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Abstract

We introduce the concept of vector valued switching function in signed

graphs, which extends the concept of switching to higher dimensions. Using

this concept, we define balancing dimension and strong balancing dimension

for a signed graph, which can be used for a new classification of unbalanced

signed graphs. We also calculate the balancing and strong balancing dimen-

sions for some classes of signed graphs, and provide a bound for these dimen-

sions.
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1 Motivational Background and Introduction

Given a signed graph Σ = (G, σ) where G = (V,E) is the underlying graph (which

we assume is simple) and σ : E → {−1, 1} is the signing function, by switching

Σ to a signed graph Σζ = (G, σζ) using a switching function ζ : V → {−1, 1},
we mean the edge signing of Σζ satisfies the condition σζ(uv) = σ(uv)ζ(u)ζ(v).

Switching does not change the signs of cycles. We say two signed graphs Σ1 and Σ2

are switching equivalent if one of them can be switched from the other.
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2 Vector Valued Switching in Signed Graphs

Given a cycle C in a signed graph, the sign of this cycle σ(C) is defined as the

product of the edge signs on it. If σ(C) = 1, we say that the cycle C is positive. A

signed graph is said to be balanced if all cycles in it are positive. There are various

characterizations of balanced signed graphs; one of them is by switching (e.g., see

[2]), as follows.

Theorem 1.1. A signed graph Σ = (G, σ) is balanced if and only if it can be switched

to an all positive signed graph.

An undirected graph G can be considered as an all positive signed graph. This is

a more restrictive property than balance because no switching is required to make

all edges positive, but balance is still quite restrictive because it requires that all

cycle signs be positive. Indeed, balanced signed graphs are the signed graphs that

are the most like unsigned graphs.

If Σ = (G, σ) is a signed graph, then −Σ = (G,−σ) is the same signed graph with

all signs reversed. For example, −G means G with all negative edges. We say Σ is

antibalanced when −Σ is balanced. It is easy to see that −(Σζ) = (−Σζ) (Theorem

1.4), so by Theorem 1.1 Σ is antibalanced if and only if it switches to all negative

signs.

Motivated from the above theorem, as the product ζ(u)ζ(v) can be viewed as the

inner product of ζ(u) and ζ(v) on R, we frame the following definitions to classify

unbalanced signed graphs extending the concept of switching to a higher dimension.

In what follows, Ω = {−1, 0, 1} and the inner product used is the same as that on

Rk restricted to Ωk.

Definition 1.2 (Vector Valued Switching or k-Switching). Let Σ = (G, σ) be a

given signed graph where G = (V,E). Let ζ : V → Ωk ⊂ Rk be the vector valued

switching function such that

(i) (non-orthogonality) 〈ζ(u), ζ(v)〉 6= 0 for all edges uv ∈ E and
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(ii) the switched signed graph Σζ = (G, σζ) has the signing

σζ(uv) = σ(uv) sgn(〈ζ(u), ζ(v)〉).

So the switching considered so far in the literature, from now onwards will be

referred to as 1-switching and if k > 1, the generalized switching introduced now

will be mentioned as k-switching.

Remark 1.3. The zero vector is a possible value of ζ(v), but only if v is an isolated

vertex, because the inner product 〈ζ(u), ζ(v)〉 must not be 0 if there is an edge uv.

For this reason, although an isolated vertex in 1-switching can take the value 0 so

the usual switching is not precisely the same as 1-switching, the difference is not

important.

The product of a 1-switching function η and a k-switching function ζ is defined

by (ηζ)(v) = η(v)ζ(v), that is, η acts on ζ pointwise as a scalar multiplier.

Theorem 1.4. Let k, k′ ≥ 1. A k-switching function ζ, a k′-switching function

ζ ′, and a 1-switching function η satisfy (Σζ)ζ
′

= (Σζ′)ζ, Σηζ = (Ση)ζ = (Σζ)η,

Σ−ζ = Σζ, (Σζ)ζ = Σ, and −(Σζ) = (−Σ)ζ.

Proof. Let Σ = (G, σ) be a given signed graph where G = (V,E) and let ζ : V → Ωk,

ζ ′ : V → Ωk′ be vector valued switching functions. Then, for any edge uv in Σ,

(σζ
′
)ζ(uv) = σζ

′
(uv) sgn(〈ζ(u), ζ(v)〉)

= σ(uv) sgn(〈ζ ′(u), ζ ′(v)〉) sgn(〈ζ(u), ζ(v)〉)

= σζ(uv) sgn(〈ζ ′(u), ζ ′(v)〉)

= (σζ)ζ
′
(uv)

so that (σζ
′
)ζ = (σζ)ζ

′
. Thus, (Σζ′)ζ = (Σζ)ζ

′
.
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Replacing ζ ′ by η,

(ση)ζ(uv) = σ(uv) sgn(〈η(u), η(v)〉) sgn(〈ζ(u), ζ(v)〉)

= σ(uv)η(u)η(v) sgn(〈ζ(u), ζ(v)〉)

= σ(uv) sgn(〈η(u)ζ(u), η(v)ζ(v)〉)

= σηζ(uv)

so that (ση)ζ = σηζ and (Ση)ζ = Σηζ = (Σζ)η by the first formula.

Setting η(v) = −1 for all v, we obtain Σ−ζ = Σζ .

Setting ζ ′ = ζ, we have

(σζ)ζ(uv) = σ(uv) sgn(〈ζ(u), ζ(v)〉) sgn(〈ζ(u), ζ(v)〉) = σ(uv)

so that (Σζ)ζ = Σ.

Finally, negating all edge signs in Σ does not affect the switching formula, so

−(Σζ) = (−Σ)ζ .

2 Balancing and Strong Balancing Dimensions

2.1 Definition and elementary properties

Definition 2.1 (Balancing Dimension). Let Σ = (G, σ) be a given signed graph

where G = (V,E). We say that the balancing dimension of Σ is k and write it as

bdim(Σ), if k ≥ 1 is the least integer such that a vector valued switching function ζ :

V → Ωk ⊂ Rk switches Σ to an all positive signed graph. For example, bdim(Σ) = 1

if and only if Σ is balanced. We call such a k-switching function ζ a positive k-

switching function (briefly a k-positive function) for Σ.

The existence of a k-positive function implies existence in all higher dimensions.

Lemma 2.2. A signed graph Σ has a k-positive function for every k ≥ bdim(Σ).
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Proof. Let j < k and let ζ : V → Ωj be a j-positive function for Σ. Define

ζ ′(v) = (ζ1(v), . . . , ζj(v), 0, . . . , 0) ∈ Ωk. Then ζ ′ is a k-positive function for Σ. In

particular, take j = bdim(Σ).

Definition 2.3 (Strong Balancing Dimension). Let Σ = (G, σ) be a given signed

graph where G = (V,E). We say that the strong balancing dimension of Σ is k

and write it as sbdim(Σ), if k ≥ 1 is the least integer such that there is an injective

vector valued switching function ζ : V → Ωk which switches Σ to an all positive

signed graph. However, in case Σ is all positive, we define sbdim(Σ) = 1.

We call such a k-switching function ζ an injective positive k-switching function

(briefly, a strongly k-positive function) for Σ.

We chose to study injectivity because by allowing higher dimensional switching

we open the door to new variations on the definition of a switching function, and

injectivity seemed an interesting and attractive such variation.

Theorem 2.4. bdim(Σ) = 1 if and only if Σ is balanced.

Proof. Proof easily follows from Theorem 1.1.

Theorem 2.5. sbdim(Σ) = 1 if and only if Σ = K1, K1 ∪K1, K1 ∪K1 ∪K1, −K2,

or −K2 ∪K1.

Proof. It follows from the injectivity requirement of the 1-switching function. If

sbdim(Σ) = 1, then Σ has at most 3 vertices and if it has 3, the one with ζ(v) = 0

must be isolated. If there are two non-isolated vertices, they must be negatively

adjacent.

We note that, since 1-switching allows ζ(v) = 0 when v is an isolated vertex, this

theorem has a few more examples than would exist if 1-switching were identical to

ordinary switching.
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v1 v2

v4 v3

Figure 1: The negative cycle C−4

Example 2.6. bdim(C−4 ) = sbdim(C−4 ) = 2. Take ζ(v1) = (−1, 0), ζ(v2) = (1,−1),

ζ(v3) = (0,−1) and ζ(v4) = (−1,−1) to see that both dimensions are 2.

Theorem 2.7. bdim is 1-switching invariant.

Proof. Let Σ be 1-switched to Ση and let bdim(Σ) = k. Let ζ be a k-positive

function for Σ. By Theorem 1.4, (Ση)ηζ = ((Ση)η)ζ = Σζ , which is all positive, so

ηζ is a k-positive function forΣη. This shows that bdim(Ση) ≤ k = bdim(Σ). But

since (Ση)η = Σ, that proves the theorem.

It should be noted that the above theorem is not true for the general k-switching

when k > 1. We will provide an example in the later part of this paper.

Remark 2.8. Strong balancing dimension need not be 1-switching invariant. Con-

sider the signed graph shown in Figure 2.

v1 v2

v3

v4 v5

v6 v7

Figure 2: A signed graph Σ with sbdim(Σ) = 3
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For any non-zero α ∈ Ω2, the cardinality of the set {β ∈ Ω2 : 〈α, β〉 < 0} is

3. Thus, there does not exist an injective switching function from V (Σ) to Ω2

that switches Σ to all positive. Consequently, sbdim(Σ) > 2. Now, the switch-

ing function ζ : V (Σ) → Ω3 defined by ζ(v1) = (1, 0, 0), ζ(v2) = (0, 0, 1), ζ(v3) =

(−1,−1,−1), ζ(v4) = (0, 1, 0), ζ(v5) = (−1, 1, 1), ζ(v6) = (1,−1, 1) and ζ(v7) =

(1, 1,−1) is injective, and switches Σ to all positive. Hence, sbdim(Σ) = 3.

Let η be the 1-switching function defined on V (Σ) as follows: η(v1) = η(v2) = −1

and η(v3) = η(v4) = η(v5) = η(v6) = η(v7) = 1. The corresponding switched signed

graph Ση is shown in Figure 3.

v1 v2

v3

v4 v5

v6 v7

Figure 3: The 1-switched signed graph Ση with sbdim(Ση) = 2

A simple computation shows that the injective switching function ζ ′ : V (Σµ)→ Ω2

defined by ζ ′(v1) = (1, 1), ζ ′(v2) = (1,−1), ζ ′(v3) = (1, 0), ζ ′(v4) = (−1, 1), ζ ′(v5) =

(−1,−1), ζ ′(v6) = (0,−1) and ζ ′(v7) = (0, 1). Consequently, sbdim(Σµ) is 2 and

hence sbdim is not 1-switching invariant.

Theorem 2.9. For any subgraph Σ′ of Σ, bdim(Σ′) ≤ bdim(Σ) and sbdim(Σ′) ≤
sbdim(Σ).

Proof. The balancing dimension of Σ′ cannot exceed bdim(Σ) since the switching

function for Σ, restricted to V (Σ′) switches Σ′ to all positive. The same proves the

result for strong balancing dimension.
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Our next theorem shows how the balancing dimension of a disconnected signed

graph depends on its connected components.

Theorem 2.10. The balancing dimension of a disconnected graph is the largest

balancing dimension of its connected components.

Proof. Let Σ = (G, σ) be a signed graph having t components Σ1,Σ2, . . . ,Σt. Let

n be the largest balancing dimension of any component Σi. By Theorem 2.9,

bdim(Σ) ≥ bdim(Σi) for all i. Thus, bdim(Σ) ≥ n. Since n ≥ bdim(Σi) for

every i, by Lemma 2.2 there exists an n-positive function ζi for every component

Σi. Define ζ : V (Σ) → Ωn by ζ(v) = ζi(v) if the component that contains vertex v

is Σi. Since each ζi switches Σi to all positive, ζ switches Σ to all positive. Thus,

bdim(Σ) = n.

Remark 2.11. Because of the additional injectivity condition, the above result will

not hold for strong balancing dimension. As an illustration, let us consider Σ as the

signed graph that consists of 3 disjoint copies of the negative cycle C−3 . Since Σ has

9 vertices, there does not exist an injective switching function ζ : V (Σ)→ Ω3.

Theorem 2.12. Adding pendant edges to a signed graph will not change its balancing

dimension.

Proof. Let Σ be a given signed graph with vertices v1, v2, . . . , vn, and let Σ′ be

the signed graph obtained by adding a pendant edge viu, where u is the pendant

vertex. Suppose bdim(Σ) = k and let ζ be the corresponding k-positive function.

We extend ζ to Σ′ by defining ζ(u) as follows.

ζ(u) =

ζ(vi) if σ(viu) = +1,

−ζ(vi) if σ(vu) = −1.

This proves that bdim(Σ′) = k. Similarly, we can add any number of pendent edges

to a signed graph without changing its balancing dimension.
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2.2 Bounds for balancing dimensions

We begin with upper bounds. Let Σ = (G, σ) be a signed graph with n vertices

v1, v2, . . . , vn and m edges e1, e2, . . . , em. For each edge ek = vivj, we define a vector

b(ek) =


b1k
...

bnk

 ∈ Rn×1, whose ith and jth entries are bik = ±1 and bjk = bikσ(ek),

respectively, and whose other entries are 0. We now define B as the n ×m matrix

whose kth column is the column vector b(ek); that is,

B =
[
b(e1) b(e2) · · · b(em)

]
=
(
bij

)
n×m

.

The matrix B is precisely the incidence matrix of the signed graph −Σ. We now

define a switching function µ : V (Σ)→ Ωm by

µ(vi) = (bi1, bi2, . . . , bim)

for i = 1, 2, . . . , n. Then, the function µ satisfies the following properties:

Property (i): 〈µ(vi), µ(vj)〉 = σ(vivj) for all edges vivj in Σ.

Property (ii): ‖µ(vi)‖2 = d(vi) for all vertices vi in Σ.

By Property (i),

σµ(vivj) = σ(vivj) sgn(〈µ(vi), µ(vj)〉)

= σ(vivj)
2 = 1.

Thus, for every signed graph Σ with m edges, there always exists a switching

function µ : V (Σ) → Ωm that switches Σ to all positive, but µ is not always

injective. This is the first step towards the following theorem.

Theorem 2.13. Let Σ be a signed graph. It satisfies the inequalities 1 ≤ bdim(Σ) ≤
sbdim(Σ) and bdim(Σ) ≤ m. Furthermore, sbdim(Σ) ≤ m if Σ has at most one

isolated vertex and no component that is a positive edge.
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v1 v2

v4 v3

e3 e4

e2

e5

e1

Figure 4: An illustratiion

Proof. The inequalities 1 ≤ bdim(Σ) ≤ sbdim(Σ) follow from the definitions. We

have already shown that bdim(Σ) ≤ m.

In order to bound sbdim(Σ) we need to know when µ is not injective. There

are two ways µ can fail to be injective. First, since µ(v) = 0 if v is isolated,

µ(v) = µ(w) if both v and w are isolated. Second, if G has a component K2, then

µ(u) = σ(uv)µ(v) = the vector with 1 in the position of edge uv and 0 in all other

positions, so µ(u) = µ(v) if uv is a positive edge. In all other cases, every vertex

has a different set of incident edges so all vectors µ(v) are distinct. This proves the

third inequality.

Example 2.14. Let Σ be the unbalanced signed graph shown in Figure 4. Then,

B =
[
b(e1) b(e2) b(e3) b(e4) b(e5)

]

=


1 1 1 0 0

σ(e1) 0 0 1 1

0 σ(e2) 0 σ(e4) 0

0 0 σ(e3) 0 σ(e5)

 =


1 1 1 0 0

1 0 0 1 1

0 1 0 −1 0

0 0 −1 0 1


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Define µ : V (Σ)→ Ω5 as follows:

µ(v1) = (1, 1, 1, 0, 0),

µ(v2) = (1, 0, 0, 1, 1),

µ(v2) = (1, 0, 0, 1, 1),

µ(v3) = (0, 1, 0,−1, 0),

µ(v4) = (0, 0,−1, 0, 1).

Then µ is injective and satisfies 〈µ(vi), µ(vj)〉 = σ(vivj) for all edges vivj in Σ. Thus

µ switches Σ to all positive. Also, we can observe that ‖µ(vi)‖2 = d(vi) for all

vertices vi in Σ.

A lower bound exists in terms of the structure of the underlying graph G of Σ.

The clique number ω(G) denotes the largest order of a clique in G. Let λ(k) denote

the largest number of pairwise non-orthogonal lines generated by the vectors in Ωk.

For instance, λ(2) = 2. The largest number of pairwise non-orthogonal vectors in

Ωk equals 2λ(k). Computation of λ appears to be hard, but λ does give a lower

bound on balancing dimension.

Theorem 2.15. We have bdim(Σ) ≥ λ−1(1
2
ω(G)).

Proof. Let ζ be a positive k-switching function for Σ. In a clique of order p all

the vectors ζ(v) for the vertices of the clique must be non-orthogonal. Therefore,

p ≥ 2λ(k), equivalently k ≥ λ−1(p/2). Considering a clique of maximum order gives

the theorem.

Negative triangles are important.

Theorem 2.16. If Σ contains a negative triangle, then bdim(Σ) ≥ 3.

Proof. Let C−3 be a negative triangle in Σ. First we prove that bdim(C−3 ) ≥ 3.

Suppose ζ is a 2-switching function that makes C−3 all positive. All vectors ζ(v) are
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non-orthogonal because all vertices are adjacent. There are exactly 4 lines generated

by Ω2 and only two of them can be chosen to be non-orthogonal. Without loss of

generality, let the lines be x2 = 0 and x1 = x2. The corresponding vectors are (1, 0),

(1, 1), (−1, 0), and (−1,−1). The first pair have positive inner product and the

second pair have positive inner product, but any one of the first pair has negative

inner product with each of the second pair. Therefore, the signs generated by ζ are

the same as the signs generated by the 1-switching function µ given by

µ(v) =

+1 if ζ(v) ∈ {(1, 0), (1, 1)},

−1 if ζ(v) ∈ {(−1, 0), (−1,−1)}.

Thus, µ is a 1-switching function that makes C−3 all positive, hence bdim(C−3 ) = 1,

i.e., C−3 is balanced, contrary to assumption.

Then bdim(Σ) ≥ bdim(C−3 ) ≥ 3 by Theorem 2.9 and the fact that Σ is unbal-

anced.

There is a simple lower bound on strong balancing dimension.

Theorem 2.17. For a signed graph with n vertices, none of them being isolated,

sbdim(Σ) ≥ log3(n+ 1).

Proof. All vectors ζ(v) must be distinct and non-zero. In Ωk there are 3k−1 distinct

non-zero vectors. Therefore, n ≤ 3k − 1, from which the result follows.

It would be interesting to know whether there are many signed graphs for which

the lower bound is attained, i.e., sbdim(Σ) = dlog3(n+ 1)e.

2.3 Special m-switching

In Section 2.2, we have seen that for every signed graph Σ with m edges, there exists

an injective function µ : V (Σ)→ Ωm that switches Σ to all positive. This function
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µ, which induces a special kind of switching on Σ that we call special m-switching,

satisfies some additional properties compared to the usual switching functions. More

precisely, we define two types of specialm-switching in signed graphs; namely, special

m-switchings of the first kind and second kind.

Definition 2.18 (Special m-Switching of the First Kind). Let Σ = (G, σ) be a

signed graph with n vertices and m edges. The function µ1 : V (Σ)→ Ωm is called a

special m-switching function of the first kind, if it satisfies the following properties:

(i) 〈µ1(u), µ1(v)〉 = σ(uv) for every edge uv in Σ.

(ii) ‖µ1(u)‖2 = d(u) for every vertex u in Σ.

Definition 2.19 (Special m-Switching of the Second Kind). Let Σ = (G, σ) be

a signed graph with n vertices and m edges. The function µ2 : V (Σ) → Ωm is

called a special m-switching function of the second kind, if it satisfies the following

properties:

(i) 〈µ2(u), µ2(v)〉 = −σ(uv) for every edge uv in Σ.

(ii) ‖µ2(u)‖2 = d(u) for every vertex u in Σ.

We observe that a special m-switching function of Σ of the second kind is identical

to a special m-switching function of −Σ of the first kind.

The Laplacian matrix of Σ = (G, σ) is defined as L(Σ) = D(G) − A(Σ), where

A(Σ) is the adjacency matrix, an n × n matrix whose entries are aij = σ(vivj) if

there is an edge vivj and 0 if not, and D(G) is the diagonal degree matrix of G.

Theorem 2.20. Let Σ = (G, σ) be a signed graph with n vertices and m edges and

µ1, µ2 : V (Σ)→ Ωm be the special m-switching functions of the first and second kind

respectively.

(i) If B is the n×m matrix with ith row given by µ1(vi), then BBT = L(−Σ).
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(ii) If H is the n×m matrix with ith row given by µ2(vi), then HHT = L(Σ).

Proof. The matrices B and H are the incidence matrices of −Σ and Σ, respectively

(see [2, Section 8B]). Hence, BBT = L(−Σ) and HHT = L(Σ).

3 Some Classes of Signed Graphs

In this section, we compute the balancing and strong balancing dimensions of certain

classes of unbalanced signed graphs.

3.1 Cycles and wheels

Lemma 3.1. For any unbalanced cycle C−n ,

bdim(C−n ) =

3 if n = 3,

2 if n > 3.

Proof. Since balancing dimension is 1-switching invariant, we have only to consider

a signed cycle C−n = v1e1v2 · · · vnenv1 where σ(en) = −1 and other edges ei are all

positive. If n > 3, define ζ : V (C−n ) → Ω2 by ζ(v1) = (1, 0), ζ(v2) = (1, 1), ζ(vn) =

(−1, 1) and for i = 3, 4, . . . , n− 1, ζ(vi) = (0, 1). A simple computation proves that

this is the required 2-switching for making bdim(C−n ) = 2.

We now prove that bdim(C−3 ) = 3. We know bdim(C−3 ) ≥ 3 by Theorem 2.16.

Define ζ : V (C−3 ) → Ω3 by ζ(v1) = (1, 0, 0), ζ(v2) = (1, 1, 1) and ζ(v3) = (−1, 1, 1).

This 3-switching function shows that bdim(C−3 ) ≤ 3.

Remark 3.2. The switching function ζ defined for C−3 in Lemma 3.1 is injective and

hence sbdim(C−3 ) = 3. If C−3 is all negative, then the injective switching function

ζ : V (C−3 ) → Ω3 by ζ(v1) = (−1, 1, 1), ζ(v2) = (1,−1, 1) and ζ(v3) = (1, 1,−1)
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switches C−3 to all positive. Thus, the unbalanced cycle C−3 gives us an example of

a signed graph for which the bound given in Theorem 2.13 is attained.

Example 3.3. The balancing dimension of a unicyclic graph is that of the unique

signed cycle in it. Let Σ be a signed graph with the unique cycle C. Suppose

bdim(C) = k and let ζ : V (C) → Ωk be the corresponding switching function.

We can extend ζ to V (Σ) by adding pendant edges. Hence, by Theorem 2.12,

bdim(Σ) = bdim(C) = k.

We now show that the balancing dimension of an antibalanced signed wheel is 3.

Wn+1 denotes the wheel with n spokes.

Proposition 3.4. For an antibalanced signed wheel W−
n+1 with n ≥ 3,

bdim(W−
n+1) = 3.

Proof. Since balancing dimension is 1-switching invariant, we let (W−
n+1, σ) = (Cn∨

K1, σ) with the sign function σ given by σ(e) = −1 if and only if e ∈ E(Cn). Let

Cn = v1v2 · · · vn and vn+1 = K1. Define ζ : V (W−
n+1) → Ω3 as follows: Choose

ζ(vn+1) = (1, 1, 1). If n = 3k or 3k + 2, assign ζ(v1) = (−1, 1, 1) and for i =

2, 3, . . . , n, ζ(vi) is obtained by performing one left circular shift to ζ(vi−1). If

n = 3k + 1, assign ζ(v1) = (−1, 1, 1), ζ(vn) = (1, 1,−1) and for i = 2, 3, . . . , n − 1,

ζ(vi) is obtained by performing one left circular shift to ζ(vi−1).

Remark 3.5. For the antibalanced signed wheelW−
4 defined above, sbdim(W−

4 ) = 3

since the switching function ζ defined in the proof of Proposition 3.4 is injective.

3.2 Complete graphs and antibalanced signed graphs

We now focus on the balancing dimension of unbalanced signed complete graphs.

Since any unbalanced signed complete graph Σ contains C−3 as a subgraph,

bdim(Σ) ≥ 3. The following is an example in which the lower bound for balancing

dimension is attained.
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Example 3.6. Let Σ be a signed complete graph with n vertices v1, v2, . . . , vn and

having only one negative edge, say v1vn. Then every 3-cycle containing the edge v1vn

is negative and hence Σ is unbalanced. Define ζ : V (Σ)→ Ω3 by, ζ(v1) = (−1, 1, 1),

ζ(vn) = (1, 1,−1) and for i = 2, 3, . . . , n− 1, ζ(vi) = (1, 1, 1). Then, ζ switches Σ to

all positive and hence bdim(Σ) = 3.

In the following proposition we provide a class of signed graphs in which the

balancing dimension and strong balancing dimension coincide.

Proposition 3.7. If Σ is an all negative signed complete graph, then bdim(Σ) =

sbdim(Σ).

Proof. Let Σ be the all negative signed complete graph. Suppose bdim(Σ) = n

and let ζ : V (Σ) → Ωn be the corresponding switching function. If ζ(vi) =

ζ(vj) for some i 6= j, then sgn(〈ζ(vi), ζ(vj)〉) = +1 and hence σζ(vivj) =

σ(vivj) sgn(〈ζ(vi), ζ(vj)〉) = −1, which is a contradiction. Thus ζ is injective and

hence bdim(Σ) = sbdim(Σ).

Note that these are not the only signed graphs satisfying bdim(Σ) = sbdim(Σ)

(see Example 2.6).

Example 3.8. The relationship between balancing dimensions of Σ and −Σ is an

obvious question. We found that there exist signed graphs satisfying bdim(−Σ) =

bdim(Σ). Similarly, there exist signed graphs satisfying bdim(−Σ) 6= bdim(Σ).

(i) Every bipartite signed graph Σ satisfies bdim(−Σ) = bdim(Σ) since Σ can be

1-switched to −Σ and bdim is 1-switching invariant.

The result doesn’t hold for the sbdim. For example, if we consider Σ as the all

positive tree with 3 vertices, then sbdim(Σ) = 1 and sbdim(−Σ) = 2.

(ii) Let Σ be an odd unbalanced cycle. Then −Σ is balanced and hence

bdim(−Σ) = 1 < bdim(Σ).
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Definition 3.9 ([1]). Let W be a nonempty subset of a vector space over the field

of real numbers. W is called a negative inner product (NIP) set if 〈α, β〉 < 0 for all

α and β in W with α 6= β.

Lemma 3.10 ([1]). In a k-dimensional vector space, there are at most k+1 vectors

in an NIP set.

Definition 3.11. We define ν(k) to be the largest size of an NIP set in Ωk. Thus,

ν(k) ≤ k + 1. It is easy to see that ν(2) = 2 but ν(3) is not as easy to determine.

We define ν̄(n) = min{k : ν(k) ≥ n}.

Lemma 3.12. ν(k) ≥ n if and only if k ≥ ν̄(n). In particular, ν̄(n) ≥ n− 1.

Proof. We restate the definition of ν̄(n) as the minimum k such that there exists

an NIP set of n elements in Ωk. Thus, k ≥ ν̄(n) if and only if an NIP set of size n

exists in Ωk. This is equivalent to saying that n ≤ ν(k).

Choosing k = n− 1, we have ν(n− 1) ≤ n so, equivalently, ν̄(n) ≥ n− 1.

Theorem 3.13. Let Σ be an antibalanced signed complete graph on n vertices, where

n ≥ 2. Then bdim(Σ) = ν̄(n) ≥ n− 1.

Proof. By 1-switching as necessary assume Σ is all negative. For switching Σ to all

positive, we must assign each vertex of Σ one element from an NIP set with elements

in Ωk for some k. Thus, by Lemma 3.10, it is necessary and sufficient that n ≤ ν(k);

equivalently by Lemma 3.12, ν̄(n) ≤ k. It follows that the smallest possible k is

ν̄(n) ≥ n− 1.

Example 3.14. Let Σ be the antibalanced signed complete graph on 5 vertices.

Then by Theorem 3.13, we have bdim(Σ) ≥ 4. Let us define a 3-switching function

µ : V (K5) → Ω3 as follows. µ(v1) = µ(v2) = µ(v3) = (1, 1, 1), µ(v4) = (−1, 1,−1)

and µ(v5) = (−1,−1, 1). We will show that the switched signed graph Σµ has

balancing dimension 3. Since Σµ contains C−3 as a subgraph, bdim(Σµ) ≥ 3. Now,
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the function ζ : V (Σµ) → Ω3, defined by ζ(v1) = (1, 1,−1), ζ(v2) = (−1, 1, 1),

ζ(v3) = (1,−1, 1) and ζ(v4) = ζ(v5) = (1, 1, 1) switches Σµ to all positive. Hence

bdim(Σµ) = 3.

v1

v2

v3v4

v5

(a) Σ

v1

v2

v3v4

v5

(b) Σµ

Figure 5: A 3-switching on Σ = −K5

This example leads us to the following conclusions.

1. Though balancing dimension is 1-switching invariant, the same need not be

true for a general k-switching, where k ≥ 2.

2. If bdim(Σ) = n, then for k = 2, 3, . . . , n − 1, a general k-switching need not

leave the signs of all cycles unchanged.
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