
TOTALLY FRUSTRATED STATES

IN THE CHROMATIC THEORY OF GAIN GRAPHS

THOMAS ZASLAVSKY

Abstract. We generalize proper coloring of gain graphs to totally frustrated states, where
each vertex takes a value in a set of ‘qualities’ or ‘spins’ that is permuted by the gain
group. In standard coloring the group acts trivially or regularly on each orbit (an example
is the Potts model), but in the generalization the action is unrestricted. We show that the
number of totally frustrated states satisfies a deletion-contraction law. It is not matroidal
except in standard coloring, but it does have a formula in terms of fundamental groups of
edge subsets. One can generalize chromatic polynomials by constructing spin sets out of
repeated orbits. The dichromatic and Whitney-number polynomials of standard coloring
generalize to evaluations of an abstract partition function that lives in the edge ring of the
gain graph.
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1. States, colorations, and all that

When counting the proper colorations of a graph, whose number is given by the chromatic
polynomial, all one needs to know is the number of colors in the color set; the nature of the
individual colors is immaterial. When coloring a gain graph, where the edges are labelled by
elements of a group (called the gain group), that is no longer so. In order for the concept of
propriety of a coloration to be meaningful the group must have a permutation action on the
set of colors, and then the exact way the group acts is a crucial factor in counting proper
colorations. In this article we want to generalize properties of the chromatic polynomial to
gain graphs.

As we shall see, one of the major properties, that the number of proper colorations in λ
colors is a polynomial function of λ that depends on the graphic matroid, has an analog for
gain graphs only when the group action on the color set is sharply restricted. Nevertheless,
an even more basic property, the law of deletion and contraction, holds good for every color
set with any group action, and when the group is finite there is also a generalized chromatic
polynomial, though unlike the ordinary chromatic polynomial it seems not to be associated
to a matroid.

We call a labelling of the vertices of a gain graph by elements of a set acted upon by the
gain group a state and the elements of the color set spins. (We eschew standard coloring
terminology because the properties of states are so much weaker than those of colorations.)
The names come from the theory of spin glasses in physics [14]. A signed graph [8] has edges
labelled from the two-element group, {+,−}, which acts upon the spin set {+1,−1} in the
obvious way. In one of the simplest spin glass models, which we call the mixed Ising model
(see [1] or [4, Section 2.5]), a spin glass is a signed graph and a state is an assignment of
a spin, +1 or −1, to each vertex. (In the standard Ising model all edges are positive or all
are negative.) In the mixed Ising model an edge wants to have the same spin at both ends
if it is positive and opposite spins if it is negative; if it does, it is ‘satisfied’, but if not, it
is ‘frustrated’ [14] and has a higher energy. The most basic questions are these: Given the
edge signs (which are fixed by the physical material), what state has the fewest frustrated
edges and hence the lowest energy (see, e.g., [7])? And, how many states have the fewest
frustrated edges?

It occurred to me that, turning the question around to totally frustrated states, in which
no edge is satisfied, one has a generalization of graph coloring. If the gain group is trivial,
then the spin set can be any set and a state is a proper coloration precisely when it is totally
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frustrated; this is ordinary graph coloring by another name. Turning to general gain graphs,
there are many reasons to be interested in states when the gain group is not limited to one
or even two members; for instance, spins from a finite set appear in the Potts model (as
explained later) and from a real vector space in the work of Rybnikov and Zaslavsky on
lifting of piecewise-linear cell complexes [10, Section 5], and then there is the entire theory
of gain-graph coloring from [19, Section 5] and [21, Section 4], where the spin set consists
mostly of copies of the gain group (and the number of proper colorations is matroidal). It
therefore seemed desirable to study the general properties of totally frustrated states, and
that is what we do here.

1.1. States of total frustration. A gain graph is a graph with a function ϕ that assigns
to each oriented edge e an element ϕ(e) of a group, called the gain group, in such a way that
reorienting the edge inverts the gain. A state s of the gain graph (introduced in [10, Section
5]) is an assignment to each vertex of an element of some set Q upon which the gain group
acts; Q is called the set of qualities (in [11]) or spins (in physics). A state s of a gain graph
(introduced in [10, Section 5]) is an assignment to each vertex of an element of the spin set
Q. We shall be investigating states of gain graphs.

With a gain graph and a state, we can classify the edges as satisfied or frustrated : the
former if, taking the edge e to be oriented from vertex v to vertex w, the equation sw = svϕ(e)
is satisfied, and the latter if the equation is unsatisfied. What has been studied heretofore in
connection with states has been principally the question of whether a state is satisfied (i.e.,
has no frustrated edges) or not and, if not, just how unsatisfied it is. However, if we turn to
states in which no edge is satisfied, we discover a generalization of a classic problem of graph
theory, the problem of proper coloring. Our objective is to examine coloring of gain graphs
from the point of view of these totally frustrated states, and in particular, the behavior of
the Q-chromatic function χΦ(Q), which is the number of such states, as a function of Q.

1.2. Properly colored. In the standard theory of gain-graph coloring, from [21, Section 4]
(the source for all properties cited herein), the color set consists of k copies of the gain group
G and an extra fixed point; it is

Ck := C∗
k ∪ {0}, where C∗

k := G × [k],

for k a nonegative integer, with [k] := {1, 2, . . . , k} (which is the void set if k = 0). The
number of proper colorations is a polynomial function χΦ(λ) of λ = |Ck| = k|G|+1, naturally
called the chromatic polynomial, that satisfies the standard deletion-contraction relation

(1.1) f(Φ) = f(Φ r e) − f(Φ/e)

for all edges e. The number of proper colorations with colors taken only from C∗
k is another

polynomial function χb
Φ(λ), the zero-free chromatic polynomial, where now λ = |C∗

k| = k|G|.
The zero-free chromatic polynomial obeys the deletion-contraction rule for edges that are
not loops, and its value is not changed by the deletion of nonidentity loops.

We want to relax the definition by admitting any finite spin set Q, defining the state
chromatic function which counts the number of totally frustrated states, and find out which
properties are preserved and which are lost. Once we have done so, in order to under-
stand better the algebraic properties of the state chromatic function we develop an abstract
partition function, which lies in the polynomial ring generated by the edge set and which
contains by evaluation and specialization not only the state chromatic function but state
generalizations of the dichromatic and Whitney number polynomials of a gain graph.
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1.3. Coloring from equivalence classes. The example that inspired this thought is set
coloring. A proper set coloration of a graph ∆ is an assignment to each vertex of a set
Sv ⊆ [k] in such a way that adjacent vertices have sets of different sizes. This is a totally
frustrated state of an associated gain graph. To form the gain graph, let the gain group be
Sk, the group of permutations of [k], and let the spin set Q be the class P([k]) of subsets of
[k] with the natural action of Sk. Then a proper set coloration is a totally frustrated state of
the gain graph Sk∆, called the Sk-expansion of ∆, which has an edge of every possible gain
between each pair of adjacent vertices. Let χset

∆ (k) be the number of proper set colorations
of ∆. This quantity is not a polynomial in any of k, |Q| = 2k, or |Sk| = k!, so we lose
something from the standard theory of graph coloring. Not all is lost, however. There is
still a deletion-contraction formula, though only in terms of the gain graph, and χset

∆ (k) is
multiplicative on connected components, so χset

∆ (k) is what is called a Tutte invariant of gain
graphs. Our first theorem will be that this is true for any group and any finite set of spins.

Set colorations exemplify a kind of coloring we call coloring from equivalence classes. Say
a group G acts on a finite spin set Q, with orbits Q1, . . . ,Qr. The G-expansion of a graph
∆ is the gain graph G∆ in which each edge of ∆ is replaced by edges having every gain in
G. Then a totally frustrated state of G∆ is the same as a coloration of the vertices of ∆
such that adjacent vertices have inequivalent colors under the equivalence relation defined
by the orbits.

1.4. Potts. Another example—in fact, it is an example of zero-free gain graph coloring—is
the mixed Potts model, which abstracts a partially disordered physical system such as a spin
glass. There is a signed graph (∆, σ) and there is a finite set of spins, with which we can
form a state s : V → Q. A positive edge is satisfied when it has the same spin at both
ends; a negative edge is satisfied when its endpoints have different spins. (When there are
two spins this is the mixed Ising model. When all edges are positive it is the usual Potts
model.) As in the Ising model a state has an ‘energy’ which is a decreasing function of the
number of satisfied edges. One of the important questions is to find the lowest energy of a
state, and especially whether there exists a completely satisfied state. (This account is very
abbreviated. For a proper exposition with only positive edges see [18, Section 4.4]. The case
of all negative edges is discussed in [12]. The generalization to two kinds of edges is found
in the physics literature and also in [3] as interpreted in [22].)

To turn the mixed Potts model into a gain graph, assume Q is a group with identity
element 1. The Potts gain graph Φ has an edge with gain 1 where ∆ has a negative edge
and it has edges with all nonidentity gains wherever ∆ has a positive edge. A lowest-energy
state of the mixed Potts model is a state with the most frustrated edges in Φ; the Potts
model is satisfied when Φ is totally frustrated; and the number of frustrated edges in the
mixed Potts model is the number of satisfied edges of Φ. And in particular, the number of
ways to satisfy the mixed Potts model is the number of zero-free proper 1-colorations of Φ,
i.e., the value of χb

Φ(|G|).

2. General theory of total frustration

2.1. Technical basis. A graph Γ = (V,E) may have loops and multiple edges. All our
graphs have finite order |V |. A link is an edge that is not a loop. A vertex is isolated if it
is not incident with any link (but it may support loops). The standard closure operator on
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the edge set of a graph is

cl A := A ∪ {e /∈ A : the endpoints of e are connected in A}.

This is the closure operation of the graphic matroid (or ‘cycle matroid’) G(Γ). The notation
e:vw means that e is an edge whose endpoints are v and w, which are equal for a loop. If e
needs to be oriented (e.g. when evaluating its gain), the notation implies an orientation from
v to w. The chromatic polynomial of Γ is written χΓ(λ). When we speak of the (connected)
components of an edge set A, we mean the connected components of the spanning subgraph
(V,A); c(A) is the number of components.

A gain graph Φ = (Γ, ϕ) consists of an underlying graph Γ = (V,E) and an orientable
function ϕ : E → G, where G is the gain group. We call ϕ the gain function and ϕ(e) the
gain of e. By calling ϕ ‘orientable’ we mean that its value depends on the direction of e and
if the direction is reversed, the gain ϕ(e) is inverted. Symbolically, letting e−1 denote e with
the opposite orientation, ϕ(e−1) = ϕ(e)−1. A gain graph, or an edge set in it, is balanced if
every simple closed walk has gain, obtained by multiplying the gains of its edges in cyclic
order, equal to 1, the group identity. The number of connected components of Φ that are
balanced is written b(Φ), and for an edge set A in Φ, b(A) denotes the number of balanced
components of (V,A). The induced subgraph on a vertex set W is written Φ:W ; the gains
are as in Φ. An isomorphism of gain graphs is a graph isomorphism that preserves the gains
of edges.

The principal matroid in this work is the bias, or frame, matroid G(Φ) [20]. Its points are
the edges of Φ and its rank function is r(A) = |V |− b(A). The frame matroid generalizes the
usual graphic matroid, since when Φ is balanced, G(Φ) = G(Γ). The class of flats determines
G(Φ), of course. The class of balanced flats is a geometric semilattice [17] that determines
what I call the balanced semimatroid of Φ, which may be defined as the class of balanced
edge sets with rank as in G(Φ). In general one may think of a semimatroid S as the class
of sets in a matroid M on E(S) ∪ {e0} whose closures do not contain e0, together with the
rank function on these sets. We call M the completion of the semimatroid. According to
[17, Theorem 3.2], the completion is unique. The completion of the balanced semimatroid
of Φ is the complete lift matroid L0(Φ) [20], whose contraction L0(Φ)/eo equals G(Γ).

A spin set is a set Q upon which there is a right action of G. The action is trivial if every
spin is fixed by every group element, semiregular if only the identity element has any fixed
points, and regular if it is semiregular and transitive. A state is any function s : V → Q.
It is totally frustrated if every edge is frustrated. What we are studying, a pair (Φ,Q) of a
gain graph together with a spin set, is called a permutation gain graph. (This concept was
introduced in [6], though our definition is slightly more general.)

A fundamental operation on gain graphs is switching. A switching function η : V → G

gives a switched graph Φη whose underlying graph is the same as that of Φ and whose gain
function is ϕη, defined by ϕη(e) := η−1

v ϕ(e)ηw for any edge e:vw. It is always possible to
switch so a given link has gain 1, and indeed so that the gains on a chosen forest or any
balanced edge set are all 1. The switching class of a gain graphis the class of all gain graphs
that are switchings of Φ.

We must define deletion and contraction of an edge. Deletion is obvious. To contract a
link e we need switching. First we switch so e has gain 1, then we delete it and identify its
endpoints. The gains do not change except in the switching step. (Contraction of a loop
will not be needed; for it one may consult [19].) The fact that a contraction Φ/e is uniquely
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defined only up to switching is a reason to consider the switching class of a gain graph to be
more fundamental than the gain graph itself.

There is one more aspect of switching that is essential: switching acts on states as well
as gains. We define sη by sη

v := svηv; in words, a switching function acts on a state in the
obvious way. The point is that the set of satisfied edges, IΦ(s), remains the same:

IΦη(sη) = IΦ(s).

Obviously, therefore, the number of totally frustrated states is unaffected by switching and
when contracting an edge we may assume that Φ is already switched so that ϕ(e) = 1.

2.2. The chromatic function. Let Φ be a gain graph with gain group G. Choosing a spin
set Q (with a G-action), the state chromatic function of Φ is

χΦ(Q) := the number of totally frustrated states.

This is a finite number if Q is finite.

Proposition 2.1. If Φ is balanced, then χΦ(Q) = χΦ(|Q|) = χΓ(|Q|).

Proof. By switching we may assume all gains equal 1. Clearly, then χΦ(Q) = χΓ(|Q|) =
χΦ(|Q|). �

Theorem 2.2. If Q is finite, the state chromatic function of gain graphs of finite order has
the deletion-contraction property (1.1) with respect to all links e.

Proof. Assume Φ switched so that e has identity gain. We simply classify the totally frus-
trated states of Φ r e according to whether e is or is not frustrated. A state for which e
is frustrated is a totally frustrated state of Φ. The criterion for e to be satisfied is that its
endpoints have the same spin. Hence a state in which e is satisfied contracts to a totally
frustrated state of Φ/e, and conversely, any totally frustrated state of Φ/e defines a unique
state of Φ in which e and only e is satisfied. This proves the theorem. �

2.3. States vs. colorations. The difference between a state, with an arbitrary spin set,
and a coloration, whose spin set (or ‘color set’) is Ck or C∗

k, is that in a coloration the spin
set yields properties very similar to those of ordinary graph coloring. For instance, the set
of frustrated edges in a coloration is closed in the frame matroid G(Φ) [21].

One could say that the crux of the difference is the behavior of loops—not surprisingly in
view of Theorems 2.4 and 2.5, because knowing which spins on its supporting vertex satisfy
a loop with gain g is the same as knowing the fixed points of g acting on Q, and that is
what decides whether χΦ(Q) equals a chromatic polynomial. The proofs of those theorems
show that the most basic question about loops is whether the number of totally frustrated
states of a nonidentity loop is affected by the exact gain, or in other words, whether every
g 6= 1 fixes the same number of spins.

2.4. Decomposition. A normalization of the state chromatic function is

pΦ(Q) := |Q|−b(Φ)χΦ(Q).

The same normalization applied to the chromatic polynomial, i.e., λ−b(Φ)χΦ(λ), gives the
characteristic polynomial of G(Φ) [21, Section 5].
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Proposition 2.3. Assume finite Q and Φ and suppose Φ′ and Φ′′ are subgraphs whose union
is Φ. If they are disjoint, or if their intersection is a single vertex and at least one of them
is balanced, then

pΦ(Q) = pΦ′(Q)pΦ′′(Q).

Proof. If Φ′ and Φ′′ are vertex disjoint, then multiplicativity is obvious. From this one can
see that it suffices to assume Φ′ and Φ′′ are connected.

Suppose the intersection is a vertex v and Φ′ is balanced. A state of Φ is totally frustrated
if and only if it is assembled from a totally frustrated state s′′ of Φ′′ and a totally frustrated
state s′ of Φ′ that agrees with s′′ on v. The question is how the number of such s′ depends
on s′′v . The number is independent of s′′v , indeed it equals χΦ′(Q)/|Q| (by switching as at
Proposition 2.1), hence it equals pΦ′(Q). Multiplicativity follows. �

A particular case is the obvious but important fact that the chromatic function is multi-
plicative on connected components: if Φ has components Φ1,Φ2, . . . ,Φm then

(2.1) χΦ(Q) = χΦ1
(Q)χΦ2

(Q) · · ·χΦm
(Q).

This, together with the deletion-contraction law and the facts that χΦ(Q) is an isomorphism
invariant and χ∅(Q) = 1, means that the state chromatic function satisfies the definition of
a Tutte invariant of gain graphs, thus being another in a long list of such invariants.

2.5. Chromatic or not chromatic. Given Q and G, to say that χΦ(Q) is an evaluation
of a function FΦ(λ) means there is a fixed value λ0 such that χΦ(Q) = FΦ(λ0) for every
permutation gain graph (Φ,Q) with gain group G.

Theorem 2.4. Assume Q is a finite set of spins and G is a finite group acting on Q.
(a) If there is q0 ∈ Q such that every nonidentity group element has fixed set {q0}, then

χΦ(Q) is the evaluation of the chromatic polynomial χΦ(λ) at λ = |Q|. If there is no such
q0, then χΦ(Q) is not an evaluation of χΦ(λ).

(b) If G acts semiregularly on Q, then χΦ(Q) is the evaluation of the zero-free chro-
matic polynomial χb

Φ(λ) at λ = |Q|. If the action is not semiregular, then χΦ(Q) is not an
evaluation of χb

Φ(λ).
(c) If the action of G is trivial, then χΦ(Q) = χΓ(|Q|), the evaluation at |Q| of the

chromatic polynomial of the underlying graph. If the action is nontrivial, then χΦ(Q) is not
an evaluation of χΓ(λ).

Proof. We prove the first implication in part (a) in stages. The underpinning is that the chro-
matic polynomial satisfies deletion-contraction for all links. Thus, if we prove the theorem
for graphs without links, it follows by induction on the number of edges using Theorem 2.2.
The chromatic polynomial and the state chromatic function both equal zero when Φ has an
identity loop, so we may assume Φ has no edges other than nonidentity loops. Furthermore,
both chromatic polynomial and state chromatic function are multiplicative on connected
components, so we may assume Φ is connected. That is, Φ has a single vertex with some
number of nonidentity loops.

If there are no loops, χΦ(Q) = |Q| and χΦ(λ) = λ; therefore λ = |Q|. If there is at least
one loop, then χΦ(λ) = λ− 1. Now, let G be the set of gains of the loops of Φ. To be totally
frustrated, a state s must have sv /∈ Fix(g), the fixed set of g, for every g ∈ G. The only
way this can give λ− 1 totally frustrated states is for Fix(g) to be the same set F for every
nonidentity element of the gain group and for λ = |Q| − |F | + 1. It follows that |F | = 1.
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So, we have necessary conditions for the state chromatic function to be an evaluation of
the chromatic polynomial, but the proof also shows their sufficiency. That concludes the
proof of part (a).

The proof of part (b) is similar. A nonidentity loop is never satisfied so it can be discarded
without altering the number of totally frustrated states.

For part (c), note that if the action is trivial, then the gains do not matter. Conversely,
if there is a g ∈ G with nontrivial action, consider the gain graph with one vertex and one
loop, whose gain is g. Then χΓ(λ) = 0 but χΦ(Q) = |Q| − |Fix(g)| 6= 0. �

Theorem 2.4(a,b) demonstrate that the state chromatic function equals the chromatic
polynomial or zero-free chromatic polynomial only when Q is essentially a color set of the
form Ck or C∗

k, respectively.

2.6. Matroid invariance. We strengthen the second halves in Theorem 2.4(a,b,c) to a
characterization of when the number of totally frustrated states is a matroid or semimatroid
invariant. The matroid involved is the frame matroid G(Φ).

Theorem 2.5. Let Q be a finite spin set and G a group acting on Q.
(a) The state chromatic function, as a function of the gain graph, is determined by the

frame matroid G(Φ) and the numbers of components and balanced components of Φ, if and
only if Q contains a point q0 as in Theorem 2.4(a).

(b) The state chromatic function, as a function of the gain graph, is determined by the
balanced semimatroid of Φ and the numbers of components and balanced components of Φ if
and only if G acts semiregularly or trivially upon Q, as in Theorem 2.4(b) or (c).

Proof of (a). If Q does contain a q0, then it is an evaluation of χΦ(λ) (by Theorem 2.4(a)),
which in turn is equal to λb(Φ) times the characteristic polynomial of G(Φ) [21, Section 5].

For the converse, suppose the state chromatic function is determined by the stated infor-
mation. Let g, h ∈ G, both not the identity, but possibly equal.

The gain graph Φg that consists of one vertex and one loop with gain g has matroid
isomorphic to a coloop. The chromatic function is |Q| − |Fix(g)|. Since Φh has the same
matroid and component numbers as Φg, it must have the same chromatic function. It follows
that every group element other than 1 must have the same number f of fixed points.

The gain graph Φg,h has vertex v1 with a loop of gain g and v2 with a loop of gain h and
a link e:v1v2 with gain 1. The description of a totally frustrated state is that at v1 the spin
is q1 /∈ Fix(g) and at v2 the spin is q2 /∈ {q1} ∪ Fix(h). The chromatic function is

χ(Q) =
∑

q1∈QrFix(g)

[

|Q| − |{q1} ∪ Fix(h)|
]

=
∑

q1 /∈Fix(g)∪Fix(h)

[

|Q| − f − 1
]

+
∑

q1∈Fix(h)rFix(g)

[

|Q| − f
]

= (|Q| − f)(|Q| − f − 1) + |Fix(h) r Fix(g)|.

This value cannot depend on the choices of g, h 6= 1 because those do not change the matroid.
Since taking g = h gives value (|Q|−f)(|Q|−f−1), it follows that every nonidentity element
has the same fixed set.

In effect, Q is the disjoint union

(2.2)
(

Q1 × [k1]
)

∪
(

Q2 × [k2]
)

where Q1 = G and |Q2| = 1.
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(That is because the nontrivial orbits of Q have no fixed points of any nonidentity element
of G.) G acts on Q by acting on the first component of each pair in Q. We compare two
gain graphs.

Consider first the gain graph Φ2 that has vertices v1 and v2 with two links joining them,
one having gain 1 and the other with gain g 6= 1. To get a totally frustrated state we
choose spin q1 for v1. There are |Q| − 1 choices for q2 at v2 if q1 ∈ Q2 × [k2] but |Q| − 2
choices if q1 ∈ Q1 × [k1], since selecting q1 in the latter set implies q2 6= q1, q1g. Thus,
χΦ2

(Q) = (|Q| − 1)2 + k2 − 1.
Second, consider Φ1 that has the same vertices and a link with gain 1, but also a loop at v1

with gain g 6= 1. The matroid and the numbers of components and balanced components are
the same, but the spin at v1 must belong to Q1×[k1], so χΦ1

(Q) = (|Q|−1)2−(k2−1)(|Q|−1).
We conclude that the only case in which the state chromatic function can be determined by
the information provided in part (a) is that in which k2 = 1. �

Proof of (b). If G has semiregular action, then χ(Q) is an evaluation of χb
Φ(λ) (by Theorem

2.4(b,c)), which in turn is equal to λb(Φ) times the characteristic polynomial of the semilattice
of balanced flats [21, Section 5].

If G has trivial action, we know χΦ(Q) = χΓ(k2) by Lemma 2.1, but we have yet to prove
that χΓ(λ) is determined by the balanced semimatroid. This follows from the fact that
the completion of the balanced semimatroid is L0(Φ), whose contraction by the extra point
e0 is the graphic matroid G(Γ). Since the completion is unique, the balanced semimatroid
determines G(Γ); this in turn determines χΓ(λ) as λc(Γ) times the characteristic polynomial of
G(Γ), where c(Γ) is the number of components of Γ. Hence, the semimatroid does determine
the number of totally frustrated states.

The proof of the converse proceeds in the same way as in part (a) to establish the form
of Q, i.e., (2.2), since the data of part (b) agree for all the graphs we compared in the steps
leading to that conclusion.

The final step is more complicated than in part (a) because we need nonisomorphic gain
graphs that have the same balanced sets and their ranks. That is impossible with only two
vertices. Figures 1 and 2 show two gain graphs with this property. The balanced sets are
all those that do not contain a digon and, if they contain exactly one fi, do not complete a
circuit of four edges; these sets are the same in both graphs.

To calculate the chromatic function I used deletion-contraction in reverse, by means of
which the chromatic function of each graph is expressed as the sum of two other chromatic
functions that are easier to work with (see the figures). I calculated the number of totally
frustrated states of each of the four graphs by the usual hand method of building the state
from vertex to vertex, starting with spin q1 at v1 and treating q1 ∈ Q1×[k1] and q1 ∈ Q2×[k2]
separately. I checked the result by comparing it, with k2 = 0, to the zero-free chromatic
polynomial computed from the semilattice of balanced flats as in [21, Section 5], which by
Theorem 2.4(b) ought to be the same (and is). I omit the lengthy details. The conclusion is
that

χΦ(Q) = λ(λ − 2)[λ2 − 4λ + 5] + k2

[

2λ2 − 7λ + 7
]

,

χΨ(Q) = λ(λ − 2)[λ2 − 4λ + 5] + k2

[

2λ2 − 8λ + 7 + k2

]

,

where λ = |Q|. The difference between these is k2(λ − k2). Therefore, they are equal only
when either k2 = 0, in which case the action of G is semiregular (and the number of totally
frustrated states is χb

Φ(|Q|)), or k1 = 0, where the action is trivial. �
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v1

e2e4

e3

e1

f 4

f 1
v1v1 v1

+

Φ1 Φ2

=

Φ

Figure 1. A gain graph Φ with four identity edges ei and two adjacent edges
that have gain ϕ(fi) = g 6= 1, showing how its chromatic function decomposes
by addition and contraction of an edge having gain 1. (In the contracted graph,
multiple edges with identical gain are suppressed.)

v1

f 1

f 4

e1

e2e3

e4

v1

v1+

Ψ1 Ψ2

=

Ψ

Figure 2. A gain graph Ψ with four identity edges ei and two nonadjacent
edges that have gain ϕ(fi) = g 6= 1.

2.7. Multiplicativity is not matroidal. In Proposition 2.3, the edge sets of the subgraphs
are complementary separators of the frame matroid G(Φ). It is natural to ask whether p(Q)
is multiplicative on any subgraphs Φ′ and Φ′′ whose edge sets are complementary matroid
separators. The answer is no. We prove this with an example.

Suppose Φ is unbalanced and e is a link such that Φ′′ := Φ r e is balanced; then {e} and
its complement are separators of the matroid. Consider the specific example of Kn with Q

of order λ, where λ ≥ n ≥ 3, with a regular action (we assume Q = G) and with gains all
1 except for one edge e:v1vn having gain g0 6= 1. A totally frustrated state is the same as a
proper G-coloration and the state chromatic function equals χb

Φ(λ).
It is easy to see that pΦre(Q) = (λ− 1)n−2(λ− n + 2), (x)k denoting the falling factorial,

and pe(Q) = (λ − 1), pe(Q) being the normalized state chromatic function of the subgraph
induced by e.

It is also true that pΦ(Q) = χb
Φ(λ) (since Φ is unbalanced) = λ(λ−2)n−3(λ

2−nλ+2n−3).
We prove it by counting proper G-colorations. First, color v1 by a fixed color q1. Then color
v2, . . . , vn−1; there are two ways to do so, either (a) using the color q1g0 or (b) not using it.
Finally, color vn by qn under the restriction qn 6= q1g0, q2, . . . , qn−1. In (a) there are n − 2
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choices for where to put the color q1g0 and (λ − 2)n−3 ways to complete the coloring of all
but vn; then there are λ − n + 2 colors qn available for vn. In (b) there are (λ − 2)n−2 ways
to color v2, . . . , vn−1, as the color q1g0 cannot be used, and then λ − n + 1 colors available
for use at vn. The total number of proper colorations is the sum of (a) and (b), multiplied
by λ; it simplifies to λ(λ − 2)n−3(λ

2 − nλ + 2n − 3).
Equality of pe(Q)pΦre(Q) with pΦ(Q) implies, since (λ− 2)n−3 > 0, that λ3 −nλ2 +(2n−

3)λ − (n − 2) = λ3 − nλ2 + (2n − 3)λ. Because n ≥ 3, equality is impossible.

3. A formula with the fundamental group

To get a more precise formula for the chromatic function we need a new concept.

3.1. The fundamental group. First we define the gain of a walk W : it has gain ϕ(W )
equal to the product of the gains of its edges, in the order and direction they are traversed
by W .

Now, take an edge set A ⊆ E. Fix v0 ∈ V and let A0 be the component of A that contains
v0. The fundamental group of A at the base vertex v0 is

F(A, v0) := 〈ϕ(W ) : W is a walk in A0 from v0 to v0〉,

where the angle brackets indicate the subgroup of G generated by the gains ϕ(W ). (Should
v0 happen to be isolated in A, then its fundamental group is the subgroup of G generated
by the gains of loops at v0.)

Lemma 3.1. Fixing A and v0, switching Φ conjugates the fundamental group by ηv0
.

Proof. Observe that ϕη(W ) = η−1
v0

ϕ(W )ηv0
. �

It is important to know that one can switch any balanced set S, such as a forest, to have
all identity gains, by means of a switching function that takes a specified value, such as 1,
on one specified vertex in each component of S. We make use of this fact repeatedly.

We give another definition of the fundamental group that depends on fewer generators.
Let T be a maximal forest in A. Let T0 be the component of T that contains v0. For each
e ∈ A0, let We be a minimal closed walk in T0 ∪ {e} that starts at v0 and contains e. The
fundamental group of A with respect to T at the base vertex v0 is

F(A, v0, T ) := 〈ϕ(We) : e ∈ A0〉.

The generator ϕ(We) is called the fundamental generator of e; it is 1 if and only if the edge
set of We is balanced, as for example when e ∈ T .

Lemma 3.2. The fundamental group F(A, v0, T ) with respect to any maximal forest T equals
F(A, v0).

Proof. Obviously, F(A, v0, T ) ⊆ F(A, v0). On the other hand, if W = e1 · · · el is any walk in
A from v0 to v0, then ϕ(W ) = ϕ(We1

) · · ·ϕ(Wel
) ∈ F(A, v0, T ). �

A consequence of these lemmas is a criterion for the fundamental group to be trivial.

Lemma 3.3. For a connected gain graph, its fundamental group is trivial if and only if it is
balanced.

Proof. By switching, assume the graph contains an identity spanning tree. There is a non-
identity edge if and only if the graph is unbalanced. Apply the definition of F(A, v0, T ) and
Lemma 3.2. �
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Should it happen that T has identity gain on all edges, the definition of the fundamental
group with respect to T simplifies to

(3.1) F(A, v0, T ) := 〈ϕ(e) : e ∈ A0 r T 〉.

Even if not, there is a similar formula. Define Tvw to be the unique path in T from v to
w, if v and w are in the same component of T . Let A have components Aj and choose a
fixed vertex vj in each component Aj. Switch ϕ by η, the switching function defined by
ηv := ϕ(Tvvj

) for v ∈ V (Aj). Then

(3.2) F(A, vj , T ) := 〈ϕη(e) : e ∈ Aj r T 〉,

because ηvj
= 1, so that switching by η does not change the fundamental group, and by

Equation (3.1) applied to the switched gains. A more explicit definition of the switched
gains is that

ϕη(e) = ϕ(We),

where We is a minimal closed walk in T ∪ {e} from vj to vj that contains e (with index j
such that e ∈ Aj).

One can define the fundamental group in terms of contraction. If we choose T and contract
it, employing a switching function as in Equation (3.2) in the contraction to ensure ηv0

= 1,
then F(A, v0, T ) is the subgroup of G generated by the gains of the loops of the contracted
graph that are incident with v0 and belong to A. This is clear from (3.2).

Lemma 3.4. Let A ⊆ E. The fundamental groups of A with respect to any two vertices in
the same component of A are conjugate in G.

Proof. If v and w are the vertices, choose T and let P = Tvw, the path in T from v to w. Then
the walk We(w) based at w is a reduced form of the walk P−1We(v)P (reduced by eliminating
some or all consecutive edges of the form ff−1), so ϕ(We(w)) = ϕ(P )−1ϕ(We(v))ϕ(P ). It
follows that F(A,w, T ) = ϕ(P )−1F(A, v, T )ϕ(P ). �

A consequence of this lemma is that, given A, although the fixed set of the fundamental
group may depend on the basepoint and switching, the size of the fixed set is independent
of these choices as long as the basepoint stays in the same component. That is because
conjugating a subgroup F by g ∈ G changes Fix F to Fix(Fg) = (FixF)g. Thus, we are
justified in defining

fQ(A) := |Fix(F(A, v))|

for a connected edge set A 6= ∅. We assume v is chosen in the vertex set V (A). Then fQ(A)
is invariant under switching of Φ. If A is empty we treat V (A) as a single vertex; then the
fundamental group is trivial, hence fQ(∅) = |Q|.

(Another consequence is that the fundamental groups at different basepoints form a funda-
mental groupoid in the obvious way, provided that Φ is connected. Indeed, our definition of
the fundamental group(oid) is covertly topological via sewing on 2-cells; this will be treated
elsewhere.)

Next we define fundamental closure. Again, T is some maximal forest in A and for each
edge e we choose a basepoint v0 in T0, the component of T that contains e. The fundamental
closure of A is

fcl A := {e ∈ cl A : ϕ(We) ∈ F(A, v0, T )}.

Note that fclA ⊇ A and that fclA is the union of the fundamental closures of the components
of A. This union includes loops with identity gain at isolated vertices of A. We know from



Totally frustrated states 13

Lemmas 3.2 and 3.4 that this closure is independent of the choices. We mention v0 and
T only because We depends on which ones we pick. One can think of the fundamental
closure of a component A0 as the set of edges induced by V (A0) that lie in the inverse image
(ϕη)−1(F(A0, v0)), where v0 ∈ V (A0) and η is the switching function of Equation (3.2). The
definition simplifies if T happens to have all identity gains; then

fcl A = {e ∈ cl A : ϕ(e) ∈ F(A, v0, T )}.

A set that is its own fundamental closure is, of course, called fundamentally closed. We
write FΦ for the class of fundamentally closed edge sets.

3.2. Satisfied edge sets. An arbitrary state s has a set I(s) of satisfied edges; we ask
what kind of set this can be. We want a characterization in terms of the gains and gain
group, independent of the particular actions. The detailed formula we want for the chromatic
function comes from Möbius inversion over the sets I(s); knowing what they may be tells us
the poset over which to invert.

Recall that the satisfied edges are invariant under switching.

Lemma 3.5. The satisfied edges of a state constitute a fundamentally closed set.

Proof. Take a state s and an edge e in the fundamental closure of I(s). Choose a spanning
tree T of the component of I(s) that contains the endpoints of e and a base vertex v0 ∈ V (T ).
Assume by switching that T has identity gains; that does not change I(s) or its fundamental
closure. Then s is constant on V (T ); say sv = q ∈ Q for every v ∈ V (T ). Also, then the
fundamental group F(I(s), v0) is generated by ϕ(f) for f ∈ I(s).

Each fundamental generator ϕ(f) lies in Gq, the stabilizer of q, because f ∈ I(s) and
s = q on V (T ). Therefore, F(I(s), v0) ≤ Gq.

The fact that e is in the fundamental closure of I(s) means that ϕ(e) ∈ F(I(s), v0). This
implies that ϕ(e) ∈ Gq, so that e ∈ I(s). �

3.3. A very detailed formula. We are now ready to employ the standard method of
Möbius inversion [9, 13] to get an exact formula for the state chromatic function. In ordi-
nary coloring theory the formula is quite simple because the number of all colorations, not
necessarily proper, is simply a power of the number of colors (see [9, Section 9]), but in state
coloring that is not the case; rather, the result has to be expressed in terms of fixed sets of
fundamental groups. We state two versions of the formula. The first has fewer terms but
involves the Möbius function of the lattice FΦ of fundamentally closed sets, about which
nothing is known. The second, which is just an inclusion-exclusion formula, is simpler but
has more terms.

Theorem 3.6. For a finite gain graph Φ with a finite spin set Q,

χΦ(Q) =
∑

A∈FΦ

µFΦ
(∅, A)

m
∏

j=1

fQ(Aj)

=
∑

A⊆E

(−1)|A|

m
∏

j=1

fQ(Aj),

where A1, . . . , Am are the connected components of A.

Remember that a component of A which is an isolated vertex v without loops has fQ(v) =
|Q|.
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Proof. We shall prove the first formula, summing over the class FΦ, but that of the second
is identical except for replacing FΦ by P(E) with its Möbius function µ(∅, A) = (−1)|A|.

Let f(A) be the number of states for which I(s) ⊇ A and let g(A) be the number such
that I(s) = A. Since every possible set of satisfied edges belongs to FΦ, we see that

f(B) =
∑

A∈FΦ:A⊇B

g(A)

for every B ∈ FΦ. By Möbius inversion,

g(B) =
∑

A∈FΦ

µFΦ
(B,A)f(A).

Setting B = ∅ we get

χΦ(Q) = g(∅) =
∑

A∈FΦ

µFΦ
(∅, A)f(A).

To finish the proof we have to interpret f(A). Let T be a maximal forest in A and switch
so T has identity gains. Then any state counted by f(A) is constant on each component
Aj, having let us say spin qj. For each edge e ∈ Aj r T we must have qjϕ(e) = qj; thus, qj

can be any spin that is fixed by every gain ϕ(e) for e ∈ Aj. These gains are the generators
of F(Aj, v0, T ), so the possible spins qj are precisely those that lie in Fix F(Aj, v0, T ). The
number of these is fQ(Aj). The value of f(A) is the number of ways to choose one spin for
each component, i.e., the product of all fQ(Aj). That proves the formula. �

Theorem 5.1(iv) is a generalization with a different proof.

4. A grand polynomial

Despite the difficulties about matroids, there is a way to make the state chromatic function
into a polynomial that generalizes the chromatic polynomial.

4.1. A multichromatic polynomial. Let us have spin sets Q1,Q2, . . . ,Qp, that is, each
is a set with a G-action, and to avoid notational difficulty suppose that all the sets Qi and
Qi×N are pairwise disjoint. (N is the set of nonnegative integers.) Write Fixi F for the fixed
set of the action of F on Qi, when F is a subgroup of G. Set

Q := Qk1,k2,...,kp
:=

(

Q1 × [k1]
)

∪
(

Q2 × [k2]
)

∪ · · · ∪
(

Qp × [kp]
)

,

where k1, k2, . . . , kp ∈ N.

Theorem 4.1. Given Q1, . . . ,Qp, the number χΦ(Qk1,k2,...,kp
) of totally frustrated states with

spins from Qk1,k2,...,kp
is given by the multivariate polynomial

(4.1) χΦ;Q1,...,Qp
(k1, . . . , kp) =

∑

A∈FΦ

µFΦ
(∅, A)

m
∏

j=1

[ p
∑

i=1

ki |Fixi F(Aj, vj)|

]

,

where A1, . . . , Am denote the connected components of A and vj denotes any one vertex of
Aj.

If not identically 0, the polynomial has total degree n and the terms of highest degree are
the terms of the expression

(4.2)
∏

v∈V

p
∑

i=1

ki

[

|Qi| −
∣

∣

⋃

lv

Fixi(ϕ(lv))
∣

∣

]

,
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where lv ranges over all loops incident with v.

An isolated vertex of A with no loops, being a connected component, gives the bracketed
factor

∑

i ki|Qi| in (4.1).

Proof. We first give a simple proof of polynomiality, degree, and highest terms, without the
explicit formula (4.1). We use induction on the number of links, employing deletion and
contraction. Let Fixi(g) denote the fixed set of the action of g on Qi.

First assume Φ has no links. Consider the case of a single vertex v. For each loop lv, the
spins in its fixed set are not allowed to color v. The number of totally frustrated states is
therefore

t(v) : =

p
∑

i=1

number of spins in Qi × [ki] not fixed by any loop gain at v

=

p
∑

i=1

ki

∣

∣

∣
Qi r

⋃

lv

Fixi(ϕ(lv))
∣

∣

∣
.

If Φ has several vertices, the number of totally frustrated states is the product
∏

v∈V t(v),
by Proposition 2.3. Thus, the polynomial is homogeneous with total degree n, unless there
are no totally frustrated states at all.

Now suppose Φ has a link e and apply Equation (1.1). We may assume Φ does have a
totally frustrated state. We find that χΦ(Q) is the difference of one polynomial of total
degree n and another with total degree n − 1. (The former cannot be identically zero, since
that would mean Φ r e has no totally frustrated states, hence the same would be true of Φ,
contrary to assumption.) The highest-degree terms of χΦ(Q), having degree n, are those of
χΦre(Q), which by induction are the ones specified in the statement.

The precise formula comes from Theorem 3.6. It depends on evaluating fQ(A) for the
special spin set Q. Since Fix F =

⋃

i (Fixi F) × [ki], for a connected subgraph with edge set
Aj we have

fQ(Aj) =

p
∑

i=1

ki|Fixi F(Aj, vj)|

where vj is any vertex of Aj. Thus we immediately obtain (4.1). �

The term of a set A in (4.1) is homogeneous of degree c(A), the number of components of
A; thus, the terms of highest degree in (4.1) are those corresponding to sets A that contain
only loops. One can use this fact to prove (4.2) from the second formula of Theorem 3.6.
Another proof of (4.2) is implied by Theorem 5.5.

4.2. The grand chromatic polynomial. There is a single most general polynomial of the
form (4.1) when G is finite. Defining a G-set as a set with a G-action, there are only finitely

many nonisomorphic transitive G-sets. Let them be Q̂1, . . . , Q̂r (in an arbitrary but fixed

order). With p = r and Qi = Q̂i, (4.1) defines an r-variable polynomial

χΦ;G(x1, . . . , xr) := χΦ;Q̂1,...,Q̂r
(x1, . . . , xr)

that we call the grand chromatic polynomial of Φ. (We write χΦ,G because the Q̂i are
completely determined by G.) Every polynomial χΦ;Q1,...,Qp

(k1, . . . , kp), hence every state
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chromatic function, is an evaluation of the grand chromatic polynomial. To see why, first
suppose that, say, Q1 and Q2 have isomorphic actions of G. Then

χΦ;Q1,Q2,Q3,...,Qp
(k1, . . . , kp) = χΦ;Q1,Q3,...,Qp

(k1 + k2, k3, . . . , kp).

On the other hand, suppose that Q1, say, has several orbits Q11, . . . ,Q1m. Then

χΦ;Q1,...,Qp
(k1, . . . , kp) = χΦ;Q11,...,Q1m,Q2,...,Qp

(k1, . . . , k1, k2, . . . , kp).

Splitting all the sets Qi into their orbits, we may assume that each is a copy of a Q̂j ,
then combine them to obtain an evaluation of the grand chromatic polynomial in which the
variable xj corresponding to any Q̂j that is not an orbit of some Qi is equal to 0.

Theorem 4.2. Let Φ be a gain graph with finite gain group G. The number of totally
frustrated states of any permutation gain graph whose gain graph is Φ is an evaluation of the
grand chromatic polynomial of Φ.

4.3. Many zeroes. Naturally, the chromatic polynomials are special cases of the grand
chromatic polynomial. The zero-free chromatic polynomial corresponds to p = 1 and Q1 = G

with variable λ := k1|Q1|, and the chromatic polynomial corresponds to p = 2, Q1 = G,
|Q2| = 1, and k2 = 1 with variable λ := k1|Q1| + |Q2|.

The two-variable generalization with Q1 = G and |Q2| = 1 is near enough to standard
gain-graph coloring to be interesting. By analogy with standard coloring, one might think
of Q2 × [k2] as the set {0} × [k2] consisting of k2 different zeroes.

The fixed sets of the fundamental groups have sizes fQ2
(Aj) = |Q2| = 1 and

fQ1
(Aj) = |Q1| or 0

depending on whether Aj is balanced or unbalanced. A connected edge set that is balanced is
fundamentally closed if and only if it is a maximal balanced set on its vertices. A connected
edge set that is unbalanced is fundamentally closed if and only if it is closed in the under-
lying graph, i.e., it is a connected induced subgraph. Consequently, a set is fundamentally
closed if and only if each connected component is either an induced subgraph or a maximal
balanced set on its vertex set. These sets include all flats of the frame matroid G(Φ) and
also sets obtained by taking one or more unbalanced components of a flat, partitioning each
component’s vertex set, and taking the induced subgraphs on the blocks of the partition.
From Equation (4.1), the formula is

(4.3)

χΦ;Q1,Q2
(k1, k2) =

∑

A∈FΦ

µFΦ
(∅, A)

m
∏

j=1

[

k1fQ1
(Aj) + k2

]

=
∑

A∈FΦ

µFΦ
(∅, A)[k1|G| + k2]

b(A)k
c(A)−b(A)
2 ,

where c(A) is the number of components of A.

5. An abstract partition function

We wish to expose the underlying structure of state chromatic functions. Thus we develop
a formal algebra inspired by Thtte’s ring for graph polynomials [15] and its modern descen-
dants, as well as his dichromatic polynomial and the later Whitney number polynomial of a
gain graph.



Totally frustrated states 17

5.1. Dichromatic polynomial. As Tutte discovered long ago [16], adding a second vari-
able to the chromatic polynomial produces a new graph polynomial, satisfying a variant of
the deletion-contraction law (1.1), known as the dichromatic polynomial. Generalizing to
gain graphs, we call it QΦ(u, v) [21, Section 3, p. 25]. We define it here by way of the nor-
malized dichromatic polynomial, Q̄Φ(λ, v) = vnQΦ(λ/v, v), which can be defined in terms of
colorations:

Q̄Φ(1 + k|G|, v) :=
∑

s:V →Ck

(v + 1)|I(s)|

(from [21, Corollary 4.4]). The obvious states analog is the normalized state dichromatic
function of Φ, namely,

Q̄Φ(Q, v) :=
∑

s:V →Q

(v + 1)|I(s)|.

Setting v = −1 gives the state chromatic function. We shall see as a special case of Theorem
5.1 that the normalized state dichromatic function satisfies the modified deletion-contraction
formula

Q̄Φ(Q, v) = Q̄Φre(Q, v) + vQ̄Φ/e(Q, v)

for any link e.

5.2. Whitney number polynomial. The Whitney number polynomial of a gain graph [21,
p. 26] can be defined by either of the sums

(5.1) wΦ(x, λ) =
∑

A⊆E

xn−b(A)χΦ/A(λ) =
∑

s:V →Ck

xn−b(I(s)) ;

the first by applying [21, Equation (3.1d)] with w = 1 and v = −1; the second by noting that
χΦ/A(λ) counts the colorations of which the satisfied edge set equals A, cf. [21, Corollary
4.5]. One may try to generalize either of these two sums.

The expression χΦ/A(λ) in the first sum arises from the fact that if a coloration s has
satisfied edge set I(s), it corresponds to a proper coloration of Φ/I(s). It seems impossible
to generalize that fact to states, even by modifying the definition of contraction.

An obvious states generalization of the second part of Equation (5.1) is

wΦ(x,Q) :=
∑

s:V →Q

xn−b(I(s)) .

This has an incongruous aspect. The sets I(s) are fundamentally closed. There exist fun-
damentally closed sets A ⊂ B having the same rank in the frame matroid, and this formula
treats them identically since the exponent of x is the rank; but one would expect a good
generalization to treat them differently. For instance, perhaps there should be a second vari-
able whose exponent reflects the difference between I(s) and its matroid closure. However,
rather than try to decide how to modify the polynomial, we go directly to basics by proving
that both Q̄Φ(Q, v) and wΦ(x,Q) are obtained from a more abstract polynomial.

5.3. Formal algebra and the partition function. We abstract both state generalizations
within the edge ring Z[E]. In the edge ring a subset A ⊆ E is identified with the monomial
∏

e∈A e; the multiplicative identity is therefore 1 = ∅. Within Z[E] is the Z-submodule
ZP(E), the span of the power set of E. The abstract partition function of (Φ,Q) is

Z(Φ,Q) :=
∑

s:V →Q

I(s) ∈ ZP(E) ⊆ Z[E].
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The normalized state dichromatic function Q̄Φ(Q, v) is the image of Z(Φ,Q) under the
ring homomorphism Z[E] → Z[v] defined by e 7→ v + 1 for every edge. The state chromatic
function is obtained by e 7→ 0, since the coefficient of ∅ is χΦ(Q). The state Whitney number
function wΦ(x,Q) is the image of Z(Φ,Q) under the Z-module mapping ZP(E) → Z[x]
defined by A 7→ xn−b(A).

The essential facts about Z(Φ,Q) are its reduction properties, Parts (i–iii) of the next
theorem, by which it can be calculated recursively in terms of gain graphs with only one
vertex, whose partition functions are the initial conditions of the recurrence. Part (iv)
generalizes Theorem 3.6; it is analogous to the subset expansion of the Tutte polynomial of
a matroid [2].

Theorem 5.1. The abstract partition function of a permutation gain graph Φ satisfies the
following properties:

(i) Z(Φ,Q) = Z(Φ r e,Q) + (e − 1)Z(Φ/e,Q) for a link e in Φ.
(ii) Z(Φ,Q) = Z(Φ1,Q)Z(Φ2,Q) if Φ is the disjoint union of Φ1 and Φ2.
(iii) Z(∅,Q) = ∅.
(iv) Z(Φ,Q) has the closed form

Z(Φ,Q) =
∑

A⊆E

∏

f∈A

(f − 1) ·
m
∏

j=1

fQ(Aj),

where A1, . . . , Am are the connected components of (V,A).
(v) If θ : Φ1 → Φ2 is an isomorphism, then θ(Z(Φ1,Q)) = Z(Φ2,Q).
(vi) If α is an automorphism of Φ, then α(Z(Φ,Q)) = Z(Φ,Q).

For instance, the abstract partition function of a gain graph Φ:{v} with one vertex is
straightforward. Let Ev denote the set of loops incident with v. Then

Z(Φ:{v},Q) =
∑

q∈Q

{lv ∈ Ev : q ∈ Fix ϕ(lv)}.

Another example is the gain graph Φ that consists of two parallel links e and f with gains
1 and g, respectively. Then Φ/e is the gain graph with one vertex and the one edge lf , which
is f as a loop with gain g. The abstract partition function is

Z(Φ,Q) = Z(f,Q) + (e − 1)Z(Φ/e,Q)

= Z(K1,Q)2 + (f − 1)Z(K1,Q) + (e − 1)Z(Φ/e,Q)

= |Q|2 + (f − 1)|Q| + (e − 1)
[

|Q| + (f − 1)|Fix g|
]

= ef |Q| − (e − 1)(f − 1)
[

|Q| − |Fix g|
]

.

Proof of Theorem 5.1. Part (i). We may assume by switching that the link e:vw has gain 1.
We compare the satisfied edge sets of states in the three graphs. Let ve be the vertex of Φ/e
that results from contracting e. Write V ′′ := V (Φ/e); then V ′′ = V r {v, w} ∪ {ve}. The
task is to prove that

∑

s:V →Q

IΦ(s) =
∑

s:V →Q

IΦre(s) +
∑

s′′:V ′′→Q

(e − 1)IΦ/e(s
′′).

The states s′′ of Φ/e correspond to the states s of Φ in which sv = sw, by the correspon-
dence sv = sw = s′′ve

. Then IΦre(s) = IΦ/e(s
′′). For a state of this type, the terms of the
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three summations are IΦ(s) = eIΦre(s) on the left and IΦre(s) + (e − 1)IΦ/e(s
′′) = eIΦre(s)

on the right.
For a state in which sv 6= sw, the terms are the equal quantities IΦ(s) on the left and

IΦre(s) on the right, since there is no corresponding state of Φ/e.
Part (ii) is obvious from the definition.
Part (iii). There are no vertices or edges so there is one state with null domain, empty

range, and no satisfied edges.
Part (iv). We employ the expression

ζ(Φ,F) :=
∑

A⊆E

∏

f∈A

(f − 1) ·
m
∏

j=1

|F ∩ Fix F(Aj, vj)|

for F ⊆ Q, where A1, . . . , Aj are the components of (V,A) and vj is any vertex of Aj.
First we settle the case where Φ has a single vertex v0. We make use of a restricted

partition function,

Z(Φ,F) :=
∑

s:V →F

I(s) for F ⊆ Q.

Lemma 5.2. The restricted partition function of a gain graph Φ with one vertex satisfies

Z(Φ,F) = Z(Φ r e,F) + (e − 1)Z(Φ r e,F ∩ Fix ϕ(e))

for any edge e.

Proof. A state s is equivalent to its value q = s(v0). Consequently,

Z(Φ,F) = e
∑

q∈F∩Fix ϕ(e)

{f ∈ E r e : q ∈ Fix ϕ(f)}

+
∑

q∈FrFix ϕ(e)

{f ∈ E r e : q ∈ Fix ϕ(f)}

= (e − 1)
∑

q∈F∩Fix ϕ(e)

{f ∈ E r e : q ∈ Fix ϕ(f)}

+
∑

q∈F

{f ∈ E r e : q ∈ Fix ϕ(f)}

= (e − 1)Z(Φ,F ∩ Fix ϕ(e)) + Z(Φ r e,F). �

Lemma 5.3. For a gain graph Φ with one vertex there is the reduction formula

ζ(Φ,F) = ζ(Φ r e,F) + (e − 1)ζ(Φ r e,F ∩ Fix ϕ(e)).

Proof. Let us calculate.

ζ(Φ,F) − ζ(Φ r e,F) = (e − 1)
∑

S⊆Ere

∏

f∈S

(f − 1) · |F ∩ Fix F(S ∪ {e}, v0)|

where S ∪ {e} stands for any set A that contains e in the definition of ζ(Φ,F),

= (e − 1)
∑

S⊆Ere

∏

f∈S

(f − 1) · |F ∩ Fix ϕ(e) ∩ Fix F(S, v0)|

because F(S ∪ {e}, v0) is generated by F(S, v0) and ϕ(e). �
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Since Z(Φ,F) and ζ(Φ,F) obey the same edge reduction identity, and since Z(K1,F) =
∅ = 1 = ζ(K1,F), we conclude that Z(Φ,F) and ζ(Φ,F) are equal. Setting F = Q, we have
part (iv) for a one-vertex graph Φ.

Now we treat larger graphs Φ.

Lemma 5.4. For a link e in Φ we have the deletion-contraction identity

ζ(Φ,Q) = ζ(Φ r e,Q) + (e − 1)ζ(Φ/e,Q).

Proof. Assume e switched to have gain 1.
First we compute

ζ(Φ,Q) − ζ(Φ r e,Q) = (e − 1)
∑

e∈A⊆E

∏

f∈Are

(f − 1)
m
∏

j=1

|Fix F(Aj, vj)|.

The components of A in Φ are the same as the components of Are in Φ/e with the exception
of that component which contains e, call it A1.

We compare this quantity with

ζ(Φ/e,Q) =
∑

B⊆Ere

∏

f∈B

(f − 1) ·
m
∏

j=1

|Fix F(Bj, vj)|,

with B = A r e. The only difference is that the former expression has F(A1, v1) in Φ where
the latter has F(B1, v1) in Φ/e. These groups are equal by the definition of fundamental
groups and the fact that ϕ(e) = 1. �

We compare Z(Φ,Q) to ζ(Φ,Q). They agree for gain graphs with one vertex and they
satisfy the same deletion-contraction recurrence. Hence, they are equal.

Part (v) follows from the fact that θ acts on states and preserves satisfaction or frustration
of edges.

Part (vi). First we observe that for any state s, α(I(s)) = I(sα), where by sα we mean the
state defined by (sα)v := sα−1v. The reason for this is that, for an edge e:vw, e ∈ I(s) ⇐⇒
sw = svϕ(e) ⇐⇒ sα

αw = sα
αvϕ(αe) (by the definition of sα and the fact that α preserves

gains) ⇐⇒ αe ∈ I(sα).
Now, applying α to Z, represented as a sum over all states s or equivalently all states sα,

we see that Z =
∑

sα I(sα) =
∑

s α(I(s)) = α(Z). �

5.4. The grand partition function. The idea behind the grand chromatic polynomial
works equally well for the abstract partition function. As in Section 4.2, we assume G is
finite. We define Q̂ to be the disjoint union of the r sets Q̂i × [ki], where Q̂1, . . . , Q̂r are the

nonisomorphic transitive G-sets. The abstract partition function of Q̂ is the grand partition
function of Φ. We write it Z(Φ,G)(k1, . . . , kr) := Z(Φ, Q̂), since Q̂ is completely determined
by G and k1, . . . , kr. Just as with the grand chromatic polynomial, the abstract partition
function of Φ for any finite spin set Q is obtained from Z(Φ,G)(k1, . . . , kr) by appropriate
evaluation of k1, . . . , kr.

We denote by ΠV the lattice of all partitions of the set V . Recall that Φ:W is the subgraph
induced by W , and that (x)r is the falling factorial.

Theorem 5.5. The grand partition function has the form

Z(Φ,G)(k1, . . . , kr) =
∑

π∈ΠV

∑

i

∏

W∈π

∑

τ∈ΠW

∏

B∈τ

Z(Φ:B, Q̂i(W )) · (ki(W ))|τ |,
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where i ranges over all injective mappings π → [r]. This is a polynomial in the nonnegative
integers k1, . . . , kr. The terms of highest total degree, which is n, are those of the expression

∏

v∈V

r
∑

i=1

kiZ(Φ:{v}, Q̂i).

Proof. Consider a state s : V → Q̂. For each i ∈ [r], there is a vertex set Wi := s−1(Q̂i×[ki]).
Some of these sets may be empty, but the nonvoid ones form a partition π of V . Conversely,
given a partition π, there are (r)|π| injective functions i : π → [r], which correspond to the

ways to label the blocks of π with distinct transitive G-sets Q̂i, by taking i = i(W ). Thus,

Z(Φ,G)(k1, . . . , kr) =
∑

s:V →Q̂

I(s) =
∑

π∈ΠV

∑

i

∑

sW

∏

W

IΦ:W (sW ),

where sW means s|W reinterpreted as an independently varying state of Φ:W with values

in Q̂i(W ) × [ki(W )], the summation
∑

sW
is over all such states, and we keep in mind that

multiplication in the edge algebra is union. The latter two operations of summation and
product can be reversed, yielding

Z(Φ,G)(k1, . . . , kr) =
∑

π∈ΠV

∑

i

∏

W

Z
(

Φ:W, Q̂i(W ) × [ki(W )]
)

.

Now we focus on Φ:W , writing i := i(W ) for brevity. The analysis is similar, except that

Q̂i× [ki] and the isomorphic copies Q̂i×{j} of Q̂i, for j ∈ [ki], replace Q̂ and the Q̂i× [ki(W )].
Thus,

Z
(

Φ:W, Q̂i × [ki]
)

=
∑

τ∈ΠW

∑

j

∏

B∈τ

Z(Φ:B, Q̂i),

where j denotes an injection j : τ → [ki]. Now a difference appears. As the spin sets are the
same for every block of τ , it no longer matters exactly what j is; the important fact is that
there are (ki)|τ | different ones, so that

Z
(

Φ:W, Q̂i × [ki]
)

=
∑

τ∈ΠW

(ki)|τ |
∏

B∈τ

Z(Φ:B, Q̂i).

This is the first part of the theorem.
The highest-degree terms appear when τ = 0W , the total partition of W , and we keep

only the highest term, k
|τ |
i(W ) = k

|W |
i(W ), of (ki)|τ |. Then we have

∑

π∈ΠV

∑

i

∏

W∈π

∏

w∈W

Z(Φ:{w}, Q̂i(W )) · k
|W |
i(W )

=
∑

π∈ΠV

∑

i

∏

W∈π

∏

w∈W

ki(W )Z(Φ:{w}, Q̂i(W ))

=
∑

π∈ΠV

∑

i

∏

w∈V

ki(W )Z(Φ:{w}, Q̂i(W ))

where W denotes the block of π that contains w,

=
∑

j:V →[r]

∏

w∈V

kj(w)Z(Φ:{w}, Q̂j(w))
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summed over all functions j : V → [r], because an injection i : π → [r] is equivalent to an
arbitrary function j : V → [r] that happens to have j(w) = i(W ) when w ∈ W ,

=
∏

w∈V

r
∑

i=1

kiZ(Φ:{w}, Q̂i). �

The second part of Theorem 4.1 follows from that of Theorem 5.5 by substituting e 7→ 0.
The main part of Theorem 5.5 specializes to a formula for the grand chromatic polynomial.

Corollary 5.6. The grand chromatic polynomial has the form

χΦ;Q̂1,...,Q̂r
(k1, . . . , kr) =

∑

π∈ΠV

∑

i

∏

W∈π

∑

τ∈ΠW

∏

B∈τ

χΦ:B(Q̂i(W )) · (ki(W ))|τ |,

where i ranges over injective mappings π → [r].

6. Edge-spin algebras

Theorem 5.1 finds its natural expression in an even more abstract setting. The trick is to
define the partition function by means of Theorem 5.1(iv) and then replace |Fix F| by Fix F.
One even gets a slight simplification in part of the proof. We sketch the ideas.

We indicate an orbit of the right action of G on subsets of Q by square brackets, such as
[C] for the orbit of C ∈ P(Q). The quotient set, denoted by P̄(Q), generates a free Z[E]-
module Ā := Z[E]P̄(Q). The symmetric edge-spin algebra SĀ is the symmetric algebra of
Ā. The symbol for multiplication in this algebra is ⊗. Define the hyperabstract partition
function to be

Z̄(Φ,Q) =
∑

A⊆E

∏

f∈E

(e − 1) ·
m

⊗

j=1

[Fix F(Aj, vj)] ∈ SĀ.

(We are forced to work with orbits instead of individual fixed sets because different choices of
basepoint vj conjugate the fundamental group and correspondingly translate the fixed set.)
We are generalizing the formula of Theorem 5.1(iv), as Z(Φ,Q) is the image of Z̄(Φ,Q)
under the cardinality mapping C 7→ |C| for C ∈ P(Q). One can prove properties of Z̄(Φ,Q)
just as we established those of Z(Φ,Q) and with no greater difficulty.

Theorem 6.1. The hyperabstract partition function satisfies

(i) Z̄(Φ,Q) = Z̄(Φ r e,Q) + (e − 1)Z̄(Φ/e,Q) for a link e in Φ,
(ii) Z̄(Φ,Q) = Z̄(Φ1,Q)Z̄(Φ2,Q) if Φ is the disjoint union of Φ1 and Φ2, and
(iii) Z̄(∅,Q) = ∅.
(iv) If θ : Φ1 → Φ2 is an isomorphism, then θ(Z̄(Φ1,Q)) = Z̄(Φ2,Q).
(v) If α is an automorphism of Φ, then α(Z̄(Φ,Q)) = Z̄(Φ,Q).

Unfortunately, the partition function loses its natural interpretation as a state sum. The
obvious question of whether one can find such a sum is open.

Now, make P(Q) into a semigroup by defining multiplication to be set intersection. The
singleton edge-spin algebra A is the semigroup algebra Z[E]P(Q), with multiplication sym-
bolized by a raised dot. (It happens to be the Z[E]-Möbius algebra of Q as described in [5]
but we do not make use of that fact.) For a singleton gain graph Φ1, with vertex v0, we can
ignore switching and define a hyperabstract partition function that lies in A, call it

Ẑ1(Φ1,Q) :=
∑

A⊆E

Fix F(A, v0)
∏

f∈A

(f − 1).
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Thus, Z(Φ1,F) is obtained from F · Ẑ1(Φ1,Q) by expressing the latter as a Z[E]-linear
combination of sets C ∈ P(Q) and evaluating C 7→ |C|. A simple calculation shows that

(6.1) Ẑ1(Φ1,Q) =
∏

f∈E

[

1 + (f − 1) Fix ϕ(f)
]

.

Now the Ẑ1-analog of Lemma 5.2 is immediate from (6.1).
The edge-spin algebras would be more satisfactory if they were combined into one, but

that would entail combining the semigroup product in the power set with the orbit partition,
which seems impossible.

7. Two questions

7.1. Negative numbers? The striking parallelism with the ordinary theory of graph and
gain-graph coloring omits one remarkable feature of the latter theories, the interpretation
of the chromatic polynomials at negative arguments λ. Can this be repeated for the grand
chromatic polynomial? It is not clear even how to make sense of such a question because
there is no variable that corresponds directly to λ.

7.2. Matroids? The arguments for Theorem 2.5, showing which choices of gain group G

and spin set Q make the state chromatic function essentially a function of a matroid of Φ,
only apply to the frame matroid and the balanced semimatroid, the same ones associated
with the two chromatic polynomials. It is an open question whether some other choices of
group and spin set could make χΦ(Q) a function of another matroid on the edges of G-gain
graphs. (Only one such general gain-graphic matroid presently known: the lift matroid L(Φ),
or—what is nearly the same—its extension the complete lift matroid L0(Φ) [20].)
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