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1. We begin with a theorem that provides a focal point for the general theory. Let
' = (N,E) be a graph, n = |N|, fr = the number of k-tree spanning forests in I', and
t(A) = the number of tree components of the graph A. Let § = the set of forests of I,
including the null graph, ordered in the following way: F' < F” if F’ consists of some (or no)
trees of F' plus (optionally) additional edges linking some of these trees.

Forest Theorem. § is a geometric lattice of rank n. Its rank function is tk F' = n — t(F).
Its characteristic polynomial (when T' is finite) is
ps(N) = (=1)" ) (1= N fi
k=0

Some other facts about §: its 0 element is (N, 0), its 1 is (0, (), its atoms are (N, e) for
each link e and (N\{v}, () for each vertex v.

The Forest Theorem can be proved directly, e.g. by deletion-contraction, but it is more
interesting to derive it from the theory of voltage-graphic matroids.

2. A woltage graph [now called a gain graph] is a pair (I', ¢) consisting of a graph I' = (N, E)
and a voltage [now gain function], a mapping ¢ : £ — & where & is a group called the voltage
group [now gain group]. The voltage [gain] on an edge depends on the sense in which the
edge is traversed: if for e in one direction the voltage is ¢(e), then in the opposite direction
it is ¢(e) 1. The voltage [gain] on a circle is the product of the edge voltages taken in order
with consistent direction; if the product equals 1 the circle is called balanced. (While in
general the starting point and orientation of C' influence its voltage, they have no effect on
whether it is balanced.) A subgraph is balanced if every circle in it is balanced. For S C F,
let b(S) = the number of balanced components of (N, S).

©(C) = p(er)p(es)p(es)p(es) " oles)p(es)

Matroid Theorem. The function tk S = n—0b(S) is the rank function of a matroid G(T', v)
on the set E. A set A C FE is closed iff every edge e & A has an endpoint in a balanced
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component of (N, A) but does not combine with edges in A to form a balanced circle. A set
1s a circuit iff it 1s a balanced circle or a bicircular graph containing no balanced circle.

graphs

Theta graphs Handcuffs

We call G(T', ) a wvoltage-graphic matroid. [Now, frame matroid [6], or gain-graphic bias
matroid [5].] In case it is a simple matroid it is a subgeometry of the Dowling lattice @, (®)

(see [1]).
Ezample 1. ¢ = 1. Then G(I', ) = G(I"), the usual graphic matroid.
Ezxample 2. & = {£1}. Then (I', ¢) is a signed graph.

Ezxample 3. Same, with ¢ = —1. Then G(I', ) is the even-circle matroid of I" (see
[2] for references).

Ezample 4. No balanced circles. Then G(I', ¢) = B(I'), the bicircular matroid of I'
(see [4] for references). The balanced sets are the spanning forests. The closed sets
correspond to the forests F' = (X, E(F")) such that the subgraph of I' induced on X*
has no trees. The circuits are the bicircular graphs (whence the name). The rank
function is 1k .S = n — t(9).

The first parts of the Forest Theorem follows from these observations, the Matroid
Theorem, and:

Lemma. § = the lattice of flats of B(I'°), where I'° denotes I' with a loop at every
node.

3. Now let I' be finite and let & have finite order g. A proper p-coloring of (I', ) is a

mapping
k:N—={0tU{1,...,u} x &)
such that, for any edge e from v to w (including loops), we have x(v) # 0 or xK(w) # 0 and
also
k1(v) # ka(w) or ka(w) # ra(v)ple)  if K(v), K(w) #0,

where k; and ko are the numerical and group parts of k. Let x(ug + 1) = the number of
proper p-colorings of (I, ¢) and let x*(ug) = the number which do not take the value 0.

Chromatic Polynomial Theorem. x(ug + 1) is a polynomial in p. Indeed x(\) =
NEID(N), where p(X) is the characteristic polynomial of G(T, ).
2



Balanced Chromatic Polynomial Theorem. x"(ug) is a polynomial in p. Indeed x*(\) =
YA (=) summed over balanced S C E.

Fundamental Theorem. Let \%()\) denote the balanced chromatic polynomial of the in-
duced voltage graph on X C N. Then

W= 3 k-1

X stable

In particular for the forest lattice we look at B(I'®). The necessary finite voltage group
may be, for instance, the power set P(F) with symmetric difference, with voltage ¢(e) = {e}.
Then the latter two theorems quickly yield the characteristic polynomial of §.
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