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certain flats indexed by a simplicial complexC. (One example ofL is the lattice of flats of the vector
matroid of a root systemBn.) We study the structure and compute the characteristic polynomial ofQ.
With certain choices ofL andC, including ones for whichQ is a lattice interpolating between those
of Bn andDn, we observe curious relationships among the roots of the characteristic polynomials of
Q,L, andC.
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1. Introduction

We introduce a new kind of finite partially ordered set, derived from a certain type
of geometric lattice via an indexing simplicial complex, whose Möbius function
satisfies a simple reduction formula that in examples with high symmetry leads to
exact evaluations.

Our posets originated in an attempt to understand the relationship between the
exponents of the root systemsBn andDn in Rn. These root systems are defined
by Dn = {±ui ± uj : 1 ≤ i < j ≤ n} andBn = Dn ∪ {±ui : i ∈ [n]}, where
ui is the ith unit coordinate vector and[n] = {1,2, . . . , n}. Associated to each
root systemR of rank n there aren positive integers called itsexponents. There
are many ways to define them, some very combinatorial and some very algebraic.
Best for our purposes is a definition in terms of LatR, the lattice of flats spanned
by subsets ofR. The exponents ofR are the roots of the characteristic polynomial
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230 P. HANLON AND T. ZASLAVSKY

of Lat R. (Those who are unfamiliar with this definition of exponents should see
[9, 13] for a proof that it is equivalent to more familiar definitions.) One can check
that the exponents ofBn andDn are given by these lists:

Bn : 1,3,5, . . . ,2n− 3,2n− 1;
Dn : 1,3,5, . . . ,2n− 3, n− 1.

We see that removal of all the basis vectors±ui from Bn changes only the last
exponent and changes that exponent byn. The original motivation for this work
was a desire to understand why this should be so. Given our definition of exponents,
we must understand why only one root of the characteristic polynomial of LatBn
changes when the lines generated by theui are removed.

We will consider a more general situation in which certain flats, indexed by
an abstract simplicial complex, are removed from LatBn or more generally from
matroids called “bias matroids of full biased graphs”. Our results concern the char-
acteristic polynomials of the partially ordered sets obtained in that way and, for
certain matroids and indexing complexes, the behavior of their roots.

An example will give the flavor of our results. LetF be a field andζM a primitive
Mth root of unity inF , whereM ≥ 1. Define

Dn(M) =
{
ζ kMui − ζ lMuj : i, j ∈ [n], i 6= j, k, l ∈ Z} ⊆ Fn

and

Bn(M) = Dn(M) ∪
{
ζ kMui : i ∈ [n], k ∈ Z}.

ForR ⊆ Fn let LatR be the lattice of all flats generated by subsets ofR. (Then
LatBn(M) is the Dowling lattice of the cyclic groupZM .) If t is a subspace ofFn

defineV0(t) = {i ∈ [n] : ui ∈ t}. Forn,M ≥ 0 we call thefalling factorial with
stepM the polynomial

(y)n,M = y(y −M) · · · (y − (n− 1)M), with (y)0,M = 1.

Now, letC be an abstract simplicial complex on vertex set[n], containing∅ but (to
keep the theorem simple) not[n], and setNi(C) = #{X ∈ C : |X| = i}. The set of
C-restricted flats ofBn(M) is

Q = Q(Bn(M),C) =
{
t ∈ LatBn(M) : V0(t) /∈ C\{∅}},

partially ordered as in LatBn(M). Q has zero element̂0 = {0} and top element
1̂= Fn. Its characteristic polynomial is defined to be

pQ(λ) =
∑
t∈Q

µQ(0̂, t)λ
n−dim t ,

whereµQ is the Möbius function ofQ.
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TRACTABLE PARTIALLY ORDERED SETS 231

THEOREM 1.1. With C andQ as above,Q has rank functionrQ(t) = dim t ,
characteristic polynomial

pQ(λ) = (λ− 1)n,M +
n∑
i=1

(−1)i−1Ni(C)(M(i − 1)− 1)i−1,M(λ− 1)n−i,M ,

and Möbius invariant

µQ(0̂, 1̂) = (−1)n
{
(M(n− 1)+ 1)n,M −

−
n∑
i=1

Ni(C)(M(i − 1)− 1)i−1,M(M(n− i − 1)+ 1)n−i,M

}
.

Moreover, ifM ≥ 2 then(−1)nµQ(0̂, 1̂) > 0 and the coefficients ofpQ(λ) are all
nonzero and alternate in sign.

For the proof see Section 4. Examples obtained by choosingC wisely include
Bn,Dn, and all intermediate setsDn ∪ {u1, . . . , uk} for k = 1,2, . . . , n − 1. For
details on particular examples see Example 6.1.

Theorem 1.1 is a very special case of the main theorem, Theorem 4.1. Observe
that, remarkably, althoughQ(Bn(M),C) is not necessarily a lattice or even a semi-
lattice, still we can give a very explicit formula for its characteristic polynomial and
(in Example 4.1) its Möbius functionµQ(s, t).

A brief outline: Section 2 provides background information, especially the de-
finitions of the characteristic polynomial of an extrinsically graded posetQ̃ and
those of a biased graph� and its geometric lattice. Section 3 defines the poset
Q̃(�,C) and investigates its structure. (The definition is all that is needed to
understand Theorem 4.1, our main theorem.) Section 4 treats the computational
aspect of the poset̃Q(�,C) when� is “full” and Section 5 treats non-full�. In
Section 6 we examine numerous examples. Sections 7 and 8 discuss some problems
suggested by our work.

We should mention that this article is a highly generalized version of the manu-
script [7], which has been cited a few times in the literature.

2. Background Definitions

All our partially ordered sets (or “posets”), graphs, etc. are finite. For basics of
posets we refer to [12], for matroids to [5], for graphs and biased graphs to [18]
(but for the special case of signed graphs one may consult [15–17]).

For ready reference we list standard notations, some of which will be defined
later in this section. We writeP = {1,2,3, . . .},N = {0,1,2,3, . . .}, and[n] =
{1, . . . , n} for n ∈ N. Also,� denotes a biased graph of ordern > 0 with vertex set
V and edge setE, Lat� the lattice of flats of its bias matroid,r the rank function
of the latter, andC an abstract simplicial complex on vertex setV .
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232 P. HANLON AND T. ZASLAVSKY

2A. SET POSETS AND SIMPLICIAL COMPLEXES

An (abstract) simplicial complexon vertex setV is a nonvoid classC ⊆ P (V )
such thatW ⊂ X ∈ C ⇒ W ∈ C. C can be said to have any vertex set that
contains itssupport, suppC = ⋃

C. However, we need to knowV in order to
define the complement,Cc = P (V )\C.

A poset of sets, D, on vertex setV is a subclass ofP (V ) to which∅ belongs. We
writeD∗ = D\{∅}. Theinducedsubclass onW ⊆ V isD:W = {X ∈ C:X ⊆ W }.
ThecontractionD/π , by a partitionπ of a subset ofV , is {τ ⊆ π :

⋃
τ ∈ D}.

2B. POSETS

Consider a posetQ with bottom element̂0. Each elementx has aheight, h(x) =
length of a longest chain from̂0 to x. The height ofQ is h(Q) = maxh(x). If for
eachx every maximal chain from̂0 to x has lengthh(x), we callQ ranked, h(x)
therank of x, andh(Q) the rank ofQ. The notationQ/x means{y ∈ Q : y ≥ x}.
We writex l y to mean thaty coversx.

An extrinsically graded posetis a tripleQ̃ = (Q, h̃, h̃(Q)) whereQ is a poset
with 0̂, h̃ is a strictly increasing functionQ → N such thath̃(0̂) = 0 (called
theextrinsic grading), andh̃(Q) is an integer at least as large as the largesth̃(x).
By Q̃/x we meanQ/x with extrinsic gradingh̃Q̃/x(y) = h̃(y) − h̃(x) and with
h̃(Q/x) = h̃(Q) − h̃(x). We adopt the convention that a posetQ written without
a tilde is “extrinsically graded” by its height functionh (one might call this the
intrinsic grading), while a tilde means there is an arbitrary extrinsic gradingh̃.

One way to construct an extrinsically graded poset is to take a ranked posetP ,
such as a geometric lattice, and letQ be any subset containinĝ0P , extrinsically
graded by the rank function ofP . Our posets are examples of this construction.
(Another such example is the intersection lattice of an arbitrary arrangement of
subspaces in a vector space, ordered by reverse inclusion and graded by codimen-
sion.)

Recall that the Möbius function of a posetQ is the functionµQ : Q×Q→ Z
defined by

µQ(x, y) =


1 if x = y,
−∑x≤z<y µQ(x, y) if x < y,
0 if x � y.

Thecharacteristic polynomialof Q̃ is

pQ̃(λ) =
∑
x∈Q

µQ(0̂, x)λ
h̃(Q)−h̃(x).

For instance,pQ(λ) is the characteristic polynomial associated with the height
functionh. If Q has1̂, we callµQ(0̂, 1̂) theMöbius invariantofQ; it equalspQ̃(0)

if h̃(Q) = h̃(1̂).
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TRACTABLE PARTIALLY ORDERED SETS 233

2C. GRAPHS AND BIASED GRAPHS

A biased graph� = (0,B) is a graph0 = (V,E) together with a subclassB of
its polygons such that, if in a theta subgraph two polygons belong toB, so does the
third. In biased graphs we allow four kinds of edges: links (two distinct endpoints),
loops (two coincident endpoints), half edges (one endpoint), and loose edges (no
endpoints). (Neither of the latter can belong to a polygon. In matroid theory a loose
edge behaves like a balanced loop and a half edge like an unbalanced one, but for
technical reasons it is helpful to allow all four types of edge.)

A subgraph or edge set isbalancedif it contains no half edge and any polygon
in it belongs toB. ForS ⊆ E we letπ(S) [or, respectively,πb(S)] be the partition
of V whose blocks are the vertex sets of the components [respectively, balanced
components] of(V, S), let V0(S) (or justV0S) be the union of vertex sets of un-
balanced components of(V, S), and setc(S) = |π(S)|, b(S) = |πb(S)|. We write
c(�) = c(E), b(�) = b(E), etc.

The bias matroidG(�) is the matroid onE whose rank function isr(S) =
n− b(S). For the lattice of closed sets (or flats) we write Lat�, and Latb � for the
subclass of balanced closed sets.

Thecomplete lift matroidL0(�) is the matroid onE ∪ {e0}, wheree0 is a new
element, whose rank function isn− c(S)− ε(S) whereε(S) = 0 if S is a balanced
edge set and 1 otherwise.

Besides these basic ideas we need a number of technical definitions about graphs
and biased graphs.

Let0 be a graph(V,E). The set of endpoints of an edgee is V (e). Thedegree
of a vertex is the number of incident edges. (A loop in this article counts once, not
twice as in some other works.) ForW ⊆ V andS ⊆ E we writeWc = V \W,Sc =
E\S, and0|S = (V, S). An induced subgraphof 0 is 0:W = (W,E:W) where
W ⊆ V andE:W = {e ∈ E : ∅ 6= V (e) ⊆ W }. W is stableif E:W = ∅. We
denote by[0] the biased graph whose underlying graph is0 and in which every
polygon is balanced. If0 has no loose or half edges,G([0]) is the usual polygon
matroid of0.

We call a biased graph� simply biasedif it has no loose edges, balanced loops,
balanced digons, or pairs of unbalanced edges at the same vertex. We let

U(�) = {v ∈ V : v supports an unbalanced edge}
and we call� full if U(�) = V . If W ⊆ V,�(W) denotes� with a half edge
added at each vertex inW\U(�). We write�• for �(V ). By �∗ we mean� with
unbalanced edges removed;E∗ is E(�∗). If S ⊆ E, then�:W,�|S, etc., denote
subgraphs of0 with balance of polygons the same as in�. Thecontraction�/S
is the biased graph whose vertex set isπb(S) and whose edge set isSc with the
endpoints of an edgeemodified as follows: an endpointv is eliminated ifv ∈ V0(S)

and is replaced by the block ofπb(S) containing it ifv /∈ V0(S). A polygonC in
�/S is balanced if there is a balanced polygonC′ ⊆ C ∪ S such thatC = C′\S. If
S ∈ Lat�, then Lat(�|S) = [0̂, S]Lat� and Lat(�/S) = (Lat�)/S.
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234 P. HANLON AND T. ZASLAVSKY

Disjoint union is written�1∪· �2; the balance of a polygon is the same as in�1

and�2, whichever it is that contains the polygon.

2D. GAIN GRAPHS AND COLORING

A gain graph can be defined in the following way (simplified from [18, Section I.5]).
Take a groupG of orderM ≥ 1. On vertex set[n] construct a graph with edges
(i, j; g) for all distinct i, j ∈ [n] andg ∈ G, but identify the edge(i, j ; g) with
(j, i; g−1). This is the gain graphGKn. We callg thegain of (i, j; g) in the direc-
tion from i to j and we writeϕ(i, j; g) = g. Calling a polygon{(i0, i1; g1), (i1, i2;
g2), . . . , (ik−1, ik; gk)}, wherei0 = ik, balancedwheng1g2 · · · gk = 1 determines
a biased graph〈GKn〉. Adding an unbalanced edge (say, a half edge) to each vertex
givesGK•n . A gain graph8 = (V,E, ϕ) with gain groupG and gain functionϕ
is any subgraph ofGK•n, ϕ being the restriction toE of the gain function ofGK•n ;
〈8〉 denotes the corresponding biased graph andG(8), Lat8, etc., the associated
bias matroidG(〈8〉), lattice Lat〈8〉, and so forth. If1 ⊆ Kn, thenG1 consists
of all edges(i, j; g) of GKn such thatij ∈ E(1), andG1• is the same with an
unbalanced edge at each vertex. We callG1 theG-expansion of1 andG1• the
full G-expansion. The lattice LatGK•n is the well known Dowling lattice ofG of
rankn [6, 12].

A signed graphis a gain graph whose gain group is the sign group{+,−}. Lat
(±K•n) is the lattice of the root systemBn and Lat(±Kn) is that ofDn.

A k-coloring of8 is a mappingκ: V → ([k] ×G)∪ {0}, where 0/∈ G. The set
of improper edges ofκ is

I (κ) = (E:κ−1(0)
) ∪ {(i, j; g) ∈ E : κ(j) = κ(i)g 6= 0

}
,

where ifκ(i) = (m, h) thenκ(i)g = (m, hg), while if κ(i) = 0 thenκ(i)g = 0.
We call κ proper if I (κ) = ∅. WhenG is finite there is a polynomialχ8(λ),
called thechromatic polynomial, which has the property thatχ8(kM + 1) is the
number of properk-colorings of8. There is also azero-free(or balanced) chro-
matic polynomialχb8(λ) such thatχb8(kM) is the number of properk-colorings
not using the color 0. These polynomials satisfyχ8(λ) = λb(8)pLat8(λ) and
χb8(λ) = λc(8)pLatb 8(λ). Because of these identities we define

χ�(λ) = λb(�)pLat�(λ) and χb�(λ) = λc(�)pLatb �(λ) (2.1)

for any biased graph. (See [18, Theorems III.5.1 and III.5.3].) When� is balanced,
χ�(λ + 1) = χb�(λ) = χ0(λ), the chromatic polynomial of the underlying graph
0. When� is full, χ�(λ) = pLat�(λ).
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TRACTABLE PARTIALLY ORDERED SETS 235

2E. FORMULAS

A biased graph obeys convolution identities

χ�(λ+ µ) =
∑
W⊆V

χb�:W(λ)χ�:Wc(µ),

χb�(λ+ µ) =
∑
W⊆V

χb�:W(λ)χ
b
�:Wc(µ)

(2.2)

(see [18, Formula (III.6.1b)]). The former withµ = 1 reduces to

χ�(λ) =
∑
W⊆V

Wc stable

χb�:W(λ− 1), (2.3a)

which simplifies for full� to

χ�(λ) = χb�(λ− 1). (2.3b)

ForG-expansions there is a nice formula [18, Example III.4.6]:

χbG1(λ) = Mnχ1

(
λ

M

)
. (2.4)

Combining with (2.3) and setting1 = Kn, we get Dowling’s formula

pLatGK•n (λ) = χGK•n (λ) = χbGKn(λ− 1) = (λ− 1)n,M. (2.5)

Hence we can say that LatGK•n has characteristic roots

1,M + 1,2M + 1, . . . , (n− 1)M + 1.

2F. VECTOR REPRESENTATIONS

Suppose8 is a full gain graph onV = [n] whose gain groupG is a subgroup of
the multiplicative group of a fieldF . Then Lat8 is canonically isomorphic to the
lattice of flats of the vector setx(8) = {ui : i ∈ [n]}∪{ui−guj : (i, j; g) ∈ E(8)}
in Fn. (See [15, Theorem 8B.1] for a proof when|G| = 2, [6, proof of Theorem 10]
or [18, Theorem IV.2.1] for a general proof.) Thus for exampleZMK•n has a vector
representation inCn.

3. The Poset and Its Structure

The subject of our main results is an extrinsically graded posetQ̃(�,C) con-
structed from a full biased graph� and an indexing simplicial complexC on vertex
setV . The definition makes sense, however, even when� is not full andC is not a
simplicial complex. The poset is

Q(�,C) = {A ∈ L(�) : V0A /∈ C∗}. (3.1)
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236 P. HANLON AND T. ZASLAVSKY

We call its members theC-constrained flats ofG(�). The gradingh̃ is that inher-
ited from Lat�:

h̃(A) = r(A) = n− b(A) and h̃(Q(�,C)) = n. (3.2)

Evidently,Q̃(�,C) has0̂= clos∅ and, ifV /∈ C, 1̂= E.
As extreme instances, for any biased graph� we haveQ̃(�, {∅}) = Lat� and

Q̃(�,P (V )) = Latb�, so thatpQ̃(�,{∅})(λ) = χ�(λ) andpQ̃(�,P (V ))(λ) = χb�(λ).
One naturally wonders whetherQ = Q(�,C) may be a lattice or ranked,

whetherr (that is,h̃) coincides with the height functionh ofQ, etc. The remainder
of this section concerns such questions. (The reader who wishes to see the main
theorem first should turn to Section 4.). We shall not attempt to determine exactly
whenQ is a lattice or a ranked poset, but we do characterize the circumstances
in which h = r, h(Q) = n, or Q is ranked withh = r. These questions are
germane because, for instance, ifh = r andh(Q) = n thenpQ̃(λ) equals the
intrinsic characteristic polynomialpQ(λ), while if h 6= r, pQ̃(λ) andpQ(λ) should
be significantly different. (But just how different they might be is unknown.)

EXAMPLE 3.1. Q need not be a lattice or even a semilattice. Let� = [±K•4]
andC = P ([2]). TakeB1 = {+12} andB2 = {−12}, whereεij denotes the edge
ij with signε, andA1 = E:{1,2,3}, A2 = E:{1,2,4}. ThenA1 andA2 coverB1

andB2 inQ, soQ has neither meets nor joins, not even of pairs that have lower or
upper bounds inQ.

LEMMA 3.2. SupposeA,B ∈ Q = Q(�,C) andB < A in Lat�. ThenB l A
inQ if and only if either:

(i) V0A = ∅, andB l A in Lat�; or
(ii) V0B /∈ C, andB lA in Lat�; or

(iii) V0B = ∅ ⊂ V0A /∈ C, andA andB satisfy these properties:B:(V0A)
c =

A:(V0A)
c, B:V0A is a maximal element ofLatb(�:V0A), and for everyX ∈

π(�:V0A) we have(V0A)\X ∈ C.

Proof. AssumeB l A in Q. If A is balanced orB is not, the entire interval
[B,A]Lat� lies inQ, soAm B in Q.

Henceforth letV0B = ∅ andV0A /∈ C. SetA0 = A:V0A andB0 = B:V0A. Then
B0 ⊂ A0. SinceA′ = A0 ∪ (B\B0) is a flat ofG(�) and hasV0A

′ = V0A /∈ C, A′
is inQ andA ≥ A′ > B. ThusA′ = A; that is,A andB are the same except that
B0 ⊂ A0. Furthermore,B0 andA0 are inQ and[B0, A0] ∼= [B,A], both inQ and
in Lat�.

If B0 were not a maximal balanced flat inG(�:V0A) = G(�)|A0, then it could
be enlarged to a balanced flatB ′0 and we would haveA0 > B

′
0 > B0 inQ. SoB0 is

maximal.
If there wereX ∈ π(�:V0A) such thatY = (V0A)\X /∈ C, thenA0 > (B:X)∪

(E:Y ) > B0 inQ, contrary to assumption.
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We have proved the necessity of the conditions of the lemma.
Now we assume the conditions hold and we proveA m B in Q. Again the

nontrivial case is (iii), whereB but notA is balanced, and again[B,A] ∼= [B0, A0].
SupposeA0 > F > B0 in Q. ThenF cannot be balanced, or it would equalB0.
Sinceπ(B0) = π(�:V0A) = π(A0), π(F) must equalπ(�:V0A), whenceV0(F )

is a union of blocks ofπ(�:V0A). But thenV0F , if not in C∗, equals∅ or V0A,
whenceF = B orA, a contradiction. ThusAm B. 2

LEMMA 3.3. SupposeB l A in Q̃ = Q̃(�,C). The step lengthr(A) − r(B) of
the interval[B,A] is one except that whenB is balanced andA is not, it equals
c(�:V0A).

Proof. With notation as in the preceding proof, note that[B,A] and [B0, A0]
have the same step length iñQ. Moreover,b(A0) andb(B0), calculated in�:V0A,
respectively equal 0 andc(�:V0A). Thereforer(A0) − r(B0) = c(�:V0A), as
claimed. 2

LEMMA 3.4. LetA ∈ Q = Q(�,C). There existsB ∈ Q such thatA m B in
Lat� if and only if either

(i) A ⊃ E:V0A, or
(ii) A = E:W whereb(�:W) = 0, and there existX ∈ π(�:W) andY ⊆ X such

that c(�:Y ) = 1, b(�:(X\Y )) = 0, andW\Y /∈ C∗.

Proof. First we show the conditions are sufficient. IfA ⊃ E:V0A, thenA has
a nontrivial balanced componentA:X, where|X| > 1. LetD be a cutset ofA:X
andB = A\D. ThenV0B = V0A soB ∈ Q, while b(B) = b(A) + 1 sor(B) =
r(A)− 1, whenceAm B in Lat�.

If A = E:W whereb(�:W) = 0 (soW = V0A), letBY be a maximal balanced
flat in�:Y and letB = E:(W\Y ) ∪ BY . Thusr(B) = |W | − b(B:W) = |W | −
b(BY ) = |W | − 1. ThusB l A in Lat�. The fact thatW\Y /∈ C∗ impliesB ∈ Q.

To prove necessity we assumeB exists. LetW = V0A. If we are not in case (i),
thenV0B ⊂ W andA = E:W . SetY = W\V0B. Thusr(B) = |W | − b(B:Y ) −
b(B:V0B) = |W | − b(B:Y ). The covering relationA m B in Lat� implies that
b(B:Y ) = 1, whence we conclude thatc(�:Y ) = 1, so thatY is contained in a
blockX of π(�:W). The fact thatV0B = W\Y implies thatb(�:(X\Y )) = 0 and
W\Y /∈ C∗. 2

The case of full� is much simpler:

LEMMA 3.5. Let� be full andA ∈ Q = Q(�,C). There existsB ∈ Q such that
Am B in Lat� if and only if

(i) A ⊃ E:V0A, or
(ii) A = E:V0A and eitherc(�:V0A) = 1 or V0A is not minimal inCc.
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238 P. HANLON AND T. ZASLAVSKY

Proof. In Lemma 3.4(ii), for any singletonY ⊆ W we havec(�:Y ) = 1 and
b(�:(X\Y )) = 0 because� is full.

If V0A is nonminimal inCc we can findY to makeW\Y /∈ C∗. If c(�:W) = 1
thenY = X = W makesW\Y /∈ C∗.

Conversely, supposeY exists as in Lemma 3.4(ii). IfY = W thenc(�:W) = 1
soB exists. IfY ⊂ W , Y is nonvoid becausec(�:Y ) = 1 so we can choosey ∈ Y .
ThenW\{y} /∈ C becauseW\Y /∈ C. 2

Now we can answer questions about height inQ when� is full.

THEOREM 3.6. Suppose� full. ForQ(�,C) to have heightn it is necessary and
sufficient thatπ(�) * C.

Proof.If there is anX ∈ π(�)\C, one easily constructs a chain of lengthn from
0̂ toE inQ(�,C).

Suppose contrariwise that such a chain exists, say0̂= A0lA1l · · ·lAn = E.
There is some indexk for which Ak is unbalanced butAk−1 is balanced. Thus
V0Ak /∈ C. By Lemma 3.3,�:V0A is connected. It therefore lies in a component
�:X of �, andX cannot belong toC. 2

COROLLARY 3.7. If � is full and connected, thenQ(�,C) has heightn if and
only if V /∈ C.

The criterion of Corollary 3.7 obviously fails to be sufficient if� is discon-
nected.

We call C disconnection-closedwith respect to� if, wheneverX andY are
disjoint members ofC and no edge of� joins a vertex inX to one inY , then
X ∪ Y ∈ C.

THEOREM 3.8. Supposing� full, the following properties are equivalent.

(i) Q(�,C) has height functionh equal tor = rLat�.
(ii) For every minimal memberW of Cc,�:W is connected.

(iii) C is disconnection-closed with respect to�.
(iv) For everyW ∈ Cc, π(�:W) * C.

Proof.We show (iv) is equivalent to each other property.
That (i)⇔ (iv) is an easy consequence of Theorem 3.6.
Obviously (iv)⇒ (ii). To prove the converse assume (ii) and choose a minimal

W /∈ C such thatπ(�:W) ⊆ C, if any suchW exists.W cannot be minimal inCc

because of (ii). Therefore we can strip off a vertexw ∈ W so thatW\w /∈ C, but
clearlyπ(�:(W\w)) ⊆ C, contradicting the minimality of the counterexample.

That (iii)⇔ (iv) is easy to prove by induction onc(�:(X ∪ Y )). 2

THEOREM 3.9. Let� be any biased graph. ForQ(�,C) to be a ranked poset
with rank functionr it is necessary and sufficient that, wheneverW ∈ Cc is such
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that b(�:W) = 0, then either�:W is connected or there is anX ∈ π(�:W) for
whichW\X /∈ C.

Proof.Every maximal element ofQ has the same extrinsic height because there
is only one such element unlessC = P (V ), and thenQ = Latb �, in which every
maximal elementF hasr(F ) = n− c(�) (from [18, Theorem II.2.1(j)]).

Now, the key to the proof is thatQ is ranked withh = r if and only if every
covering interval has step length 1. Lemmas 3.2 and 3.3 imply that step length 1 is
equivalent to the criterion of our theorem. 2

COROLLARY 3.10. Suppose� complete. ThenQ(�,C) is ranked with rank
functionr.

In the rest of this section we develop three lemmas that describe order filters and
intervals inQ̃(�,C), for use in calculating the Möbius function in Section 4. The
lemmas remain valid with any poset of sets in place of the simplicial complexC.

LEMMA 3.11. LetA ∈ Q(�,C). The interval[0̂, A] in Q̃(�,C) equalsQ̃(�|A,
C) and is canonically isomorphic to

Q̃(�:V0A,C:V0A)× ×
Z∈πb(A)

Lat((�|A):Z).

The proof is immediate. The canonical isomorphism is that by which(B0, B1,
. . . , Bb(A)), an element of the Cartesian product set, corresponds toB0∪B1∪ · · · ∪
Bb(A) ∈ Lat�. Note that(�|A):Z is the biased graph of the balanced component
A:Z of A, and its underlying graph is(Z,A:Z).

LEMMA 3.12. Let A ∈ Q(�,C). The order filterQ̃(�,C)/A is canonically
isomorphic toQ̃(�/A,C/πb(A)).

Proof. The isomorphism here is that induced by the canonical partial function
V → πb(A), which carriesv ∈ V to the blockX ∈ πb(A) such thatv ∈ X, if
v ∈⋃πb(A), and is undefined otherwise.

We know from [18, Theorem II.2.5] that(Lat�)/A ∼= Lat(�/A); it follows
that the extrinsic grading of̃Q(�,C)/A equals that of̃Q(�/A,C/πb(A)). We
need to prove thatC/πb(A) is the correct indexing complex. A flatF ≥ A in
Lat� is excluded from̃Q(�,C)/AwhenV0(F ) ∈ C. The corresponding flatF ′ ∈
Lat(�/A) satisfiesV0(F

′) = {X ∈ πb(A) : X ⊆ V0(F )}, by [18, Lemma I.4.4].
The desired conclusion follows at once. 2

Combining these two results gives the main lemma:

LEMMA 3.13. LetA1 ≤ A2 in Q(�,C) and letW = V0A2. For Z ∈ πb(A2), let
0Z = (Z,A2:Z)/(A1:Z), the underlying graph of(�|A2):Z contracted byA1:Z.
The interval[A1, A2] in Q̃(�,C) is canonically isomorphic to

Q̃((�:W)/(A1:W), (C:W)/πb(A1:W))× ×
Z∈πb(A2)

Lat(0Z).
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4. Characteristic Polynomial and Möbius Function

Here at last is the centerpiece of our work. For the theorem, note thatχ∅(λ) =
χb∅ (λ) = 1.

THEOREM 4.1. Let� be a full biased graph without loose edges or balanced
loops and letC be an abstract simplicial complex on vertex setV . The character-
istic polynomial ofQ̃ = Q̃(�,C) is given by

pQ̃(λ) =
∑
W∈C

χb�:W(1)χ
b
�:Wc(λ− 1). (4.1)

If V /∈ C, the Möbius invariant of̃Q is

µQ̃(0̂, 1̂) =
∑
W∈C

χb�:W (1)µL(�:Wc)(0̂, 1̂). (4.2)

We have writtenχb�:W (1) andχb�:Wc(λ − 1) but because� is full those quan-
tities equalχ�:W (2) andχ�:Wc(λ), by the identity (2.3b). Sometimes one form is
preferable, sometimes the other. For nonemptyW , moreover,

χb�:W(1) = (−1)|W |−c(�:W)β
(
L0(�

∗:W)) (4.3)

by [18, Theorem III.5.2], whereβ denotes Crapo’s invariant, which is nonnegative
[4].

We do not know any enumerative interpretation ofpQ̃(λ). It would be quite
interesting if there is one.

Proof. The form of the characteristic polynomial makes Möbius inversion the
natural choice for proving Theorem 4.1. The model is the proof by counting col-
orings (see [10, p. 362]) that the chromatic polynomial of a graph equals the
characteristic polynomial of its polygon matroid (up to a factor of a power of
λ). We face two difficulties. One is that the function to be inverted is relatively
complicated. The other is that we can color only when� has gains in a finite
group. Thus we give two proofs: one depends on counting colorings to set up the
Möbius inversion; the second is an algebraic adaptation of the first that permits us
to dispense with coloring and be completely general.

We writeQ for Q(�,C).

Coloring Proof. We assume� = 〈8〉, the biased graph of a gain graph8
whose gain groupG is finite. WriteM = |G|. A C-restricted coloringof 8 is a
coloringκ whose zero setκ−1(0) is not inC∗.

Step 1. We set up a Möbius inversion. Letk ∈ N andλ = kM+1. ForA ∈ Lat�
let f (A) be the number ofC-restrictedk-coloringsκ with I (κ) ≥ A and letg(A)
be the number withI (κ) = A. Obviously,

f (A) =
∑
A′≥A

g(A′), (4.4)
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the sum being taken indifferently inQ or Lat� sinceg(A′) = 0 if A′ /∈ Q. It is also
clear thatg(∅) is the number of properk-colorings of8; that is,g(∅) = χ�(λ).

Before inverting (4.4) we need an explicit formula forf . When we color so
thatI (κ) ≥ A there are three points to remember: we must color 0 onV0(A), the
coloring of each blockX ∈ πb(A) is determined by the color on one vertex, and
each such block is all zero or all non-zero. IfV0(A) /∈ C, thenf (A) = λb(A),
the number ofk-colorings withI (κ) ≥ A. If V0(A) = ∅, f (A) equalsλb(A) less
the number ofk-colorings (withI (κ) ≥ A) whose zero set is inC∗. To evaluate
the latter number, letζ ⊆ πb(A) be the set of zero-colored blocks. Then there are
kM = λ− 1 ways to color each of the remaining blocks, so

f (A) =


λb(A) if V0(A) /∈ C,
λb(A) −

∑
ζ⊆πb(A)⋃
ζ∈C∗

(λ− 1)b(A)−|ζ | if V0(A) = ∅. (4.5)

Step 2. Now we invert (4.4), regarded as a sum overQ, employing (4.5) to
evaluatef . The inversion yields

g(A′) =
∑
A≥A′

µQ(A
′, A)f (A),

from which we conclude that

g(∅) =
∑
A∈Q

µQ(∅, A)λb(A) −
∑
A∈Q

V0(A)=∅

∑
ζ⊆πb(A)⋃
ζ∈C∗

µQ(∅, A)(λ− 1)b(A)−|ζ |. (4.6)

The first sum equalspQ̃(λ). To simplify the second we writeZ = ⋃
ζ and sum

overZ ∈ C∗: then for eachZ we sum overA ∈ Latb � such thatZ is a union of
blocks ofπb(A). Thusζ is determined:ζ = {X ∈ πb(A) : X ⊆ Z}. We further
split A into A1 = A:Z andA2 = A:Zc. Since(V,A) = (Z,A1) ∪· (Zc,A2), the
Möbius function factors and the whole sum becomes∑

Z∈C∗

∑
A1∈Latb(�:Z)

∑
A2∈Latb(�:Zc)

µ(∅, A1)µ(∅, A2)(λ− 1)b(A2)

=
∑
Z∈C∗

χb�:Z(1)χ
b
�:Zc(λ− 1).

Substituting this expression for the double sum in (4.6) and recalling thatg(∅) =
χ�(λ), we easily deduce (4.1).

Step 3. To prove (4.2) we setλ = 0 in (4.1). 2

Algebraic Proof. To generalize the first proof to any biased graph� we distill
the algebraic essence off andg. ForA ∈ Lat� let us redefine

f (A) =


λb(A) if V0(A) /∈ C,
λb(A) −

∑
Z∈C∗

∑
ζ⊆πb(A)

V0A∪
⋃
ζ=Z

(λ− 1)b(A)−|ζ | if V0(A) ∈ C,
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and

g(A) =
{
χ�/A(λ) = χb�/A(λ− 1) if V0(A) /∈ C∗,
0 if V0(A) ∈ C∗.

Once we prove that (4.4) holds we can proceed as in Steps 2 and 3 of the first proof.
First, supposeV0(A) /∈ C. Then in (4.4) we are summing overA′ in Lat�.

Bearing in mind that Lat(�/A′) ∼= [A′, E]Lat�, we have∑
A′≥A

g(A′) =
∑
A′≥A

χ�/A′(λ) =
∑∑
A≤A′≤A′′

µ(A′, A′′)λb(A
′′)

= λb(A) = f (A).
Now assumeV0(A) ∈ C. Again summing overA′ in Lat�, we have∑

A′≥A
g(A′) =

∑
A′≥A

χ�/A′(λ)−
∑
A′≥A

V0A
′∈C∗

χ�/A′(λ)

= λb(A) −
∑
Z∈C∗

∑
A′≥A
V0A
′=Z

χb�/A′(λ− 1).

Therefore,

f (A)−
∑
A′≥A

g(A′) =
∑
Z∈C∗

{ ∑
A′≥A
V0A
′=Z

χb�/A′(λ− 1)−
∑

ζ⊆πb(A)
V0A∪

⋃
ζ=Z

(λ− 1)b(A)−|ζ |
}
.

We wish to show that the quantity in braces equals zero.
If Z is not the union ofV0(A) and

⋃
ζ for someζ ⊆ πb(A), then noA′ ≥ A

can haveV0(A
′) = Z, so both sums are empty.

If Z is such a union, thenζ is unique so the second sum equals(λ − 1)b(A:Zc).
As for the first sum, letA′0 = E:Z,A′1 = A′:Zc, andA1 = A:Zc. ThenA′ = A′0 ∪
A′1, andA1 ≤ A′1 in Latb(�:Zc). By the definition of contraction, Latb(�/A′) ∼=
Latb((�:Zc)/A′1); thusχb�/A′(λ− 1) = χ(�:Zc)/A′1(λ− 1). It follows that∑

A′≥A in Lat�
V0A
′=Z

χb�/A′(λ− 1) =
∑

A′≤A′1∈Latb(�:Zc)

χb
(�:Zc)/A′1

(λ− 1)

=
∑∑
A1≤A′1≤A′′1
∈Latb(�:Zc)

µ(A′1, A
′′
1)(λ− 1)b(A

′′
1)

= (λ− 1)b(A1) = (λ− 1)b(A:Zc).

The two sums in the braces are consequently equal.
Hence (4.4) is valid and the proof can continue through Steps 2 and 3.2
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Quite a different proof can be given, depending on guessing the correct formula,
induction, the convolution identities (2.2), and intricate calculations. (This was
essentially Hanlon’s original proof in [7] of a form of Theorem 1.1 forBn.) We
omit it because we feel that the inversion proofs are more natural and illuminating.

Proof of Theorem 1.1.By Section 2F,Q(Bn(M),C) is canonically isomorphic to
Q̃(ZMK•n,C), in whichh = h̃ = r (by Theorem 3.8; also easy to check directly).
The characteristic polynomial of the latter is evaluable by Theorem 4.1 and Equa-
tion (2.5). The sign properties follow from the continuation of Example 4.1, after
Corollary 4.7. 2

We present next two variations on Theorem 4.1: the first one elementary, the sec-
ond an intriguing formula that expressespQ̃(λ) in terms of principal simplicial
complexes though at the cost of having to compute a new Möbius function. The
first variation is useful whenC is very large.

COROLLARY 4.2. If � is full, then

pQ̃(�,C)(λ) = χb�(λ)−
∑
W /∈C

χb�:W(1)χ
b
�:Wc(λ− 1).

Proof.Rewriting (4.1) slightly,

pQ̃(λ) =
∑
W⊆V

χb�:W(1)χ
b
�:Wc(λ− 1)−

∑
W /∈C

χb�:W(1)χ
b
�:Wc(λ− 1).

The former sum equalsχb�(λ) by (2.2). 2

GivenC, letM(C) consist of all intersections of one or more maximal elements
of C and letM̂(C) =M(C) ∪ {1̂} where1̂ is not inM(C).

COROLLARY 4.3. If � is full, then

pQ̃(�,C)(λ) = −
∑

W∈M(C)

µM̂(C)(W, 1̂)pQ̃(�,P (W))(λ).

Proof.The right-hand side expands to

−
∑∑
X⊆W∈M(C)

µ(W, 1̂)χb�:X(1)χ
b
�:Xc (λ− 1)

=
∑
X∈C

χb�:X(1)χ
b
�:Xc(λ− 1)

{
−

∑
X⊆W∈M(C)

µ(W, 1̂)

}
.

LetX be the intersection of all maximal elements ofC that containX. ThenX ∈
M(C), so the quantity in braces reduces toµ(1̂, 1̂) = 1. Then by Theorem 4.1 the
outer sum equalspQ̃(λ). 2
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Knowing the formula (4.2) for the Möbius invariant ofQ(�,C), we can write
an expression for the Möbius function of any interval[A1, A2] using the notation
of Lemmas 3.11–3.13.

COROLLARY 4.4. Let� be a full biased graph and letA1 ≤ A2 inQ(�,C). Set-
tingW = V0A2, Q′ = Q((�:W)/(A1:W),C/πb(A1:W)), and0Z = (Z,A2:Z)/
(A1:Z) for Z ∈ πb(A2), we have

µQ(A1, A2) = µQ′(0̂, 1̂)
∏

Z∈πb(A)
µLat0Z(0̂, 1̂).

Proof.We appeal to Lemma 3.13 for the structure of[A1, A2]. 2

EXAMPLE 4.1. We show how Corollary 4.4 applies to� = 〈GK•n〉. That gives
the Möbius function ofBn(M) if we take groupZM . As usual, we setM = |G|.

LetQ = Q(GK•n,C) and letA1 ≤ A2 inQ. LetZ1, Z2, . . . , Zk be the balanced
components of(V,A2), letZ0 = V0(A2)\V0(A1), and letni be the number of com-
ponents of(V,A1) contained inZi . Thus,n0 is the number of balanced components
of (V,A1) that are contained inV0(A2), andn0+n1+· · ·+nk−k = r(A2)−r(A1).
Then

µQ(A1, A2) = (−1)n0+n1+···+nk−k(n1− 1)! · · · (nk − 1)! ×
×
{
(M(n0− 1)+ 1)n0,M −

−
n∑
i=1

Ni(C/πb(A1:Z0))(M(i − 1)− 1)i−1,M ×

×(M(n0− i − 1)+ 1)n0−i,M
}
. (4.7)

Proof. In Corollary 4.4,(�:W)/(A1:W) simplifies, by elimination of multiple
unbalanced edges and multiple links having the same gain, to〈GK•n0

〉, and0Zi sim-

plifies toKni for i ≥ 1. Then Theorem 1.1 givesµQ′(0̂, 1̂). (ThatµLatKn(0̂, 1̂) =
(−1)n−1(n − 1)! is a well known theorem of Schutzenberger and of Frucht and
Rota; see [10, p. 359].) 2

See the continuation of this example following Corollary 4.7.
One would like to determine the sign ofµQ(0̂, 1̂). This seems difficult, but in

many cases we can show that(−1)nµQ(0̂, 1̂) is positive or at least non-negative.
We being with some examples.

EXAMPLE 4.2. If C = {∅} or C = P (V )\{V }, then(−1)nµQ(0̂, 1̂) ≥ 0; it is
positive except whenC = P (V )\{V } and�∗ has a balanced block.
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Proof. In the former caseQ = Lat�. We know the sign ofµ by Rota’s theorem
[10, p. 357, Theorem 4].

In the latter case,µQ(0̂, 1̂) = −χb�(1) = (−1)nβ(L0(�
∗)), whereβ is known

to be nonnegative always and positive if and only ifL0(�
∗) is inseparable [4].

Inseparability holds if and only if� has no balanced block [18, Theorem II.3.8].2

EXAMPLE 4.3. SupposeT is a tree of ordern and� = 〈T •〉. The sign of
µQ(0̂, 1̂) is very sensitive to the choice of simplicial complex. Since�∗ is balanced,
χb�:Y (λ) = χT :Y (λ) = λc(T :Y)(λ− 1)|E(T :Y)|. We conclude thatχb�:W(1) = 1 if W is
stable inT and 0 otherwise. Thus from Theorem 4.1 we deduce that

µQ(0̂, 1̂) =
∑
W∈C

stable inT

(−1)|W
c |2|E(T :W

c)|.

SinceW is stable,|E(T :Wc)| = n− 1− dT (W), wheredT means degree inT and
dT (W) =∑v∈W dT (v). Therefore,

(−1)nµQ(0̂, 1̂) = 2n−1
∑
W∈C

stable inT

(−1)|W |
′
2−dT (W). (4.8)

We can now produce an indexing complex for which(−1)nµQ(0̂, 1̂) is negative.
TakeC = CV = {∅, {v} : v ∈ V } and assumen ≥ 3. Because at least two vertices
have degree one, (4.8) becomes negative.

For instance, ifT is a star then(−1)nµQ(0̂, 1̂) = −(n− 3)2n−2 − 1.

We can predict non-negativity if�meets some rather stringent conditions.

THEOREM 4.5. Assume that� is full, V /∈ C, and, for everyW ∈ Cc,�:W is
connected. Then(−1)nµQ(�,C)(0̂, 1̂) ≥ 0.

Furthermore,(−1)nµQ(�,C)(0̂, 1̂) > 0 if suppC 6= V or if �∗:W has no
balanced blocks for someW ∈ Cc (in particular, if�∗ has no balanced blocks).

Proof.First we establish a lemma.

LEMMA 4.6. Let� be full andV /∈ C. Then

(−1)nµQ(�,C)(0̂, 1̂)

=
∑
W∈Cc

(−1)c(�:W)−1β(L0(�
∗:W))|µLat(�:Wc)(0̂, 1̂)|. (4.9)

Proof.From Corollary 4.2 and Equation (4.3) we obtain

µQ(0̂, 1̂) = 0−
∑
W /∈C

(−1)|W |−c(�:W)β(L0(�:W))µLat(�:Wc)(0̂, 1̂).

Since Lat(�:Wc) is a geometric lattice of rank|Wc|, we know the Möbius invariant
has sign(−1)|Wc |. The lemma follows. 2
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Now it is clear that, assumingc(�:W) = 1 for allW /∈ C, the right-hand side
of (4.9) is nonnegative. Under the same assumption, it is positive if any one�∗:W
has no balanced block or, sinceβ(∅) = 1, if there is a vertexv such that{v} /∈ C.

COROLLARY 4.7. If � is full and complete and�∗ is unbalanced, then(−1)n

µQ(�,C)(0̂, 1̂) > 0 for every indexing complexC.

It seems that Theorem 4.5 is far from covering all cases in which one would
expect(−1)nµQ(0̂, 1̂) to be nonnegative. It does not apply to Example 4.2, for
instance.

EXAMPLE 4.1, continued. If� = 〈GK•n〉, where|G| ≥ 2, then sgnµQ(�,C)(A1,

A2) = (−1)n0+n1+···+nk−k = (−1)r(A2)−r(A1).

Proof. Referring back to Lemma 3.13, we see that the task is to show that
sgnµQ′(0̂, 1̂) = (−1)n0, whereQ′ is as in Corollary 4.4. But�:W = 〈GK•|W |〉;
contracting byA1:W and neglecting multiple edges as in the proof of (4.7), we see
thatQ′ = Q(�′,C ′) for �′ = 〈GK•n0

〉 and suitableC ′. Now Corollary 4.7 applies
(unlessn = 1, which is trivial). 2

It follows that, ifwi denotes the coefficient ofλn−i in pQ̃(λ), then

|wi| = (−1)iwi =
∑

A∈Q(�,C)
r(A)=i

|µQ(0̂, A)|.

Thus the coefficients ofpQ̃(λ) alternate in sign, and they are all nonzero ifC ⊂
P(V ). In particular,

(−1)nµQ(0̂, 1̂) > 0 if C ⊂ P (V ).

(If C = P (V ), thenQ = Latb(GK•n), which has rankn− 1. Thuswn = 0 but the
otherwi are all nonzero.) These observations complete the proof of Theorem 1.1,
which concerns the case in whichG = ZM . 2

We have one more topic to develop in this section: a deletion-contraction iden-
tity.

THEOREM 4.8. Suppose� is full ande is a link in�. Then

pQ̃(�,C)(λ) = pQ̃(�\e,C)(λ)− pQ̃(�/e,C/πb(e))(λ).
Proof. In the formula of Theorem 4.1 there are three kinds of setsW ∈ C: those

for whichW ⊇ V (e), those for whichWc ⊇ V (e), and the rest. In the former
cases letW denote the element ofC/πb(e) that corresponds toW . We apply the
balanced deletion-contraction identity of [18, Corollary III.3.3], which says that
χb�(λ) = χb�\e(λ)− χb�/e(λ).

ORDE0034.tex; 16/06/1998; 14:05; p.18



TRACTABLE PARTIALLY ORDERED SETS 247

If V (e) ⊆ W , then theW term of (4.1) expands to

χb(�\e):W(1)χ
b
�:Wc(λ− 1)− χb

(�/e):W(1)χ
b
�:Wc(λ− 1).

But�:Wc = (�\e):Wc and also= (�/e):Wc
, so we get

χb(�\e):W(1)χ
b
(�\e):Wc(λ− 1)− χb

(�/e):W(1)χ
b

(�/e):Wc(λ− 1).

Similarly, the term corresponding toW for whichV (e) ⊆ Wc transforms to

χb(�\e):W(1)χ
b
(�\e):Wc(λ− 1)− χb

(�/e):W(1)χ
b

(�/e):Wc(λ− 1).

The term of a setW of the third type can be rewritten as

χb(�\e):W(1)χ
b
(�\e):Wc(λ− 1).

Now applying (4.1) again, one has the right-hand side of the formula in Theo-
rem 4.8. 2

We hope that Theorem 4.8 withλ = 0 might permit a generalization of Theo-
rem 4.5, but we have not seen how to do that.

5. Polynomials from Non-Full Biased Graphs

Most of the results of Section 4 were proved only when� was full, but by a little
trick we can apply them to some non-full biased graphs, and there are variants of
Theorem 4.1 that hold for others.

The little trick is that, ifQ(�,C) = Q(�•,C ′) for someC ′, thenQ(�,C)
can be treated as though� were full. (We want�• rather than some other full
biased graph, in part because the balanced polynomials, appearing in the right-
side of (4.1) and in other identities, are unaffected by the presence or absence of
unbalanced edges but tend to change when one alters the biased graph in other
ways.) The first results characterize when this is possible, either for allC (with C ′
constructed in a certain systematic way) or for a particularC. Let

U(�) = {X ⊆ V : b(�:X) = 0
}
.

PROPOSITION 5.1.Given� and C, let D be a subset ofP (V ) with ∅ ∈ D.
ThenQ(�,C) = Q(�•,D) if and only ifD = C ∪U(�)∗c.

Proof. It is clear that Lat� = Q(�•,U(�)∗c). It follows thatQ(�,C) =
Q(�•,U(�)∗c ∪C). EvidentlyD must containU(�)∗c andC if Q(�•,D) is not
to have extra flats; meanwhile, it cannot contain any more thanC ∪U(�)∗c or it
will have too few flats. 2

Propostion 5.1 shows what the form ofD ought to be. The hitch is thatU(�)∗c
may not be a simplicial complex. ThenC ′ = C ∪U(�)∗c may not be a simplicial
complex so (4.1) may fail. Thus we want to know whenC ′ is a simplicial complex;
but that may depend onC, so we also want to know whenC ′ is a simplicial complex
for everyC – that is, whenU(�)∗c itself is a simplicial complex.
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PROPOSITION 5.2. Let � be a simply biased graph.U(�)∗c is a simplicial
complex if and only if

(a) everyu ∈ U(�) andw ∈ U(�)c are adjacent, and
(b) for every unbalanced digon or induced unbalanced polygonC in �:U(�)c

and every vertexw ∈ U(�)c\V (C), there is an edge fromw to a vertex ofC.

Proof. U(�)∗c is an order ideal⇔ each induced subgraph�:W that has a
balanced component is balanced⇔
(c) for each balanced, connected�:W and unbalanced, connected�:X with X ∩

W = ∅, there is an edge betweenX andW .

This last condition implies (a) and (b). Conversely, suppose (a) and (b) and let
W andX be as in (c). Pickw ∈ W and either an unbalanced edge at a vertex
u ∈ X, if possible, or a vertex-minimal unbalanced polygonC in �:X. C must be
an induced polygon or a digon. Therefore in either case there is an edge between
w ∈ W and a vertex inX. 2

COROLLARY 5.3. U(�)∗c is a simplicial complex if� is complete.

Let Ñ(y) = {z ∈ V \y : z is not adjacent toy
}
.

PROPOSITION 5.4.Given� andC,C ∪U(�)∗c is a simplicial complex if and
only if C containsV0(�:Ñ(y)) for everyy ∈ U(�)c.

Proof.Let A be the class of setsX ∈ U(�)∗ that are subsets of sets inU(�)∗c.
Call X critical if it is maximal in A. Evidently, forC ′ = C ∪ U(�)∗c to be a
simplicial complex it is necessary and sufficient thatC contain every critical set.

It is clear that, ifw /∈ U(�), thenV0(�:Ñ(w)) ∈ A.
SupposeX is critical andW is a minimal superset ofX in U(�)∗c. ThusW =

X ∪ {y}, b(�:X) = 0, andb(�:W) > 0. Therefore�:W = (�:X) ∪· (�:{y}) and
y /∈ U(�). It follows thatX ⊆ V0(�:Ñ(y)). But thenX, being critical, equals
V0(�:Ñ(y)). We conclude that the critical sets are the maximal sets of the form
V0(�:Ñ(y)) wherey ∈ U(�)c. 2

EXAMPLE 5.1. Let us apply this theory to� = 〈G1(U)〉 where1 is a simple
graph of ordern,G is a nontrivial group, andU ⊆ V = V (1).

HereU(�) = U andU(�) = {X ⊆ V : �:X has no isolated vertices inUc}.
Also, Ñ(y) is the same in1 as in�, andV0(�:Ñ(y)) = Ñ(y)\{z ∈ Ñ(y)\U : z
is isolated in1:Ñ(y)}. This makes the application of Proposition 5.4 obvious.

Let11∨12 denote thejoin of graphs: the disjoint union together with all edges
between11 and12. It is an exercise to deduce from Proposition 5.2 thatU(�)∗c
is a simplicial complex if and only if1 = (1:U) ∨Kc

n1
∨Kc

n2
∨ · · · ∨Kc

nl
, where

1:U is any simple graph on vertex setU, l ≥ 0, andn1+ n2+ · · · + nl = |Uc|.
When computing the right-hand sides of (4.1) and (4.2), etc., keep in mind

Formula (2.4).
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A weaker version of Theorem 4.1 can be stated for all biased graphs that come
from gain graphs8 with finite gain groupG. Let M = |G| as usual. Forλ =
kM + 1 andW ⊆ V , let ξ8,W (λ) be the number of properk-coloringsγ of 8:Wc

such thatγ −1(0) is nonadjacent toW .

LEMMA 5.5. Given8 with gain groupG andW ⊆ V . Let81 be aG-gain graph
on vertex setV1 = Wc∪{v0}, wherev0 /∈ V , such that81:Wc = 8:Wc, v0 supports
no unbalanced edge, and a vertexv ∈ Wc is adjacent tov0 in 81 if and only if it is
adjacent to a vertex ofW in 8. (The gains on edgesvv0 are arbitrary.) Let82 be
81 with an unbalanced edge attached tov0. Then

ξ8,W(λ) = χ81(λ)− χ82(λ)

for all λ of the formMk + 1 with k ∈ N.

The proof is straightforward. 2

Consequently,ξ8,W(λ) is a polynomial inλ and we can evaluate it, for example,
atλ = 0.

THEOREM 5.6. If 8 is a gain graph whose gain group is finite of orderM, then

pQ̃(8,C)(λ) = χ�(λ)+
∑

W∈C∗∩U(8)
χb8:W(1)ξ8,W (λ), (5.1)

and ifV /∈ C andE = 1̂ has heightn inQ(8,C), then

µQ̃(8,C)(0̂, 1̂) = µLat8(0̂, 1̂)+
∑

W∈C∗∩U(8)
χb8:W(1)ξ8,W (0). (5.2)

Proof. We adapt the coloring proof of Theorem 4.1. Letλ = kM + 1 where
k ∈ N. The crucial difference is in (4.5) for balancedA. Instead of that formula we
get an expression in terms ofξ .

LetA be a balanced flat in Lat8. Then

f (A) = λb(A) −
∑
A′≥A

V0A
′∈C∗

(# of k-coloringsκ of 8 with Iκ = A′).

Thus after inverting (4.4), rather than (4.6) we get

g(∅) = pQ̃(λ)−
∑∑

A≤A′
V0A=∅,V0A

′∈C∗

µ(∅, A)(# of κ with I (κ) = A′)

= pQ̃(λ)−
∑
W∈C∗

∑
A′∈Lat8
V0A
′=W

χb8|A′(1)(# of κ with I (κ) = A′).
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We may writeA′ as (E:W) ∪ A′1 whereA′1 ∈ Latb(8:Wc). If A′1 6= ∅, then
χb8|A′(1) = χb8:W (1)χ

b
(8:Wc)|A′1(1) and, becauseA′1 is balanced,χb

(8:Wc)|A′1(1) =
χ(0:Wc)|A′1(1) = 0, where0 is the underlying graph of8. Consequently

g(∅) = pQ̃(λ)−
∑
W∈C∗

b(8:W)=0

χb8:W (1)(# of κ with I (κ) = E:W). (5.3)

Now, a coloringκ that is counted here must be 0 onW , becauseb(8:W) = 0,
and can be any properk-coloring onWc except that it may not color a vertex 0
that is adjacent to a vertex inW . Hence the quantity in parentheses in (5.3) equals
ξ8,W(λ). Sinceg(∅) = χ8(λ), we have (5.1) forλ = kM + 1.

Being a polynomial identity, (5.1) therefore holds good for all numbersλ. Set-
ting λ = 0 and observing that, ifh(E) = n thenr(E) = n soχ8(0) = µQ(0̂, 1̂),
we get (5.2). 2

The question is: what isξ8,X(λ)? If we can evaluate it we have a formula for
pQ̃(λ). Lemma 5.5 can provide one means of evaluation. Lemmas 5.7 and 5.8
provide others.

LEMMA 5.7. Given8 with gain group of finite orderM,λ = kM + 1 where
k ∈ N, andW ⊆ V , we have:

(a) χb8:Wc(λ− 1) ≤ ξ8,W(λ) ≤ χ8:Wc(λ),
(b) ξ8,W(λ) = the upper bound⇔ U(�)c\W is nonadjacent toW ,
(c) ξ8,W(λ) = the lower bound⇔ everyv ∈ U(�)c\W is adjacent to every vertex

inW .

Proof.Straightforward. 2

LEMMA 5.8. Let8 have finite gain group. A necessary and sufficient condition
that ξ8,W (λ) = χb8:Wc(λ− 1) for all W ∈ C∗ is that eachv ∈ suppC be adjacent
to every vertex inU(�)c\{v}.

Proof.Easy, using Lemma 5.7(c). 2

COROLLARY 5.9. If 8 has finite gain group and satisfies the property in Lemma
5.8, for instance if it is complete, then

pQ̃(8,C)(λ) = χ8(λ)+
∑

W∈C∗∩U(8)
χb8:W(1)χ

b
8:Wc(λ− 1).

Let us compare this with the formula obtained from Proposition 5.2 or 5.4. If
we employ (2.3a) to expandχ8(λ) in terms of balanced chromatic polynomials,
Corollary 5.9 takes the form

pQ̃(8,C)(λ) =
( ∑
W∈C∪U(8)

+
∑
W 6=∅
stable

)
χb8:W(1)χ

b
8:Wc(λ− 1).
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That is rather different from what we get by setting̃Q(�,C) = Q̃(8•,C ∪
U(8)∗c) in (4.1).

6. Examples

We shall investigate the posets associated with several types of indexing com-
plexes. In the first example, as a foretaste of the general ones to follow, for each
type of complex we examineQ(GK•n,C). Most of the examples show instances of
a curious root-shifting phenomenon that we discuss briefly in the next section.

Throughout this section� will be a full biased graph.

EXAMPLE 6.1. We take� = 〈GK•n〉 so that, as usual denoting byM the order
of the group,

pLat�(λ) = χ�(λ) = (λ− 1)n,M, (6.1a)

whose roots are

1,M + 1, . . . , (n− 2)M + 1, (n− 1)M + 1. (6.1b)

We writeQ = Q(�,C), which equalsQ̃(�,C) since by Corollary 3.10 the ex-
trinsic gradingr is the actual rank function. Note that the statement and proof of
Theorem 1.1 remain valid even whenG is not a cyclic group.

EXAMPLE 6.1A. For our first instance we takeC to be anm-point 0-dimensional
complexCm, sayCm = {∅, {i} : n−m < i ≤ n}, and we assumeM ≥ 2. HereQ
is the geometric lattice LatGK(n−m)

n , whereGK(n−m)
n is GK•n with the unbalanced

edges removed from verticesn − m + 1, n − m + 2, . . . , n. Geometrically, if
G = ZM,Q is the lattice of flats spanned by the subsystem ofBn(M) defined
by D(n−m)

n (M) = {u1, . . . , un−m} ∪ Dn(M), which asm varies generates a chain
of geometric lattices interpolating betweenDn(M) andBn(M). The characteristic
polynomials are easy to calculate: from Theorem 1.1 we get

pQ(λ) = (λ− 1)n,M +m(λ− 1)n−1,M

= (λ− 1)n−1,M(λ− (n− 1)M − 1+m).
So the characteristic roots ofD(n−m)

n (M), or of G(K(n−m)
n ) for any group of order

M, are

1,M + 1, . . . , (n− 2)M + 1, (n− 1)M + 1−m. (6.1c)

Compare to (6.1b): the largest root is reduced bym while the others remain as they
were.

The characteristic polynomial ofCm is

pCm(y) = y −m,
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whose one root is precisely the amount by which the largest root of Lat� decreases
in passing toQ.

The characteristic polynomials of these “interpolating” lattices have been treated
elsewhere by different methods, three of which are described in [1, Section 5; 8;
14, Theorem 7].

EXAMPLE 6.1B. Next, letC = P (X) where|X| = k < n. The characteristic
roots ofQ are

1,M + 1, . . . , (n− k − 1)M + 1, (n− k)M, . . . , (n− 1)M.

(This list can be deduced from Theorem 1.1; it is also a special case of Exam-
ple 6.3.) The indexing complex has characteristic polynomial

pP (X)(y) = (y − 1)k,

whosek roots all equal 1, precisely the amount by which thek largest roots of
Lat� are decreased as we pass toQ.

Geometrically, whenG is cyclic,Q consists of those flats generated byBn(M)
that contain either no coordinate vectorui at all or at least oneui for which i /∈ X.

EXAMPLE 6.1C. Now we letC = P (X1) ∪ · · · ∪ P (Xm) wherem ≥ 2 and the
Xi are nonempty, pairwise disjoint subsets of[n]. Let ki = |Xi|. ThenNi(C) in
Theorem 1.1 equals

∑m
i=1

(
ki
i

)
. If k = maxki , then(λ−1)n−k,M is a factor ofpQ(λ)

so 1,M + 1, . . . , (n − k − 1)M + 1 are characteristic roots, but there seem to be
no general further factorization and no transformation of the roots in terms of the
roots ofpC(y) unless allki = 1, which is Example 6.1A.

This suggests that cases like those in Examples 6.1A and B are rather special.
We can, though, generalize them.

EXAMPLE 6.1D. Given two simplicial complexesD andD ′, defineD ∗D ′ =
{A ∪ B : A ∈ D andB ∈ D ′}. If the supports ofD andD ′ are disjoint, then
pD∗D ′(y) = pD(y)pD ′(y). SupposeC = D ∗ P (X) whereX = [n− k]c andD
is a simplicial complex on vertex set[n− k]. ThenpC(y) = (y − 1)kpD(y). From
Proposition 6.1 below we get

pQ(λ) = (λ− (n− k)M)(λ− (n− k + 1)M) · · · ×
×(λ− (n− 1)M)pQ(GK•n−k,D)(λ).

So, whateverD does to the characteristic roots ofGK•n−k , the effect ofC is to do
the same to the smallestn− k roots ofGK•n while shrinking each of the largestk
by 1.

For instance, whenD = ∅,C merely reduces by 1 thek largest roots. When
D = C[m] = {∅, {1}, . . . , {m}}, then in addition the(k+1)st largest root is lowered
bym.
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EXAMPLE 6.2. In treating more general examples we need a certain property of
a vertex which is related to modularity of coatoms inG(�). In a full biased graph
� a vertexv is bias simplicialif, for any two linksevw andevx from v to distinct
verticesw andx, there is an edgeewx forming a balanced triangle{evw, evx, ewx}.
For instance, inGK•n every vertex is bias simplicial. InG1• a vertex is bias sim-
plicial if and only if it is simplicial in1 (i.e., its neighbors form a clique). From
[19, Theorem 2.1] we know thatE(�\v) is a modular flat if and only ifv is bias
simplicial. Then by Stanley’s factorization theorem [11, Theorem 2], provided that
� is simply biased, we have

χ�(λ) = (λ− dv)χ�\v(λ), (6.2a)

wheredv = degree ofv in �; also

χb�(λ) = (λ+ 1− dv)χb�\v(λ) (6.2b)

by (2.3b) applied to (6.2a).
We call� a bias-simplicial extension of�:Y by (vl+1, vl+2, . . . , vn) if Y c can

be ordered as(vl+1, vl+2, . . . , vn) so that eachvi is bias simplicial in�i = �:(Y ∪
{vl+1, . . . , vi}). Define

di = degree ofvi in �i. (6.2c)

Then (6.2a) and (6.2b) imply

χ�(λ) = (λ− dl+1)(λ− dl+2) · · · (λ− dn)χ�:Y (λ), (6.2d)

χb�(λ) = (λ+ 1− dl+1)(λ+ 1− dl+2) · · · (λ+ 1− dn)χb�:Y (λ), (6.2e)

as long as� is simply biased.
Recall from Example 6.1D the definition ofD∗D ′. As before, we are interested

in examples whereD ′ = P (X) for X ⊆ V .

PROPOSITION 6.1. Let � be a full, simply biased graph andX = {vn−k+1,
vn−k+2, . . . , vn}. Suppose� is a bias-simplicial extension by(vn−k+1, vn−k+2, . . . ,
vn) of�:Xc. LetD be a simplicial complex on vertex setXc andC = D ∗ P (X).
Then

pQ̃(�,C)(λ) = (λ+ 1− dn−k+1)(λ+ 1− dn−k+2) · · · ×
×(λ+ 1− dn)pQ̃(�:Xc,D)(λ),

wheredi is defined by(6.2c).
Proof. Clearly, we may apply the casek = 1 iteratively to deduce the whole

proposition. So we assumek = 1. ForW ⊆ V \vn we writeW ′ = W ∪ {vn} and
dn(W

′) for the degree ofvn in �:W ′.
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Sincevn is bias simplicial in� it has that same property in any induced sub-
graph�:W ′. Thus

pQ̃(�,C)(λ) =
∑
W∈D

{
χb�:W(1)χ�:Wc(λ)+ χb�:W ′(1)χ�:W ′c (λ)

}
=

∑
W∈D

{[λ− dn(Wc)]χb�:W(1)χ�:W ′c (λ)+

+[2− dn(W ′)]χb�:W(1)χ�:W ′c (λ)
}

= (λ+ 1− dn)
∑
W∈D

χb�:W (1)χ�:W ′c (λ)

= (λ+ 1− dn)pQ̃(�\vn,D)(λ).
2

We see that, whatever may be the effect on the characteristic roots of changing
Lat(�:Xc) to Q̃(�:Xc,D), our construction ofC superimposes a further effect of
subtracting 1 from the additional roots of Lat�.

EXAMPLE 6.3. We getC = P (X) by taking D = {∅} in Example 6.2. So
when� is a bias-simplicial extension of�:Xc (and assumingX 6= V ) we have a
simple root-shifting phenomenon: certaink roots of Lat�, namelydn−k+1, . . . , dn,
are reduced by 1, while the others are unchanged.

When� = 〈GK•n〉 the shifted roots are the largest ones because the degrees are
given bydi = Mi + 1 for all i.

EXAMPLE 6.4. TakeC to be the 0-dimensional complexCZ = {∅, {v} : v ∈ Z}
whereZ ⊆ V and|Z| = m ≥ 1. Theorem 4.1 reduces to

pQ̃(�,C)(λ) = χ�(λ)+
∑
v∈Z

χ�\v(λ). (6.4a)

If it happens that�∗:{v,w} is unbalanced for every pair{v,w} ⊆ Z, then
Q̃(�,CZ) is the geometric lattice Lat�∗(Zc), where�∗(Zc) is � with the unbal-
anced edges removed from the vertices inZ. This applies for instance to Exam-
ple 6.1A and more generally to� = 〈G1•〉 if Z is a clique in1 and |G| ≥
2.

Suppose every vertex inZ is bias simplicial and has degreel. Then

χ�(λ) = (λ− l)χ�\v(λ)
for v ∈ Z by Proposition 6.1, so (6.4a) simplifies to

pQ̃(�,CZ)(λ) =
λ− l +m
λ− l pLat�(λ), (6.4b)

which we interpret as saying that a certain characteristic root of Lat� has been
reduced bym.
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EXAMPLE 6.5. We combine Examples 6.3 and 6.4. Let� be a bias-simplicial
extension of�:Xc as in Proposition 6.1 and letC = P (X) ∗ CZ with CZ as in
Example 6.4, where∅ 6= Z ⊆ Xc and each vertexv ∈ Z is bias simplicial in�:Xc

and has degreel in�. Letm = |Z| andk = |X|. Comparing the characteristic roots
of Lat� andQ̃(�,C), we observe that each of the former’s rootsdn−k+1, . . . , dn
is lowered by 1, while one of the rootsl is reduced bym.

EXAMPLE 6.6. Now letC = P (X1)∪P (X2)∪ · · · ∪P (Xm) wherem ≥ 2 and
the setsX1,X2, . . . , Xm are nonvoid and mutually disjoint. Then

pQ̃(�,C)(λ) = χ�(λ)+
m∑
i=1

∑
∅⊂W⊆Xi

χb�:W(1)χ�:Wc(λ), (6.6a)

which has no obvious factorization except in one special case.
Suppose all the flatsAi = E:Xc

i are modular in Lat� and letY = (X1 ∪
· · · ∪ Xm)c. ThenA = A1 ∩ · · · ∩ Am = E:Y is modular because in a geomet-
ric lattice the meet of modular flats is modular (a result due to Stanley; see [3,
Proposition 3.6] and [11, Lemma 2]). By Stanley’s factorization theorem [11], the
characteristic polynomial of Lat(�|A), which isχ�:Y (λ), is a common factor of all
terms in (6.6a), hence a factor ofpQ̃(λ).

In Example 6.1C we noticed the factor(λ− 1)n−k,M . That is an instance of the
modular factorization just discussed, becauseE:Y is a modular flat of LatGK•n for
anyY ⊆ [n]. (See [6, Theorem 4].)

7. Root Shifting and Other Problems

In most of the examples in Section 6 we observed that under certain circumstances
characteristic roots are shifted as we pass from Lat� to Q̃(�,C). The number of
shifted roots and the amount of shift in these examples are precisely the number
and size of the characteristic roots ofC. Why this should be so, and whether it
represents a general phenomenon or an accident, we do not know.

We summarize the data. In each case the shifting is known to take place only
for certain nice�’s.

EXAMPLES 6.1A and 6.4. The characteristic polynomial ofC is y − m. We
observe that one root ofpLat�(λ) is decreased bym, the root ofpC(y).

EXAMPLES 6.1B and 6.3. HerepC(y) = (y − 1)k, which hask roots equal to 1,
andk roots ofpLat�(λ) are decreased by 1.

EXAMPLES 6.1D and 6.2. We havepC(y) = (y − 1)kpD(y) wherek = |X|, so
the characteristic roots ofC are those ofD andk additional 1’s. The effect on the
roots of Lat� corresponds: whateverD does topLat�:Xc(λ), each additional root
of pLat�(λ) suffers a decrease of 1.
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EXAMPLE 6.5. HerepC(y) = (y − 1)k(y − m), whose roots correspond to the
effect ofC-restriction on the characteristic roots of Lat�.

EXAMPLES 6.1C and 6.6. Here, ifm > 1 and someki > 1, the characteristic
polynomial ofC has no obvious factorization and the effect ofC on the character-
istic roots of Lat�, while obscure, is probably not simply related to the roots of
pC(y).

Based on these examples it is hard to tell whether or not there is an interesting
answer to the problem of root shifting, which we state formally as

PROBLEM 1. Is there any theory of a relationship among the roots ofχ�(λ), pC(y),
andpQ̃(�,C)(λ)?

Our work suggests other theoretical questions in addition to the root-shifting
problem. There are the questions of generalizing Theorems 3.6 and 3.8 to all bi-
ased graphs, determining more completely whenµQ(�,C)(0̂, 1̂) ≥ 0 (generalizing
Theorem 4.5), clarifying the relationship (if any) betweenpQ̃(λ) andpQ(λ), and
gaining more understanding ofξ8,W(λ) in Theorem 5.6. Two broader problems are
these:

PROBLEM 2. Can one extend the construction ofQ̃(�,C) from bias matroids of
biased graphs to an arbitrary matroidM with prescribed basisV , in such a way as
to generalize any of our results?

PROBLEM 3. Can algebraic constructions that lead to the exponents of a root
system be carried out more generally, either forQ(±K•n,C) orQ(GK•n,C), or for
Q̃(�,C) in general?
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