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Abstract. We study new poset9 obtained by removing from a geometric lattic®f a biased graph
certain flats indexed by a simplicial compléx (One example of. is the lattice of flats of the vector
matroid of a root system,;,.) We study the structure and compute the characteristic polynomgal of
With certain choices of. and€, including ones for whiclQ is a lattice interpolating between those

of B, andD,,, we observe curious relationships among the roots of the characteristic polynomials of
0, L,andC.
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1. Introduction

We introduce a new kind of finite partially ordered set, derived from a certain type
of geometric lattice via an indexing simplicial complex, whose Mdbius function
satisfies a simple reduction formula that in examples with high symmetry leads to
exact evaluations.

Our posets originated in an attempt to understand the relationship between the
exponents of the root systeni and D, in R”. These root systems are defined
by D, = {tu; +u;:1<i < j <n}yandB, = D, U {Fu;:i € [n]}, where
u; is theith unit coordinate vector anph] = {1, 2, ..., n}. Associated to each
root systemR of rankn there aren positive integers called itexponentsThere
are many ways to define them, some very combinatorial and some very algebraic.
Best for our purposes is a definition in terms of IRtthe lattice of flats spanned
by subsets oR. The exponents aR are the roots of the characteristic polynomial
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of Lat R. (Those who are unfamiliar with this definition of exponents should see
[9, 13] for a proof that it is equivalent to more familiar definitions.) One can check
that the exponents @, and D, are given by these lists:

B,:1,35...,2n—-3,2n -1
D,:1,35, ....,2n—3,n— 1

We see that removal of all the basis vectdts; from B, changes only the last
exponent and changes that exponent:byhe original motivation for this work
was a desire to understand why this should be so. Given our definition of exponents,
we must understand why only one root of the characteristic polynomial oBj-at
changes when the lines generated byithare removed.

We will consider a more general situation in which certain flats, indexed by
an abstract simplicial complex, are removed from Bator more generally from
matroids called “bias matroids of full biased graphs”. Our results concern the char-
acteristic polynomials of the partially ordered sets obtained in that way and, for
certain matroids and indexing complexes, the behavior of their roots.

An example will give the flavor of our results. LEtbe a field and,, a primitive
Mth root of unity inF, whereM > 1. Define

D, (M) = {¢yu; — Gy i, jelnl, i # j k1 € Z} S F”
and
B,(M) = D,(M) U {¢yu;:i € [nl, k € Z}.

For R C F" let LatR be the lattice of all flats generated by subset®o{Then
Lat B, (M) is the Dowling lattice of the cyclic grou@,,.) If ¢ is a subspace of "
defineVo(r) = {i € [n]: u; € t}. Forn, M > 0 we call thefalling factorial with
stepM the polynomial

My =y —M)---(y —(n—DM), with (y)ou =1

Now, letC be an abstract simplicial complex on vertex[ggf containingd but (to
keep the theorem simple) npt], and setV; (C) = #{X € C: |X| = i}. The set of
C-restricted flats ofB, (M) is

0 = Q(B,(M), €) = {1 € LatB,(M): Vo(t) ¢ C\{#}},

partially ordered as in Lak,(M). Q has zero elemer@t = {0} and top element
1 = F". Its characteristic polynomial is defined to be

Po() =Y e, nam-m,
teQ

wherepu is the Mdbius function of.
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THEOREM 1.1. With ¢ and Q as above,Q has rank functiorry(r) = dim¢,
characteristic polynomial

Po) = (= Dy + Y (D N{(@M G — 1) — D1 — Dnioar,

i=1

and Mobius invariant

10,1 = )" {(Mn —1) + 1),y —

=Y N(@MG =) = Dy g (M —i =D+ Dy -
i=1

Moreover, ifM > 2 then(—1)"11,(0, 1) > 0 and the coefficients gf, (1) are all
nonzero and alternate in sign.

For the proof see Section 4. Examples obtained by choagingsely include
B,, D,, and all intermediate se®, U {uq,...,u;} fork =12, ...,n — 1. For
details on particular examples see Example 6.1.

Theorem 1.1 is a very special case of the main theorem, Theorem 4.1. Observe
that, remarkably, althoug® (B, (M), C) is not necessarily a lattice or even a semi-
lattice, still we can give a very explicit formula for its characteristic polynomial and
(in Example 4.1) its MObius functiop (s, 1).

A brief outline: Section 2 provides background information, especially the de-
finitions of the characteristic polynomial of an extrinsically graded pgsetnd
those of a biased grap? and its geometric lattice. Section 3 defines the poset
0(2, ) and investigates its structure. (The definition is all that is needed to
understand Theorem 4.1, our main theorem.) Section 4 treats the computational
aspect of the posad (2, ©) when( is “full” and Section 5 treats non-full2. In
Section 6 we examine numerous examples. Sections 7 and 8 discuss some problems
suggested by our work.

We should mention that this article is a highly generalized version of the manu-
script [7], which has been cited a few times in the literature.

2. Background Definitions

All our partially ordered sets (or “posets”), graphs, etc. are finite. For basics of
posets we refer to [12], for matroids to [5], for graphs and biased graphs to [18]
(but for the special case of signed graphs one may consult [15-17]).

For ready reference we list standard notations, some of which will be defined
later in this section. We writ® = {1,2,3,...},N ={0,1,2,3,...}, and[n] =
{1,...,n}forn € N. Also, 2 denotes a biased graph of order 0 with vertex set
V and edge sek, Lat 2 the lattice of flats of its bias matroid,the rank function
of the latter, and® an abstract simplicial complex on vertex $&t
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2A. SET POSETS AND SIMPLICIAL COMPLEXES

An (abstrac) simplicial complexon vertex setV is a nonvoid clas® < P (V)
such thatW ¢ X € ¢ = W € C. C can be said to have any vertex set that
contains itssupport suppC = | €. However, we need to know in order to
define the complemeng® = £ (V)\C.

A poset of setsD, on vertex seV is a subclass of? (V) to which@ belongs. We
write D* = D\{@}. Theinducedsubclass oV C VisD:W = {X € C:X C W}.
Thecontraction /r, by a partitionz of a subsetoV,is{t Cn: | Jt € D}.

2B. POSETS

Consider a posep with bottom elemenf. Each element has aheight A (x) =
length of a longest chain fro@to x. The height ofQ is h(Q) = maxh(x). If for
eachx every maximal chain frond to x has lengthi (x), we call Q ranked A (x)
therank of x, andh(Q) the rank ofQ. The notationQ/x means{y € Q: y > x}.
We writex < y to mean thap coversx.

An extrinsically graded poses a triple Q = (Q, h, h(Q)) whereQ is a poset
with 0, 72 is a strictly increasing functio® — N such thatz(0) = 0 (called
the extrinsic grading, andh(Q) is an integer at least as large as the largesi.
By Q/x we meanQ/x with extrinsic gradlnghQ/x(y) = h(y) — h(x) and with

h(Q/x) = h(Q) — h(x). We adopt the convention that a poggwritten without
a tilde is “extrinsically graded” by its height function (one might call this the
intrinsic grading, while a tilde means there is an arbitrary extrinsic grading

One way to construct an extrinsically graded poset is to take a ranked ppset
such as a geometric lattice, and [@the any subset containin@p, extrinsically
graded by the rank function df. Our posets are examples of this construction.
(Another such example is the intersection lattice of an arbitrary arrangement of
subspaces in a vector space, ordered by reverse inclusion and graded by codimen-
sion.)

Recall that the Mobius function of a posgtis the functionuy: Q x Q — Z
defined by

1 if x =y,
mo(x,y) =19 — Zx§z<y no(x,y) ifx <y,
0 if x £ y.

The characteristic polynomiabf Q is
Pg) => o, )W),
xeQ

For instance,p, (1) is the characteristic polynomial associated with the height
function/. If Q hasl, we callu (0, 1) theMbbius invariantof Q; it equalsp(0)

if 1(Q) = h(1).



TRACTABLE PARTIALLY ORDERED SETS 233

2C. GRAPHS AND BIASED GRAPHS

A biased graph2 = (T, 8) is a graphl’ = (V, E) together with a subclas8 of
its polygons such that, if in a theta subgraph two polygons belo®) & does the
third. In biased graphs we allow four kinds of edges: links (two distinct endpoints),
loops (two coincident endpoints), half edges (one endpoint), and loose edges (no
endpoints). (Neither of the latter can belong to a polygon. In matroid theory a loose
edge behaves like a balanced loop and a half edge like an unbalanced one, but for
technical reasons it is helpful to allow all four types of edge.)

A subgraph or edge setlmlancedif it contains no half edge and any polygon
in it belongs toB. For S C E we letz (S) [or, respectivelyyr, (S)] be the partition
of V whose blocks are the vertex sets of the components [respectively, balanced
components] of V, 5), let Vo(S) (or just V,S) be the union of vertex sets of un-
balanced components oV, S), and set:(S) = |7 (S)|, b(S) = |7, (S)|. We write
c(Q) = c(E), b(Q) = b(E), etc.

The bias matroidG(2) is the matroid onE whose rank function is(S) =
n — b(S). For the lattice of closed sets (or flats) we write Katand Lat < for the
subclass of balanced closed sets.

The complete lift matroidLo(£2) is the matroid orE U {eg}, whereeg is a new
element, whose rank functionsns— c¢(S) — £(S) wheres(S) = 0 if S is a balanced
edge set and 1 otherwise.

Besides these basic ideas we need a number of technical definitions about graphs
and biased graphs.

LetT be a graphV, E). The set of endpoints of an edgés V (¢). Thedegree
of a vertex is the number of incident edges. (A loop in this article counts once, not
twice as in some other works.) F&f C V andS C E we writeW¢ = V\W, §¢ =
E\S, andl'|S = (V, S). An induced subgraplof I isT":W = (W, E:W) where
W CCVandEW ={ec E : 0 # V(e) C W}. Wis stableif E:-W = ¢. We
denote by[T'] the biased graph whose underlying grapiiand in which every
polygon is balanced. IF has no loose or half edges([T"]) is the usual polygon
matroid ofT".

We call a biased grapf2 simply biasedf it has no loose edges, balanced loops,
balanced digons, or pairs of unbalanced edges at the same vertex. We let

U(Q) = {v € V: v supports an unbalanced edige

and we callQ full if U(Q) = V. If W c V, Q™ denotes2 with a half edge
added at each vertex W \U (). We write Q* for Q). By Q* we meanQ with
unbalanced edges removet is E(Q*). If § C E, thenQ:W, Q|S, etc., denote
subgraphs of" with balance of polygons the same a<inThe contraction2/S
is the biased graph whose vertex setrj$S) and whose edge set & with the
endpoints of an edgemodified as follows: an endpointis eliminated ifv € Vo(S)
and is replaced by the block af,(S) containing it ifv ¢ Vo(S). A polygonC in
/S is balanced if there is a balanced polygdhcC C U S such thatC = C'\S. If
S € Lat2, then Lat$2]S) = [0, S]Late and Lat2/S) = (Lat2)/S.
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Disjoint union is written€2, U ,; the balance of a polygon is the same afin
andQ,, whichever it is that contains the polygon.

2D. GAIN GRAPHS AND COLORING

A gain graph can be defined in the following way (simplified from [18, Section 1.5]).
Take a group® of orderM > 1. On vertex sefn] construct a graph with edges
(i, j; g) for all distincti, j € [n] andg € &, but identify the edgéi, j; g) with
(j.i; g~b. This is the gain grap® K,,. We callg thegainof (i, j; g) in the direc-
tion fromi to j and we writep(i, j; g) = g. Calling a polygon{(io, i1; g1), (i1, io;
g2), ..., (x_1, ix; gv)}, Wwhereig = iy, balancedwheng,g, - - - g, = 1 determines
a biased grapb® K ,,). Adding an unbalanced edge (say, a half edge) to each vertex
gives&K . A gain graph® = (V, E, ¢) with gain group® and gain functiory
is any subgraph a6 K, ¢ being the restriction t& of the gain function of5K?;
(®) denotes the corresponding biased graph@udt), Lat @, etc., the associated
bias matroidG ({®)), lattice Lat(®), and so forth. IfA C K, then®A consists
of all edges(i, j; g) of K, such thatj € E(A), and®BA*® is the same with an
unbalanced edge at each vertex. We ¢all the &-expansion oA and®BA* the
full -expansionThe lattice Lat® K is the well known Dowling lattice o# of
rankn [6, 12].

A signed graphis a gain graph whose gain group is the sign groap—}. Lat
(£K}) is the lattice of the root syste®, and Lat+K,) is that of D,,.

A k-coloring of @ is a mappingc: V — ([k] x &) U {0}, where 0¢ &. The set
of improper edges of is

1) = (ExH0) U{(G. js g) € E: k(j) = k(i)g # O},

where ifk (i) = (m, h) thenk(i)g = (m, hg), while if k(i) = 0 thenk(i)g = 0.
We call « properif I(x) = . When & is finite there is a polynomiaj¢ (1),
called thechromatic polynomialwhich has the property that, (kM + 1) is the
number of propek-colorings of®. There is also aero-free(or balanced chro-
matic polynomialy5 (1) such thatyx? (kM) is the number of propet-colorings
not using the color 0. These polynomials satisfy(A) = A*® pae(X) and
x5 (L) = AP p e o (A). Because of these identities we define

xa) =A@ paa() and x50 = 2 Pp o) (2.1)

for any biased graph. (See [18, Theorems I11.5.1 and 111.5.3].) Whé&nbalanced,
xa(A +1) = x5() = xr(1), the chromatic polynomial of the underlying graph
I'. When< is full, xoX) = prata(A).
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2E. FORMULAS

A biased graph obeys convolution identities

XaO+ 1) = D Xy ) xewe (1),

, S, , (2.2)
X601 =D xbw O Xb.we ()
wcv
(see [18, Formula (I11.6.1b)]). The former wiflh = 1 reduces to
XaW) = > xbw -1, (2.3a)

wcv
W€ stable

which simplifies for full2 to
Xa() = x5 = 1). (2.3b)

For &-expansions there is a nice formula [18, Example [11.4.6]:

A
Xé’m()») = M"xa (M) (2.4)
Combining with (2.3) and setting = K,,, we get Dowling’s formula
Pratsks (M) = Xoxs (W) = xgx, k=1 = G = 1y u- (2.5)

Hence we can say that L&k, has characteristic roots

IM+1L2M+1,...,n—1HM + 1.

2F. VECTOR REPRESENTATIONS

Supposed is a full gain graph orV/ = [#] whose gain grou® is a subgroup of
the multiplicative group of a field”. Then Lat® is canonically isomorphic to the
lattice of flats of the vector set(®) = {u; : i € [n]}U{u; —gu;: (i, j; g) € E(P)}
in F". (See [15, Theorem 8B.1] for a proof wh#| = 2, [6, proof of Theorem 10]
or [18, Theorem IV.2.1] for a general proof.) Thus for exaniplek; has a vector
representation i".

3. The Poset and Its Structure

The subject of our main results is an extrinsically graded pé(et, C) con-
structed from a full biased graghand an indexing simplicial compleX on vertex
setV. The definition makes sense, however, even waés not full andC is not a
simplicial complex. The poset is

0(2,C)={A e L(Q): VoA ¢ C*). (3.1)
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We call its members the-constrained flats o6 (2). The grading? is that inher-
ited from Lat:

h(A) =r(A) =n —b(A) and h(Q(L, C)) =n. (3.2)

Evidently, 0(Q, €) has0 = closy and, if V ¢ €, 1= E.
_ As extreme instances, for any biased graptve haveQ (<2, {#1}) = Lat<2 and
0(Q, P(V)) = Lat’Q, so thatpgo gy (V) = xa(A) @andpgg sy M) = x§O).

One naturally wonders whethg? = Q(£2, ¢) may be a lattice or ranked,
whetherr (that is,/z) coincides with the height functiolhof Q, etc. The remainder
of this section concerns such questions. (The reader who wishes to see the main
theorem first should turn to Section 4.). We shall not attempt to determine exactly
when Q is a lattice or a ranked poset, but we do characterize the circumstances
in whichh = r,h(Q) = n, or Q is ranked withh = r. These questions are
germane because, for instancelif= r andh(Q) = n then ps(1) equals the
intrinsic characteristic polynomial (1), while if & # r, p5 (1) andpo (1) should
be significantly different. (But just how different they might be is unknown.)

EXAMPLE 3.1. Q need not be a lattice or even a semilattice. Ret= [£K]]
andC = £([2]). Take By = {+12} and B, = {—12}, wheresij denotes the edge

ij with signe, andA; = E:{1, 2,3}, A, = E:{1, 2,4}. ThenA,; and A, coverB;
andB; in Q, soQ has neither meets nor joins, not even of pairs that have lower or
upper bounds Q.

LEMMA 3.2. Supposed, B € Q = Q(2,C)andB < AinLatQ. ThenB < A
in Q if and only if either:

() VoA =0@,andB < Ain Lat; or

(i) VoB ¢ C,andB < A in LatQ; or
(i) VoB = @ C VoA ¢ @€, and A and B satisfy these propertiesB:(VpA)¢ =
A:(VoA)¢, B:VpA is a maximal element dfat’(©2:V,A), and for everyX e

7w (Q2:VpA) we have(VpA)\X € C.

Proof. AssumeB < A in Q. If A is balanced omB is not, the entire interval
[B, AlLaiq liesin Q,s0A > B in Q.

Henceforth let/oB = @ andVpA ¢ C. SetAg = A:VpA andBy = B:VpA. Then
Bo C Ap. SinceA’ = Ag U (B\By) is aflat of G(2) and hasVyA’ = VhA ¢ C, A’
isin Q@ andA > A’ > B. ThusA’ = A; that is,A and B are the same except that
Bo C Ap. Furthermore By andAg are inQ and[Bg, Ag] = [B, A], both inQ and
in LatQ.

If By were not a maximal balanced flat@(2:VyA) = G(2)|Ag, then it could
be enlarged to a balanced fig§ and we would havely > B > Bpin Q. S0By is
maximal.

If there wereX € 7(2:VpA) such thatt = (VhA\X ¢ C, thenAg > (B:X)U
(E:Y) > Bgin Q, contrary to assumption.
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We have proved the necessity of the conditions of the lemma.

Now we assume the conditions hold and we preve- B in Q. Again the
nontrivial case is (iii), wher& but notA is balanced, and agai®, A] = [Bo, Ag].
Supposedg > F > Bgin Q. ThenF cannot be balanced, or it would equa.
Sincen (Bg) = m(Q2:VoA) = m(Ag), w(F) must equalr (2:VpA), whenceVy(F)
is a union of blocks ofr (Q2:VyA). But thenVyF, if not in C*, equalsy or VoA,
whenceF = B or A, a contradiction. Thud > B. O

LEMMA 3.3. SupposeB < A in O = O(Q, @). The step length(A) — r(B) of
the interval[B, A] is one except that wheB is balanced and4 is not, it equals
c(2:VpA).

Proof. With notation as in the preceding proof, note that A] and[Bo, Aol
have the same step lengthdh Moreover,b(Ag) andb(By), calculated irn2:VpA,
respectively equal 0 and(2:VpA). Thereforer(Ag) — r(Bg) = c(R:VpA), as
claimed. |

LEMMA34. LetA € Q = Q(R, C). There existsB € Q such thatA > B in
Lat< if and only if either

(i) AD E:VpA, or
(i) A= E:W whereb(2:W) = 0, and there exisK € 7 (Q2:W) andY < X such
thatc(:Y) = 1, b(Q:(X\Y)) = 0, andW\Y ¢ C*.

Proof. First we show the conditions are sufficient.Af> E:VyA, thenA has
a nontrivial balanced component X, where|X| > 1. Let D be a cutset ofA: X
andB = A\D. ThenVyB = VoA soB € Q, while b(B) = b(A) + 1 sor(B) =
r(A) — 1, whenced > B in Lat{.

If A= E:W whereb(Q:W) =0 (soW = VpA), let By be a maximal balanced
flat in Q:Y and letB = E:(W\Y) U By. Thusr(B) = |W| — b(B:W) = |W| —
b(By) = |W| — 1. ThusB < A in LatQ. The fact thatW\Y ¢ C* impliesB € Q.

To prove necessity we assurBeexists. LetW = V,A. If we are not in case (i),
thenVoB C W andA = E:W. SetY = W\VyB. Thusr(B) = |W| — b(B.Y) —
b(B:VyB) = |W| — b(B:Y). The covering relatiom > B in LatQ implies that
b(B:Y) = 1, whence we conclude that2:Y) = 1, so thatY is contained in a
block X of 7 (2:W). The fact thatVoB = W\Y implies thatb(2:(X\Y)) = 0 and
W\Y ¢ C*. O

The case of fulk2 is much simpler:

LEMMA 3.5. LetQ befullandA € Q = Q(£2, @). There exist8 € Q such that
A > Bin LatQ if and only if

(i) A D E:VpA, or
(i) A = E:VpA and eitherc(Q2:VoA) = 1 or VpA is not minimal inG°.
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Proof. In Lemma 3.4(ii), for any singletor € W we havec(Q2:Y) = 1 and
b(Q:(X\Y)) = 0 because is full.

If VoA is nonminimal inC¢ we can findY to makeW\Y ¢ C*. If c(Q:W) =1
thenY = X = W makesw\Y ¢ C*.

Conversely, supposg exists as in Lemma 3.4(ii). If = W thenc(Q:W) =1
SO B exists. IfY c W, Y is honvoid because(2:Y) = 1 so we can choosge Y.
ThenW\{y} ¢ C becauséV\Y ¢ C. O

Now we can answer guestions about heighfimhen is full.

THEOREM 3.6. Suppos&? full. For Q(£2, ©) to have height it is necessary and
sufficient thatr () € €.

Proof.If there is anX € 7 (2)\C, one easily constructs a chain of lengtirom
O0to Ein Q(Q, @).

Suppose contrariwise that such a chain existsf)saon< Aj<.--<A,=E.
There is some index for which A; is unbalanced buti;_; is balanced. Thus
VoAr ¢ C. By Lemma 3.3Q2:VpA is connected. It therefore lies in a component
Q:X of 2, andX cannot belong t@. O

COROLLARY 3.7. If Q is full and connected, the@(£2, ¢) has height: if and
onlyif vV ¢ C.

The criterion of Corollary 3.7 obviously fails to be sufficientSif is discon-
nected.

We call ¢ disconnection-closewvith respect to2 if, wheneverX andY are
disjoint members of? and no edge of2 joins a vertex inX to one inY, then
XUY ecC.

THEOREM 3.8. Supposing? full, the following properties are equivalent.

(i) Q(£2, €©) has height functiork equal tor = ri4tq-

(i) For every minimal membéW of ¢¢, Q:W is connected.
(iii) ¢ is disconnection-closed with respectso
(iv) ForeveryW € C¢, n(::W) ¢ C.

Proof. We show (iv) is equivalent to each other property.

That (i) & (iv) is an easy consequence of Theorem 3.6.

Obviously (iv)= (ii). To prove the converse assume (ii) and choose a minimal
W ¢ C such thatr (Q:W) C €, if any suchW exists.W cannot be minimal ire¢
because of (ii). Therefore we can strip off a vertexe W so thatW\w ¢ C, but
clearly 7 (Q2:(W\w)) C @, contradicting the minimality of the counterexample.

That (iii) < (iv) is easy to prove by induction ar(Q2:(X U Y)). O

THEOREM 3.9. Let Q2 be any biased graph. Fo@ (€2, ©) to be a ranked poset
with rank functionr it is necessary and sufficient that, wheneWére ¢ is such
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that b(2:W) = 0, then eitherQ:W is connected or there is aki € 7 (Q:W) for
whichW\X ¢ C.

Proof. Every maximal element af has the same extrinsic height because there
is only one such element unle8s= 2 (V), and thenQ = Lat’ , in which every
maximal elemenf hasr(F) = n — ¢(2) (from [18, Theorem 11.2.1(j)]).

Now, the key to the proof is thad is ranked withh = r if and only if every
covering interval has step length 1. Lemmas 3.2 and 3.3 imply that step length 1 is
equivalent to the criterion of our theorem. O

COROLLARY 3.10. Suppose2 complete. TherQ(£2, @) is ranked with rank
functionr.

In the rest of this section we develop three lemmas that describe order filters and
intervals inQ (L2, @), for use in calculating the Mdbius function in Section 4. The
lemmas remain valid with any poset of sets in place of the simplicial complex

LEMMA 3.11. LetA € Q(Q, @). Theintervall0, A]in O(R, @) equalsQ (A,
C) and is canonically isomorphic to
O(QVoA, C:VoA) x X Lat(RA):Z).
Zemp(A)
The proof is immediate. The canonical isomorphism is that by whi By,
..., Bya)), an element of the Cartesian product set, corresponfigitaB; U - - - U

B4y € LatQ2. Note that(2|A):Z is the biased graph of the balanced component
A:Z of A, and its underlying graph i&Z, A:Z).

LEMMA 3.12. Let A € Q(2, C). The order filterQ(, C©)/A is canonically
isomorphic toQ(Q/A, €/, (A)).

Proof. The isomorphism here is that induced by the canonical partial function
V — m,(A), which carriesv € V to the blockX € m,(A) such thatv € X, if
v € [Jm(A), and is undefined otherwise.

We know from [18, Theorem 11.2.5] that.at$2)/A = Lat(2/A); it follows
that the extrinsic grading of (L2, €)/A equals that ofQ(Q2/A, C/m,(A)). We
need to prove tha€/m,(A) is the correct indexing complex. A fldt > A in
Lat2 is excluded fromQ (2, C)/A whenVy(F) € C. The corresponding fldt’ €
Lat(2/A) satisfiesVp(F') = {X € m,(A): X C Vo(F)}, by [18, Lemma 1.4.4].
The desired conclusion follows at once. |

Combining these two results gives the main lemma:

LEMMA 3.13. LetA; < A»in Q(Q, @) and letW = VyA,. For Z € m,(A»), let

I'z = (Z, A2:Z)/(A1:Z), the underlying graph ofS2|A):Z contracted byA;:Z.

The interval[A;, A5] in Q(R2, @) is canonically isomorphic to
O((QW)/(ALW), (C:W)/my(Ar:W)) x X Lat(Iz).

Zemnp(Ao)
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4. Characteristic Polynomial and Mébius Function

Here at last is the centerpiece of our work. For the theorem, noteyjftal =
b

Xy (A) = 1.

THEOREM 4.1. Let Q be a full biased graph without loose edges or balanced
loops and let® be an abstract simplicial complex on vertex getThe character-
istic polynomial ofQ = Q(<2, C) is given by

Pe) = xbwDxGe(h = D). (4.1)
Wee
If V ¢ e, the Mobius invariant of) is
M@(O, i) = Z Xé;w(l)ML(Q:Wf)(és i)- 4.2)
Wee

We have writteny5,,, (1) and x5, (A — 1) but becaus&? is full those quan-
tities equalyq.w (2) and xq.w<(A), by the identity (2.3b). Sometimes one form is
preferable, sometimes the other. For nonenmgtymoreover,

Xow (D) = (=DIVI=E@W g(Lo(Q*:W)) (4.3)

by [18, Theorem II1.5.2], wher@ denotes Crapo’s invariant, which is nonnegative
[4].

We do not know any enumerative interpretationzof(i). It would be quite
interesting if there is one.

Proof. The form of the characteristic polynomial makes Mébius inversion the
natural choice for proving Theorem 4.1. The model is the proof by counting col-
orings (see [10, p. 362]) that the chromatic polynomial of a graph equals the
characteristic polynomial of its polygon matroid (up to a factor of a power of
A). We face two difficulties. One is that the function to be inverted is relatively
complicated. The other is that we can color only wherhas gains in a finite
group. Thus we give two proofs: one depends on counting colorings to set up the
M®obius inversion; the second is an algebraic adaptation of the first that permits us
to dispense with coloring and be completely general.

We write Q for Q(L2, C).

Coloring Proof. We assume? = (®), the biased graph of a gain gragh
whose gain grougb is finite. Write M = |&|. A C-restricted coloringof @ is a
coloringx whose zero set~(0) is not inC*.

Step 1We set up a Mdbius inversion. Liete Nandi = kM+1. ForA € LatQ
let f(A) be the number of-restrictedk-coloringsk with I(x) > A and letg(A)
be the number witd () = A. Obviously,

fA) =" g(A), (4.4)

A'>A
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the sum being taken indifferently i@ or Lat2 sinceg(A’) = 0if A’ ¢ Q. Itisalso
clear thatg (%) is the number of propér-colorings of®; that is,g(¥) = xq(A).
Before inverting (4.4) we need an explicit formula fér When we color so
that/(x) > A there are three points to remember: we must color 0gga), the
coloring of each blockX € 7, (A) is determined by the color on one vertex, and
each such block is all zero or all non-zero.i§(A) ¢ G, then f(A) = APW),
the number ok-colorings with7(x) > A. If Vo(A) = @, f(A) equalsi’® less
the number of-colorings (with/(x) > A) whose zero set is i@*. To evaluate
the latter number, let C 7,(A) be the set of zero-colored blocks. Then there are
kM = ) — 1 ways to color each of the remaining blocks, so

AL if Vo(A) ¢ C,
F(A) = ABD — 3 (= PO if vo(4) = 0. (4.5)

¢Sy (A)
Ugee*

Step 2 Now we invert (4.4), regarded as a sum o¥gr employing (4.5) to
evaluatef. The inversion yields

g(A) =) (A, A) f(A),

A>A'
from which we conclude that
gW) = @ AXD — N 3" po@, A —DPPEL (4.6)

AeQ AeQ  cCmp(d)
Vo(A)=[/1 Jcee*

The first sum equalg(1). To simplify the second we writ& = [ J¢ and sum
over Z € C*: then for eachZ we sum overA e Lat’ Q such thatZ is a union of
blocks of,(A). Thus¢ is determinedz = {X € m,(A): X C Z}. We further
split A into A, = A:Z andA, = A:Z°. Since(V, A) = (Z, Ay U (Z¢, Ay), the
Mobius function factors and the whole sum becomes

Z Z Z w(@, AD (@, Ao)(r — 1)P¢42

ZeC* Ajelat(:Z) Apelat (Q:2¢)
= > (2 Dxb (o= ).
ZeC*
Substituting this expression for the double sum in (4.6) and recallinggtfiat=

xe (1), we easily deduce (4.1).
Step 3To prove (4.2) we sét = 0in (4.1). 0

Algebraic Proof. To generalize the first proof to any biased grapkve distill
the algebraic essence gfandg. For A € Lat<2 let us redefine
AL if Vo(A) ¢ C,
FA) = RO =" N o= PR if vg(4) e e,

ZeC*  (Smp(A)
VoAUl ¢=Z
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and
_ N xea) = x4, 0 =1 if Vo(A) ¢ €7,
§(A) = { 0 o if Vo(A) € C*.

Once we prove that (4.4) holds we can proceed as in Steps 2 and 3 of the first proof.
First, supposé/y(A) ¢ C. Then in (4.4) we are summing over in LatQ.
Bearing in mind that Lag2/A’) = [A/, E] atq, We have

Z g(A/) = Z XQ/A/()\.) = ZZM(A/’ A//))\b(A”)

A'>A A'>A A<A'<A”

= PN = fr(A4).
Now assumé/p(A) € C. Again summing over’ in Lat2, we have

D gA) = D xeaW) = Y xem()

A=A A'>A A=A
VoA/eC’*

= O3 N xg =D,

ZeC* A=A

VoA/=Z
Therefore,
FA=Yg@) =31 Y dha—D— Y G-pEE
A'>A ZeC* A=A {Cmp (A)
VoA'=Z VoAU ¢=2

We wish to show that the quantity in braces equals zero.

If Z is not the union ofVy(A) and| J ¢ for some¢ € m,(A), then noA” > A
can haveVy(A") = Z, so both sums are empty.

If Z is such a union, then is unique so the second sum equals— 1)?4:2%.
As for the first sum, le\g = E:Z, A] = A":Z¢, andA; = A:Z°. ThenA’ = AU
A}, andA; < A} in Lat’(Q:Z¢). By the definition of contraction, LatQ2/A") =
Lat’((2:2)/AY); thusxg, (= 1) = x(@:ze),a;, (- — 1). It follows that

b b
Z XQ/A’()“ — 1) = Z X(QZZ‘7)/A/1()\' - 1)
A'>A in LatQ A'<Alelat (Q:2¢)
VoA/=Z
= 27 AL ADG.— )P
AlgAifAZ
clatb(Q:z¢)

= (A — 1)b(A1) = (L — 1)b(A:ZC)‘

The two sums in the braces are consequently equal.
Hence (4.4) is valid and the proof can continue through Steps 2 and 3. O
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Quite a different proof can be given, depending on guessing the correct formula,
induction, the convolution identities (2.2), and intricate calculations. (This was
essentially Hanlon’s original proof in [7] of a form of Theorem 1.1 ®y.) We
omit it because we feel that the inversion proofs are more natural and illuminating.

Proof of Theorem 1.1By Section 2FQ (B, (M), €) is canonically isomorphic to
Q(ZyuK;, C),inwhichh = h = r (by Theorem 3.8; also easy to check directly).
The characteristic polynomial of the latter is evaluable by Theorem 4.1 and Equa-
tion (2.5). The sign properties follow from the continuation of Example 4.1, after
Corollary 4.7. O

We present next two variations on Theorem 4.1: the first one elementary, the sec-
ond an intriguing formula that expresspg (1) in terms of principal simplicial
complexes though at the cost of having to compute a new Mdbius function. The
first variation is useful wheg is very large.

COROLLARY 4.2. If Qs full, then
Poe.ey® =x50) = D xqw D xgwe( — 1),
Wée
Proof. Rewriting (4.1) slightly,

Pg) =D xowDxGwe e = = Y xGw D xGwe b — D).
wcv wee

The former sum equalgs (1) by (2.2). o

Giveng, IgtM((?) consist of all intersections of one or more maximal elements
of € and letM (C) = M(C) U {1} wherel is not inM(C).

COROLLARY 4.3. If Qs full, then

PQ(Q,@)()\) = - Z Mﬁ(e)(W, 1)p§(52,,7’(W))()‘)'

WeM(C)
Proof. The right-hand side expands to

= N wW Dy Dxgx i~ D

XCSWeM(C)
=Zxézx<1>xézxc<x—1>[— > mw,i)}.
XeC XCWeM(C)

Let X be the intersection of all maximal elements®that containX. ThenX e
M(C), so the quantity in braces reducesuit@l, 1) = 1. Then by Theorem 4.1 the
outer sum equalps(1). O
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Knowing the formula (4.2) for the Mdbius invariant gf($2, C), we can write
an expression for the Mdébius function of any interj/al, A,] using the notation
of Lemmas 3.11-3.13.

COROLLARY 4.4. Let2 be afull biased graph and let; < A,in Q(L2, ©). Set-
ting W = VoAz, Q' = Q((Qu:W)/(A1:W), C/mp(A1:W)), andT'z = (Z, A2:Z)/
(A1:Z) for Z € 7,(Ay), we have

oA, A2) = puo(0,1) ] smar, @ 1).
Zemp(A)
Proof. We appeal to Lemma 3.13 for the structurd 4f, A,]. m|

EXAMPLE 4.1. We show how Corollary 4.4 applies®= (&K?). That gives
the Mdbius function ofB, (M) if we take groupZ,,. As usual, we seM = |&]|.

LetQ = Q(&K;, C)andletA; < Azin Q.LetZ,y, Z,, ..., Z; be the balanced
components ofV, Ay), let Zo = Vo(A2)\Vo(A1), and letn; be the number of com-
ponents of V, A;) contained inZ;. Thus,ng is the number of balanced components
of (V, A7) that are contained ify(Ay), andng+ni+---+ny—k = r(Az) —r(Ay).
Then

(A1, Ag) = (=1)"rH Tty — 1l (np — D! x

X{(M(no — D+ Duoom —

— > Ni(@/mp(Ar: Zo)(M(i — 1) — 1)i g X

i=1

x(M(no —i— 1) + 1),,01',/\/[}. (47)

Proof. In Corollary 4.4,(2:W)/(A1:W) simplifies, by elimination of multiple
unbalanced edges and multiple links having the same gaf®,¢ ), andl'z, sim-
plifies to K, for i > 1. Then Theorem 1.1 gives, (0, 1). (Thatuax, (0. 1) =
(=" 1(m — 1)! is a well known theorem of Schutzenberger and of Frucht and
Rota; see [10, p. 359].) O

See the continuation of this example following Corollary 4.7.
One would like to determine the sign pf, (0, 1). This seems difficult, but in

many cases we can show tr(atl)”ug(ﬁ, 1) is positive or at least non-negative.
We being with some examples.

EXAMPLE4.2. IfC = {#} or € = P(V)\{V}, then(=1)"1o(0,1) > 0; itis
positive except whee = £ (V)\{V} andQ* has a balanced block.
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Proof.In the former cas® = Lat2. We know the sign ofi by Rota’s theorem
[10, p. 357, Theorem 4].

In the latter case)«,LQ(f), 1) = —x5 (1) = (=1)"B(Lo(22*)), wherep is known
to be nonnegative always and positive if and onl\.(2*) is inseparable [4].
Inseparability holds if and only 2 has no balanced block [18, Theorem 11.38].

EXAMPLE 4.3. Supposd' is a tree of ordem andQ = (T*). The sign of
1o(0, 1) is very sensitive to the choice of simplicial complex. Sifids balanced,
Xy (W) = xry (W) = AT (L — DIETDI We conclude thags., (1) = 1if Wis
stable inT and 0 otherwise. Thus from Theorem 4.1 we deduce that

po®@ = Y (~pMI2ETIL

Wee
stable inT

SinceW is stable|E(T:W¢)| = n — 1—dy(W), whered; means degree ifi and
dr(W) =3, . dr(v). Therefore,

~D'uo@H =271 3 (~pM . (4.8)

Wee
stable inT

We can now produce an indexing complex for whieH)” 11 (0, 1) is negative.
TakeC = Gy = {0, {v}: v € V} and assume > 3. Because at least two vertices
have degree one, (4.8) becomes negative.

For instance, iff" is a star thef—1)" (0, 1) = —(n — 3)2"2 — 1.

We can predict non-negativity 2 meets some rather stringent conditions.

THEOREM 4.5. Assume thaf2 is full, V ¢ €, and, for everyW € ¢, Q:W is
connected. Thet-1)" 1o (a.¢)(0, 1) > 0.
Furthermore, (—1)"1p@.¢)(0, 1) > 0 if suppe # V or if Q%W has no
balanced blocks for som& < €< (in particular, if @* has no balanced blocks
Proof. First we establish a lemma.

LEMMA 4.6. LetQ be fullandV ¢ €. Then

(=" 10,00, 1)
= Y (=)W IB(Lo(Q": W) | pranewey O, D). (4.9)
Wwecee

Proof. From Corollary 4.2 and Equation (4.3) we obtain
o0 1) =0— ) (=)W B(Lo(Q:W)) trae:we (0, 1).
we¢e

Since Lat2:W¢) is a geometric lattice of rankV¢|, we know the Mdbius invariant
has sign(—1)!"“!. The lemma follows. O
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Now it is clear that, assumingQ:W) = 1 for all W ¢ €, the right-hand side
of (4.9) is nonnegative. Under the same assumption, it is positive if anpor/é
has no balanced block or, sing&?) = 1, if there is a vertex such that{v} ¢ C.

COROLLARY 4.7. If Q is full and complete an®* is unbalanced, theg—1)"
Ho@.e (0, 1) > 0for every indexing comple®.

It seems that Theorem 4.5 is far from covering all cases in which one would
expect(—1)"uo(0, 1) to be nonnegative. It does not apply to Example 4.2, for
instance.

EXAMPLE 4.1, continued. 12 = (BK?), where|®| > 2, then sgnugq.c) (A1,
AZ) — (_1)"0+ﬂ1+~~~+nk—k — (_1)r(A2)—r(A1).

Proof. Referring back to Lemma 3.13, we see that the task is to show that
sgnug (0, 1) = (~1)™, where Q' is as in Corollary 4.4. Bu:W = (&K}, );
contracting byA;: W and neglecting multiple edges as in the proof of (4.7), we see
that 0" = Q(, ©') for Q" = (&K ) and suitable®’. Now Corollary 4.7 applies
(unlessn = 1, which is trivial). O

It follows that, if w; denotes the coefficient af~ in po(2), then

wil = (=D'wi = > |up(0, A)l.

AeQ(2,0)
r(A)=i

Thus the coefficients opy (1) alternate in sign, and they are all nonzer@®ifc
P(V). In particular,

(—=1)"up@©,1) >0 ifecPw).

(If ¢ = P(V), thenQ = Lat’(&K?), which has rank — 1. Thusw, = 0 but the
otherw; are all nonzero.) These observations complete the proof of Theorem 1.1,
which concerns the case in whi¢h= 7Z,,. m|

We have one more topic to develop in this section: a deletion-contraction iden-
tity.

THEOREM 4.8. Suppos& is full ande is a link in 2. Then

Po.e)R) = Pg@e.e)F) = Po@ye,c/myen )
Proof. In the formula of Theorem 4.1 there are three kinds of 8éts C: those
for which W 2 V(e), those for whichW® 2 V(e), and the rest. In the former
cases letV denote the element @ /7, (¢) that corresponds t&. We apply the
balanced deletion-contraction identity of [18, Corollary 111.3.3], which says that
X600 = X ) = x&,e (V).



TRACTABLE PARTIALLY ORDERED SETS 247

If V(e) € W, then theW term of (4.1) expands to
Klenorsw W xGawe O = D = X 07D Xwe O = D).
But Q:W¢ = (Q\e):W* and also= (2/e): W, so we get
Xi@erw (D X(aywe - — 1) = X(bSZ/e):W(l)X(bQ/e):WC @ =1
Similarly, the term corresponding ¥ for which V (¢) € W¢ transforms to
Xianerw D X(anowe = D = Xy 0 7 DA oy ¢ — 1.
The term of a seW of the third type can be rewritten as

X(bsz\e):w(l)X(bsz\e):Wf (A —=1).

Now applying (4.1) again, one has the right-hand side of the formula in Theo-
rem 4.8. O

We hope that Theorem 4.8 with= 0 might permit a generalization of Theo-
rem 4.5, but we have not seen how to do that.

5. Polynomials from Non-Full Biased Graphs

Most of the results of Section 4 were proved only wisgmwas full, but by a little
trick we can apply them to some non-full biased graphs, and there are variants of
Theorem 4.1 that hold for others.

The little trick is that, if (22, @) = Q(Q°*, ¢) for some€’, then Q(2, C)
can be treated as though were full. (We wantQ* rather than some other full
biased graph, in part because the balanced polynomials, appearing in the right-
side of (4.1) and in other identities, are unaffected by the presence or absence of
unbalanced edges but tend to change when one alters the biased graph in other
ways.) The first results characterize when this is possible, either for(&@ith ¢’
constructed in a certain systematic way) or for a particGlalet

UQ) = {X S V:b(:X) =0}

PROPOSITION 5.1.Given 2 and G, let O be a subset of? (V) with ¥ € D.
ThenQ (22, ©) = Q(Q*, D) if and only if D = C U U(L)*.

Proof. It is clear that Laf2 = Q(Q°, U()*). It follows that Q(L2, @) =
Q(Q2°, U()* U C). Evidently L must contairl(2)* andC if Q(2°, D) is not
to have extra flats; meanwhile, it cannot contain any more thanU (2)* or it
will have too few flats. O

Propostion 5.1 shows what the form®fought to be. The hitch is that (2)*
may not be a simplicial complex. Th&i = € U U(L2)* may not be a simplicial
complex so (4.1) may fail. Thus we want to know wh@&ris a simplicial complex;
but that may depend ap, so we also want to know whe®i is a simplicial complex
for everyC — that is, wherl (2)* itself is a simplicial complex.
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PROPOSITION 5.2. Let 2 be a simply biased grapHu(2)* is a simplicial
complex if and only if

(@) everyu € U(2) andw € U (Q2)“ are adjacent, and
(b) for every unbalanced digon or induced unbalanced polygom Q:U (2)¢
and every vertexy € U (22)°\V (C), there is an edge frorm to a vertex ofC.

Proof. U(2)* is an order ideaks> each induced subgrapf:W that has a
balanced component is balanced

(c) for each balanced, connect@dW and unbalanced, connect&dX with X N
W = @, there is an edge betweéhandW.

This last condition implies (a) and (b). Conversely, suppose (a) and (b) and let
W and X be as in (¢). Pickv € W and either an unbalanced edge at a vertex
u € X, if possible, or a vertex-minimal unbalanced polygdin Q:X. C must be
an induced polygon or a digon. Therefore in either case there is an edge between
w € W and a vertex inx. O

COROLLARY 5.3. U(2)* is a simplicial complex if2 is complete.
Let N(y) = {z € V\y: zis not adjacent to}.

PROPOSITION 5.4.GivenQ2 and G, C U U(2)* is a simplicial complex if and
only if € containsVy(Q:N (v)) for everyy € U(Q)°.

Proof. Let A be the class of sef§ € U(Q)* that are subsets of setsU(Q)*.
Call X critical if it is maximal in 4. Evidently, forC" = € U U(R)* to be a
simplicial complex it is necessary and sufficient tatontain every critical set.

Itis clear that, ifw ¢ U(2), thenVy(Q2:N(w)) € A.

SupposeX is critical andW is a minimal superset of in U(R)**. ThusW =
X U {y}, b(Q:X) = 0, andb(2:W) > 0. ThereforeQ:W = (Q:X) U (Q:{y}) and
y ¢ U(Q). It follows that X C Vp(2:N(y)). But thenX, being critical, equals
Vo(Q:N(y)). We conclude that the critical sets are the maximal sets of the form
Vo(Q1:N (y)) wherey € U(Q2)“. O

EXAMPLE 5.1. Let us apply this theory t& = (BAY)) whereA is a simple
graph of orden, & is a nontrivial group, and C V = V(A).
HereU(Q) = U andU(Q2) = {X € V: Q:X has no isolated vertices Iii}.
Also, N(y) is the same im\ as in2, and Vo(Q:N (y)) = N(y)\{z € NOW)\U : z
is isolated inA:N (y)}. This makes the application of Proposition 5.4 obvious.
Let A; v A, denote thgoin of graphs: the disjoint union together with all edges
betweenA, and A,. It is an exercise to deduce from Proposition 5.2 thaf2)*
is a simplicial complex if and only i = (A:U) v K v Ky Vv --- Vv K}, where
A:U is any simple graph on vertex gt/ > 0, andny +n + --- +n; = |U“|.
When computing the right-hand sides of (4.1) and (4.2), etc., keep in mind
Formula (2.4).
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A weaker version of Theorem 4.1 can be stated for all biased graphs that come
from gain graphsd with finite gain group®. Let M = |®| as usual. Foi =
kM + 1 andW C V, let&g w () be the number of propércoloringsy of &:W¢
such thaty ~1(0) is nonadjacent taV.

LEMMAS.5. Given® with gain group® andW C V. Let®; be a®-gain graph
on vertex se¥; = W<U{uvg}, wherevg ¢ V, such thatb,: W = ®&:W*¢, vg supports
no unbalanced edge, and a vertex W< is adjacent tayg in @, if and only if it is
adjacent to a vertex oV in ®. (The gains on edgesy are arbitrary) Let ®, be
®, with an unbalanced edge attachedup Then

Eo,w(A) = xo,(A) — Xa,(A)

for all A of the formMk + 1 withk € N.
The proof is straightforward. O

Consequentlyq, w (1) is a polynomial il and we can evaluate it, for example,
ath =0.

THEOREM 5.6. If ® is a gain graph whose gain group is finite of orddr, then

Pooo® =xaW+ D xgwDEaw®), (5.1)
WelC*NU(D)

and if V ¢ ¢ and E = 1 has heightz in Q(®, @), then

13we 0D =mac@ D+ > xbwDéew(0. (5.2)
WeC*NU(D)
Proof. We adapt the coloring proof of Theorem 4.1. bet= kM + 1 where
k € N. The crucial difference is in (4.5) for balancdd Instead of that formula we

get an expression in terms &f
Let A be a balanced flat in L&t. Then

f(A) = 2P — Z (# of k-coloringsk of ® with I« = A).

A=A
VoAl ee*

Thus after inverting (4.4), rather than (4.6) we get

g@) = pg(M)— Y Y u@ A ofk with I(x) = A")

A=A
VoA=#,VpA'eC*

= ps)— > > (b (D#ofk with I(x) = A).

Wel* AlcLatd
VoA/:W
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We may writeA’ as (E:W) U A} where A e Lat’(®:W¢). If A} # @, then
X§>|A/(1) = X<}I)):W(1)X(bcl>;wf)|,4/l(1) and, becauset] is balanced,x(bq):wf)m/l(l) =
X:wea;(1) = 0, wherel is the underlying graph ob. Consequently

g0 =pg\)— > xew D@ ofk with I(c) = E:W). (5.3)

wee*
b(®:W)=0

Now, a coloringk that is counted here must be 0 @n, because(d:W) = 0,
and can be any propércoloring onW¢ except that it may not color a vertex 0
that is adjacent to a vertex . Hence the quantity in parentheses in (5.3) equals
Eo.w(A). Sinceg(¥) = xo (1), we have (5.1) foh = kM + 1.

Being a polynomial identity, (5.1) therefore holds good for all numbeiSet-
ting » = 0 and observing that, ii(E) = n thenr(E) = n 50 x6(0) = 10 (0, 1),
we get (5.2). O

The question is: what 64 x(1)? If we can evaluate it we have a formula for
py(2). Lemma 5.5 can provide one means of evaluation. Lemmas 5.7 and 5.8
provide others.

LEMMAS.7. Given® with gain group of finite ordeM, A = kM + 1 where
k e N,andW C V, we have:

@) Xgwe O =D < Eow) < xowe(R),
(b) &¢.w(A) =the upper bounds U (2)¢\W is nonadjacent taV,
(€) &o.w (1) =the lower bounds everyv € U(2)°\ W is adjacent to every vertex
in W.
Proof. Straightforward. 0

LEMMA 5.8. Let ® have finite gain group. A necessary and sufficient condition
thatée w(A) = x5.yc( — 1) for all W e €* is that eachw € suppC be adjacent
to every vertex it/ (2)°\{v}.

Proof. Easy, using Lemma 5.7(c). O

COROLLARY 5.9. If @ has finite gain group and satisfies the property in Lemma
5.8 for instance if it is complete, then

Pooe® =xeM+ D xow Dby — 1.
WelC*NU(P)

Let us compare this with the formula obtained from Proposition 5.2 or 5.4. If
we employ (2.3a) to expangs (1) in terms of balanced chromatic polynomials,
Corollary 5.9 takes the form

Pow.e)(A) = ( Z + Z)XCZI;:W(]-)XCZI;:WC *—=1.

WeCUU(P) W0
stable



TRACTABLE PARTIALLY ORDERED SETS 251

That is rather different from what we get by setti@(Q, C) = O(®*,C U
UD)™) in (4.1).

6. Examples

We shall investigate the posets associated with several types of indexing com-

plexes. In the first example, as a foretaste of the general ones to follow, for each

type of complex we examin@ (8K, C). Most of the examples show instances of

a curious root-shifting phenomenon that we discuss briefly in the next section.
Throughout this sectiog will be a full biased graph.

EXAMPLE 6.1. We take2 = (&K?) so that, as usual denoting By the order
of the group,

prata(d) = xoA) = (A — D)y u, (6.1a)
whose roots are
IM+1.... m—-2M+1, (n—1)M + 1. (6.1b)

We write 0 = Q(, @), which equalsQ (R, @) since by Corollary 3.10 the ex-
trinsic gradingr is the actual rank function. Note that the statement and proof of
Theorem 1.1 remain valid even whenis not a cyclic group.

EXAMPLE 6.1A. For our first instance we taketo be anm-point 0-dimensional
complexe,,, sayC,, = {#, {i}: n —m < i < n}, and we assumgf > 2. HereQ

is the geometric lattice L& K"~ , where& K "~™ is &K with the unbalanced
edges removed from vertices— m + 1,n — m + 2, ..., n. Geometrically, if
& = Zy, Q is the lattice of flats spanned by the subsystenBgfM) defined
by Di"=™(M) = {us, ..., un_m} U D,(M), which asm varies generates a chain
of geometric lattices interpolating betweén (M) and B,,(M). The characteristic
polynomials are easy to calculate: from Theorem 1.1 we get

Po() = =Dy +m = Dyru
= A= Dyan— (1= DM — L+ m).

So the characteristic roots &f"~™ (M), or of &(K ™)) for any group of order
M, are

LMAL ..., —-2dM+1,(n—DM+1—m. (6.1¢)

Compare to (6.1b): the largest root is reducedinyhile the others remain as they
were.
The characteristic polynomial @, is

pe,(y) =y —m,
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whose one root is precisely the amount by which the largest root @2 datcreases
in passing toQ.

The characteristic polynomials of these “interpolating” lattices have been treated
elsewhere by different methods, three of which are described in [1, Section 5; 8;
14, Theorem 7].

EXAMPLE 6.1B. Next, letC = £(X) where|X| = k < n. The characteristic
roots of Q are

LM+ ... m—k—DDM+1 (n—kM,...,(n—1M.

(This list can be deduced from Theorem 1.1; it is also a special case of Exam-
ple 6.3.) The indexing complex has characteristic polynomial

P () = (v — D,
whosek roots all equal 1, precisely the amount by which th&argest roots of
LatQ2 are decreased as we pasgxo
Geometrically, wher is cyclic, Q consists of those flats generated By(M)
that contain either no coordinate vectgrat all or at least one; for whichi ¢ X.

EXAMPLE 6.1C. Now we let® = £(X1) U --- U P (X,,) wherem > 2 and the

X; are nonempty, pairwise disjoint subsets[of. Let k; = |X;|. ThenN;(C) in
Theorem 1.1 equals;, (). If k = maxk;, then(r —1),_  is a factor ofpy (1)
solM+1,...,(n —k—1)M + 1 are characteristic roots, but there seem to be
no general further factorization and no transformation of the roots in terms of the

roots of pe (y) unless alk; = 1, which is Example 6.1A.

This suggests that cases like those in Examples 6.1A and B are rather special.
We can, though, generalize them.

EXAMPLE 6.1D. Given two simplicial complexe® andD’, defineD x O’ =
{AUB: A € O andB € D'}. If the supports ofD and D’ are disjoint, then
Po+o'(¥) = po(y) po (y). SUppose® = D * L (X) whereX = [n — k]° andD
is a simplicial complex on vertex spt — k]. Thenpe(y) = (y — D)*po(y). From
Proposition 6.1 below we get

po) = A—(m—-—kbM)Ah—-n—k+1M) - x
X(h = —=DM)poek: , 0.

So, whateverD does to the characteristic roots®&;_,, the effect ofC is to do
the same to the smallest— k roots of & K while shrinking each of the largekst
by 1.

For instance, whetD = @, ¢ merely reduces by 1 thielargest roots. When
D = Cuy = {9, {1}, ..., {m}}, then in addition theék + 1)st largest root is lowered
by m.
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EXAMPLE 6.2. In treating more general examples we need a certain property of
a vertex which is related to modularity of coatomsds2). In a full biased graph

Q a vertexv is bias simplicialif, for any two linkse,,, ande,, from v to distinct
verticesw andx, there is an edge,, forming a balanced trianglg, ., €¢ux, €wx}-

For instance, il5K? every vertex is bias simplicial. I&A*® a vertex is bias sim-
plicial if and only if it is simplicial in A (i.e., its neighbors form a clique). From
[19, Theorem 2.1] we know thd (2\v) is a modular flat if and only ib is bias
simplicial. Then by Stanley’s factorization theorem [11, Theorem 2], provided that
Q is simply biased, we have

xoa) = A —dy) xow(A), (6.2a)

whered, = degree ofv in Q; also

X)) = o+ 1—d)xb () (6.2b)
by (2.3b) applied to (6.2a).

We call Q a bias-simplicial extension aR:Y by (v;41, vi42, ..., v,) if Y¢ can
be ordered atv; 1, v142, ..., v,) SO that eachy; is bias simplicial in2; = Q:(Y U
{vis1, ..., v;}). Define

d; = degree ob; in ;. (6.2¢)

Then (6.2a) and (6.2b) imply
xa() = A —dip) O — diy2) - - O — dy) xar (A, (6.2d)
X = +1—dp)O+1—di2) - A+ 1—d)xby ), (6.2e)

as long a2 is simply biased.
Recall from Example 6.1D the definition @+ D’. As before, we are interested
in examples whered’ = £ (X) for X C V.

PROPOSITION 6.1. Let 2 be a full, simply biased graph anfl = {v, .1,
Upn_ka2s -+ -, Up}. SUPPOSER is @ bias-simplicial extension b, 11, Vu_ki2, ...,
v,) of Q:X¢. LetD be a simplicial complex on vertex skt andC = D * £ (X).
Then

PoeyA) = A+1l—di )X +1—dypgy2) -+ %
XA+ 1—d)pygxe0*),

whered; is defined by(6.2c)

Proof. Clearly, we may apply the cage= 1 iteratively to deduce the whole
proposition. So we assunke= 1. Forw C V\v, we write W = W U {v,} and
d,(W'") for the degree of, in Q:W’.
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Sincev, is bias simplicial in$2 it has that same property in any induced sub-
graphQ:W’. Thus

Poce® = Y {x&w Dxaw @) + xbuw Dxgy ()]
WeD

= D = d W) xby D xg (M) +
WeD

+12 = di (W) Ixgw (D Xguye )}

= O+1=d) Y xhw Dxow:0)
WeD

= A+ 1=d)Pga,.00M)-

a

We see that, whatever may be the effect on the characteristic roots of changing
Lat(2:X¢) to Q(Q:X°¢, D), our construction of® superimposes a further effect of
subtracting 1 from the additional roots of L@t

EXAMPLE 6.3. We getC = £(X) by taking D = {@} in Example 6.2. So
wheng is a bias-simplicial extension @:X¢ (and assumingX # V) we have a
simple root-shifting phenomenon: certadimoots of Lat2, namelyd, 4.1, ..., d,,
are reduced by 1, while the others are unchanged.

WhenQ = (&K?) the shifted roots are the largest ones because the degrees are
given byd; = Mi + 1 for alli.

EXAMPLE 6.4. TakeC to be the 0-dimensional compl&¢ = {4, {v} : v € Z}
whereZ C V and|Z| = m > 1. Theorem 4.1 reduces to

Poo.ey®) = xa0) + > xanw®). (6.4a)

veZ

If it happens thatQ*:{v, w} is unbalanced for every pajv, w} € Z, then
0(Q, C) is the geometric lattice L&*Z", whereQ*?" is Q with the unbal-
anced edges removed from the vertice<ZinThis applies for instance to Exam-
ple 6.1A and more generally i@ = (&A°*) if Z is a cliqgue inA and |&| >
2.

Suppose every vertex i is bias simplicial and has degréelhen
xo() = A = Dxanw@)
for v € Z by Proposition 6.1, so (6.4a) simplifies to
A—=1l+m
A—1

which we interpret as saying that a certain characteristic root of2Lizs been
reduced byn.

PQ(Q,@Z)()M) = pLata(A), (6.4b)
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EXAMPLE 6.5. We combine Examples 6.3 and 6.4. Kebe a bias-simplicial
extension ofQ2:X¢ as in Proposition 6.1 and |& = £ (X) x C; with Gz as in
Example 6.4, wher@ £ Z C X and each vertex € Z is bias simplicial in2: X
and has degrdén . Letm = |Z| andk = |X|. Comparing the characteristic roots
of Lat2 and Q(2, @), we observe that each of the former’s rodts;1, ..., d,

is lowered by 1, while one of the rootss reduced byn.

EXAMPLE 6.6. Now letC = P(X)UP (X)) U---UP(X,,) wherem > 2 and

the setsXy, X», ..., X,, are nonvoid and mutually disjoint. Then
m
Poco® =xe@+Y Y xhwDxaw (), (6.6a)
i=1 pcWCX;

which has no obvious factorization except in one special case.

Suppose all the flatd; = E:X{ are modular in Laf2 and letY = (X; U
-UX,). ThenA = A; N --- N A, = E:Y is modular because in a geomet-
ric lattice the meet of modular flats is modular (a result due to Stanley; see [3,
Proposition 3.6] and [11, Lemma 2]). By Stanley’s factorization theorem [11], the
characteristic polynomial of L&®2|A), which is xq.y (1), is a common factor of all
terms in (6.6a), hence a factor pf;(1).

In Example 6.1C we noticed the factr — 1), ». That is an instance of the
modular factorization just discussed, becalsg is a modular flat of La& K ; for
anyY C [n]. (See [6, Theorem 4].)

7. Root Shifting and Other Problems

In most of the examples in Section 6 we observed that under certain circumstances
characteristic roots are shifted as we pass frontLed Q(2, €). The number of
shifted roots and the amount of shift in these examples are precisely the number
and size of the characteristic roots ®f Why this should be so, and whether it
represents a general phenomenon or an accident, we do not know.

We summarize the data. In each case the shifting is known to take place only
for certain niceQ2’s.

EXAMPLES 6.1A and 6.4. The characteristic polynomial ®fis y — m. We
observe that one root ¢f 51 (1) is decreased by, the root ofpe ().

EXAMPLES 6.1B and 6.3. Herpe(y) = (y — 1), which hask roots equal to 1,
andk roots of p a1 ()) are decreased by 1.

EXAMPLES 6.1D and 6.2. We havge(y) = (y — 1)¥po(y) wherek = |X|, so
the characteristic roots @f are those ofD andk additional 1's. The effect on the
roots of Lat2 corresponds: whateved does top_aiq.x< (1), each additional root
of pLata(A) suffers a decrease of 1.
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EXAMPLE 6.5. Herepe(y) = (v — 1)*(y — m), whose roots correspond to the
effect of C-restriction on the characteristic roots of [Sat

EXAMPLES 6.1C and 6.6. Here, it > 1 and some; > 1, the characteristic
polynomial of € has no obvious factorization and the effectGobn the character-
istic roots of Lai2, while obscure, is probably not simply related to the roots of

pe(y).

Based on these examples it is hard to tell whether or not there is an interesting
answer to the problem of root shifting, which we state formally as

PROBLEM 1. Isthere any theory of a relationship among the roogs, 6f), pe (),
andpgq.e)(A)?

Our work suggests other theoretical questions in addition to the root-shifting
problem. There are the questions of generalizing Theorems 3.6 and 3.8 to all bi-
ased graphs, determining more completely wh@r(h@)((), 1)>0 (generalizing
Theorem 4.5), clarifying the relationship (if any) betwegg(1) and po(3), and
gaining more understanding & w (1) in Theorem 5.6. Two broader problems are
these:

PROBLEM 2. Can one extend the constructio@@, ¢) from bias matroids of
biased graphs to an arbitrary matrditiwith prescribed basi¥, in such a way as
to generalize any of our results?

PROBLEM 3. Can algebraic constructions that lead to the exponents of a root
system be carried out more generally, eitherdge-K >, C) or Q(6Ky, C), or for
0(L2, @) in general?
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