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1. We begin with a theorem that provides a focal point for the general theory. Let
Γ = (N,E) be a graph, n = |N |, fk = the number of k-tree spanning forests in Γ, and
t(∆) = the number of tree components of the graph ∆. Let F = the set of forests of Γ,
including the null graph, ordered in the following way: F ≤ F ′ if F ′ consists of some (or no)
trees of F plus (optionally) additional edges linking some of these trees.

Forest Theorem. F is a geometric lattice of rank n. Its rank function is rkF = n− t(F ).
Its characteristic polynomial (when Γ is finite) is

pF(λ) = (−1)n
n∑

k=0

(1− λ)kfk.

Some other facts about F: its 0 element is (N, ∅), its 1 is (∅, ∅), its atoms are (N, e) for
each link e and (N\{v}, ∅) for each vertex v.

The Forest Theorem can be proved directly, e.g. by deletion-contraction, but it is more
interesting to derive it from the theory of voltage-graphic matroids.

2. A voltage graph [now called a gain graph] is a pair (Γ, ϕ) consisting of a graph Γ = (N,E)
and a voltage [now gain function], a mapping ϕ : E → G where G is a group called the voltage
group [now gain group]. The voltage [gain] on an edge depends on the sense in which the
edge is traversed: if for e in one direction the voltage is ϕ(e), then in the opposite direction
it is ϕ(e)−1. The voltage [gain] on a circle is the product of the edge voltages taken in order
with consistent direction; if the product equals 1 the circle is called balanced. (While in
general the starting point and orientation of C influence its voltage, they have no effect on
whether it is balanced.) A subgraph is balanced if every circle in it is balanced. For S ⊆ E,
let b(S) = the number of balanced components of (N, S).
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C ϕ(C) = ϕ(e1)ϕ(e2)
−1ϕ(e3)ϕ(e4)

−1ϕ(e5)ϕ(e6)

Matroid Theorem. The function rkS = n−b(S) is the rank function of a matroid G(Γ, ϕ)
on the set E. A set A ⊆ E is closed iff every edge e 6∈ A has an endpoint in a balanced
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component of (N,A) but does not combine with edges in A to form a balanced circle. A set
is a circuit iff it is a balanced circle or a bicircular graph containing no balanced circle.

graphs
Bicircular

Theta graphs Handcuffs

We call G(Γ, ϕ) a voltage-graphic matroid. [Now, frame matroid [6], or gain-graphic bias
matroid [5].] In case it is a simple matroid it is a subgeometry of the Dowling lattice Qn(G)
(see [1]).

Example 1. ϕ ≡ 1. Then G(Γ, ϕ) = G(Γ), the usual graphic matroid.

Example 2. G = {±1}. Then (Γ, ϕ) is a signed graph.

Example 3. Same, with ϕ ≡ −1. Then G(Γ, ϕ) is the even-circle matroid of Γ (see
[2] for references).

Example 4. No balanced circles. Then G(Γ, ϕ) = B(Γ), the bicircular matroid of Γ
(see [4] for references). The balanced sets are the spanning forests. The closed sets
correspond to the forests F = (X,E(F )) such that the subgraph of Γ induced on Xc

has no trees. The circuits are the bicircular graphs (whence the name). The rank
function is rkS = n− t(S).
The first parts of the Forest Theorem follows from these observations, the Matroid

Theorem, and:

Lemma. F ∼= the lattice of flats of B(Γ◦), where Γ◦ denotes Γ with a loop at every
node.

3. Now let Γ be finite and let G have finite order g. A proper µ-coloring of (Γ, ϕ) is a
mapping

κ : N → {0} ∪ ({1, . . . , µ} ×G)

such that, for any edge e from v to w (including loops), we have κ(v) 6= 0 or κ(w) 6= 0 and
also

κ1(v) 6= κ1(w) or κ2(w) 6= κ2(v)ϕ(e) if κ(v), κ(w) 6= 0,

where κ1 and κ2 are the numerical and group parts of κ. Let χ(µg + 1) = the number of
proper µ-colorings of (Γ, ϕ) and let χb(µg) = the number which do not take the value 0.

Chromatic Polynomial Theorem. χ(µg + 1) is a polynomial in µ. Indeed χ(λ) =
λb(E)p(λ), where p(λ) is the characteristic polynomial of G(Γ, ϕ).

2



Balanced Chromatic Polynomial Theorem. χb(µg) is a polynomial in µ. Indeed χb(λ) =
ΣSλ

b(S)(−1)|S|, summed over balanced S ⊆ E.

Fundamental Theorem. Let χb
X
(λ) denote the balanced chromatic polynomial of the in-

duced voltage graph on X ⊆ N . Then

χ(λ) =
∑

X stable

χb
X
(λ− 1).

In particular for the forest lattice we look at B(Γ◦). The necessary finite voltage group
may be, for instance, the power set P(E) with symmetric difference, with voltage ϕ(e) = {e}.
Then the latter two theorems quickly yield the characteristic polynomial of F.

References

[1] T. A. Dowling, “A class of geometric lattices based on finite groups,” J. Combinatorial Theory Ser. B,
14 (1973), 61–86. MR 46 #7066. Erratum, ibid., 15 (1973), 211. MR 47 #8369.

[2] T. Zaslavsky, “Signed graphs,” Discrete Appl. Math., 4 (1982), 47–74. Erratum, ibid., 5 (1983), 248.
Proof of the Matroid Theorem [for signed graphs].

[3] T. Zaslavsky, “Signed graph coloring,” Discrete Math., 39 (1982), 214–228; and “Chromatic invariants
of signed graphs,” Discrete Math., 42 (1982), 287–312. Proofs of the coloring results [for signed graphs].

[4] T. Zaslavsky, “Bicircular geometry and the lattice of forests of a graph,” Quart. J. Math. Oxford (2),
33 (1982), 493–511. Has more detail, references, and applications to geometry.

[5] [T. Zaslavsky, “Biased graphs. II. The three matroids,” J. Combinatorial Theory Ser. B 51 (1991),
46–72. Proof of the Matroid Theorem.]

[6] [T. Zaslavsky, “Frame matroids and biased graphs,” European J. Combin. 15 (1994), 303–307.]
[7] [T. Zaslavsky, Biased graphs. III. Chromatic and dichromatic invariants. J. Combin. Theory Ser. B 64

(1995), 17–88. Proofs of the coloring results.]

3


