

h, =x(ep)t = {x € R" : x(e;) - x = 0};
r; = o(ex)z;, if link or loop e;:v;v;,
hi has the equation < x; = 0, if half edge ej:v;,
0=0, if loose edge e;:@.
(0 = 0 gives R™, the ‘degenerate hyperplane’.)
Lemma 3.11.
Let § ={h;, ..., hy,} CH[XE] +— S ={ei,,...,e;,}. Then dim(8 = b(S).
Proof. Apply vector space duality to Theorem 3.5. ]

Theorem 3.12. L(H[X]) = Lr(¥) = Lat 3.

Proof.
L(H[X]) = Lr(X) is standard vector-space duality.
Lr(¥) = Lat X is from Corollary 3.4. O]
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Acyclic orientations reappear:

The regions of H[X] «— the acyclic orientations of X.

Define
R(7) := {x € R": 7(v;, €)z; + 7(vj, e)x; > 0 for every edge e, where V(e) = {v;,v;} }.
Theorem 3.13.

(a) R(7) is nonempty <= T is acyclic.
(b) Every region is an R(T) for some acyclic T.

37
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4. COLORING

e Color set: Ap:={+1,+2,..., £k} U {0}

e Zero-free color set: A} :={£1,£2, ..., +k}.

e A k-coloration (or k-coloring) of 3: a function v : V — Ay.

e 7 is zero free if it does not use the color 0.

e v is proper if
v(v;) # o(e)y(vi), for a link or loop e = vv;,
v(v;) # 0, for a half edge e at v;,

and there are no loose edges.

4.1. Chromatic polynomials.
For an integer k£ > 0, define

Xx(2k 4+ 1) := # proper k-colorations,

and
X5 (2k) := # proper zero-free k-colorations.

§4.1
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The following theorem (except (2)) is the same as with ordinary graphs.

Theorem 4.1.  Properties of the chromatic polynomaials:
(1) Unitarity:
Xo(2k +1) = x;(2k) =1 for all k > 0.

(2) Switching Invariance: If ¥ ~ ', then
x2(2k+1) =xw(2k+1) and x%(2k) = x5 (2k).

(3) Multiplicativity: If 3 is the disjoint union of 3y and X, then
Xz(Qk + 1) = le(% + 1)XZ2(2]€ + 1)

and
X5 (2k) = x5, (2k)xs, (2K).

(4) Deletion-Contraction: If e is a link, a positive loop, or a loose edge, then

xs(2k +1) = xsme(2k + 1) — x5/6(2k + 1)
and
X5 (2k) = x50 (2k) — X5 (2K).

§4.1 39
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Theorem 4.2.
xx(A) is a polynomial function of A =2k +1>0:

(4.1) Xz(A) =) (=1)SIAE),

SCFE

X5 (A) is a polynomial function of A =2k > 0:

(4.2) Ya(\) = Z (—1)ISIN0(9),

SCFE:balanced

Proof. Apply Theorem 4.1 and induction on |FE| and n.

Therefore, we can evaluate xx(—1).

A geometrical application of the chromatic polynomial.
Lemma 4.3. xxs(\) = psz)(A).
Proof. Compare (4.1) and (3.2).

§4.1

L]

Theorem 4.4. The number of acyclic orientations of > and the number of regions of

H[XE] are both equal to (—1)"xx=(—1).

The lecture notes present some ways to simplify the computation of chromatic polyno-

mials.
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4.2. Chromatic numbers.
The lectures are short; see the lecture notes.
Almost any question about chromatic numbers is open.



42 85 LECTURES ON SIGNED GRAPHS AND GEOMETRY | THOMAS ZASLAVSKY §5.0

5. CATALOG OF EXAMPLES

The lecture notes present several general examples, for which there is no time in the
lectures.
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6. LINE GRAPHS

V(A(T)) = E(T),

The Ui h of a graph is A(T"):
me grap graph is A(T) {e ~ f if they have a common endpoint.

(Link graphs only!)
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6.1. Bidirected line graphs and switching classes.
Line graph of a bidirected graph B:
A(B) := (A(|B]), 7o) where
Ta(e,ef) == 71(v,e) if e~ fatv.
Line graph of ¥: Orient ¥ as B = (|X|, 7). Form A(B).

a a
&:______j /%\\
I L
Loy N
C C

Different 7 give different A(B), which may have different signed graphs ¥,

Lemma 6.1. Any orientations of any two switchings of ¥ have line graphs that are
switching equivalent.

Proof: See the lecture notes.
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Reorienting e as edge in B «+— switching e as vertex in A(B).
Therefore, A(X) must be a switching class of signatures of A(|X]).

Theorem 6.2.
A(switching class of signed graphs) = switching class of signed graphs.

Proof. ¥y ~ ¥y = A(31,71) ~ A(33, 1) by Lemma 6.1.
The converse follows from Proposition 2.5(ii). ]

Notation:
A[Y] := switching class of line graphs of the signed graphs in the switching class [>].
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All-negative signature:
In connection with line graphs, an ordinary graph I'is —I'.

Reason:
A(-T) = —-A(T)
because:
Proposition 6.3.  If T is a link graph, then A|-T] = [-A(T)].

Proof. Orient —I" so every edge is extraverted; that is, 7(v,e) = +. Then in A(-T, 1),
every edge is extraverted; thus, the signed graph underlying A(—T",7) has all negative

edges. 0
a a
o A
g0 e 1y dcé__%g_f}jb
LW g
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6.2. Adjacency matrix and eigenvalues.

Theorem 6.4.  For a bidirected link graph 3, A(A(X)) = 21 — H(Z)TH(D).

Proof by matriz multiplication.

[H(E)TH(Z)} Gg) — Z 77(’% ej)z =1+1=2

[H(E)TH(Z)] (j.k) - Z 77(% ej)n(% ek‘)

7(vi, e;)7(vi,er) = —o(ejer)  if they are adjacent at v,,. O

{O if e; 7 ey,

Therefore, x(e;) - x(ey) equals 2 if j = k and —o(ejey) if j # k.
Thus, 21 — A(A(X)) is a Gram matrix of vectors with length /2.

Corollary 6.5.  All the eigenvalues of a line graph of a signed graph are < 2.
Proof. H'H has non-negative real eigenvalues. Apply Proposition 6.4. [
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Example (using a particular choice of orientation of ¥):

p (0 1 0 -1 -1 1 \
Na——% 1 0 -1 0 0 -1
)y 2 AN : 0 -1 0 -1 1 -1
4a / \\f | —
di e b AMERD =11 0 1 0 0 o0
-1 0 1 0 0 1
Wty \1 -1 -10 1 0)

§6.2
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6.3. Reduced line graphs and induced non-subgraphs.
Y has a negative digon {e, f} == A(X) has a negative digon between e and f.
Thus e o4 f in A(X), and A(A(X))s = 0.

Conclusion: For eigenvalues, one should look at reduced line graphs.

1970 (Beineke, Gupta): A simple graph is a line graph <= it has no induced subgraph
that is one of 9 graphs (of order < 6).

1990: Chawathe and Vijayakumar found the 49 excluded induced switching classes (all
of order < 6) for reduced line graphs of signed graphs.
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7. ANGLE REPRESENTATIONS

All graphs are simple.
y := unit vector in the same direction: y := ||y||y.

Angle representation of X:
p: V — R such that

0, if vw is not an edge and v # w,
A an

p(v) - plw) = = +1/v, if vw is a positive edge, and

—1/v, if vw is a negative edge,

where v > 0.
One can multiply p(v) by any positive real number.
E.g., make all ||p(v)]| =1, or 2.

Switching v in X:
replaces p(v) by — p(v).
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A Gramian angle representation of ¥ means:

p(v) - p(w) = ayy.
Therefore, ||p(v)]| - ||p(w)|| = v for adjacent vertices.

(Anti-Gramian: Gramian angle representation of —>.
Vijayakumar et al. use anti-Gramian representations.)

Proposition 7.1. Let p be a Gramian angle representation of connected 3..
(a) If X is not bipartite: all ||p(v)|| = /v.

Q if v eV,

via ifve V.

Then p'(v) = p(v)\/v is an angle representation with all ||p'(v)|| = \/v.

(b) If X is bipartite: ||p(v)|| =

Normalized Gramian angle representation: all vectors have the same length. Then
(p(v) - P(w)),, ey = A(E) + 01
Proposition 7.1 = we can normalize any Gramian angle representation.

Theorem 7.2. ¥ has a Gramian (anti-Gramian) angle representation with constant v
<= the eigenvalues of ¥ are > —v (respectively, < v).
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Example 7.3.
The vector representation of 3,

x: BE(2) = R",

is an anti-Gramian angle representation of A(X), the reduced line graph:

e p:=xsince V(A(X)) = E(X).
e v =2 and the angle § = 7/3.

e Every [|x(e)|| = V2.

e Inner products: +1if op(ef) = —, —1ifop(ef) =+.
(The signs reverse because the representation is anti-Gramian.)
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Cameron, Goethals, Seidel, and Shult (1976a) used Gramian angle representations of
unsigned graphs to find all graphs with eigenvalues > —2. G.R. Vijayakumar et al.
extended that to signed graphs (anti-Gramian).

The root system Fjg is
FEg = DgU{%(&fl,...,Eg) ERSZQ c {:l:l}, €1-°€8 =—|—1}.

Theorem 7.4.  Take an anti-Gramian angle representation of X with v = 2.
(a) It is x for A(X'), or
(a) The representation is in Eg and |V (2)] < 184.

Proof. Vijayakumar (1987a) observed:
Cameron et al. = an anti-Gramian angle representation having v = 2 is in D,, or Fj.

Ifin D,: 3 such that pis x: E(X) = R".  Then ¥ = A(Y).
If in Es: ||V(2)]| < number of pairs of opposite vectors in Fg, which = 184. ]

Corollary 7.5. X (a signed simple graph) has all eigenvalues < 2 <=
it 1s a reduced line graph of a signed graph or it has order < 184.

Eigenvalues = whether X is a (reduced) line graph, with a finite number of exceptions!
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Example 7.6.
I with V ={v,...,0,}.
Cocktail party graph CP,, := Kj,,\ perfect matching.
Generalized line graph
AT;my,...,my) = A)Y CP,,, U --- U CPy,,

with edges from every vertex in CP,,, to every v;v; € V(A(T)).

Example: Cy and A(Cy;1,2,0,0). (1) a (2
0) ¢ 0)

Hoffman (1977a): A generalized line graph has eigenvalues > —2, just like a line graph.

Cameron et al.: no other graphs have eigenvalues > —2 except a handful with anti-
Gramian angle representations in Eg.
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Corollary 7.5 = this fact, because
A (my,...,m,)) (signed 1.g.) = —A(T;myq,...,m,) (all-negative g.l.g.),

where I'(myq, ..., m,) := —I" with m; negative digons attached to v;.
That is, A(I';mq, ..., m,) is a reduced line graph of a signed graph.

Example: A(Cy;1,2,0,0) = —A(C4(1,2,0,0)).

Extraverted Cy in Cy(1,2,0,0)

;"/CP | 0.0 CP;

B O\J\\\ g) ‘ 7*:\\\{0

—A(C1:1,2,0,0) = A(Cy(1,2,0,0)) RN s/ o R
ped :D”b

od

§7.0
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THE END
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