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INTEGRAL CANONICAL MODELS OF
SHIMURA VARIETIES OF PREABELIAN TYPE∗

ADRIAN VASIU†

Abstract. We prove the existence of integral canonical models of Shimura varieties of pre-
abelian type with respect to primes of characteristic at least 5.

1. Introduction.

1.0. Let the pair (G,X) define an arbitrary Shimura variety (cf. 2.3) and let
Sh(G,X) be the canonical model of this Shimura variety defined over the reflex field
E(G,X) (cf. 2.6-8). Let p be a rational prime such that G is unramified over Qp.
Let v be a prime of E(G,X) dividing p and let O(v) be the localization of the ring of
integers of E(G,X) with respect to it. Let H be a hyperspecial subgroup of G(Qp).
Let Ap

f be the ring of finite adèles with the p-component omitted. A smooth integral
model of Sh(G,X)/H over O(v) is a faithfully flat O(v)-scheme N together with a
continuous right action (in the sense of [De2, 2.7.1]) of G(Ap

f ) on it such that:

– its generic fibre NE(G,X) with its induced G(Ap
f )-action is Sh(G,X)/H with its

canonical G(Ap
f )-action;

– there is a compact open subgroup H0 of G(Ap
f ) with the property that for any

inclusion H1 ⊂ H2 of open subgroups of H0, the canonical morphism N/H1 → N/H2,
induced by the action of G(Ap

f ) on N, is an étale morphism between smooth schemes
of finite type over O(v).

In what follows it is irrelevant which hyperspecial subgroup H of G(Qp) we choose
(cf. 3.2.7 2)), and so we often do not mention it.

Langlands [La, p. 411] expected the existence of a good smooth integral model
of Sh(G,X)/H over O(v), without expressing what “good” should mean. Milne (see
[Mi4, p. 169] and [Mi3, footnote of p. 513]) conjectured the existence of a smooth
integral model of Sh(G,X)/H over O(v) having an extension property similar to the
extension property enjoyed by the Néron model (over a discrete valuation ring O) of
an abelian variety (over the field of fractions of O). Such a smooth integral model, if
exists, is called the integral canonical model with respect to v (and H) (or simply an
integral canonical model, as the prime v is determined by it) of our Shimura variety
Sh(G,X). For p > 2, if it exists, it is unique due to the extension property it enjoys
(cf. 3.2.4). If p > 2 and if Sh(G,X)/H does have an integral canonical model, then
this model, as an object of the category of all smooth integral models of Sh(G,X)/H
over O(v), plays the same role (i.e. it is a final object) played by the Néron model
(over a discrete valuation ring O) of an abelian variety A (over the field of fractions
of O), viewed as an object of the category of all smooth models of A (over O) (i.e. of
the category of all commutative smooth groups over O having A as its generic fibre).
Paragraphs 3.2–5 present the general definitions and properties pertaining to integral
models of Shimura varieties. Some important features are gathered in 3.2.3.2 and
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3.2.12, while the descent of such integral models (based on 3.1.3.1) is explained in
3.2.13.

The extension property mentioned above is with respect to healthy regular schemes
over O(v). We call a regular scheme Y flat over a discrete valuation ring of mixed char-
acteristic healthy if for any closed subscheme Z of the special fibre of Y of codimension
(in Y ) at least 2, any abelian scheme over the open suscheme of Y defined by Y \ Z
extends to an abelian scheme over Y . We were forced to introduce the notion of a
healthy regular scheme due to the fact that the statement 6.8 of [FC, p. 185] is not
true in general (cf. [dJO]). However a regular scheme formally smooth over a discrete
valuation ring of mixed characteristic, having a residue field of characteristic greater
than one plus its ramification index, is healthy [Fa4]; see also 3.2.2 1). A complete
proof of this fact is included in 3.2.17. The general theory of healthy normal schemes
as well as different extension properties (like the extended extension property) defined
with their help are presented in 3.2. As an independent result we get (cf. 3.2.2.1 and
3.2.3.3 2)):

Proposition. If O ↪→ O1 is a formally étale homomorphism between two dis-
crete valuation rings, with O a henselian ring of mixed characteristic, then:

1) A regular scheme Y over O is healthy iff YO1 is healthy.
2) An O-scheme Y has the extension property iff YO1 has the extension property.

For the case when the inclusion O ↪→ O1 is of index of ramification 1 see part 2)
of 3.2.2.3 A) and 3.2.2.4 a).

Integral canonical models of Shimura varieties of PEL type (these varieties are
forming a subclass of the class -to be briefly reviewed in 1.2- of Shimura varieties
of Hodge type) were constructed in [LR] (cf. also the correction in [Ko]). To our
knowledge no concrete integral canonical model of a Shimura variety which is not
related to one of PEL type (in the sense that their adjoint varieties are isomorphic)
was previously constructed.

This paper is the first among a sequence of five papers devoted to the existence,
the compactification, and the understanding of points with values in perfect fields and
in (regular formally smooth rings over) Witt rings over perfect fields of the integral
canonical models of Shimura varieties of preabelian type; examples will be provided.
The other four papers will be [Va2-5].

In this paper we are concerned with the existence of integral canonical models
of Shimura varieties of preabelian type. A Shimura variety Sh(G1, X1) is said to
be of preabelian type if there is a Shimura variety Sh(G2, X2) of Hodge type such
that their adjoint Shimura varieties are isomorphic: Sh(Gad

1 , Xad
1 ) ∼→Sh(Gad

2 , Xad
2 ).

Along our work we will give a strong support to the general point of view that all
properties enjoyed by the integral canonical models of Siegel modular varieties and by
the universal abelian schemes over them are also enjoyed (under proper formulation)
by the integral canonical models of Shimura varieties of Hodge type (even of preabelian
type) with respect to primes having a residue field of characteristic bigger than 2 and
by the special abelian schemes over them (see 1.2.2 for the meaning of special used
here).

1.1. Our basic result (see 5.1) is:

Theorem 0. With the above notations, if the Shimura variety Sh(G,X) is of
Hodge type and if the pair (G,X) satisfies a slight condition (∗) with respect to the
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prime p (assumed to be greater than 2) (cf. 5.1), then Sh(G,X) has an integral canon-
ical model with respect to any prime v of E(G,X) dividing p (and any hyperspecial
subgroup H of G(Qp)).

Fixing the pair (G,X) (of Hodge type), the condition (∗) is satisfied with respect
to any prime p big enough (see 1.2.6). For the proof of our basic result we rely heavily
on the crystalline machinery developed in [Fa1-3].

1.2. To explain 1.1, we start with an injective map f : (G,X) ↪→ (GSp(W,ψ), S)
(cf. 2.4). Here the pair (GSp(W,ψ), S) defines a Siegel modular variety (cf. Example
2 of 2.5). The existence of such an injective map is what defines the class of pairs
(G,X) (defining a Shimura variety) of Hodge type. Let Z(p) be the localization of
Z with respect to p. We assume the existence of a Z(p)-lattice L of W such that
the alternating form ψ:W ⊗ W → Q induces a perfect form ψ:L ⊗ L → Z(p) (i.e.
the induced Z(p)-linear map from L into its dual L∗ is an isomorphism) and there is
a family of tensors (vα)α∈J0 in Z(p)-modules of the form (L ⊗ L∗)⊗n, n ∈ N, fixed
by G and of degree at most 2(p − 2) (if vα ∈ (L ⊗ L∗)⊗n then the degree of vα

is 2n), which is Z(p)-well positioned with respect to ψ for the group G (see 4.3.4
for a precise definition of the notion of a well positioned family of tensors). Let
K := {g ∈ GSp(W,ψ)(Qp) | g(L⊗Zp) = L⊗Zp}. The hypotheses on L imply that K
is a hyperspecial subgroup of GSp(W,ψ)(Qp) and the closure GZ(p) of G in GSp(L,ψ)
is a reductive group over Z(p). So the intersection H := G(Qp) ∩K is a hyperspecial
subgroup of G(Qp). We choose a Z-lattice LZ of W such that ψ induces a perfect form
ψ:LZ ⊗ LZ → Z and L = LZ ⊗ Z(p). Let (vα)α∈J (with J0 ⊂ J) be an enlarged family
of tensors in the tensor algebra of W ⊕W ∗ (W ∗ being the dual Q–vector space of W )
such that G is the subgroup of GSp(W,ψ) fixing the tensors of this family. The choice
of the lattice LZ and of the family (vα)α∈J allows the interpretation of Sh(G,X)(C)
as the set of isomorphism classes of principally polarized abelian varieties over C of
dimension g (with 2g = dimQ(W )), having some level structures, carrying a family of
Hodge cycles (wα)α∈J and satisfying some additional conditions (cf. 4.1).

1.2.1. It is well known that the Z(p)-scheme M parameterizing isomorphism
classes of principally polarized abelian schemes of dimension g over Z(p)-schemes,
having level-N symplectic similitude structure for any N ∈ N relatively prime to p,
together with the canonical action of GSp(W,ψ)(Ap

f ) on it, is an integral canonical
model of Sh(GSp(W,ψ), S)/K over Z(p) (see 3.2.9).

1.2.2. The normalization N of the closure of Sh(G,X)/H in MO(v) is a normal
integral model of Sh(G,X)/H having the (extended) extension property (cf. 3.4.1;
see def. 2) and 3) of 3.2.3). This integral model is an integral canonical model of
Sh(G,X)/H iff N is formally smooth over O(v) (cf. 3.4.4). The universal principally
polarized abelian scheme over M, gives birth to a principally polarized abelian scheme
(A,PA) over N, which we call special. Let F be the algebraic closure of the residue
field k(v) of v.

The Hodge cycles are (presently) defined only in characteristic zero. But the
Hodge cycles (of degree not bigger than 2(p− 2)) of an abelian scheme over a discrete
valuation ring which is finite flat over a ring W (k) of Witt vectors of a perfect field k of
characteristic p are well behaved (cf. [Fa3, cor. 9]) with respect to the integral version
of Fontaine’s comparison map (see [Fa3, th. 7]). Using the above hypotheses on the
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Z(p)-lattice L, we first exploit (cf. 5.2.12) the good behaviour of Hodge cycles under
the integral version of Fontaine’s comparison map (i.e. we can pass from a reductive
group in the étale Zp-context to a reductive group in the integral crystalline, de Rham
context). Then we use (cf. 5.2.10) de Rham conjecture [Fa1-2] to construct (cf. 5.3-4)
local deformations of (principally polarized) abelian schemes of dimension g (having
some level structures) over W (F), carrying a family of Hodge cycles and satisfying
the required additional conditions. With these deformations we prove the formal
smoothness of N. The main new idea besides the ones of [Fa3] is the use of the ring
R̃e, introduced in 5.2.1 (here e ∈ N). It is a projective limit of artinian W (F)-algebras;
this fact plays a key role in 5.3.2.

We detail the above two steps. Let y: Spec(F) ↪→ NW (F) be a closed point, and
let V be a discrete valuation ring which is a finite flat extension of W (F) such that
y can be lifted to a point zV :Spec(V ) → NW (F). Let e := [V : W (F)] and let R̃ne

be the normalization of R̃e in its field of fractions. First we show, starting from
zV , the existence of a morphism Spec(R̃ne) → NW (k) lifting y (5.3.1.1). Using the
natural epimorphism R̃ne ³ W (F) (cf. 5.3.4), we deduce the existence of a good
lift zW (F):Spec(W (F)) → NW (F) of y. Second we use directly [Fa3, th. 10 and the
remarks after] in the context provided by zW (F) (see 5.4-5).

1.2.3. On the way of proving the formal smoothness of N we obtain (cf. 5.2.16)
an improvement in the Principle B of [Bl, 3.1].

1.2.4. §5 is entirely devoted to the construction of such local deformations and
to the prove of the formal smoothness of N, while the general (needed) theory of well
positioned families of tensors for a reductive group is presented in 4.3. The most useful
well positioned families of tensors (of a general nature) are presented in 4.3.10 b) (see
also 4.3.10.1) for the case of a semisimple group, and in 4.3.13 for the case of a torus.
For the case of a reductive group we use families of tensors formed by putting together
well positioned families of tensors for its derived group and well positioned families
of tensors for its toric part (i.e. for the connected component of its center): lemma
3.1.6 allows us to do this (cf. 4.3.6 2)). The behaviour of hyperspecial subgroups
with respect to homomorphisms of reductive groups needed for this general theory is
described in 3.1.2.

The proof of 4.3.10 b) is in two parts. The first part is a criterion of when a Lie
algebra over a reduced ring R comes from a semisimple group G̃R over R. The second
part is a criterion of when a representation of Lie(G̃R) comes from a representation of
G̃R.

1.2.5. In 5.7.5 we illustrate our ideas in the case of classical Spin modular va-
rieties of odd dimension (and rank two), while in 4.3.1 we show how, the previously
known case of Shimura varieties of PEL type, is a particular case of our approach via
well positioned families of tensors.

1.2.6. The condition (∗) means: there is an injective map

f : (G,X) ↪→ (GSp(W,ψ), S)

for which there is a Z(p)-lattice L of W satisfying the conditions mentioned in the
first paragraph of 1.2. Fixing an injective map f : (G,X) ↪→ (GSp(W,ψ), S), for any
rational prime p big enough (with an effectively computable bound, just in terms of
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the representation G → GL(W )), we can find a Z(p)-lattice L of W satisfying these
conditions (cf. 5.8.7 and 5.8.1).

We make use only of Z(p)-well positioned families of tensors having only tensors
of degrees 2 and 4, and the condition p≥ 5 (cf. the inequality 4≤ 2(p − 2)) is needed
just for being allowed to use tensors of degree 4. The most useful tensors of degree 4
are presented in 4.3.2. In essence we are using only three tensors of degree 4. Fixing
the injective map f , these tensors are endomorphisms of End(W ) (we are identifying
End(End(W )) with (W ⊗W ∗)⊗2 and End(W ) with End(W ∗)):

– the first one (cf. 4.2.1) is the projection π(Lie(Gder),W ) of End(W ) on Lie(Gder)
along the orthogonal complement of Lie(Gder) with respect to the trace bilinear form
on End(W );

– the other two tensors B and B∗ are elements of End(End(W )) expressing that
the Killing form on Lie(Gder) is perfect.

4.3.10 b) together with a well known fact on Shimura varieties of Hodge type
(expressed in the proof of 5.7.1 by s(Lie(Gder),W ) = 2) imply:

Fact. The family of tensors formed by π(Lie(Gder),W ), B and B∗ is Z(p)-well
positioned for Gder.

The role of ψ is irrelevant; so we do not need to mention with respect to ψ.

1.2.6.1. The condition (∗) is satisfied if there is a Z(p)-lattice L of W such that
ψ:L(p) ⊗ L(p) → Z(p) is perfect, the closure of G in GSp(L(p), ψ) is a reductive group
over Z(p) and the above three tensors are integral with respect to it (cf. 5.7.1). This
forms a simple criterion for a practical form of Theorem 0.

1.2.6.2. The use of tensors (Hodge cycles) of degree 4 allows us to have a uniform
treatment of all Shimura varieties of Hodge type, with no preference for Shimura
varieties of PEL type. But we would like to remark that, as it will be seen along our
work (cf. [Va2]), the study of Shimura varieties of Hodge type of Al, Bl or DRl type
(see [De2] for the possible types of a Shimura variety) is (somehow) easier than the
study of Shimura varieties of Hodge type of Cl or DHl type.

1.3. We prove (6.5.1.1) the Z(p)-version of the main result of [De2]. In its sim-
plified form (6.4.2):

Theorem 1. For any adjoint Shimura variety Sh(G0, X0) of abelian type and
for any prime p≥ 5 such that G0 is unramified over Qp, there is a Shimura variety of
Hodge type Sh(G,X) having Sh(G0, X0) as its adjoint variety, with G unramified over
Qp, and such that the pair (G,X) satisfies the condition (∗) (of 5.1) with respect to
p. Moreover, for any Shimura variety Sh(G1, X1) of abelian type having Sh(G0, X0)
as its adjoint variety, there is an isogeny Gder → Gder

1 .

1.3.1. There are three main tools needed for the proof of Theorem 1. The first
two are provided by [De2, 2.3.10] and by the above Fact, via 1.2.6.1. But they are
not enough: it is not always possible to find a Z(p)-lattice L of W as in 1.2.6.1. For
instance the Killing form of the Lie algebra of a simple split adjoint group of Bl Lie
type over W (F) is not perfect if p divides 2l − 1, l ∈ N. The third tool (cf. 6.5-6) is
the construction of injective maps f : (G,X) ↪→ (GSp(W,ψ), S) such that there is a
reductive subgroup G̃ of GL(W ) (we are not bothered if it is or it is not contained in
GSp(W,ψ); however see 6.6.2) containing G, unramified over Qp, and such that:
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– a variant of 1.2.6.1 (for instance cf. 5.7.4 and the proof of 6.5.1.1) can be applied
to G̃der;

– we can “regain” G out of G̃ by using endomorphisms of W fixed by G (i.e. we
have a relative PEL situation, see 4.3.16).

The construction of such injective maps is carried out in 6.5-6. It relies heavily
on the classification [De2] of the types of adjoint Shimura varieties of abelian type:
for each type we have to proceed differently (but similarly).

1.4. Theorem 1 implies a positive answer to Milne’s conjecture in the case of
Shimura varieties of preabelian type for primes p≥ 5 (6.4.1):

Theorem 2.* If (G,X) defines a Shimura variety of preabelian type and if p≥ 5
is a rational prime such that G is unramified over Qp, then Sh(G,X) has an integral
canonical model with respect to any prime v of E(G,X) dividing p.

As a scheme this model is a pro-étale cover of a quasi-projective smooth scheme
over O(v). §6 is devoted to the proof of Theorem 2 (via Theorem 1). The passage
from the existence of integral canonical models of Shimura varieties of Hodge type to
the existence of integral canonical models of Shimura varieties of preabelian type is
explained in 6.1-2.

The passage from the Hodge type case to the abelian type case is achieved by
taking quotients through group actions (cf. 6.2.2). The groups involved are M -torsion
groups for some M ∈ N (cf. the proof of 6.2.2). In all cases, except the case when we
deal with Shimura varieties of whose adjoint varieties have a simple factor of Al type,
and with a prime p dividing l + 1, this is straightforward, as M is relatively prime
to p (cf. 3.4.5.1 and 6.2.2). When p divides M we have to express more concretely
these group actions and to prove that they are free actions. This is achieved in 6.2.2.1,
based on a simple lemma on semisimple adjoint groups to which a particular study
of adjoint filtered Lie σ-crystals attached (see 5.4.6) to maps zW (F) as in 1.2.2 gets
reduced (here σ is the Frobenius automorphism of W (F)). Regardless of how are M
and p we need the fact (again cf. the proof of 6.2.2) that the integral canonical models
obtained through Theorem 0 are moduli schemes (of abelian schemes). This passage
is supported by simple variants (cf. 3.2.14 and 6.2.3) of [De1, 1.15].

The passage from the abelian type case to the preabelian type case is achieved
by the normalization procedure (cf. 6.1).

The paper contains a complete proof of Theorem 2 for the abelian case, while the
last step (6.1.2) needed for the proof in the case of Shimura varieties of preabelian type
which are not of abelian type will be presented in [Va3], as it requires the formalism of
smooth toroidal compactifications of integral canonical models of Shimura varieties (of
preabelian type). For a discussion, and another approach, see 6.8. In 6.8 a complete
proof of 6.1.2 is included for the compact case as well as for the generic situation (i.e.
when p is big enough) of the general case. It is based on 3.2.11 and [De2, 2.3.8]. For the
sake of convenience, the results depending on the proof of 6.1.2 in the remaining cases
(they are described in 6.8.6), are labelled (cf. 6.1.2.1) with a star. So also Theorems
2 and 3 are labelled. Warning: the labelled results are proved here entirely for the
abelian type, for the compact type and for the generic situation. The independent
result 5.6.5 h) is not proved here: so it is labelled with two stars.

1.4.1. For making some of the main results easy accessible to a larger mathemat-
ical community, we state in a 4.6.10 a simple criterion of how to recognize an integral
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canonical model whose existence is provided by Theorem 2.

1.5.Different quotients of integral canonical models of a Shimura variety Sh(G,X)
of preabelian type with respect to primes v of E(G,X) having a residue field of
characteristic at least 5, can be glued together (6.4.3-4). To see this let S be the set of
primes whose elements are 2, 3 and the primes p≥ 5 for which G is ramified over Qp. It
is a finite set. We write the ring of finite adèles as a product Af = (

∏
q∈SQq)×AS

f . Let
HS be a compact open subgroup of G(AS

f ) of maximal volume (with respect to a Haar
measure on the locally compact group G(AS

f )). It is a product of its q-components
(for primes q 6∈ S), and every such q-component of it is a hyperspecial subgroup Hq

of G(Qq) (regardless of the chosen Haar measure). We have:

Theorem 3.* For any compact open subgroup HS of G(
∏

q∈SQp) such that
Sh(G,X) is a pro-étale cover of Sh(G,X)/HS×HS, there is a quasi-projective smooth
scheme M(HS) over the normalization O(S) of Z

[
1Q

q∈S q

]
in E(G,X), uniquely deter-

mined by the fact that its generic fibre is Sh(G,X)/HS ×HS and that, for any prime
v of E(G,X) dividing a rational prime q /∈ S, the normalization of M(HS)O(v) in
the ring of fractions of Sh(G,X)/Hq is the integral canonical model of Sh(G,X) with
respect to v (and Hq).

These smooth schemes are the analogue of the schemes (attached to Siegel modu-
lar varieties) parameterizing principally polarized abelian schemes (of a given dimen-
sion) having a finite symplectic similitude level-structure. They enjoy a very important
extension type property (cf. rm. 1) of 6.4.6). They are models over “punctured” ring
of integers (of number fields) of quotients of (some) finite disjoint unions of Hermitian
symmetric domains by (some) arithmetic subgroups. In rm. 3) of 6.4.6 we explain
why the notation M(HS) is j ustified. For the compact case (i.e. when Sh(G,X) is
a pro-étale cover of a projective smooth E(G,X)-scheme) see 6.4.11. The proof of
Theorem 3 is based on 6.2.4.1, which is a natural consequence of the ideas presented
in 6.2.3 and in the proof of 6.2.2.

1.6. We present now the part of [Va2] which brings more light to some parts of
the present paper. All that follows in 1.6-8 could have been equally well presented as
remarks at different places of §5-6; but for the sake of convenience, we gathered all
these results (referred to in §5-6) here.

We extend the well known results (for Siegel modular varieties) concerning the
existence of an ordinary type and the existence of the canonical lift of an abelian
variety of ordinary type, to any special principally polarized abelian scheme (A,PA)
over an arbitrary integral canonical model N of a Shimura variety Sh(G,X) of Hodge
type with respect to a prime v of E(G,X) dividing a rational prime p≥ 5 (cf. also
[Va1]). Let Nk(v) be the special fibre of N. Using the notations of 1.2 we obtain:

– a G-ordinary type (with respect to the prime v and the injective map
f : (G,X) ↪→ (GSp(W,ψ), S)), which is the formal isogeny type associated to abelian
varieties (obtained from A by pull back) over the geometric points of a Zariski dense
open subscheme of Nk(v);

– G-ordinary points of Nk(v) (these are the points of Nk(v), with values in a field,
with the property that the abelian varieties over them obtained from A by pull back,
have as a formal isogeny type, the G-ordinary type);

– G-canonical lifts of G-ordinary points with values in perfect fields (these G-
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canonical lifts are points of N with values in rings of Witt vectors of perfect fields).

The G-ordinary type we obtain is a usual ordinary type iff the field k(v) has p
elements. If this is so then the abelian variety over W (k) obtained from A by pull
back through a G-canonical lift of a G-ordinary point (with values in the perfect field
k) of Nk(v), is the canonical lift of an abelian variety of ordinary type.

1.6.1. The point defined by the generic fibre of the G-canonical lift of a G-
ordinary point of Nk(v) with values in the algebraic closure of k(v) is a special point
of NE(G,X) (see 2.10 for the definition of special points).

We also prove another conjecture of Milne [Mi5, 0.1] (cf. 5.6.5-6, 5.8.8 and [Va2]).

1.6.2. To any point y:Spec(k) → Nk(v) (with k a perfect field) we attach (see
5.4.6) a Lie σ-crystal (g, ϕ): g is the Lie algebra of a reductive group over W (k) whose
fibre over K0 := W (k)

[
1
p

]
is GK0 , while ϕ is a σ-linear automorphism of g⊗K0 (σ being

the Frobenius automorphism of K0) such that ϕ(pg) ⊂ g. Any lift z:Spec(W (k)) → N

of y produces naturally a filtration 0 = F 2(g) ⊂ F 1(g) ⊂ F 0(g) ⊂ F−1(g) = g such
that ϕ( 1

pF 1(g) + F 0(g) + pg) = g. So (g, ϕ, F 0(g), F 1(g)) is a p-divisible object of the
category MF[−1,1](W (k)) (defined in [Fa1]). F 0(g) is a parabolic Lie subalgebra of g

and F 1(g) is the Lie algebra of its unipotent radical. The point y is a G-ordinary point
iff there is a lift z of it to W (k) which makes the Lie σ-subcrystal of (g, ϕ) corresponding
to non-negative slopes to be a p-divisible object of the category MF[0,1](W (k)) (of
[Fa1]). Such a lift z, if exists (i.e. if y is a G-ordinary point), is unique and defines
the G-canonical lift of y.

These Lie σ-crystals allows us to achieve a stratification of Nk(v) in G(Ap
f )-

invariant locally closed subschemes indexed by the Newton polygons of the attached
σ-crystals g(1) (we tensor g with W (k)(1) to get only non-negative slopes) similar to
the one enjoyed by the special fibres of the integral canonical models of Siegel modular
varieties. The G-ordinary points of Nk(v) are the points of the (generic) Zariski dense
open stratum.

1.7. We also show how the results mentioned in 1.6.1, together with their proves,
can be used for handling the Langlands-Rapoport conjecture ([LR]; see [Mi5] and [Pf]
for the correct formulation) for an arbitrary integral canonical model N of a Shimura
variety Sh(G,X) of preabelian type with respect to a prime v of E(G,X) having a
residue field k(v) of characteristic p≥ 5.

Let F be the algebraic closure of k(v) and let Φ be the Frobenius automorphism of
it having k(v) as its fixed field. To the triple (G,X, v) it is attached a set M(G,X, v)
on which G(Ap

f ) and Φ act (cf. [Mi5] and [Pf]). The Langlands-Rapoport conjec-
ture for N (or for the triple (G,X, v)) asserts the existence of a bijection of sets
fN:M(G,X, v) ∼→N(F), preserving the actions of G(Ap

f ) and Φ on them. The ex-
istence of the canonical Lie stratification of the special fibre Nk(v) of N allows a
formulation of the Langlands-Rapoport conjecture for any individual stratum of this
stratification. To prove the Langlands-Rapoport conjecture for N is the same as prov-
ing the Langlands-Rapoport conjecture for each individual stratum. We do prove this
for the open stratum.

1.7.1. The proof of [Mi5, 0.1] together with [Mi5, 6.4] imply (cf. also [Mi5, 6.12];
[Mi5, 6.12] is worked out under the hypothesis of [Mi5, p. 24]: it can be removed, cf.
5.6.4) that the Langlands-Rapoport conjecture is true for N if Sh(G,X) is a Shimura
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variety (whose adjoint factors are) of Al, Bl, Cl or DRl type, modulo a sufficiently good
theory of reduction of Hodge cycles mod p (very important progress was made in this
direction by Milne, conform the presentation in [Mi5]). We explain why the use of
such a theory of reduction of Hodge cycles can be avoided for all Shimura varieties of
preabelian type. We first prove that the integral canonical models of Shimura varieties
of DHl type can be treated entirely as the other Shimura varieties: if there is a special
principally polarized abelian scheme (A,PA) over N (this implies that Sh(G,X) is a
Shimura variety of Hodge type; so NE(G,X) is a moduli space of principally polarized
abelian schemes of a given dimension, having a family of Hodge cycles and some level
structures, and satisfying some extra conditions; AE(G,X) is the universal abelian
scheme over NE(G,X)), then for any point y:Spec(k) → N, with k an algebraically
closed field of characteristic p, any principally polarized abelian variety over k which
is G-isogeneous to (Ay, pAy

) (i.e. it is isogeneous in a sense involving the cycles) is
G-isomorphic (i.e. it is isomorphic in a sense involving the cycles) with (Az, pAz ) for
some k-valued point z of N (in other words the G-isogeny classes are as expected
to be). Here the principally polarized abelian varieties (Ay, pAy

) and (Az, pAz
) are

obtained from (A,PA) by pull back through y and respectively z.
As an application of this we show the existence in the general case of 1.10 of an

injective map fN:M(G,X, v) ↪→ N(F) preserving the actions of G(Ap
f ) and Φ on them

(the F-valued points of the open stratum of Nk(v) are in the image of fN). Moreover
we prove that fN is a bijection (and so that the Langlands-Rapoport conjecture for
N is true) if the residue field k(vad) of the prime vad of E(Gad, Xad) divided by v has
precisely p elements, or if (Gad, Xad) has all the simple factors of An, Bn or DRn type,
with n ∈ N.

1.8. In [Va3] we introduce the notion of an integral canonical model of a Kuga
variety of Hodge type. Their existence is implied by the existence of integral canonical
models of Shimura varieties of Hodge type. These models allows us to prove the
existence of smooth toroidal compactifications of the integral canonical models of
Shimura varieties of preabelian type (this has been cojectured by Milne [Mi4, 2.18]):
Any integral canonical model N of a Shimura variety Sh(G,X) of preabelian type
with respect to a prime v of E(G,X) dividing a rational prime p≥ 5, admits plenty of
smooth toroidal compactifications and has a minimal (normal) compactification Nmc.
The smooth toroidal compactifications of N are obtained from Nmc through blowings
up. In particular, if NE(G,X) is a pro-étale cover of a projective scheme over E(G,X),
then N is a pro-étale cover of a projective smooth scheme over O(v) (cf. also 6.4.1.1
2)).

The toroidal compactifications of Shimura varieties of Hodge type are obtained
by the same procedure (as the integral canonical models are obtained) of taking the
normalization of the closure of smooth toroidal compactifications (over number fields)
of quotients of Shimura varieties of Hodge type in (extensions to étale Z(p)-algebras
of) smooth toroidal compactifications of quotients of integral canonical models of
Siegel modular varieties constructed in [FC] (cf. [Har] for the non-integral part over
number fields). So we get special semi-abelian schemes over the smooth toroidal
compactifications of the integral canonical models of Shimura varieties of Hodge type.

See [Va3] for definitions and for the proves of the results mentioned in 1.8.

1.9. A part of the results presented in this paper, is a completely revised and
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improved version of the first part of our thesis [Va1]. For the sake of not making this
paper too long, in 4.3.11, 6.3, 6.5.1.1 and 6.6 we use also the notations of other papers.

The reader who is interested just to have a pretty good idea about what is going
on in this article can follow the route: 3.2 (to pick up whatever the reader is not
familiar with), 4.1, 5.1, 5.6-8 and 6.4.

We would like to thank Prof. Gerd Faltings for his encouragements to approach
gradually the topics mentioned above, for numerous discussions we had about his
recent results [Fa3-4] (results without which this work would have had fewer fruits),
for his advices and correction of the proof of 5.1 and 3.4.5.1. We would like to express
our gratitude to Prof. James Milne, whose very beautiful and deep work [Mi1-6] is
highly inspiring to us and whose conjectures (see [Mi3-5]) were the starting point of our
work. We are also very much obliged to [De2]. We would like to thank Ben Moonen
for asking us how healthy schemes behave with respect to the pull back operation
through morphisms attached to maps of index of ramification 1 between two discrete
valuation rings of mixed characteristic (this was the starting point for a great part of
3.2.1-3), and for the request of enlarging the presentations of 4.3.10 b) and 6.2.2. We
would like to thank Prof. Pierre Deligne for pointing out a mistake in a preliminary
version of 3.2.2 4).

I would like to thank Princeton University, Max-Planck Institute from Bonn,
FIM, ETH-Zürich and UC at Berkeley for providing us with excellent conditions for
the writing of this paper. This work was partially supported by the NSF grant DMF
97-05376.

2. Preliminaries. We fix our notations by mostly reviewing some well known
facts (cf. [De1], [De2] and [Mi4]).

2.1. Notations and conventions. Reductive groups over fields are always
assumed connected. Reductive group schemes are understood to have connected fibres.
For a reductive group G over a scheme we denote by Gder, Z(G), Gab and Gad,
respectively, the derived group of G, the center of G, the maximal abelian quotient of
G and the adjoint group of G. We say that a reductive group G over Q is unramified
over Qp (p being a rational prime) if GQp

is unramified over Qp. For G an affine group
scheme over a scheme S we often denote by Lie(G) its Lie algebra, and in the case
when G is a reductive group scheme we denote by Aut(G) the group scheme over S
defined by the automorphisms of G.

If X is a set endowed with an equivalence relation R ⊂ X × X, we denote by
[x] ∈ X/R the equivalence class of x ∈ X. For a map f :A → B and for a subset
A1 of A, we denote by f |A1 the restriction of f to A1. If f :A → B and g:B → C
are morphisms in some category we refer to g ◦ f as the composition of f with g.
All the projective limits of schemes are assumed to be filtered, with affine transition
morphisms.

The expression (G,X) always denotes a pair defining a Shimura variety, while
E(G,X) denotes its attached reflex field. Sh(G,X) denotes the Shimura variety de-
fined by it, identified in 2.3-8 (resp. in the rest of the paper) with the complex variety
(resp. with the canonical model of the complex variety). For an arbitrary compact
subgroup K of G(Af ), we denote by ShK(G,X) the quotient of Sh(G,X) by K. Any
x ∈ X and any a ∈ G(Af ) define a complex point [x, a] of ShK(G,X).

If k is a field we denote by k̄ its algebraic closure. For a perfect field k, W (k) is
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the ring of Witt vectors of k. Always V0 denotes such a Witt ring over an algebraically
closed field and then K0 automatically denotes its field of fractions. If v is a prime
of a global field E, we denote by k(v) its residue field and by O(v) the localization
of the ring of integers of E with respect to it. The maximal abelian extension of E

is denoted by Eab. For a local ring R we denote by Rh, Rsh and R̂ respectively its
henselization, its strict henselization and its completion with respect to its maximal
ideal.

Let p be a rational prime. We usually write Z(p) instead of O(p). The ring of finite
adèles Ẑ ⊗Z Q is denoted by Af and the ring of finite adèles with the p-component
omitted is denoted by Ap

f . We use freely different Tate-twists: Q(1), Qp(1), Zp(1),
Af (1) etc. For G a linear group over Q, G(A) is endowed with the coarser topology
which makes all the maps G(A) → A1

Q(A) = A, induced by morphisms G → A1
Q,

continuous (A1
Q being the affine line over Q). Similarly for G(Af ). If G is a linear

group over the field K of fractions of a discrete valuation ring (abbreviated DVR),
then G(K) is endowed in the same manner with a topology. We denote by Fp the field
with p elements and by F its algebraic closure.

A continuous action of a totally discontinuous locally compact group on a scheme
S is always in the sense of [De2, 2.7.1] and is a right action. The purity therorem stated
in [SGA1, p. 275] will be referred to as the classical purity theorem. A quasi-projective
or projective morphism is always understood in the sense of [Hart].

For every free module M of finite rank over a commutative ring R we denote by
M∗ its dual. For any non-negative integer n, we denote by M⊗n the tensor product
of n-copies of M . By the tensor algebra of M we mean ⊕n∈N∪{0}M⊗n. If vα ∈
M⊗n ⊗M∗⊗m, with n and m non-negative integers, we denote by deg(vα) := n + m
its degree. A family of tensors of the tensor algebra of M is usually denoted in the
form (vα)α∈J, with J a set. A bilinear form on M is called perfect if it induces an
isomorphism from M into its dual M∗. Occasionally we also denote by K∗ the group
of invertible elements of a field K. A pair (M, ψ) with M as above and with ψ a
perfect alternating form on it, is called a symplectic space over R. We use the same
notation for two perfect alternating forms if they are obtained one from another by
extension of scalars.

For a finite surjective étale morphism Spec(R1) → Spec(R0) and for a reductive
group G over R1, ResR1/R0G denotes the reductive group over R0 obtained from G
by restriction of scalars.

For an abelian variety A over a field k of characteristic zero we denote by Vf (A)
the free Af -module (lim←− ker(n:Ak̄ → Ak̄)) ⊗Z Q. We use freely the terminology of
Hodge cycles of A used in [De3]. A polarization of an abelian scheme A over a scheme
Y is usually denoted by pA (or pY ), and by abuse of notation we still denote by pA

(resp. pY ) the different maps on the cohomologies (homologies) of A induced by it. A
pair of the form (A, pA) (or (A, pY )) always denotes a polarized abelian scheme over Y .
For an abelian scheme A over Y , At denotes the dual abelian scheme of A, while for any
N ∈ N, we denote by A[N ] the finite flat group scheme over Y defined by the N -torsion
points of A. By a level-N structure of an abelian scheme A (over Y ) of dimension d, we
mean an isomorphism k:L(N)Y

∼→A[N ] of finite group schemes over Y ; if moreover
A has a principal polarization pA, then by a level-N symplectic similitude structure
of (A, pA), we mean a similitude (symplectic) isomorphism (L(N)Y , ψ) ∼→ (A[N ], pA).
Here (L(N), ψ) is a symplectic space over Z/NZ of dimension 2d; L(N) is viewed as a
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finite flat group scheme over Spec(Z). If A is an abelian variety over C then Hi(A,Q),
Hi(A,Z), etc., i ∈ N ∪ {0}, refer to groups of the Betti cohomology and homology of
A.

We will have four more sections of notations at the appropriate moments: 3.2.6,
4.3.3, 5.7.2 and 6.6.1.

2.2. The torus S. Let S be ResC/RGm. We have: S(R) = C∗ and S(C) =
C∗ × C∗. The last identification is made in such a way that the inclusion R ↪→ C
induces z → (z, z̄). To H an algebraic group over R and to a homomorphism x:S →
H, we associate two homomorphisms of algebraic groups: µx:Gm → HC, given on
complex points by z → xC(z, 1), z ∈ Gm(C) = C∗, and (the weight homomorphism)
wx:Gm → H, given on real points by r → x(r)−1, r ∈ Gm(R) = R∗ ⊂ C∗ = S(R).

2.3. Definition of a (complex) Shimura variety. A Shimura variety is
defined by a pair (G,X), called a Shimura pair, comprising from a reductive group G
over Q and from a G(R)-conjugacy class X of homomorphisms S→ GR satisfying the
following axioms:

(SV1) for each x ∈ X, the Hodge structure on the Lie algebra g of G defined by
Ad ◦ x:S→ GL(gR) is of type {(1,−1), (0, 0), (−1, 1)};

(SV2) for each x ∈ X, adx(i) is a Cartan involution of Gad
R ;

(SV3) Gad has no factor defined over Q whose real points form a compact group.

Let x ∈ X. Let K∞ be the subgroup of G(R) fixing x. It is a maximal compact
subgroup of G(R) iff Gab(R) is compact (cf. SV2). We have X = G(R)/K∞, with x
corresponding to the equivalence class of the identity element.

Axiom SV1 implies that the homomorphism wx is independent of x ∈ X. We
write it wX . It is called the weight of the Shimura variety defined by (G,X). SV1 also
implies (cf. [De2, 1.1.14]) that X has one and only one complex structure such that,
for all representations ρ:GR → GL(WR), with WR a finite dimensional real vector
space, the Hodge filtration F (ρ ◦ x) of WR ⊗ C depends holomorphically on x ∈ X.
This complex structure is G(R)-invariant and the connected components of X are
Hermitian symmetric domains (cf. [De2, 1.1.17]).

For each compact open subgroup K of G(Af )

ShK(G,X) := G(Q) \X ×G(Af )/K

is a finite disjoint union of quotients of X by arithmetic subgroups. This complex
space has a natural structure of a quasi-projective (algebraic) variety over C [BB],
which is smooth if K is small enough. In what follows ShK(G,X) is identified with
this quasi-projective variety.

For K ⊂ L compact open subgroups of G(Af ), we get a finite surjective mor-
phism (of schemes) f(L,K): ShK(G,X) → ShL(G,X) defined by [x, a] → [x, a]
(x ∈ X, a ∈ G(Af )). If K1 = gKg−1 with g ∈ G(Af ) we get an isomorphism
f(K, g): ShK(G,X) ∼→ShK1(G,X) defined by [x, a] → [x, ag−1]. The isomorphisms
f(K, g) with g ∈ K are the identity isomorphisms.

The (complex) Shimura variety Sh(G,X) is the projective limit of the compatible
system of morphisms f(L,K) together with the (right) continuous action of G(Af ) on
it defined by the rule [x, a]g = [x, ag]. The continuity property of this action implies
that if K is a normal subgroup of L, then f(L,K) identifies ShL(G,X) with the
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quotient of ShK(G,X) by L/K (this group acts on it through the morphisms f(K, g),
with g ∈ L). The dimension of Sh(G,X) is the dimension of X as a complex manifold.

We have
Sh(G,X)(C) = G(Q) \X ×G(Af )/Z(Q),

where Z = Z(G) and Z(Q) is the closure of Z(Q) in Z(Af ) ([De2, 2.1]).

2.4. Definition of maps between Shimura varieties. The maps from a
Shimura pair (G,X) into another Shimura pair (G1, X1) are group homomorphisms
f :G → G1 taking X into X1. We denote such a map by f : (G,X) → (G1, X1).
The maps from the Shimura variety defined by (G,X) into Shimura variety de-
fined by (G1, X1) are in one to one correspondence with the maps f : (G,X) →
(G1, X1). The induced map X → X1 is holomorphic. If K is a compact open
subgroup of G(Af ) and if K1 is a compact open subgroup of G1(Af ) such that
f(K) ⊂ K1, then the map f induces a morphism of schemes (cf. [BB]) f(K1,K):
ShK(G,X) → ShK1(G1, X1) by the rule [x, a] → [f(x), f(a)]. Passing to the limit
we get the (map or) morphism between Shimura varieties (associated to f and still
denoted by f) f : Sh(G,X) → Sh(G1, X1). Sometimes we work with a map between
Shimura pairs f : (G,X) → (G1, X1) and sometimes we work with the (map or) mor-
phism between Shimura varieties associated to it f : Sh(G,X) → Sh(G1, X1). The map
f is called injective (or an embedding) if it is injective as a group homomorphism; is
called finite if the induced homomorphism at the level of derived groups is an isogeny;
is called a cover if it is finite and as a group homomorphism is surjective, having as
kernel a torus T satisfying H1(Gal(k̄/k), T (k̄)) = 0, for any field k of characteristic
zero. If f : (G,X) → (G1, X1) is a finite map, then we identify X with a disjoint union
of connected components of X1.

Warning: If f : (G,X) → (G1, X1) is a finite map, then we sometimes refer to
f : Sh(G,X) → Sh(G1, X1) as a morphism (of schemes), and sometimes as a finite map
(of Shimura varieties), though as a morphism it is not finite, being just pro-finite.

2.4.0. Products. The category Sh whose objects are Shimura varieties and
whose morphisms are the morphisms between them has finite products: If Sh(Gi, Xi),
i = 1, 2, are two Shimura varieties, then their product Sh(G1, X1) × Sh(G2, X2) is
the Shimura variety defined by G = G1 × G2 and X = X1 × X2 (with the logical
projections defineed by the projections of G onto its factors G1 and G2).

Let fi: (Gi, Xi) → (G,X) be finite maps, i = 1, 2. So X1 and X2 are disjoint union
of connected components of X. Let X3 be their intersection. It can happen that X3 is
empty (for an example see 2.5.1). We assume now that X3 is not empty. Let G3 be the
connected component of the origin of G1×GG2. X3 is a set of homomorphism S→ G3R
satisfying the axioms SV1-2. G3(R) acts on X3 by conjugation. Let X3 = ∪j∈IX

j
3

be the disjoint union decomposition of X3 into G3(R)-orbits. For any j ∈ I we get a
Shimura variety Sh(G3, X

j
3) and a commutative diagram

Sh(G3, X
j
3)

pj
2−−−−→ Sh(G2, X2)

pj
1

y
yf2

Sh(G1, X1)
f1−−−−→ Sh(G,X).

The morphisms pj
i , j ∈ I, are defined by the natural projections of G3 on Gi, i = 1, 2.
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We have a universal type property: for any pair (p1, p2) of finite maps pi: (G0, X0)
→ (Gi, Xi) such that f2 ◦ p2 = f1 ◦ p1, there is a unique j ∈ I for which there is a
map p0: (G0, X0) → (G3, X

j
3) such that pi = pj

i ◦ p0; moreover the map p0 is uniquely
determined. We express this property by: the category f-Sh whose objects are Shimura
varieties (or pairs) and whose morphisms are the finite maps between them, has quasi
fibre products. Any commutative diagram as above (formed by finite maps) is called
a quasi fibre product of the finite maps f1 and f2.

So if X3 is empty then I is the empty set. There are examples (cf. 2.5.1) when
I has more than one element. However if f1 or f2 is a cover, then I has precisely one
element: if this is the case we speak about the fibre product of f1 and f2.

2.4.1. The adjoint and toric part variety of a Shimura variety. Let (G,X)
define an arbitrary Shimura variety. Then Sh(Gad, Xad) (Xad being the Gad(R)-
conjugacy class of homomorphisms S → Gad

R containing the ones induced by X) is
called the adjoint variety of Sh(G,X), and Sh(Gab, Xab) (Xab being the set with just
one element defined by the homomorphism S→ Gab

R induced by X) is called the toric
part variety of Sh(G,X). We have canonical maps from every Shimura variety into
its adjoint variety and into its toric part variety.

2.4.2. Special pairs. An injective map (T, {h}) ↪→ (G,X) with T a torus is
called a special pair in (G,X).

2.4.3. Automorphisms. The group Aut(Sh(G,X)) (of automorphisms of the
Shimura variety Sh(G,X)) is the subgroup of Aut(G)(Q) (of finite index) leaving X
invariant. If (G,X) is of adjoint type then we have Aut(Sh(G,X)) = Aut(G)(Q).

2.5. Examples of types of Shimura varieties.

Example 1. Let T be a torus over Q. For any homomorphism h:S → TR, the
pair (T, {h}) satisfies the axioms SV1-3, and so defines a Shimura variety of dimension
zero. We have Sh(T, {h})(C) = T (Af )/T (Q). Any Shimura variety of dimension zero
is obtained in this way.

Example 2. Let (W,ψ) be a symplectic space over Q. Let GSp := GSp(W,ψ)
be the group of its symplectic similitudes. The Siegel double space S consists of
all rational Hodge structure on W of type {(−1, 0), (0,−1)} for which either 2πiψ
or −2πiψ is a polarization. It is a GSp(R)-conjugacy class of homomorphism S →
GSpR. The pair (GSp, S) defines a Shimura variety. The Shimura varieties of the
form Sh(GSp, S) are called Siegel modular varieties.

Definition 1. A Shimura variety Sh(G,X) is said to be of Hodge type if there
is an injective map from it into a Siegel modular variety. We have Sh(G,X)(C) =
G(Q) \X ×G(Af ) [De2, 2.1.1].

The extra conditions needed to be satisfied by a Shimura variety for being of
Hodge type are:

(SVH4) the weight is defined over Q;

(SVH5) wX(Gm) is the only split subtorus of Z(G)R;

(SVH6) there is a faithful representation ρ:G ↪→ GL(W ) such that the Hodge Q–
structure on W defined by ρ ◦ x is of type {(−1, 0), (0,−1)}, ∀x ∈ X.
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This is just a reformulation of [De2, 2.3.2]: obviously SVH4-6 are satisfied by
a Shimura variety of Hodge type, while SV2 and SVH5 put together imply that for
any x ∈ X, the interior automorphism of GR/wX(Gm) defined by x(i) is a Cartan
involution.

Example 3. The product of two Shimura varieties Sh(G1, X1) and Sh(G2, X2) of
Hodge type is not of Hodge type. But the Shimura variety Sh(G3, X3) defined by the
subgroup G3 of G1×G2 generated by G0

1×G0
2 (with G0

i the connected subgroup of Gi

having the property that the canonical quotient homomorphism G0
i → Gi/wXi

(Gm)
is an isogeny; i = 1, 2) and wX1×X2(Gm), and by an adequate union X3 of some
of the connected components of X1 × X2, is a Shimura variety of Hodge type: it is
enough to see this for the case when (G1, X1) = (GSp(W1, ψ1), S1) and (G2, X2) =
(GSp(W2, ψ2), S2); but then we have an injective map

i3: (G3, X3) ↪→ (GSp(W1 ⊕W2, ψ1 ⊕ ψ2), S0)

defined by the natural inclusions of Sp(W1, ψ1) and Sp(W2, ψ2) in Sp(W1⊕W2, ψ1⊕ψ2)
(X3 in this case has two connected components, while X1 ×X2 has four).

We refer to the map i3 as a Segre embedding, and to any pair (G3, X3) as above
(we do not have a unique choice for X3; this is the same as the case of quasi fibre
products discussed in 2.4.0 -see also 2.5.1 below-) as the Hodge quasi product of the
two pairs (G1, X1) and (G2, X2) of Hodge type. Similarly we speak about a Hodge
quasi product of n Shimura varieties of Hodge type and the Segre embedding defined
by the product of n Siegel modular varieties, n ∈ N.

Definitions 2. A Shimura variety defined by a pair (G,X) with G an adjoint
group is said to be an adjoint Shimura variety or of adjoint type. If G is a simple
Q–group, then (G,X) is of one of the types: Al, Bl, Cl, DRl , DHl , Dmixt

l , E6 or E7

(cf. the classification [De2] of Shimura varieties of adjoint type). Then Sh(G,X) is
called a simple adjoint Shimura variety (of type Al, or Bl, etc.). Any adjoint Shimura
variety is a product of a finite number of simple adjoint Shimura varieties. A Shimura
variety is said to be of special type if its adjoint Shimura variety is a product of simple
adjoint Shimura varieties of E6, E7 or Dmixt

l type.

Definitions 3. A Shimura variety Sh(G,X) is called of preabelian type if there
is a Shimura variety Sh(G1, X1) of Hodge type such that their adjoint varieties are
isomorphic. If we can choose Sh(G1, X1) such that Gder

1 is a cover of Gder, then
Sh(G,X) is called of abelian type. The simple adjoint Shimura varieties of abelian
type are those of Al, Bl, Cl, DRl or DHl type [De2, 2.3.8]. The product of two Shimura
varieties of abelian (preabelian) type is of abelian (resp. of preabelian) type. For the
preabelian type this is obvious, while for the abelian type conform Example 3 (and
2.12 1)).

So for any pair (G,X) which is neither of preabelian nor of special type, there
is a finite map (G,X) → (G1, X1), with Sh(G1, X1) an adjoint variety which is the
product of a Shimura variety of preabelian type and of a Shimura variety of special
type. The category f-Sh is a disjoint sum of categories indexed by isomorphism classes
of Shimura varieties of adjoint type.

Example 4. A Shimura variety of dimension 1 is called a Shimura curve and a
Shimura variety of dimension 2 is called a Shimura surface. For instance the Example
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2, gives birth to a Shimura curve if W is a vector space over Q of dimension 2, called
the elliptic modular curve.

Definition 4. A Shimura pair (G,X) (resp. variety Sh(G,X)) is said to be of
compact type if Sh(G,X) is a pro-étale cover of a smooth projective E(G,X)-scheme.

In [BHC] it is proved: (G,X) is of compact type iff the Q–rank of Gad is zero.

Example 5. (G,X) is of compact type if Gad is a simple Q–group such that Gad
R

has compact factors.

2.5.1. Extra example. Let (G,X) be such that the semisimple group Gder

is simply connected, Gab = Gm, and X has precisely two connected components
(for instance if Sh(G,X) is a Siegel modular variety; see also 5.7.5). Let (G1, X1)
be the product of three copies of (G,X). So Gder

1 is simply connected, and Gab
1 =

Gm × Gm × Gm. We consider reductive subgroups Gi of G1, i = 2, 4, containing
Gder

1 . So to give such a Gi is the same as to give a subtorus of Gab
1 . We choose

Gab
i ⊂ Gab

1 , i = 2, 4, to be the diagonal embedding of Gm, the subtorus generated by
Gab

2 and the embeding Gm ↪→ Gab
1 corresponding to the triple of characters (1, 1, 0) of

Gm, and respectively the subtorus generated by Gab
2 and the embedding Gm ↪→ Gab

1

corresponding to the triple of characters (1, 3, 0).
We get injective finite maps fi: (Gi, Xi) ↪→ (G1, X1), i = 2, 4. Here X1 has eight

connected components, X2 has two, while X3 and X4 have four. Moreover we can
assume that X2 ⊂ X3 = X4. So the maps f3 and f4 do not have a fibre product: they
have two quasi fibre products.

Moreover, as Gad(Q) is dense in Gad(R) (cf. [De1, 0.4]), composing the natural
map p2: (G2, X2) → (Gad

2 , Xad
2 ) with an automorphism of (Gad

2 , Xad
2 ), we get a map

p3: (G2, X2) → (Gad
2 , Xad

2 ) such that the images of X2 in Xad
2 = X1 through the maps

p2 and p3 have an empty intersection.

2.6. The reflex field. Let (G,X) be an arbitrary Shimura pair. For any field
k of characteristic zero we have a right action of G(k) on the set Hom(Gm, Gk). Let
C(k) := Hom(Gm, Gk)/G(k). An inclusion Q̄ ↪→ C induces a bijection C(Q̄) = C(C).
So the element [µX ] ∈ C(C), corresponding to µx for any x ∈ X, defines an element
c(X) of C(Q̄). The group Gal(Q̄/Q) acts on C(Q̄). The reflex field E(G,X) of the
Shimura variety Sh(G,X) is the subfield of Q̄ corresponding to the stabilizer of c(X)
in Gal(Q̄/Q). It is a finite extension of Q.

2.7. The reciprocity map. Let (T, {h}) be as in the Example 1 of 2.5. Its
reflex field E := E(T, {h}) is the field of definition of the cocharacter µh of T . From
the homomorphism µh:GmE

→ TE we get a new one

Nh: ResE/QGmE

ResE/Q(µh)−−−−−−−→ ResE/QTE
Norm E/Q−−−−−−→ T.

So, for any Q–algebra A we get a homomorphism Nh(A):Gm(E ⊗A) → T (A).
The reciprocity map

r(T, {h}):Gal(Eab/E) → T (Af )/T (Q)

is defined as follows: let τ ∈ Gal(Eab/E), and let s ∈ JE be an idèle (of E) such that
recE(s) = τ ; then r(T, {h})(τ) = Nh(Af )(sf ), where sf is the finite part of s. Here
the Artin reciprocity map recE is such that a uniformizing parameter is mapped into
the geometric Frobenius element.
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2.8. The canonical model of Sh(G,X) over E(G,X). By a model of Sh(G,X)
over a subfield k of C, we mean a scheme S over k endowed with a continuous action
of G(Af ) (defined over k), such that there is a G(Af )-equivariant isomorphism

Sh(G,X) ∼→SC.

The canonical model of Sh(G,X) is the model S of Sh(G,X) over E(G,X) which
satisfies the following property: if (T, {h}) is a special pair in (G,X) then for any
a ∈ G(Af ), the point [h, a] of S(C) = Sh(G,X)(C) is rational over E(T, {h})ab, and
every element τ of Gal(E(T, {h})ab/E(T, {h})) acts on [h, a] according to the rule

τ [h, a] = [h, ar(τ)],

where r = r(T, {h}). It exists and is uniquely determined by the above property up
to a unique isomorphism (see [De1], [De2] and [Mi2]).

Warning: from now on by Sh(G,X) we mean S.

2.9. If f : (G,X) → (G1, X1) is a map between two Shimura pairs, then E(G1, X1)
is a subfield of E(G,X), and there is a unique G(Af )-equivariant morphism (still
denoted by f) f : Sh(G,X) → Sh(G1, X1)E(G,X) which at the level of complex points
is the map [x, a] → [f(x), f(a)] ([De1, 5.4]). We get a G(Af )-equivariant morphism
(still denoted by f)

f : Sh(G,X) → Sh(G1, X1)

of E(G1, X1)-schemes.

2.10. Definition of special points. Let Sh(G,X) be an arbitrary Shimura
variety and let H be a compact subgroup of G(Af ). A point w of ShH(G,X) with
values in a field k of characteristic zero is called special if there is a special pair (T, {h})
in (G,X), such that the intersection of the G(Af )-orbit of w in ShH(G,X)(k) with
the image of Sh(T, {h})(k) in ShH(G,X)(k) is non-empty.

2.11. Definition of smooth subgroups. Let (G,X) be a Shimura pair. A
subgroup H of G(Af ) is called smooth for (G,X) if it is compact and if Sh(G,X) is
a pro-étale cover of ShH(G,X). A subgroup of a conjugate of a subgroup of G(Af )
smooth for (G,X), is itself smooth for (G,X). For instance any neat compact subgroup
of G(Af ) is smooth for (G,X). We do not know if (or when) the converse is true.

2.12. Remarks.
1) For any Shimura pair (G,X) there are finite maps f : (G1, X1) → (G,X) and

f1: (G1, X1) → (G2, X2) such that:

– Sh(G2, X2) is a product of Shimura varieties Sh(Gi, Xi), i running through the
elements of a finite set I, such that Gad

i is a simple Q–group, ∀i ∈ I;
– they define a quasi fibre product of the natural maps f0: (G,X) → (Gad, Xad)

and f2: (G2, X2) → (Gad
2 , Xad

2 ) = (Gad, Xad);
– there are injective maps (Gi, Xi) ↪→ (G,X), i ∈ I, producing (naturally) an

isogeny
∏

i∈I Gder
i → Gder.

To see this let Gad =
∏

i∈I Gad
i be the factorization of Gad in Q–simple factors.

Let Gder
i be the semisimple subgroup of G isogeneous to Gad

i and contained in the
kernel of the canonical quotient homomorphism G → ∏

j∈I\{i}Gad
j . As Gi we take

the subgroup of G generated by Gder
i and by a maximal torus of the centralizer of
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Gder
i in G having the property that there is a homomorphism S→ GR, corresponding

to a point x ∈ X, factoring through GiR. As Xi we take the Gi(R)-conjugacy class
of homomorphisms S→ GiR generated by such a factorization. Now we can take the
maps f and f1 to define a quasi fibre product of the maps f0 and f2 (cf. 2.4.0).

2) There are Shimura varieties Sh(G,X) with G a semisimple group which is not
of adjoint type (plenty of examples can be constructed starting from [De2, 2.3.12]).

3) Let (A, pA) be a polarized abelian scheme defined over an integral ring R of
characteristic zero. It is defined over a subring R1 of R admitting an embedding in
C. We get an abelian variety over C. Passing to an isogeny we can assume that
we have a principally polarized abelian variety (A′, pA′) over C. Let (W,ψ) be the
symplectic space over Q defined by it, with W := H1(A′,Q). Let G be the Mumford-
Tate group of A′. We get an injective map (G,X) ↪→ (GSp(W,ψ), S) of Shimura pairs,
with X the Hermitian symmetric domain defined by the G(R)-conjugacy class of the
homomorphism S→ GR defining the Hodge Q–structure on W . Up to isomorphism it
is independent of all choices (cf. [De3]) and so we call it the injective map defined by
the polarized abelian scheme (A, pA). If A does not have a priori a polarization then
we can pick one for its model we got over C. In this case the injective map depends
on the picked up polarization.

If moreover A has a family (vα)α∈J of Hodge cycles which is reductive with
respect to the polarization pA (to be explained below), then we can choose R1 such
that these Hodge cycles are defined over R1 (cf. [De3]). So we get a family of tensors
(tα)α∈J of the tensor algebra of W (we can assume that no Tate-twist shows up; for
instance cf. 4.1). By reductive family with respect to pA we mean: the connected
component of the origin of the subgroup of GSp(W,ψ) fixing tα, ∀α ∈ J, is a reductive
group G1 over Q. G1 together with the G1(R)-conjugacy class of homomorphism
S→ G1R defined by X might not define a Shimura variety: axiom SV 3 might not be
satisfied. However, discarding from Gad

1 the factors which over R are compact, we get
a reductive subgroup G2 of G1, which together with the G2(R)-conjugacy class X2

of homomorphisms S → G2R defined by X, define a Shimura variety. The resulting
injective map (G2, X2) ↪→ (GSp(W,ψ)) is again independent of all choices. We call it
the injective map defined by (A, pA) and the reductive family of tensors (vα)α∈J with
respect to pA.

3. A general view of the integral models of Shimura varieties. We
start by presenting (3.1) some elements of the theory of reductive groups (and of
hyperspecial subgroups) needed for applications to Shimura varieties. Then (3.2)
we introduce generalities of the theory of healthy normal schemes and of the theory
of integral models of Shimura varieties. Some special features of these theories are
presented in 3.3-5.

3.1. Hyperspecial subgroups. We restrict ourselves to what we need. Let V
be a complete DVR with a perfect residue field k and let K be its field of fractions.
Let π be a uniformizer of V . Let GK be a reductive group over K. A subgroup H
of GK(K) is called hyperspecial if there is a reductive group scheme G over V , whose
generic fibre is GK and whose group of V -valued points is H. It is a maximal bounded
(compact if the residue field of V is finite) subgroup of GK(K) [Ti, 3.2]. Let B be the
building of GK over K (cf. [Ti, 2.1-2]). GK(K) acts on B. A subgroup H of GK(K)
is hyperspecial iff there is a hyperspecial point xH ∈ B (see [Ti, 1.10.2 and 2.4] for
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the definition of such a point) such that H = {h ∈ GK(K)|h(xH) = xH} (cf. [Ti,
3.8.1]). Hyperspecial subgroups of GK(K) do exist if GK is unramified over K, i.e.
if GK is quasi-split and splits over an unramified extension of K ([Ti, 1.10.2]). The
converse of this last statement is true if k has the property that every reductive group
over k is quasi-split (for instance if k is an algebraic extension of a finite field or if k
is algebraically closed).

3.1.1. Remark. Let GK ↪→ G1K be an inclusion of reductive groups over
K with Gder

K = G1
der
K . We assume that G1K is unramified over K. Then GK is

unramified over K and for any hyperspecial subgroup H1 of G1K(K), the intersection
H := H1 ∩ G(K) is a hyperspecial subgroup of GK(K) (if G1 is a reductive group
scheme over V , whose generic fibre is G1K and whose group of V -valued points is H1,
then the closure of GK in G1 is a reductive group scheme over V , whose group of
V -valued points is H; the ideas needed for proving this are presented in 4.3.9).

3.1.2. The behaviour of hyperspecial subgroups with respect to homo-
morphisms of groups. We digress a little bit on this subject as it is not covered in
[Ti] or [Ja]. In this section we consider only affine group schemes of finite type over
V or K having connected fibres over K.

3.1.2.1. Proposition. a) Let G1 and G2 be two smooth affine groups over
V . Let fK :G1K → G2K be a homomorphism such that it takes G1(V ) into G2(V ).
If the field k is infinite, then the homomorphism fK extends to a homomorphism
f :G1 → G2.

b) The point a) is not true if the field k is finite.
c) Let f :G1 → G2 be a homomorphism of smooth affine group schemes over V .

If G1 is a reductive group and if fK :G1K → G2K is a closed embedding then f is a
closed embedding.

d) Let G1K and G2K be two reductive groups over K such that G1K is a subgroup
of G2K and such that they are unramified over K. We assume that G1K is a torus
which splits over an unramified extension of K of odd degree, and that G2K is a group
of symplectic similitudes. Then there is a hyperspecial subgroup of G1K(K) included
in a hyperspecial subgroup of G2K(K).

e) We consider the point a) in the case when k is finite, when G1 and G2 are
reductive groups over V , and when fK is a closed embedding. Then a) remains true
if any one of the following two conditions is satisfied:
(i) fK is an isomorphism;
(ii) G1 is a split group with a maximal split torus T1 which is a closed subgroup of G2,

and there is a faithful representation ρ:G2 ↪→ GL(M) with M a free V -module of
dimension not bigger than the characteristic of k.

Proof. a) Let G be the subgroup of G1 × G2 obtained by taking the closure of
the graph of fK . We get a homomorphism h:G → G1 inducing an epimorphism
G(V ) ³ G1(V ), and a homomorphism G → G2. They are defined by the projections
of G1×G2 on its factors. Let G = Spec(R) and G1 = Spec(R1). To h corresponds an
inclusion R1 ⊂ R which becomes an isomorphism by inverting π.

So a) is equivalent to R1 = R. If R 6= R1 then there is y ∈ R \ R1 such that
πy ∈ R1\πR1. For any x ∈ R1\πR1 there is a ring homomorphism R1 → V such that
x goes to an invertible element of V (G1 is smooth over V and the k-valued points of
G1 are Zariski dense in the special fibre of it, as k is an infinite field [Bo, p. 218]).
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So, such a homomorphism R1 → V , corresponding to x = πy, does not come from the
restriction to R1 of a ring homomorphism R → V . This contradicts the surjectivity
property of the homomorphism G(V ) → G1(V ). We get R = R1.

b) Example: Let p be a rational prime and let q ∈ N \ {1} be congruent to 1
mod p − 1. Let M be a free module of dimension 2 over Zp, and let {v1, v2} be a
basis of it over Zp. Let Gm be the subgroup of GL(M ⊗ Qp) such that α ∈ Gm(Qp)
acts by multiplication with αq on v1 and by multiplication with α on v2. We have
Gm(Zp) ⊂ GL(M1)(Zp), with M1 the Zp-lattice of M⊗Qp generated by v1 and v1+v2

p .
But there is no homomorphism Gm → GL(M1) extending the above inclusion over
Qp.

c) We can assume that the field k is algebraically closed. Let G be the closure
of G1K in G2. It is a group scheme over V . Let f1:G1 → G be the homomorphism
induced by f . Then the homomorphism G1(V ) → G(V ) is an isomorphism, as it is
a monomorphism and as G1(V ) is a maximal bounded subgroup of G1(K) = G(K).
The dilatation procedure [BLR, prop. 2, p. 64] allows us to write f1 as a composition
G1 → Gn → G, with n≥ 3 an integer, and with Gn a smooth (affine) group scheme
over V , obtained from G through a finite sequence of dilatations. We have G1K =
GnK = GK and Gn(V ) = G(V ). For instance, in the first step we replace G by the
dilatation G3 of f1(G1k) (the reduced group subscheme of Gk defined by the image
through f1 of the special fibre of G1) on G (part d) of loc. cit. shows that G3 is an
affine group scheme). Using [BLR, prop. 1, p. 63], we get group homomorphisms
G1 → G3 → G. Repeating the process, we reach the case of group homomorphisms
G1 → Gn → G, with Gn a smooth scheme obtained from G through a sequence of
n− 2 dilatations. This results from the general theory [BLR, section 3.3] of the defect
of smoothness ρ of V -valued points of Gn. More precisely, there is a positive integer
c, such that ρ(x)≤ c for any point x ∈ G(V ) (cf. [BLR, prop. 3, p. 66]). From [BLR,
lemma 4, p. 174] we get that we can take n = c + 3.

Coming back to the situation G1 → Gn → G, we get (cf. part a) above) G1 = Gn.
But this implies that f1 is an isomorphism as any dilatation of our sequence produces
a commutative unipotent kernel of the special fibre. From [BLR, prop. 2, p. 64] we see
easily that it is enough to check this for the dilatation of a general linear group over
V with respect to the trivial subgroup of the special fibre. But this case is obvious.

We invite the reader to give another (simpler) proof of c), by just copying the
proof of a) above and making use of the fact that for any finite field extension K1 of
K, G1(V1) is a maximal bounded subgroup of G1(K1) (with V1 the normalization of
V in K1).

d) Let TK := G1K and let G2K = GSp(WK , ψ), with (WK , ψ) a symplectic space
over K. Let K1 be an unramified extension of K over which TK splits. Let V1 be
its ring of integers. We can assume that K1 is the smallest extension over which TK

splits. So K1 is a Galois extension of K. Let CT be the subset of the (additive) group
of characters of TK1 through which TK1 acts on WK⊗K1, i.e. WK⊗K1 = ⊕γ∈CT

Wγ ,
with t ∈ TK(K1) acting as multiplication with γ(t) on the non-zero K1-vector space
Wγ . We can assume that TK is a subgroup of Sp(WK , ψ) (as GSp(WK , ψ) is the
extension of Sp(WK , ψ) through a one-dimensional split torus).

As the alternating form ψ is TK-invariant, we deduce that if α ∈ CT then −α ∈
CT , and that ψ(x, y) = 0 for any x ∈ Wα and any y ∈ ⊕γ∈Cα

T
Wγ , where Cα

T :=
CT \ {α}. Moreover Gal(K1/K) acts on CT as TK and G2K are defined over K. For
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any α ∈ CT , let o(α) be its orbit under the action of Gal(K1/K) on CT .
The key fact is the following assumption (which is always satisfied if [K1 : K] is

an odd number):
∀α ∈ CT \ {0},−α /∈ o(α).

We can assume that 0 /∈ CT : we have a direct sum decomposition of symplectic
spaces over K

(WK , ψ) = (W 0, ψ0)⊕ (W 1, ψ1),

with W 0 the maximal subspace of WK on which TK acts trivially, with W 1 the
subspace of WK such that W 1 ⊗ K1 = ⊕γ∈CT \{0}Wγ , and with ψi the restriction
of ψ to W i, i = 1, 2. So if needed, we can replace (WK , ψ) by (W 1, ψ1).

Let α ∈ CT . Obviously o(−α) = {−γ|γ ∈ o(α)}. Let Mα be a V1-lattice of
Wα left invariant by the subgroup of Gal(K1/K) fixing α. For any γ ∈ o(α) let
Mγ = ρ(Mα), with ρ ∈ Gal(K1/K) such that ρ(α) = γ, and let M−γ be a V1-lattice
of W−γ such that ψ:Nγ ⊗ Nγ → V1 is a perfect form. Here Nγ := Mγ ⊕ M−γ .
Let MO(α) := ⊕γ∈o(α)∪o(−α)Mγ . For any other pair o(α1) and o(−α1) of orbits of
the action of Gal(K1/K) on CT , we define similarly a free V1-submodule MO(α1) of
WK ⊗K1. Let MV1 be the V1-lattice of WK ⊗K1 defined by the direct sum of these
MO(α); so

MV1 := ⊕γ∈CT
Mγ .

We get that MV1 is stable under the action of Gal(K1/K) and ψ:MV1⊗MV1 → V1 is a
perfect form. So TK1 extends to a subtorus TV1 of Sp(MV1 , ψ). Let MV be the V -lattice
of WK formed by elements of MV1 fixed by Gal(K1/K). We have MV1 = MV ⊗V1. We
deduce that TK extends to a subtorus T of Sp(MV , ψ). So the (unique) hyperspecial
subgroup T (V ) of TK(K) is included in the hyperspecial subgroup Sp(MV , ψ)(V ) of
Sp(WK , ψ)(K).

e) To see the first part of g), it is enough to work separately the case of a torus
(which is obvious) and the case of a semisimple group. For this last case, it is enough to
work with an inner automorphism and then everything results from [Ti, first paragraph
of 2.5] applied to the adjoint group. The proof of the second part of g) is similar to
the proof of 4.3.10 b) (which can be used to obtain a refinement of this part of g)),
and so it is left as an exercise.

3.1.2.2. Remarks. 1) Let G1K and G2K be two reductive groups over K such
that G1K is a subgroup of G2K and such that they are unramified over K. It is not all-
ways true that there is a hyperspecial subgroup of G1K(K) included in a hyperspecial
subgroup of G2K(K).

We leave to the reader to find examples for this, with G1K a torus spliting over
an unramified extension of K of degree 2, for which the key fact of the proof of
3.1.2.1 d) is not true, and with G2K = GSp(WK , ψ) a group of symplectic simili-
tudes, starting from the fact that any hyperspecial subgroup of G2K(K) is of the form
GSp(MV , ψ)(V ), with MV a V -lattice of WK for which there is ε ∈ Gm(K) such that
εψ:MV ⊗MV → V is a perfect form. We get such examples even for dimK(WK) = 4.

2) 1) above is true if G2K is a general or special linear group over K. In fact in
this case any bounded subgroup H1 of G1K(K) is included in a hyperspecial subgroup
of G2K(K). To see this we can assume that H1 is a maximal bounded subgroup of
G1K(K). Now everything results from [Ja, 10.4] and [Ti, 3.4].
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3) A third proof of 3.1.2.1 c) can be obtained using maximal tori. Its advantage:
it remains valid for an arbitrary DVR.

3.1.3. Lemma. Every reductive group G over Q unramified over Qp extends to
a reductive group over Z(p).

Proof. It is enough to treat separately the case when G is a torus and the case
when G is semisimple. If G is a torus, then it splits over a Galois extension of Q which
is unramified above p, and so it extends to a torus over Z(p).

Let now G be a semisimple group, and let GZp
be a semisimple group over Zp

having as generic fibre GQp
. Let gZp

:= Lie(GZp
) and let gZ(p) be its intersection with

Lie(G). This intersection is taken inside Lie(GQp
). So gZp

= gZ(p) ⊗ Zp. We get that
the closure of Gad in Aut(gZ(p)) is a semisimple adjoint group Gad

Z(p)
over Z(p) (this is

so due to the fact that we get this over Zp). As G is a cover of Gad, we conclude that
G extends to a semisimple group over Z(p), obtained by taking the normalization of
Gad
Z(p)

in the field of fractions of G. This ends the proof of the lemma.
Another proof can be obtained using the following general result of descent:

3.1.3.1. Claim. Let O be a DVR of mixed characteristic and let L be its field of
fractions. Let YL be a scheme of finite type over L. Let Ŷ be a faithfully flat scheme
of finite type over the completion Ô of O, and such that its generic fibre is isomorphic
to the extension of YL to the field of fractions of Ô. We assume that either Ŷ is an
affine scheme or that O is a henselian ring. Then there is a unique scheme Y over
O, having YL as its generic fibre, and such that its extension to Ô is Ŷ (so the special
fibres of Y and Ŷ are the same).

This is not necessarily true if we do not assume that Ŷ is an affine scheme, or that
O is a henselian ring: [BLR, 6.7] can be adapted to the mixed characteristic situation.
A similar thing can be stated for morphisms (and so in terms of equivalence of some
categories). We include a proof of the above claim which we think is useful in the
study of different integral models of (quotients of) Shimura varieties.

Step -1. We can assume that the special fibre YS of Ŷ is non-empty. It is well
known that the claim is true if Ŷ is affine (simple argument at the level of lattices).
So we can assume that Ŷ is reduced.

First we point out how the local rings of points of the special fibre of Y (assumed
to exist) can be recovered: for any closed point y:Spec(k) ↪→ YS (with k a field),
the local ring of y in Y is the intersection of the local ring of y in Ŷ with the ring
of fractions of YL. Secondly we point out that the topological space underlying any
scheme Z over O is fully determined once we know ZL and Z bO. These two remarks
take care of the uniqueness part.

Step 0. We can work around a point y as above. In particular we can assume
that YS is affine, and so separated. Further on we can remove from YL a closed
subscheme whose closure in Ŷ does not contain the point y, in such a way that its
complement in YL and respectively the complement of this closure in Ŷ are separated
schemes. This is possible due to the fact that Ŷ and YL are noetherian schemes and
due to the fact that YS is separated.

Conclusion: we can assume that Ŷ (and so also that YL) is a separated scheme.
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Now, in essence, everything results from the ideas presented in [BLR, 6.5]. We present
the details.

Step 1. We can assume that YL and Ŷ are normal schemes (as O is an excellent
ring, the argument is the same as the one needed to assume that Y is reduced).

Step 2. A. From now on we assume that O is a henselian ring.
B. Even better we can assume that O is a strictly henselian ring.
This admits an argument using Galois-descent (cf. [BLR, 6.2]). In other words,

if Spec(O1) is a finite Galois cover of Spec(O), with O1 a DVR, and if we know that
there is a scheme Y 1 over O1 whose extension to Ô1 is the extension of Ŷ to Ô1, then
the fact that the special fibre of Y 1 is definable over the residue field of O is the extra
ingredient needed to make the Galois-descent (defined by the natural action, due to
the uniqueness property mentioned in Step -1, of the Galois group Gal(O1/O) on Y 1)
effective.

C. We can assume that the residue field of O is an algebraically closed field (i.e.
we can replace the strictly henselian ring O by a pro-finite flat DVR extension of it
having the same index of ramification).

D. We can replace O by any finite flat DVR extension of it; so we can assume
that the strictly henselian DVR O is as ramified as desired.

E. We can replace the strictly henselian DVR O by the local ring of a generic
point of the special fibre of a smooth scheme Z over O.

The parts C and D admit the same argument involving descent as in part B.
The part E is trivial (we can assume that we have a scheme YZ over Z whose

extension to Z bO is the extension of Ŷ to Z bO; now we can take O-sections of Z to get
Y ).

Replacing O by another DVR O1 which is obtained from O by the rules described
in B-E above, the nilpotent elements of YS can be “absorbed”: the normalization Y n

1

of ŶO1 has a reduced special fibre. Moreover Y n
1 is a projective scheme if Ŷ is. As a

conclusion we can assume that YS is a reduced scheme and that O is strictly henselian
(cf. E for this last part).

Step 3. We can assume that there is a scheme U over O such that its generic
fibre is YL and its extension to Ô is an open subscheme of Ŷ having a complement in
Ŷ of codimension at least 2.

For this we can assume that YL is affine (even smooth over L). But this is the
context in which [BLR, lemma 6, p. 161] works (if Ŷ is an affine scheme then the
claim is trivial). The arguments presented in loc. cit. work in the case when Ŷ is a
normal scheme having a a non-empty reduced special fibre.

Step 4. From the Artin’s approximation theorem (this is standard -see [BLR,
th. 12, p. 83]-: O is an excellent ring, as L has characteristic zero) we deduce easily
that there is a normal scheme Y ′ of finite type over O (we recall that O is a strictly
henselian ring) having U as an open subscheme containing the generic fibre and all
the points of codimension 1, and having YS as its special fibre.

Step 5. Morally Y ′
bO should be Ŷ . The failure of being so might happen if the

topology on the underlying set of Y ′
bO is not the expected one. If Y ′

bO is not Ŷ we have
to proceed as follows.
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We can assume that YL and Ŷ are normal complete schemes (cf. Nagata’s embed-
ding theorem; see [Na] and [Vo]), and that YS is reduced (cf. Step 2). Now we consider
the normalization Ŷ2 of the closure of the diagonal embedding of U bO in Ŷ × Y ′

bO. We
also consider the natural projections of it on the two factors.

We first assume the existence of a scheme Y2 over O whose extension to Ô is Ŷ2.
This is the extra ingredient needed to be able to repeat the above arguments on the
application of Artin’s approximation theorem to get similarly (to Y ′) a scheme Y

′′

over O whose topology of its underlying set is as expected to be (the topology of the
underlying set of Ŷ is a quotient topology of the topology underlying the set of Ŷ2).
We deduce that the extension of Y

′′
to Ô is Ŷ . So we can take Y = Y

′′
.

In fact we can replace Ŷ2 by any other proper scheme Ŷ3 over Ô whose generic
fibre is defined over L, and which admits a surjection onto Ŷ2. Even more, it is enough
to get such a good scheme Ŷ3 only after we replace O by an arbitrary DVR O1 which
is a faithfully flat O-algebra of the type allowed in Step 2.

Step 6. To end the proof we are left with the proof of the existence of Y3 for a
suitable choice of Ŷ3. A well known application of Chow’s lemma (cf. also [Vo, 2.5])
shows that we can assume that we are dealing with an Ŷ2 which is a normal faithfully
flat projective Ô-scheme. In other words there is a surjective proper morphism Ŷ3 →
Ŷ2, with Ŷ3 a normal projective scheme over Ô, whose generic fibre is defined over L.

We can assume (cf. Step 2 and the last part of Step 5) that Ŷ2 has a reduced
special fibre. From Step 3 we deduce easily the existence of a normal projective scheme
Y ′

2 over O such that there are open subschemes U ′
2 and U2 of Y ′

2 and respectively of Ŷ2,
containing the generic fibres and the points of codimension 1, and satisfying U ′

2 bO = U2.

We can view this last identity as a rational map from Y ′
2 bO to Ŷ2. But this rational map

extends to a surjective morphism Y3 bO → Ŷ2, where Y3 is a projective scheme over O
obtained from Y ′

2 through a blowing up centered on the special fibre (cf. [Hart, 7.17.3,
p. 169]; we can view Ŷ2 as embedded in a projective space Pn

bO, for some n ∈ N). Y3

is the searched for scheme over O. This ends the proof of the claim.

3.1.3.1.1. Remarks. 1) We preferred to include the above proof of 3.1.3 (it also
works when Z(p) is replaced by an arbitrary DVR O) as it illustrates how descent can
be performed also at the level of Lie algebras. Moreover it is constructive.

2) The above proof can be modified so that it works for an arbitrary henselian
DVR O: the use of Artin’s approximation theorem has to be replaced (in the case
when O is of equal positive characteristic) by the use of C-D of Step 2 (for Step 1 cf.
[Ma, cor. 2 of p. 234, and 31.H]).

3) We do expect that in the above claim we can replace finite type by locally of
finite type.

3.1.3.2. Remark. Let now O be an arbitrary DVR having a perfect residue
field. Let GL be a reductive group over the field L of fractions of O, such that its
extension to the field of fractions K of the completion V of O is unramified over K.
Let H be a hyperspecial subgroup of G(K). Then any automorphism of GL taking
H onto itself, extends to an automorphism of GO, with GO a reductive group over O

such that GO(Ô) = H (such a GO does exist cf. 3.1.3.1): from 3.1.2.1 a) and e) we
get an automorphism of GV ; obviously it comes from an automorphism of GO.
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3.1.4. Remark. Let (G,X) ↪→ (G1, X1) be an injective map of Shimura pairs
and let p be a rational prime. If Gder and its centralizer C in G1 are unramified
over Qp, then there is an injective map (G0, X0) ↪→ (G1, X1) such that Gder

0 = Gder,
(Gad

0 , Xad
0 ) = (Gad, Xad) and G0 is unramified over Qp. To see this it is enough to

remark that there is (cf. [Ha, 5.5.3]) a maximal torus T of C such that:

– a conjugate of some x ∈ X by an element of C(R) factors through G0R, where
G0 is the subgroup of G1 generated by G and T ;

– TQp
is C(Qp)-conjugate with a maximal torus of CQp

unramified over Qp (there
is such a maximal torus as CQp

is quasi-split, cf. [Ti, 1.10]).

3.1.5. Remark. Let GK = G1K × G2K be a product of reductive groups over
K. Then GK is unramified over K iff G1K and G2K are unramified over K, and then
any hyperspecial subgroup H of GK(K) is a direct product H = H1 ×H2, with Hi a
hyperspecial subgroups of GiK(K), i = 1, 2.

3.1.6. Lemma. Let R be an integral domain, faithfully flat over Z(p). Let M be
a free R-module of finite rank. Let G0 be a reductive subgroup of the generic fibre of
GL(M) such that the closures of G0der and of the connected component T of the origin
of Z(G0) in GL(M), are both reductive group schemes over R. Then its closure in
GL(M) is a reductive group scheme over R.

Proof. Let G0
R, G0der

R and TR be respectively the closures of G0, G0der and T in
GL(M). Let C := G0der ∩ T . C is a finite flat group scheme over the generic fibre of
R.

We claim that its closure CR in GL(M) is a finite flat subgroup of TR and of
G0der

R . This is a local statement in the étale topology of Spec(R). Of course, if
Spec(R1) → Spec(R) is an étale map, R1 might not be an integral ring, and so we
need to take the closure of C×R Spec(R1) in GL(M)R1 . So we can assume that TR is
split and that G0der

R has a maximal split torus T 1
R, but we no longer assume that R is

integral: just that it is reduced. Moreover we can assume that R is a local ring. It is
enough to show that the intersection TR ∩ T 1

R defines a finite flat scheme over R. We
consider the torus T 2

R := TR×T 1
R, and its representation ρ on M defined by the product

of the inclusion TR ↪→ GL(M) with the inverse of the inclusion T 1
R ↪→ GL(M). This

is well defined as TR and T 1
R, as subtori of GL(M), commute. As R is local and T 2

R is
split we deduce that ρ is a direct sum of one-dimensional representations (asociated
to characters of T 2

R). So its kernel is a finite flat group scheme over R, as this is so
over the points of Spec(R) of codimension zero. But this kernel is TR ∩ T 1

R. So CR is
a finite flat group scheme over R.

We come back to our situation: R is integral. Let G1
R be the quotient of TR×G0der

R

by CR, where CR acts as inclusion on TR and as the inverse of the inclusion on
G0der

R . G1
R is a reductive group scheme over R. We have a canonical homomorphism

q:G1
R → G0

R, which is an isomorphism over the generic fibre of R. 3.1.2.1 c) and
3.1.2.2 3) guarantee that each fibre of q is a closed embedding, and that q is a proper
morphism. This implies that q is a closed embedding: we can assume that R is finitely
generated over Z(p), and so that it is noetherian; first we deduce that q is a finite
morphism, and then everything results from Nakayama’s lemma. From the definition
of G0

R we deduce that q is an isomorphism. This implies that G0
R is a reductive group

scheme over R, ending the proof of the lemma.
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3.1.6.1. Remark. The above lemma remains true if Z(p) is replaced by an
arbitrary DVR. Even more generally, it remains true if R is an integral scheme, and
instead of its generic fibre (over some integral scheme), we work with its generic point,
cf. 3.1.2.2 3).

3.2. Healthy normal schemes and integral models of Shimura vari-
eties. In 3.2.1-2 we introduce the general theory of healthy normal schemes. The
need of such a theory was felt when it has been discovered that the statement 6.8 of
[FC, p. 185] is not true in general (for details see [dJO]). Then in 3.2.3-16 we present
the general theory of integral models of Shimura varieties. For this theory, in essence
(i.e. except [Fa4]), we need from the theory of healthy normal schemes only some
definitions and remarks. However we felt that it is important to include in 3.2.1-2
more then just definitions (cf. the philosophy of 3.2.7 6) and rm. 3) of 3.2.3.2.1; they
nourish our expectation that the theory of healthy normal schemes will blossom very
much in the near future). In 3.2.17 we single aside the proof of a result of Faltings
[Fa4] which plays an essential role in the theory of integral models of Shimura varieties.
It introduces some of the main tools used in the study of healthy normal schemes. As
these tools are referred to in 3.2.1-2 we suggest that after 1-2) and 8) of 3.2.1 and 1)
and 3) of 3.2.2, 3.2.17 should be studied, before the rest of 3.2.1-2.

Let p be a rational prime.

3.2.1. Definitions. 1) A pair (Y, U), with Y a flat scheme over Spec(Z) and
with U an open subscheme of Y containing the generic fibre YQ of Y and such that
the complement of U in Y is of codimension in Y at least 2, is called an extensible
pair. A pair (Y, UY ), with Y as before and with UY a subset of the underlying set of
Y which is an intersection of the underlying sets of open subschemes Ui of Y , i ∈ I,
such that (Y, Ui), i ∈ I, are extensible pairs, is called a quasi-extensible pair. Here I
is an arbitrary set, often infinite.

A normal scheme Y flat over Spec(Z) is called:
2) healthy if for any extensible pair (Y, U), every abelian scheme over U extends

to an abelian scheme over Y ;
3) quasi healthy if for any extensible pair (Y, U), every abelian scheme over U

extends to an abelian scheme over the normalization of Y -not assumed to be finite
over Y - in a finite étale extension of the ring of fractions of Y ;

4) almost healthy if any abelian scheme AQ over YQ having level-lN structures for
any N ∈ N, with l a rational prime which is invertible in any point of Y , extends to
an abelian scheme over the normalization of Y -not assumed to be finite over Y - in a
finite étale extension of the ring of fractions of Y ;

5) n healthy if for any extensible pair (Y, U), every abelian scheme over U of
dimension at most n extends to an abelian scheme over Y (here n ∈ N);

6) locally healthy if any open subscheme of it is healthy.
7) Similarly we define the following types of normal schemes (flat over Spec(Z)):

n quasi healthy, n almost healthy, locally quasi healthy, locally almost healthy, and
locally n (quasi or almost) healthy.

8) Let D be a Dedekind ring which is flat over Spec(Z
[
1
2

]
). A regular scheme Y

flat over D is called very healthy if:
i) for any prime w of D having a residue field k(w) of positive characteristic p,

the only open subscheme of the fiber Yw of Y over w, containing all the points of Yw
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having as a residue field an algebraic extension of k(w), is Yw itself;
ii) for any geometric point y : Spec(k(w)) ↪→ YDw

(with Dw a complete DVR
faithfully flat over the localization D(w) of D with respect to w, having k(w) as its
residue field and having the same ramification index as D(w)), the completion of the
local ring of y is of the form Ry = V [[x1, x2, ..., xm]], with V a DVR containing
W (k(w)), and such that the degree [V : W (k(w))] is less than p− 1.

A normal scheme Y flat over Z(p) is called:

9) p-healthy if for any extensible pair (Y, U), every p-divisible group over U ex-
tends uniquely to a p-divisible group over Y . Warning: here we use a hyphen (p-
healthy), while in 5) above we do not;

10) p-f-healthy if for any extensible pair (Y, U), every finite flat group scheme
over U of p-power order extends uniquely to a finite flat group scheme over Y ;

11) strongly p-healthy if any p-divisible group over YQ extends uniquely to a
p-divisible group over Y ;

12) strongly p-f-healthy if it is p-f-healthy, and if any finite flat group scheme over
YQ of p-power order extends in at most one way to a finite flat group scheme over Y .

13) As in 6-7) above we speak about locally p-healthy, locally p-f-healthy, locally
strongly p-healthy and locally strongly p-f-healthy normal schemes (flat over Z(p)).

Let now O be a DVR which is a faithfully flat Z(p)-algebra, and let e be its index
of ramification. Let πO be a uniformizer of O.

3.2.1.1. Remarks. 1) If D is a DVR faithfully flat over Z(p), in order that
there are very healthy regular schemes over D with a non-empty special fibre, the
ramification index of D has to be smaller than p− 1. If this is so, then any projective
limit of smooth schemes over D with étale transition morphisms, for which i) of 3.2.1
8) is true, (in particular any smooth scheme over D) is a very healthy regular scheme
over D.

2) According to a theorem of Raynaud (cf. [Ra, 3.3.3]), if e < p−1, then Spec(O)
is a strongly p-f-healthy regular scheme.

3) In 3.2.1 3), actually AQ does extend to an abelian scheme over Y . This can be
seen using the ideas of the Step A of 3.2.17.

4) From the Néron-Ogg-Shafarevich criterion we get directly that any locally
noetherian healthy normal scheme (and so any healthy regular scheme) is an almost
healthy normal schemes.

5) The quotients (assumed to exist) of healthy normal schemes through finite
group actions are quasi healthy normal schemes. This motivates the def. 3) of 3.2.1.

6) The regular quotients of healthy normal schemes through finite flat group
actions are healthy regular schemes. This can be checked starting from Step A of
3.2.17. Similarly, the regular quotients of locally healthy normal schemes through
finite flat group actions are locally healthy regular schemes.

7) The quotiens of almost healthy normal schemes through finite group actions
are almost healthy normal schemes.

8) There are plenty of examples of noetherian almost normal schemes which are
not regular (this results from 4) and 7) above and from 3.2.2 1)), and there are plenty
of examples of healthy regular schemes which are not very healthy (cf. 3.2.2 5)).

9) Any regular scheme Y of dimension 2 flat over Z(p) is p-f-healthy (this is a
consequence of [FC, 6.2, p. 181]).
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10) There are plenty of p-f-healthy regular schemes which are not strongly p-f-
healthy (like affine lines over the spectrum of a DVR of index of ramification at least
p− 1).

11) Any p-healthy regular scheme flat over Z(p) is healthy. The proof of this is
similar to the Step D of 3.2.17.

12) Any smooth scheme over a local henselian p-healthy regular scheme Spec(R) of
dimension at least two, having the property that the only open subscheme of its special
fibre (defined by πO = 0) containing its fiber over the maximal point of Spec(R), is
the special fibre itself, is p-healthy. The proof of this is entirely the same as the Steps
B, C and D of 3.2.17 (to be compared with 3.2.2.2; an argument similar to the one of
3.2.2 4), involving Weil restriction of p-divisible groups, allows us to replace R by a
finite étale R-algebra).

13) The class of very healthy regular schemes over a Dedekind ring D flat over Z
[
1
2

]
is stable under localizations, completions (of local schemes) and passages to smooth
schemes for which condition i) of 3.2.1 8) is still satisfied.

14) We could have worked out 3.2.1 for locally integral schemes instead of normal
schemes. But in such a generality we have basically no results. To study any type of
healthy normal schemes we can restrict our attention to integral normal schemes.

15) We consider a projective limit Z of quasi-compact healthy normal schemes
with transition morphisms such that their fibres over any point of Spec(Z) are domi-
nant morphisms. We assume that one of the following two conditions is satisfied:

– every fibre of Z over a finite prime of Spec(Z) has a finite number of points of
codimension (in this fibre) zero;

– the transition morphisms are pro-étale morphisms between schemes regular in
points of positive characteristic of codimension 1.

Then Z is a healthy normal scheme (if the first condition is satisfied, the argument
is standard; if the second condition is satisfied, we have to use as well [BLR, cor. 2,
p. 177]). The similar statement for almost healthy normal schemes is not true.

16) Step A of 3.2.17 explains why for checking that a normal scheme Y is (quasi
or almost or locally) healthy it is enough to deal with principally polarized abelian
schemes. This is very useful as the moduli stack over Spec(Z) parameterizing prin-
cipally polarized abelian schemes of a given dimension is algebraic (and so quasi-
compact) [FC, 4.11, p. 23]. This means that in many situations (like in the last
part of the proof of 3.2.2.1) we can work out things as in the case when we have a
quasi-compactness situation.

3.2.1.2. Questions. 1) Is it true that any local healthy regular scheme over
Z(p), of dimension at least 2, is p-healthy?

2) Is the completion of a local healthy regular scheme, a healthy regular scheme
itself?

We expect a positive answer to these questions. In many cases it is known that
the answer to 2) is yes (cf. 3.2.2.3 B)).

3.2.1.3. Problem. Characterize the healthy regular schemes independently of
the use of abelian schemes or of p-divisible groups.

3.2.1.4. Expectations. 1) If Y is a local healthy normal scheme, then we do
expect that its (strict) henselization is also a healthy normal scheme (to be compared
with rm. 4) of 3.2.2). Similarly for other types of healthy local schemes.
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2) We do expect the existence of noetherian almost healthy and of quasi healthy
normal schemes which are not healthy. It should be possible to construct such exam-
ples starting from the fact that the classical purity theorem for regular rings is not
true for normal noetherian rings.

3) We do expect that for any N ∈ N there are N healthy normal schemes which
are not N + 1 healthy normal schemes.

4) In 2-3), 5) and 9-10) of 3.2.1 we could have worked with quasi-extensible pairs
instead of extensible pairs. This would have made no difference for 2-3), 5) and 10)
of 3.2.1, but we do think (we do not have an example to prove this) it would have
made a difference for 3.2.1 9). The advantage of working with quasi-extensible pairs
(instead of extensible pairs) consists in the fact that given a flat Spec(Z)-scheme Y
it is enough to work with only one quasi-extensible pair (Y, UY ), with UY the subset
of Y defined as the intersection of the underlying sets of all open subschemes U of Y
such that (Y, U) is an extensible pair.

5) Though we defined 2-7) of 3.2.1 for schemes over Spec(Z), we have no under-
standing of the types of healthy schemes (defined there) over Z(2). In particular we do
not know if Spec(Z2[[T ]]) is a healthy scheme; however we do expect this to be true
(cf. [Va2]).

6) We do not know even one example of a healthy normal scheme over Spec(Z
[
1
2

]
)

which is not locally healthy. We do expect that (at least under some mild conditions)
any healthy regular scheme over Spec(Z

[
1
2

]
) is locally healthy. It is a nice problem

to check that all the healthy regular schemes to be introduced in 3.2.2 5) are locally
healthy.

3.2.2. Remarks. 1) According to [Fa4], if e < p− 1, then any regular formally
smooth scheme over O is a healthy regular scheme. As a direct consequence of this we
get that any very healthy regular scheme over a Dedekind ring D (flat over Spec(Z

[
1
2

]
))

is a healthy regular scheme, and, if D is a Z(p)-algebra, then it is also a p-healthy
regular scheme (see 3.2.17 for a proof of these statements).

2) Any healthy regular scheme is an almost healthy regular scheme. But we do
not know if (or when) an almost healthy normal (regular) scheme is healthy. However
an integral almost healthy regular scheme whose first fundamental group is trivial is
a healthy scheme (cf. the classical purity theorem).

3) The role of the Dedekind ring D in the definition of a very healthy regular
scheme (over D) is essentially just to fix the notations. We can define an abstract
very healthy regular scheme to be a flat scheme Y over Spec(Z) with the property
that for any local ring Oy of a point y of Y of positive characteristic p, there is a
faithfully flat Oy-algebra Ry, with Ry of the same form as the one in 3.2.1 8). As in
1) above, any abstract very healthy regular scheme is a healthy regular scheme, and
any abstract very healthy regular Z(p)-scheme is p-healthy (cf. 3.2.17).

The class of abstract very healthy regular schemes is stable under localization,
completion, passage to regular formally smooth schemes, and under pull backs through
morphisms defined by ring homomorphisms between discrete valuation rings of mixed
characteristic having the same index of ramification.

4) Let q:Y1 → Y be an étale morphism of flat Z-schemes. We assume that there
is an extensible pair (Y, U) such that (Y1, q

−1(U)) is an extensible pair and q−1(U) is
an étale cover of U (this is equivalent to the fact that q defines an étale cover over YQ
and over local rings of Y which are discrete valuations rings of mixed characteristic).
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We have:
A) If Y is a healthy normal scheme, then Y1 is a healthy normal scheme.
To see this let (Y1, U1) be an extensible pair, and let AU1 be an abelian scheme

over U1. We can assume that Y1 and Y are integral. We can assume that there is an
open subscheme Ũ of U such that (Y, Ũ) is an extensible pair and q−1(Ũ) = U1.

We consider the abelian scheme over Ũ obtained from the abelian scheme AU1

through the Weil restriction (the morphism U1 → Ũ is étale and finite). It extends to
an abelian scheme over Y (as Y is a healthy normal scheme). From this by standard
arguments we deduce that AU1 extends to an abelian scheme over Y1.

As a consequence we get:
B) If q is an étale cover then Y1 is a healthy normal scheme iff Y is so.
This remains true if we replace healthy schemes by any other type of healthy

schemes defined in 2-3), 5-6) and 8-12) of 3.2.1, but we do not know if (or when) this
remains true if the word healthy is replaced by almost healthy.

Even better:
C) If q is a pro-étale cover then Y1 is a healthy normal scheme iff Y is so.
To see this we can assume that Y1 and Y are both integral schemes. Let now

AU1 be an abelian scheme over an open subscheme U1 of Y1 with the property that
(Y1, U1) is an extensible pair. There is an étale cover q2:Y2 → Y , with Y2 an integral
scheme, such that q factors through q2 and the abelian variety over the generic point
of Y1 obtained from AU1 , is defined over the generic point ν of Y2. Now the theory
of descent implies that this abelian variety over ν extends to an abelian scheme over
an open subscheme U2 of Y2 with the property that (Y2, U2) is an extensible pair.
Moreover its extension to U1 is AU1 (we can assume that U1 factors through U2). Now
everything results from B) above.

A similar C) can be stated for the type of healthy schemes introduced in 6), 8)
and 10) of 3.2.1.

5) There are plenty of healthy regular schemes which are not very healthy. 3.2.17
is the source of inspiration for such examples. For instance, if l and p are two primes
such that l > p > 3, then the local schemes of whose completion is of the form

Y = Spec(W (k)[[x, y, z]]/(xl + y2 + z2 + p)),

with k a perfect field of characteristic p, is a healthy regular scheme. This can be
easily seen by making use of Steps A-D of 3.2.17. (Hint: Using Step A we can assume
that our local scheme is Y itself. Then we can assume that k = k and so that
Y is a strictly henselian local scheme. Next we check that the closed subscheme
Spec(W (k)[[y, z]]/(y2 + z2 + p)) of Y is a healthy regular scheme.) But obviously Y
is not a very healthy regular scheme over W (k). It can be checked that Y is also not
an abstract healthy regular scheme.

6) The following definition is not mathematically acceptable, and so it is not
used outside this remark; however we do expect the possibility of defining the class of
regular O-schemes it introduces, in terms of different indices of ramifications of differ-
ent regular closed subschemes of it. So we do see the possibility of a mathematically
acceptable definition of this class, which would lead to a deep understanding of the
healthy regular O-schemes.

Definition (tentative). We call a regular O-scheme S-healthy (the letter S
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stands for the word strongly) if the completion of the henselization of an arbitrary
local ring of it of mixed characteristic can be proved to be healthy by making use of
the Steps A-D of 3.2.17 (as in the hint of 5) above).

Any very healthy regular O-scheme is S-healthy, any S-healthy regular O-scheme
is locally healthy. We do not know what is the relation between R-healthy regular
schemes (to be defined in 3.2.2.3.1) and S-healthy regular schemes over O. In our
opinion the most important subclasses of healthy regular schemes over O are: of S-
healthy, of locally healthy, and of quasi-compact healthy schemes over O (to which we
have to add, in the case when e < p−1, the subclasses of abstract very healthy schemes
over O, of R-healthy schemes over O, and of regular formally smooth schemes over
some DVR O1 which is a faithfully flat O-algebra having e as its index of ramification).

3.2.2.1. Proposition. We assume that O is a henselian DVR. Let Y be a
regular scheme over O and let O ↪→ O1 be a formally étale inclusion, with O1 a DVR.
Then YO1 is a healthy regular scheme iff Y is a healthy regular scheme.

Proof. Obviously YO1 is a regular scheme. If YcO1
is a healthy regular scheme, then

from the theory of descent, we deduce that Y and YO1 are healthy regular schemes. So
we can assume that O1 is complete. Using B) of 3.2.2 4) we can assume that O1 = Ô.
Let Y1 := YO1 .

We assume now that Y is a healthy regular scheme. We can assume that Y is an
integral O-scheme, with a non-empty special fibre. Let (Y1, U1) be an extensible pair,
and let AU1 be an abelian scheme over U1. There is an extensible pair (Y, U) such
that U1 = U ×Y Y1 (as the special fibers of Y and Y1 are the same).

We treat first the case when Y is an affine (integral) scheme. Then AU1 is defined
over a scheme UO′1 , with O′1 a finitely generated O-subalgebra of Ô. As O is an
excellent ring (as its field of fractions has characteristic zero), we deduce from [BLR,
th. 12, p. 83] the existence of an O′1-algebra O2, smooth over O, and such that we
have a homomorphism O2 → Ô of O′1-algebras. Let O3 be the localization of O2 with
respect to the prime dominated by the maximal ideal of Ô.

3.2.2 4) gives us the right to assume that the first fundamental group of Y is
trivial (and so that Y is an almost healthy regular scheme), and that O is a strictly
henselian DVR. From the smoothness of O2 (over O) we deduce the existence of an
epimorphism s3:O3 ³ O of O-algebras. Now it is easy to check that the resulting
(abelian scheme) model of AU1 over UO3 extends to an abelian scheme over YO3 : using
the fact that YO3 is a regular scheme (being the localization of a smooth Y -scheme),
we can follow entirely the independent part 3.2.17 (the role of V being replaced by Y ;
the existence of s3 guarantees that everything is the same). We deduce that AU1 does
extend to an abelian scheme over Y1.

The same argument works for the case when Y is quasi-compact (i.e. an O-
subalgebra O′1 of Ô as above does exist in this case also). The general case is treated
similarly: we can assume that AU1 (cf. 3.2.1.1 16)) is principally polarized; as the
moduli stack of principally polarized abelian schemes of a given dimension over O-
schemes is algebraic over O (and so it is quasi-compact) we deduce (see also below)
the existence of an O-subalgebra O′1 of Ô having the same properties as above. The
rest of the argument is the same.

In fact we can avoid using stacks. Let V be the normalization of O in the field of
fractions of Y . It is a strictly henselian DVR (as O is so, and as the special fibre of the
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regular scheme Y is non-empty). The generic fibre of Y is geometrically connected
over the field of fractions K(V ) of V . As V1 := V ⊗O O1 is still a DVR, this implies
that Y1 is an integral scheme. Moreover its generic fibre is geometrically connected
over the field of factions of V1. Now it is an easy exercise to see (starting from the
fundamental exact sequence of [SGA1, p. 253], applied to the generic fibre of Y ,
viewed as a K(V )-scheme) that the first fundamental group of Y1 is trivial (we view
Y as a V -scheme and Y1 as a V1-scheme). From this and the classical purity theorem
we deduce that AU1 has level-N structures, for any N ∈ N satisfying (N, p) = 1. So
we can replace the referred stack, by a Mumford scheme Ad(AU1 ),1,N (we view it as
a quasi-projective smooth scheme over Z

[
1
N

]
) (cf. [Mu]). Here d(AU1) is the relative

dimension of AU1 , while N > 2 is an integer satisfying (N, p) = 1. Now the existence
of O′1 is obvious, as it can be seen starting from [Hart, ex. 2.4, p. 79]. This ends the
proof of the proposition.

3.2.2.2. Lemma. Let Spec(R) be a local henselian healthy regular scheme over
O of dimension at least 2. Let Z be a normal R-scheme which is a projective limit of
smooth schemes of finite type over Spec(R) such that:

– each member of the limit has the property that the only open subscheme of its
special fibre (defined by πO = 0) containing its fibre over the maximal point of Spec(R)
is the special fibre itself;

– the transition morphisms are dominant modulo πO;
– either the transition morphisms are étale or each connected component of ZOsh

is such that its special fibre has a finite number of points of codimension (in this special
fibre) zero.

Then Z is a healthy normal scheme.

Proof. 3.2.2 4) gives us the right to assume that Spec(R) is a strictly henselian
local scheme, and so that it is an almost healthy scheme, cf. 3.2.2 2). So we can
assume that O = Osh and that Z is connected. It is enough (cf. 3.2.1.1 15)) to prove
this lemma for the case of a smooth scheme Y over Spec(R) satisfying the required
condition that the only open subscheme of its special fibre containing its fibre over
the maximal point of Spec(R) is the special fibre itself. This condition implies the
existence of a Zariski dense set of good sections Spec(R) → Y ; here by good we mean
that, fixing an open subscheme U of Y such that (Y, U) is an extensible pair, we
take only sections s:Spec(R) → Y such that the pair (Spec(R), s−1(U)) is also an
extensible pair. Now everything is entirely similar to the proof of Steps C and D of
3.2.17 (cf. also the proof of 3.2.2.1).

Let now O ↪→ O1 be an inclusion between two discrete valuation rings which are
faithfully flat over Z(p). We assume that it is of index of ramification 1 and that O
is a henselian DVR. We recall that a faithfully flat inclusion O3 ↪→ O2 between two
discrete valuation rings is said to be of index of ramification 1, if a uniformizer of O3

is a uniformizer of O2, and if at the level of residue fields we get a separable field
extension.

3.2.2.3. Corollary. A) Let Y be a healthy regular O-scheme such that one of
the following two conditions is satisfied:

a) any maximal point of Y of positive characteristic has a local ring whose henseli-
zation is a healthy regular scheme of dimension at least two;
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b) any smooth scheme over a DVR of mixed characteristic which is a local ring
of Y is a healthy regular scheme.

We have:
1) For any projective limit Z of smooth schemes of finite type over O having étale

transition O-morphisms whose fibres are dominant morphisms, YZ is a healthy normal
scheme.

2) YO1 is a healthy regular scheme.
B) If the completion Ŷ of a local henselian healthy regular scheme Y is a projective

limit of smooth affine schemes over Y , then this completion is a healthy regular scheme.

Proof. YZ is a normal scheme: it is a projective limit of normal schemes with
dominant transition morphisms. To check 1) let (YZ , U) be an extensible pair, and let
A be an abelian scheme over U . The conditions a) and b) imply that we can assume
that there is an extensible pair (Y, U(Y )) with U = U(Y )Z (in case a) cf. 3.2.2.2). As
in the proof of 3.2.2.1 we can assume that Z is a smooth scheme of finite type over
O. So the part of the proof of 3.2.2.1 involving passage to Osh and taking sections
applies: we get that A extends to an abelian scheme over YZ .

To see 2), we can assume (cf. 3.2.2.1) that both O and O1 are complete DVR’s.
Now everything results by using in this order part 1), 3.2.2.1 and 3.2.2 4), once we
remark that Spec(O1) is a pro-étale cover of the spectrum of a DVR O2, which is
the completion of a henselian DVR of whose spectrum is a projective limit of smooth
affine O-schemes whose transition O-morphisms are étale and have fibres which are
dominant morphisms between integral schemes (as the inclusion O ↪→ O1 has index
of ramification 1).

Part B) results from 3.2.2.2 if Y is of dimension at least 2 (the case when Y is of
dimemsion 1, i.e. when Y is the spectrum of a DVR, is trivial). The only extra thing
we need to add: as Ŷ has a finite number of points of the special fibre of codimension
zero in it, any abelian scheme over U , with (Ŷ , U) an extensible pair, is defined over
an open subscheme UZ of a smooth scheme Z of finite type over Y , with (Z, UZ) an
extensible pair, and with the natural morphism Ŷ → Y and U → Y factoring through
Z and respectively through UZ . This ends the proof of the corollary.

3.2.2.3.1. Definition. A healthy regular scheme over Z(p) is called R-healthy
(R stands to honor the theorem of Raynaud mentioned in 3.2.1.1 2)) if the local rings
of the generic points of its special fibre have index of ramification smaller than p− 1.

3.2.2.4. Remarks. a) 2) of 3.2.2.3 A) is in essence the maximum it can be said
in full generality for the case of a ring homomorphism O → O1 of index of ramification
1, as the spectrum of any DVR of mixed characteristic is a healthy regular scheme,
and as the condition b) of 3.2.2.3 A) is a natural one (in this context). Of course there
are variants of 3.2.2.3 A) when we intermingle the conditions a) and b).

b) Using def. 3.2.3.2.1, from 3.2.2.3 we get (cf. 3.2.2 1)): a regular scheme Y over
O is R-healthy iff YO1 is an R-healthy regular scheme.

c) There are R-healthy regular schemes which are not abstract healthy regular
schemes (see 3.2.2 5)).

We start now by clarifying and restating the definitions introduced in [Mi4, ch.
2], and commented in the footnote of [Mi3, p. 513]. So the conjecture [Mi4, 2.7] also
gets restated (see 3.2.5).
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Let (G,X) define a Shimura variety and let v be a prime of E(G,X) dividing
the rational prime p. Let H be a compact open subgroup of G(Qp). We assume
now that O is a faithfully flat O(v)-algebra. Let L be its field of fractions. We have
L ⊃ E(G,X). Let f : (G,X) → (G1, X1) be a map and let H1 be a compact open
subgroup of G1(Qp) such that f takes H into H1. Let v1 be the prime of E(G1, X1)
divided by v. Let O1 be a DVR which is a faithfully flat O(v1)-subalgebra of O. Let
L1 be its field of fractions.

3.2.3. Definitions. 1) An integral model of ShH(G,X) over O is a faithfully flat
scheme M over O together with a G(Ap

f )-continuous action and a G(Ap
f )-equivariant

isomorphism
ML

∼→ShH(G,X)L.

When the G(Ap
f )-action on M is obvious, by abuse of language, we say that M is an

integral model.
1′) By a (map or) morphism from an integral model M of ShH(G,X) over O

to an integral model M1 of ShH1(G1, X1) over O1 we mean a G(Ap
f )-equivariant O1-

morphism
M → M1,

whose restriction to generic fibres is the natural L1-morphism ShH(G,X)L →
ShH1(G1, X1)L1 defined by f (to be compared with 2.9).

In particular if f is the identity map of (G,X) we get the definition of morphisms
between two integral models of ShH(G,X) over O.

2) The integral model M is said to be smooth (resp. normal) if there is a compact
open subgroup H0 of G(Ap

f ) such that for any inclusion H2 ⊂ H1 of compact open
subgroups of H0, the natural morphism M/H2 → M/H1 is a finite étale morphism
between smooth schemes (resp. between normal schemes) of finite type over O. In
other words, there is a compact open subgroup H0 of G(Ap

f ) such that M is a pro-étale
cover of the smooth scheme (resp. of the normal scheme) M/H0 of finite type over
O(v).

2′) The integral model M is said to be quasi-projective, projective or proper if
for any (it is enough just for one) compact open subgroup H0 of G(Ap

f ) the scheme
M/H0 is respectively quasi-projective, projective or proper.

3) A scheme T over O is said to have the extension property, abbreviated EP
(resp. the extended extension property, abbreviated EEP), if, for any healthy regular
scheme (resp. for any almost healthy normal scheme) Y over O, every L-morphism
YL → TL extends uniquely to an O-morphism Y → T . Similarly, using R-healthy
regular schemes instead of healthy regular schemes, we speak about a scheme having
the R-extension property (abbreviated REP).

4) A scheme T over O is said to have the weak extension property, abbreviated
WEP (resp. the smooth extension property, abbreviated SEP), if, for any abstract
very healthy regular scheme Y over O (resp. for any regular formally smooth scheme
Y over a DVR which is a faithfully flat O-algebra and has the same ramification index
as O), every L-morphism YL → TL extends uniquely to an O-morphism Y → T .

5) A scheme T over O is said to have the quasi extension property, abbreviated
QEP (resp. the local extension property, abbreviated LEP), if, for any quasi-compact
healthy regular scheme (resp. for any locally healthy regular scheme) Y over O, every
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L-morphism YL → TL extends uniquely to an O-morphism Y → T . Similarly we
define the quasi extended extension property (abbreviated QEEP).

6) A smooth integral model of ShH(G,X) over O(v) (resp. over its completion
Ô(v)) having the EP is called an integral canonical model (resp. a local integral
canonical model) of our Shimura variety Sh(G,X) with respect to v and H (or simply
with respect to H as the prime v is determined by the integral model).

3.2.3.0. Remark. Other extension properties can be defined starting from quasi
healthy schemes, or from locally healthy schemes. Not to be to long, this is not going
to be done here.

3.2.3.1. Remarks. 0) Allowing (G,X) and v to vary we get that def. 3-5) above
make sense for any DVR which is a faithfully flat Z(p)-algebra. Moreover 1) and 1′)
above make sense for any compact subgroup H of G(Ap

f ) not necessarily open, but for
2) and 2′) we do need to assume that H is also open.

1) Any scheme over O having the EEP, has the EP (cf. 3.2.2 2)), and any scheme
over O having the EP , has the WEP (cf. 3.2.2 1)). If e < p − 1 than any scheme
over O having the WEP has the SEP . We do not know when the converses of these
statements are true.

2) Any quotient M/H0 (with H0 a compact open subgroup of G(Ap
f )) of a normal

integral model M of ShH(G,X) over O having the EP, is separated.
To see this we first remark that any DVR of mixed characteristic is a healthy

regular scheme. We use the valuative criterion of separatedness. We need to check it
just for a DVR of mixed characteristic: M is a pro-étale cover of the normal scheme
M/H0 of finite type over O, having a separated generic fibre. Now everything results
from the EP.

3) A scheme Y over O has any of the extension properties we defined iff the
reduced scheme Yred attached to it has it. A reduced scheme Y over O has any of
the extension properties we defined iff any connected component of its normalization
in its ring of fractions has it. This reduces the study of schemes over O having an
extension property to the case of integral normal schemes over O. All these results
from the fact that we defined the different extension properties in terms of normal
schemes.

4) Any scheme over O having the EP (resp. EEP) has the LEP and the QEP
(resp. has the QEEP). We do not know if (or when) the converse is true.

5) If Y is a scheme over O having any type of extension property, and if Y1L

is a closed reduced subscheme of YL, then the closure Y1 of Y1L in Y also has the
same type of extension property. Moreover: the normalization of Y1 in any pro-étale
scheme over the spectrum of the ring of fractions of Y1 has the same type of extension
property. We will use this trivial fact without any further comment.

5′) If Y is an O-scheme having the EP, and if q:Y → Y1 is a morphism which is
an isomorphism on generic fibres, then Y1 has the EP. This remains true for any of
the extension type properties we defined above.

6) If Y1 → Y is a pro-étale cover of O-schemes then Y1 has the EP (or QEP, or
WEP, or SEP) iff Y has it (for the EP and QEP this is a consequence of C) of 3.2.2
4); for the WEP and SEP cf. def. 4) of 3.2.3).

7) A regular formally smooth scheme over O having the SEP is uniquely deter-
mined by its special fibre.
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3.2.3.2. Let M be a smooth integral model of ShH(G,X) over O. Let H0 be a
compact open subgroups of G(Ap

f ) such that the quotient morphism M → M/H0 is a
pro-étale cover.

Proposition. a) If M has the SEP (resp. WEP or EP) then M/H0 has the
following extension type property: If (Y, U) is an extensible pair with Y a regular
formally smooth scheme over a DVR O1 which is a faithfuly flat O-algebra having the
same index of ramification as O (resp. with Y an abstract very healthy regular scheme,
or resp. with Y a healthy regular scheme) then any morphism U → M/H0 extends
uniquely to a morphism Y → M/H0;

b) We assume that M has the SEP and satisfies the valuative criterion of proper-
ness with respect to discrete valuation rings of mixed characteristic (for instance if M

has the EP and e < p− 1). We have:
i) Let M0/H0 be an open closed subscheme of M/H0, and let q0:M0/H0 → Z be

a morphism, with Z a faithfully flat separated scheme of finite type over O, which is
an isomorphism on generic fibres. We assume that there is an open subscheme U of
M0/H0 containing at least one generic point of the special fibre, such that q0 identifies
it with an open subscheme of Z. Then the natural map M0/H0(Osh) → Z(Osh) is a
bijection. Moreover if Z is normal, then it is smooth in codimension 1;

ii) If a morphism q0 as in i) above is proper, then it is finite;

Proof. The proof of a) is a consequence of the classical purity theorem and of the
fact that the class of schemes Y mentioned in a) are stable under pro-étale covers (cf.
rm. 4) of 3.2.2). We prove now b).

i) We can assume that O = Osh and that M0/H0 is connected. So let C be a
connected component of M/H0. We first remark that C is a separated scheme (the
argument is the same as for 2) above) of finite type over O (cf. def. 2) of 3.2.3), having
a smooth quasi-projective generic fibre (the generic fibre is a model of the quotient of
a Hermitian symmetric domain by an arithmetic subgroup).

We consider a morphism q:C → Z, with Z a faithfully flat separated scheme of
finite type over O, having the properties mentioned in i) of b). We can assume that
Z is a normal scheme. From the smoothening process (cf. [BLR, th. 3, p. 61]) we
deduce the existence of a Z-scheme Z1, smooth over O, quasi-projective over Z, and
having the property that the induced map Z1(O) → Z(O) is a bijection. Moreover
the generic fibre of Z1 is the same as the generic fibre of Z (or of C).

iA) The first key fact we need is: any two discrete valuation rings defined by
local rings of generic points of the special fibre of Z1 have normalizations (in a finite
field extension K1 of the field of fractions K of C) of whose local rings (in maximal
points) are conjugate by automorphisms (of K1), fixing a subfield K′ of K such that
[K : K′] < ∞. This is an immediate consequence of [BLR, lemma 4, p. 155], based on
standard arguments involving DVR’s.

iB) Using this we deduce that the normalization of any such DVR in the field
of fractions of a connected component C1 of M which is a pro-étale cover of C, is
a regular ring of dimension 1. This implies the existence of a morphism from the
spectrum of any such normalization into C1 (as M satisfies the valuative criterion of
properness with respect to discrete valuation rings of mixed characteristic). So there
is a rational map q1 from Z1 to C defined on points of codimension 1, and inducing
an isomorphism on generic fibres. From the mentioned extension type property of
M/H0 (cf. a)), which is also enjoyed by its connected component C, we deduce that
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q1 is in fact a morphism. Moreover the induced maps Z1(O) → C(O) → Z(O) are
bijections. This implies that q1 is a surjective morphism (as C is a smooth scheme and
as O = Osh).

The same arguments as above can be used to get that Z is smooth in codimension
1, provided Z is normal. This takes care of i) of b)

ii) We assume now that q is a proper morphism. We can assume that Z is
normal. We need to show that q is an isomorphism. We just need to show that q is an
isomorphism in codimension 1. If this is not so, then there is a connected component
Cp of the special fibre of C dominating a reduced closed subscheme Zp of the special
fibre of Z of dimension d < dim(Cp). So Zp is a closed subscheme of the non-smooth
locus of Z. Let C̃ be the open subscheme of C defined by Cp and the generic fibre of
C.

From [BLR, p. 72] we deduce that the morphism C̃ → Z lifts to a morphism
q̃p: C̃ → Z̃, where Z̃ is obtained from Z through the first blowing up needed to get Z1:
we always blow up a reduced connected component of the maximal reduced closed
subscheme SZ of the special fibre of Z having the property that it is included in the
non-smooth locus of Z and the points of it with values in the residue field of Osh

admiting lifts (in Z) to Osh are Zariski dense in it. As C̃ is smooth and its fibres
over Z are proper schemes (over residue fields of points of Z), we deduce that q̃p

dominates a closed subscheme Z̃p of the special fibre of Z̃ of the same dimension d:
the morphism C̃ → Z̃ factors through an open subscheme of Z̃ which is affine over Z,
cf. the properties of dilatations [BLR, p. 62]. So Z̃p is included in the non-smooth
locus of Z̃. We can apply induction to get that q1 has a section above C̃ such that Cp

dominates a closed subscheme of the special fibre of Z1 of dimension d. Contradiction.
We conclude that q is an isomorphism in codimension 1, and so an isomorphism. This
ends the proof of the proposition.

Expectations. Under the hypotheses of b) above we expect that the following
statements can be proved without assuming that M is a quasi-projective integral
model:

iii) If Spec(O) → Spec(O1) is a finite Galois cover, with O1 an O(v)-subalgebra
of O, then M is the extension to O of a smooth integral model M1 of ShH(G,X) over
O1. M1 inherits the properties of M we started with;

iv) The quotient of M/H0 through a finite free action exists as a scheme (not
only as an algebraic space).

We present the reasons for these expectations.
iii) To see iii) of part b) we can assume that both O and O1 are complete (for

instance cf. Raynaud’s result mentioned in [BLR, p. 166])). Let C := Gal(O/O1) =
Gal(k/k1), with k and k1 the residue field of O and respectively of O1. We view
C as a finite étale group scheme over O. Due to the fact that M has the SEP and
that its generic fibre is definable over the field of fractions of O1 (being definable over
E(G,X)) we deduce the existence of a natural action of C on M, compatible with the
action of G(Ap

f ) on M. It provides us with a Galois-descent datum (see [BLR, 6.2]).
We just have to show that it is effective. It is enough to work with M/H0 instead of
M.

iiiA) From [BLR, lemma 4, p. 155] and [Mu1, p. 112] we deduce the existence of
a quasi-projective smooth scheme U1 of finite type over O1 such that U1

O is an open
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subscheme of M/H0 containing the generic fibre and all the points of codimension 1.
Let Z be a faithfully flat projective scheme over O1 having U1 as an open subscheme.
We can assume that its generic fibre is smooth (cf. the resolution of singularities in
characteristic zero). We can assume that the generic fibre of U1 is dense in the generic
fibre of Z. We get a rational map from M/H0 to ZO defined on the generic fibre and
in points of codimension 1.

iiiB) Let y:Spec(k2) ↪→ M/H0 be an arbitrary maximal point of positive char-
acteristic. Here k2 is a finite field extension of k1. Let Spec(O2) be the étale cover of
Spec(O) having Spec(k2) as its special fibre. Let z:Spec(O2) ↪→ M/H0 be an arbi-
trary lift of y. Let Z1 be obtained from Z as above, using the smoothening process.
So Z1 is the smooth locus of a scheme Z ′1 obtained from Z through a sequence of
blowings up centered on special fibres. We get a natural bijection Z1(Osh) → Z(Osh).
As Z is a projective O-scheme, we can view z as an O2-valued point z2 of Z1. Let
y2:Spec(k′1) ↪→ Z1 be the maximal point of the special fibre of Z1 through which
the k2-valued point of Z1, defined by z2, factors. Let Spec(O′1) be the étale cover of
O1 having k′1 as its residue field. Let Spec(O′1) ↪→ Z1 be a lift of y2. Let Spec(O′)
be the Galois cover of Spec(O′1) generated by O. Let W1 be the closed subscheme
of Z1 which is the closure of the closed subscheme of its generic fibre defined by the
complement of the generic fibre of U1. Let Z2 be the open subscheme of Z1 defined
by the complement of W1. As in iB) we get a morphism q:Z2O → M/H0, which at
the level of generic fibres is an isomorphism.

iiiC) We can assume that z2 factors through Z2. To see this we have to use
blowings up centered on non-smooth loci. First we blow up y2 on Z1. We get similarly
a point y′2 on the resulting scheme Z ′2. Now we blow up y′2 on Z ′2. After a finite number
of operation we achieve the separation of the point z2 from W1. This is possible due
to the fact that in characteristic zero we do have such a separation: let Oy2 be the
local ring of y2 in Z2, and let n ∈ N be the valuation (with respect to the normalized
valuation of O2) of the image in O2 (through the epimorphism Oy2 ³ O2 defined by
z2) of an element of Oy2 defining W1 in Spec(Oy2); after at most n blowings up we
achieve the desired separation.

We got a C-equivariant morphism Spec(Oy2⊗O1 O) → M/H0. Its image contains
the C-orbit of y in M/H0. The same is true for any other maximal point of Z2 whose
inverse image to Z2O dominates the C-orbit of y. So this orbit should be contained in
an affine open scheme of M/H0. If O′1 = O1, this is obvious. The general case should
be handlabled by standard arguments on local rings: we just need to show that the
intersection of the local rings of the points of the C-orbit of y is a semi-local ring
whose localizations with respect to the maximal ideals are the local rings of the points
of the C-orbit of y; this should be provable using the fact that q is an isomorphism
above points of M/H0 of codimension 1, starting from [Ma, th. 38].

We assume now that we were able to get that the C-orbit of y is contained in an
affine open subscheme of M/H0. As y was an arbitrary maximal point of the special
fibre of M/H0, from [Mu1, p. 112] we deduce that the quotient of M/H0 through the
action of C exists as a scheme. This scheme is M1/H0. Taking its normalization in
the ring of fractions of the extension of ShH(G,X) to the field of fractions of O1, we
get the desired integral model M1 of ShH(G,X) over O1 (obviously M1O = M). The
last part of iii) involving the inheritance property is trivial.

iv) The above ideas of iii) can be entirely adapted for the case of quotients. The
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easy details are left as an exercise. We just need to replace the operation of extension
of scalars (from O1 to O) used above, by the operation of taking normalization (of
a reduced scheme whose ring of fractions is the subring of the ring of fractions F of
M/H0 fixed by the action) in F.

3.2.3.2.1. Remarks. 1) We call the part of i) of 3.2.3.2 b) involving Osh-valued
points as the maximality property.

2) We think it is possible to prove that M/H0 is a quasi-projective scheme over
O by just refining 3.2.3.2. In the case when (G,X) is of preabelian type and (v, 6) = 1
we prove this (cf. 3.2.4 and 6.4.1) using the extra fact that different schemes related
to M are moduli schemes of abelian varieties (subject to some conditions).

3) In [Va6] we will develop the general theory of integral canonical models of
smooth schemes of finite type over the field of fractions of a Dedekind domain (of
mixed characteristic), starting from 3.2.3.2 and rm. 1) of 6.4.6.

3′) The ideas and results of 3.2.3.2 can be used in a much larger context (not
involving Shimura varieties). For instance for a) we just used the fact that M/H0

has a pro-étale cover having some extension type property, while for expectation iii)
(resp. iv)) we used (besides the mentioned fact) the fact that the descent (resp. the
quotient) we are dealing with is known to be effective at the level of generic fibres.

4) Expectation iii) is not true in the larger context if the finite morphism
Spec(O) → Spec(O1), with O1 a DVR, is not an étale cover, as it can be easily seen
through examples using Néron models of abelian varieties.

3.2.3.3. Proposition. Let iO:O ↪→ O1 be a faithfully flat inclusion of discrete
valuation rings, with O1 having also e as its index of ramification. We have:

1) A scheme Y over O has the WEP or the SEP iff YO1 has it.
2) If moreover O is a henselian local ring and if iO is formally étale, then a

scheme Y over O has the EP (or QEP) iff YO1 has it.
3) If iO has index of ramification 1, then a scheme Y over O has the REP iff YO1

has the REP.

Proof. We just need to check that the class of schemes involved in the definition
of these extension properties is stable under pull backs through iO and that any O1-
scheme belonging to such given class, as an O-scheme also belongs to the given class.
This last part is trivial, while the first part is a direct consequence of def. 4) of 3.2.3
for 1), of 3.2.2.1 for 2), and of 3.2.2.4 b) for 3).

3.2.3.4. Remark. We do expect that the condition on O of being a henselian
DVR used in 3.2.3.3 2) is not needed. For this we need to prove that for any étale
morphism Spec(O1) → Spec(O), with O1 a DVR, a scheme Y over O is a healthy
regular scheme iff YO1 is so.

3.2.4. Remark. We assume that G is unramified over Qp and that H is a
hyperspecial subgroup of G(Qp). Then, if p > 2, any (local) integral canonical model
N of ShH(G,X) is uniquely determined up to a unique isomorphism (cf. 3.2.3.1 7); i.e
N has the SEP as it has the EP: this results from 3.2.2 1) and from [Mi3, 4.7] which
shows that v is unramified over p). If p = 2 then we know the unicity of an integral
canonical model of ShH(G,X) only when G is a torus (cf. 3.2.8).

3.2.5. Milne’s conjecture [Mi4]. If G is unramified over Qp and if H is a
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hyperspecial subgroup of G(Qp), then ShH(G,X) has an integral canonical model with
respect to v and H.

3.2.6. Notations and Definitions. By (G,X, H, v) we always denote a quadru-
ple where: (G,X) defines a Shimura variety, v is a prime of E(G,X) dividing a
rational prime p such that G is unramified over Qp, and H is a hyperspecial sub-
group of G(Qp). The maps from a quadruple (G,X, H, v) into another quadruple
(G1, X1,H1, v1) are defined by maps f : (G,X) → (G1, X1) taking H into H1 and
inducing an inclusion E(G,X) ⊃ E(G1, X1) with v dividing v1. We denote it by
f : (G,X, H, v) → (G1, X1,H1, v1). A map between quadruples is called injective, or
finite, or a cover if as a map f : (G,X) → (G1, X1) of Shimura pairs it is so. If
(G,X, H, v) is a quadruple then (Gad, Xad,Had, vad) (with Had as in the part b)
of 3.2.7 2) and with vad the prime of E(Gad, Xad) divided by v) is called its ad-
joint quadruple and (Gab, Xab,Hab, vab) (with Hab the only hyperspecial subgroup
of Gab(Qp) and with vab the prime of E(Gab, Xab) divided by v) is called its toric
part quadruple. We have maps from any quadruple into its adjoint and toric part
quadruple.

By (G,X, H) we always denote triples which can be completed to a quadruple
(G,X, H, v). The definitions of maps between quadruples extend to triples. We also
speak about the adjoint and toric part triple of a triple (G,X, H).

By an integral canonical model of a quadruple (G,X, H, v) we mean an integral
canonical model of ShH(G,X) over O(v). We denote it by Shv(G,X, H). It is clear
what we mean by Shv(G,X, H) having the EEP. Similarly, we speak about integral
smooth (or normal) models of a quadruple over O, or about a local integral canonical
model of a quadruple.

If all the quadruples (G,X, H, v) of a triple (G,X, H) have uniquely determined
integral canonical models, then we denote by Shp(G,X, H) the model of ShH(G,X)
over the normalization of Z(p) in E(G,X), obtained by gluing along their generic
fibres the integral canonical models of all quadruples (G,X, H, v) extending the triple
(G,X, H). We call it the integral canonical model of the triple (G,X, H). Similarly
we define a (smooth or normal) integral model over O of a triple. The rm. 2) of 3.2.7
shows that if Shp(G,X, H) exists, then for any other hyperspecial subgroups H1 of
G(Qp), Shp(G,X, H1) exists and as a scheme it is isomorphic to Shp(G,X, H). This
means that it is irrelevant with which hyperspecial subgroup H of G(Qp) we work and
so we sometimes write Shp(G,X) instead of Shp(G,X, H) and Shv(G,X) instead of
Shv(G,X, H). We say that Shp(G,X) exists if for a (any) hyperspecial subgroup H of
G(Qp), Shp(G,X, H) exists. We call Shp(G,X) the Z(p)-model or the Z(p)-canonical
model of our Shimura variety Sh(G,X). We say that Shp(G,X, H) has the EP (or
the EEP) if as a Z(p)-scheme it has it.

3.2.7. Remarks. 1) Milne’s conjecture can be reformulated: any quadruple has
an integral canonical model.

2) If a quadruple (G,X, H, v) has an integral canonical model M, then any other
quadruple of the form (G,X, H1, v) has also an integral canonical model, which is
isomorphic to M as an O(v)-scheme. This results from the following fact:

3.2.7.1. Under the canonical action of Aut(Sh(G,X)) on G (cf. 2.4.3) and so
on G(Qp), the hyperspecial subgroups of G(Qp) are permuted transitively.

So actually (G,X, H, v) ∼→ (G,X, H1, v). To see this we first remark that:
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a) Any two hyperspecial subgroups of G(Qp) are conjugate by an element of Gad(Qp)
[Ti, p. 47].

b) There is a hyperspecial subgroup Had of Gad(Qp) normalizing H (Had is the group
of Zp-valued points of the quotient Gder

Zp
/Z, where Gder

Zp
is the derived subgroup

of the reductive group GZp
over Zp having GQp

as its generic fibre and having H

as its group of Zp-valued points, and where Z is the center of Gder
Zp

).

c) Gad(Qp) = Gad(Q)Had [Mi3, 4.9].
d) If g ∈ Gad(Q) takes X onto X, then (G,X, H1, v) has an integral canonical model

if and only if (G,X, gH1g
−1, v) has an integral canonical model.

e) Gad(Z(p)) := Gad(Q) ∩ Had permutes transitively the connected components of
Xad (where (Gad, Xad) defines the adjoint variety of Sh(G,X)) (cf. 3.3.3).

f) If an element of Gad(R) leaves invariant a connected component of X, it leaves
invariant X.
So a), b) and c) imply that there is g ∈ Gad(Q) such that H1 = gHg−1. From

e) we get that we can replace g with gh, with h ∈ Gad(Z(p)), in such a way that gh

takes a (fixed) component X0 of X into itself. f) implies that gh ∈ Gad(Q) produces
by conjugation (of G) an isomorphism (G,X, H, v) ∼→ (G,X, H1, v).

The integral canonical model M of our Shimura variety Sh(G,X) with respect to
v and H, is often referred to as an integral canonical model of Sh(G,X), as the prime
v is determined by it and as it is irrelevant with which hyperspecial subgroup we work.
Similarly, we often speak about a local integral canonical model of a Shimura variety,
without mentioning the hyperspecial subgroup and the prime with respect to which
it is defined.

3) The category qf − Sh (tr − Sh) whose objects are quadruples (respectively
triples) and whose morphisms are finite maps between them has quasi fibre products
(as in 2.4.0). If fi: (Gi, Xi,Hi, vi) → (G0, X0,H0, v0), i = 1, 2, are finite maps such
that the intersection X1 ∩X2 is not empty (see 2.4.0), then a quasi fibre product of
f1 and f2 is described by maps pj

i : (G3, X
j
3 ,H3, v3) → (Gi, Xi,Hi, vi), i = 1, 2, where

(G3, X
j
3) is as in 2.4.0, H3 := (H1 ×H2) ∩G3(Qp), and v3 is uniquely determined as

E(G3, X
j
3) is the composite field of E(G1, X1) and E(G2, X2).

If f1 or f2 is a cover then the set I introduced in 2.4.0 has precisely one element
(cf. 2.4.0 and [Mi4, 4.11]); so we can speak about the fibre product of f1 and f2.

This allows us to define the standard quadruple situation of Shimura varieties
of preabelian type (abbreviated SQSPT). For a given quadruple (G,X, H, v) of pre-
abelian type, this is a commutative diagram

(G4, X4,H4, v4)
p4−−−−→ (G3, X3,H3, v3)

p1−−−−→ (G1, X1,H1, v1)yp2

yp3

yf1

(G2, X2,H2, v2)
f2−−−−→ (G,X, H, v)

f0−−−−→ (Gad, Xad,Had, vad)

such that:
a) all its maps are finite;
b) the two squares are quasi fibre products;
c) f2 is a cover with E(G,X) = E(G2, X2) (see 10) below);
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d) Gder
2 is either a simply connected semisimple group, or is isomorphic to Gder

1

(as we need); in both situations we have Gder
4 = Gder

2 ;
e) there is an injective map f : (G1, X1,H1, v1) ↪→ (GSp(W,ψ), S, Kp, p).
To show its existence once we assume the existence of f and f1 (cf. 6.4.2), we

just need to modify the map f1 in such a way that the intersection of X2 and X1

(inside Xad) is non-empty. As Gad(Z(p)) := Gad(Q) ∩Had permutes transitively the
connected components of Xad (cf. 3.3.3), by composing an arbitrary map f1 with an
automorphism (cf. 9) below) of (Gad, Xad,Had), we can always achieve a non-empty
intersection X1 ∩X2.

When Gder
1 = Gder

2 , all the quadruples of the above diagram are of abelian type,
and then we refer to it as the standard quadruple situation of Shimura varieties of
abelian type (abbreviated SQSAT).

4) Let ICM-Sh (ICM-tr-Sh) be the category whose objects are quadruples
(G,X, H, v) (resp. triples (G,X, H)) having an integral canonical model and satisfying
(v, 2) = 1 (resp. satisfying (p, 2) = 1, where p is the prime such that H ⊂ G(Qp)), and
whose morphisms are the maps between quadruples (resp. triples). Any such integral
canonical model is formally smooth over the localization of Z with respect to some
prime p > 2 and has the SEP (cf. 3.2.4). So we have a functor F from ICM-Sh (ICM-
tr-Sh) to the category of schemes: it associates to a quadruple (G,X, H, v) (resp. to
a triple (G,X, H)) its integral canonical model Shv(G,X, H) (resp. Shp(G,X, H),
with p as before), and to a map (G,X, H, v) → (G1, X1,H1, v1) (resp. (G,X, H) →
(G1, X1,H1)) the morphism

Shv(G,X, H) → Shv1(G1, X1,H1)

(resp. Shp(G,X, H) → Shp(G1, X1,H1)) whose generic fibre is the natural morphism
ShH(G,X) → ShH1(G1, X1).

4′) With the notations and definitions of 1) and 1′) of 3.2.3, we get the category
SIM(ShH(G,X), O) of smooth integral models of ShH(G,X) over O. If there is such
an integral model having the SEP, then as an object of this category, it is a final
object.

5) The definition of a healthy or of an almost healthy normal scheme appeals
to abelian schemes, while the definition of an abstract very healthy regular scheme is
intrinsic. We could have defined the notion of an integral canonical model of a Shimura
variety using the WEP (or SEP) instead of the EP. Defining it using the WEP instead
of EP or even instead of SEP would have been definitely more convenient (and then
we would have been speaking about integral canonical models having the EP). We
preferred to work out def. 6) of 3.2.3 using the EP due to the following reasons:

– it is closer to the spirit of Milne’s original (though inadequate, cf. footnote of
[Mi3, p. 513]) definition in [Mi4, ch. 2];

– the philosophy of 6) below;
– it makes sense and works also for p = 2: the WEP is enjoyed by any scheme

over Z(2), and we just hope that the SEP works for p = 2 (cf. 3.2.1.4 5) and 3.2.9);
– all integral canonical models of Shimura varieties (of preabelian type) whose

existence we are able to prove in this paper (or in [Va2-3] and [Va5]) have the EP (and
so they have the WEP and the SEP);

– the worries that 3.2.3 6) might not work for Shimura varieties which are not of
preabelian type are not so justified (cf. 8) below);
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– the greatest advantage of using the EP instead of the SEP (and even instead
of the WEP) consists in the fact that in this way we can get (the simplest way is by
extension of scalars; but there are other ways like dealing with cases of bad reduction
or like taking quotients of extended integral canonical models to be introduced in 3.5.1)
(very often uniquely determined) (smooth or normal) integral models, having the EP,
of some quotients of Shimura varieties (of preabelian type) over discrete valuation
rings which do not have the index of ramification 1 (or some e ∈ N, e < p − 1) (cf.
also rm. 3) of 3.2.3.2.1);

– it it easy to see, using Néron models and the fact that any DVR of mixed
characteristic defines a healthy scheme, that the EP is a stronger property than the
WEP or than the SEP (cf. also 3.2.3.1 1)).

6) In our philosophy (cf. [Va6]), the healthy regular schemes over Spec(Z) are
forming the largest class R of regular schemes over Spec(Z) which contains all the
smooth schemes over Spec(Z

[
1
2

]
) and it is such that for any extensible pair (Y, U),

with Y a regular scheme (belonging to R) over a Dedekind ring D faithfully flat over
a localization of Z, every morphism from U to a familiar smooth moduli scheme over
D (such as moduli of semistable curves, of semistable vector bundles of a projective
smooth curve, of polarized abelian schemes satisfying some extra conditions, etc.)
extends uniquely to a morphism from Y into that moduli scheme over D.

7) In 3.2.3 1) we could have defined an integral model M (of ShH(G,X)) without
requiring that M is faithfully flat over O. But we can not see any use of such integral
models M which are not faithfully flat: the closure M1 of ML in M is “the only part of
M influenced (controlled) by ML”. So it makes no sense to say that M is an integral
model of ML = ShH(G,X).

8) It is well known (cf. §4) that Shimura varieties of Hodge type are moduli
schemes of principally polarized abelian schemes of a given dimension, endowed with
a family of Hodge cycles and some level structures, and satisfying some additional
conditions. So it looks reasonable to define an integral canonical model of a Shimura
variety of preabelian type (cf. Definitions 3 of 2.5) in the way we did. As in this
paper we are dealing only with Shimura varieties of preabelian type, we would like to
indicate briefly why the def. 6) of 3.2.3 of an integral canonical model of a Shimura
variety should work also for Shimura varieties which are not of preabelian type. We
have four reasons for this:

a) We expect the possibility of interpreting a large class of quotients of Shimura
varieties of special type over the completion of their reflex field in a prime of
it, as moduli schemes of p-divisible groups endowed with tensors (a notion with
which we will be dealing extensively in [Va2]; here, for a glimpse of what we have
in mind see 5.6.5). 1) and 3) of 3.2.2, together with the expectations of 3.2.1.4 6),
of 3.2.3.4 and of 3.2.1.2, do motivate why we dared to work with the EP instead
of the WEP (for a scheme which is a moduli of p-divisible groups).

b) There are generalized Shimura filtered σ-crystals of special type (cf. [Va2] for the
meaning of this). Here we just give an idea: for instance, there are quadruples
(M, F 1, ϕ, (uα)α∈J, GW (k)) as in 5.6.5 satisfying d), f) and g) of 5.6.5, and such
that Gad

W (k) is a simple adjoint group of E7-type, etc. The local deformation
theory of 5.4 remains true for Shimura filtered σ-crystals (cf. [Va2]).

c) The philosophy of 6) above.
d) The philosophy of [Mi1, paragraph 9, p. 343-345].
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Moreover once we know the existence of local integral canonical models of Shimura
varieties of special type, we should be able to get, using the above four reasons (and
6.4.1), the existence of integral canonical models of Shimura varieties of special type.

9) The group Aut((G,X, H)) of automorphisms of a triple (G,X, H) (or of a
quadruple (G,X, H, v)) is the subgroup of Aut(GZ(p))(Z(p)) (of finite index) leaving
X invariant (cf. 3.1.3.2) (here GZ(p) is a reductive group over Z(p) having G as its
generic fibre, and such that GZ(p)(Zp) = H; cf. 3.1.3). If Sh(G,X) is of adjoint type,
then we have Aut((G,X, H)) = Aut(GZ(p))(Z(p)).

10) For any quadruple (G,X, H, v) and for any isogeny (of connected groups)
G1 → Gder, there is a cover (G0, X0,H0, v0) → (G,X, H, v) with Gder

0 = G1 (and if
needed also with E(G0, X0) = E(G,X)). This is a direct consequence of the proof of
[MS, 3.4] (i.e. we can take G0 unramified over Qp, if G is unramified over Qp).

11) For any quadruple (G,X, H, v) there are finite maps f : (G1, X1,H1, v1) →
(G,X, H, v) and f1: (G1, X1,H1, v1) → (G2, X2,H2, v2) such that:

– (G2, X2,H2, v2) is a product of quadruples (Gi, Xi,Hi, vi), i running through
the elements of a finite set, with Gad

i a simple adjoint Q–group;
– they define a quasi fibre product of the natural maps f0: (G , X, H, v) →

(Gad, Xad, Had, vad) and f2 : (G2, X2, H2, v2) → (Gad
2 , Xad

2 , Had
2 , vad

2 ) =
(Gad, Xad, Had, vad);

– there are injective maps (Gi, Xi,Hi, vi) ↪→ (G,X, H, v), i ∈ I, producing an
isogeny

∏
i∈I Gder

i → Gder.

This results from 2.12 1) using an argument similar to the one used in 3.1.4.
12) The advantage of working with triples instead of quadruples consists in the

fact that if (G,X, H) → (G1, X1,H1) is a finite map between two triples having inte-
gral canonical models, with H ⊂ G(Qp) for a prime p > 2, then the natural morphism
(cf. 4) above) Shp(G,X, H) → Shp(G1, X1,H1) is (at least in the majority of cases)
the composite of a pro-étale cover with an open closed embedding (cf. 6.4.5). But
the natural morphism Shv(G,X, H) → Shv1(G1, X1,H1), with v a prime of E(G,X)
dividing p and the prime v1 of E(G1, X1), is not if there are other primes (besides
v) of E(G,X) dividing v1. This together with C) of 3.2.2 4) makes the triples more
suitable for passing the EP enjoyed by an integral canonical model of a triple to a
smooth integral model of another triple having the same adjoint triple (for instance
cf. 6.2.3).

3.2.8. Example. We consider a Shimura pair (T, {h}) with T a torus. Let p
be a rational prime. Then T is unramified over Qp iff T splits over an unramified
cover of Qp. If this is so then T (Qp) has a unique hyperspecial subgroup HT . For any
compact open subgroup Hp

T of T (Ap
f ), ShHT×Hp

T
(T, {h}) is the scheme associated to a

finite product of finite field extensions of E(T, {h}), which are unramified over p (this
results from the reciprocity map 2.6 and from the fact that T (Q)HT = T (Qp) [Mi4,
4.11]). So, for every prime vT of E(T, {h}) dividing p, (T, {h},HT , vT ) has an integral
canonical model, obtained by taking the normalization of O(vT ) in ShHT

(T, {h}). This
integral canonical model is uniquely determined even for p = 2.

3.2.9. Example. We consider a Siegel modular variety Sh(GSp(W,ψ), S). Let
g ∈ N be defined by dimQ(W ) = 2g. Then any quadruple of it (GSp(W,ψ), S, Kp, p)
has an integral canonical model M over Z(p): as a scheme it parameterizes isomorphism
classes of principally polarized abelian schemes of dimension g (over Z(p)-schemes)
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having (compatibly) level-N symplectic similitude structure for any N ∈ N relatively
prime to p; we have a natural continuous action of GSp(W,ψ)(Ap

f ) on this scheme.
This can be seen as follows: [De1, 4.21] takes care of the generic fibre of M. The

results of [Mu] implies the existence and the smoothness of the integral model M. The
fact that it has the EP is explained in [Mi4, p. 170-1].

The definition of an integral canonical model of a quadruple (G,X, H, v) was
inspired by the desire that this example works.

3.2.10. Definition. We call an injective map (T, {h},HT , vT ) ↪→ (G,X, H, v)
with T a maximal torus of G, a special quadruple of (G,X, H, v).

3.2.11. Lemma. Every quadruple has special quadruples.

Proof. This results easily from an argument similar to the one in 3.1.4. Let GZ(p)

be a reductive group having G as its generic fibre. For any maximal torus T1Zp
↪→ GZp

,
there is a special quadruple (T, {h},HT , vT ) of (G,X, H, v) such that TZp

is GZp
(Zp)-

conjugate to T1Zp
.

Similarly, we can impose different conditions on the G(Ql)-conjugacy class of TQl
,

for l belonging to a finite set of rational primes (cf. the argument in 3.1.4). We express
this property by: every quadruple has plenty of special quadruples.

3.2.12. The relation between different types of models. Let (G,X, H, v)
be an arbitrary quadruple. It can have more than one smooth integral model over
O(v) (or Ô(v)). Starting with such a smooth integral model, we can cook from it new
smooth integral models of it by using blowings up (dilatations) and by removing a
G(Ap

f )-invariant closed subscheme of its special fibre, which is not the whole special
fibre. If dim(X)≥ 1 it should be always possible to construct a smooth integral model
of our quadruple whose special fibre does have a G(Ap

f )-invariant closed subscheme,
strictly included in the special fibre of it (cf. [Va2], where this is proved for the case
when (G,X) is of preabelian type with v not dividing 2).

Fact. We assume that (G,X, H, v) has an integral canonical model M and that
v does not divide 2. If e < p − 1 then any normal integral model M1 of it over O
having the SEP is isomorphic to MO.

Proof. Let H0 be a compact open subgroup of G(Ap
f ) such that for any inclusion

H2 ⊂ H1 of open subgroups of H0, the morphisms M/H2 → M/H1 and M1/H2 →
M1/H1 are étale covers. We have a natural G(Ap

f )-equivariant morphism MO → M1,
as M1 has the SEP. It is enough to show that the induced morphism q:MO/H0 →
M1/H0 is an isomorphism. Due to the EP of M, q satisfies the valuative criterion of
properness with respect to discrete valuation rings of mixed characteristic. From this
and Nagata’s embedding theorem ([Na], [Vo]) we deduce that q is proper. As e < p−1
ii) of 3.2.3.2 b) applies: we do not need to assume that M1/H0 is a separated scheme.
In the referred place we needed this just to get that q0 is an isomorphism above points
of M1/H0 of codimension 1, but for our q this is obvious. We get: q is an isomorphism.
This ends the proof of the fact.

3.2.12.1. Remark. If e≥ p − 1 and dim(X) > 0 we do not know if (or when)
MO has the SEP.
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3.2.13. Fact. Let (G,X) be an arbitrary Shimura pair and let v be an arbitrary
prime of E(G,X) dividing p. Any integral model M1 of ShH̃(G,X) over W (k(v))
(with H̃ a compact open subgroup of G(Qp)) which as a scheme is normal and has
a quotient M1/H̃0 (with H̃0 a compact open subgroup of G(Ap

f )) of finite type over
W (k(v)), descends to an integral model over an étale DVR extension O(v′) of O(v).

Proof. 3.1.3.1 allows us to descend M/H0 to a scheme Msh/H0 of finite type over
Osh

(v). So Msh/H0 descends to a scheme Mv′/H0 over an étale DVR extension O(v′)

of O(v). Now the normalization of Mv′/H0 in the ring of fractions of the extension of
ShH̃(G,X) to the field of fractions L′ of O(v′) (there is a natural G(Ap

f )-continuous
action on this normalization) is an integral model of ShH̃(G,X) over O(v′). Obviously
its extension to W (k(v)) is M1. This ends the proof of the fact.

3.2.13.1. There are variants of descent when we work with an arbitrary DVR O
faithfully flat over O(v), instead of O(v). The expectation of 3.2.3.2 iii), if true, implies
that in many cases we can assume that k(v′) = k(v). But we do not know (cf. 3.1.3.1)
when we can take O(v′) = O(v). This motivates why we also introduced the notion of
local integral canonical models: if a quadruple (G,X, H, v) has an integral canonical
model then it has a local integral model, but we do not know (even if (v, 2) = 1) if
the converse is true.

3.2.14. Remark. Let f : Sh(G,X) ↪→ Sh(G1, X1) be an injective map and let
p be a rational prime such that G and G1 are unramified over Qp. We assume the
existence of a hyperspecial subgroup H of G(Qp) included in a hyperspecial subgroup
H1 of G1(Qp). Then for any compact open subgroup Hp of G(Ap

f ), the natural
morphism

ShHp×H(G,X) → ShHp×H1(G1, X1)×E(G1,X1) E(G,X)

is a closed embedding.
The proof of this is entirely similar to the proof of [De1, 1.15] (being just the

Z(p)-version of it), starting from 3.3.1. In particular ShH(G,X) is a closed subscheme
of ShH1(G1, X1)×E(G1,X1) E(G,X).

3.2.15. Remark. Let f : (G,X, H, v) ↪→ (G1, X1,H1, v1) be an injective map
between two quadruples having integral canonical models M and respectively M1.
We assume that v does not divide 2. Then M is the normalization of the closure of
ShH(G,X) in M1O(v) (due to 3.2.14 this makes sense).

This results by putting together 3.2.12 and 3.4.1. If we also have Gder = Gder
1 ,

then M is an open closed subscheme of M1 and for every compact open subgroup H0 of
G(Ap

f ), M/H0 is an open closed subscheme of M1/H0 (we have E(G,X) = E(G1, X1),
cf. [De1, 3.8], and so O(v) = O(v1)). In this case we do not need to refer to 3.2.12 or
3.4.1: 3.2.14 is sufficient.

3.2.16. Remark. Let (G,X) = (G1 × G2, X1 × X2) define a Shimura variety
which is a product of two Shimura varieties defined by (Gi, Xi), i = 1, 2. Let p be
a prime such that G is unramified over Qp and let H = H1 × H2 (cf. 3.1.5) be a
hyperspecial subgroup of G(Qp). Here Hi ⊂ Gi(Qp), i = 1, 2. Let v be a prime of
E(G,X) dividing p and let vi be the prime of E(Gi, Xi) divided by v. If (Gi, Xi,Hi, vi)
has an integral canonical model Mi, i = 1, 2, then (G,X, H, v) has an integral canonical
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model M defined by the product over O(v) of the extensions to O(v) of the two integral
canonical models M1 and M2.

3.2.17. The proof of 3.2.2 1) and 3). Let D be a Dedekind ring flat over
Z

[
1
2

]
. Let (Y, U) be an extensible pair, with Y a very healthy regular scheme over

D. Let AU be an abelian scheme over U . We have to prove that AU extends to an
abelian scheme over Y . For this we can assume that D is a DVR faithfully flat over
Z(p) (for some prime p≥ 3), that Y = Spec(R) is a local regular scheme of dimension
d + 1 (with d ∈ N), that U = Spec(R) \ Spec(R/I) with I an ideal of R of height at
least 2, and that the residue field of R is an algebraic extension of the residue field of
D.

Step A. It is enough to show that BU := (AU × At
U )4 extends to an abelian

scheme over Y (we can apply [FC, 2.7] to the projectors of BU on its factors). AU is
a projective scheme over U (cf. [FC, 1.10 a)]) and so it is polarizable. The Zarhin’s
trick [Za] implies that BU has a principal polarization pU . Let N ≥ 4 be an integer
relatively prime to p. Let U0 := BU [N ]. It is an étale cover of U . Let Y1 be the
normalization of Y in the ring of fractions of U1. From the classical purity theorem
we get that Y1 is an étale cover of Y . Using descent (based on [FC, 2.7]), it is
enough to show that BU1 := BU ×U U1 extends to an abelian scheme over Y1. So we
can assume that U1 = U ; so the principally polarized abelian scheme (BU , pU ) has
a level-N structure. Let Ad(BU ),1,N be the moduli scheme over Z(p) parameterizing
principally polarized abelian schemes (over Z(p)-schemes) (of dimension d(BU ) equal
to the relative dimension of BU ) endowed with a level-N structure. We get a morphism
qU :U → Ad(BU ),1,N corresponding to (BU , pU ) and its level-N structure. We need to
show that qU extends to a morphism qY :Y → Ad(BU ),1,N . Let Dw have the same
meaning as in 3.2.1 8).

We can replace R by R1 := R⊗DDw and then we can replace R1 by the completion
R0 of a localization of R1 in a point of it having k(w) as its residue field. This admits
an argument at the level of extensions of morphisms: to show that qU extends, it
is enough to show that for any R0 as above, the morphism qU0 :U0 → Ad(BU ),1,N ,
with Y0 := Spec(R0) and U0 := Y0 \ Spec(R0/IR0), extends to a morphism qY0 :Y0 →
Ad(BU ),1,N . From the very definition of a very healthy regular scheme, we get that
R0 = V [[x1, ..., xd]], with V a finite flat DVR extension of W (k(w)) of degree e < p−1.
We get an abelian scheme BU0 over U0.

In the case of an abstract very healthy regular scheme, the same argument at the
level of extensions of morphisms, allows us to reduce the proof of 3.2.2 3) involving
healthy schemes to the case of an abelian scheme BU0 over a scheme U0 as above.

Now we forget how BU0 has been obtained, and we just make use of the fact that
it is an abelian scheme over U0. From now on we follow [Fa4]. Let K := V

[
1
p

]
.

Step B. We assume first that d = 1. Let n,m ∈ N. Then BU0 [p
n] extends to

a finite flat group scheme Gn = Spec(On) (with On the ring of global sections of the
ring sheaf of the ringed space BU0 [p

n]) over Y0 (cf. 3.2.1.1 9)).
The natural homomorphisms Gn → Gn+m are closed immersions. To see this let

GnK be the generic fibre of the restriction GnV of Gn to R0/x1R0 = V . GnK extends
uniquely to a finite flat group scheme GnV over V , and so GnV is the closure of GnK

in Gn+mV , cf. [Ra, 3.3.6]; hence the corresponding ring homomorphisms On+m → On
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become surjective by tensoring with V , and thereby, cf. Nakayama’s lemma, they are
epimorphisms.

Due to the uniqueness of an extension of a flat finite group scheme over U0 (to a
flat finite group scheme over Y0) (cf. 3.2.1.1 9)) we get that Gn+m/Gn

∼→Gm. So the
p-divisible group of BU0 extends to a p-divisible group GY0 over Y0.

But then BU0 itself extends to an abelian scheme over Y0. To see this we first
remark that the abelian variety BK (obtained from BU0 by pull back through the
K-valued point of U0 defined by taking x1 = 0 and inverting p) extends to an abelian
scheme BV over V (as the p-divisible group of BK extends to a p-divisible group over
V , or cf. the Néron-Ogg-Shafarevich criterion: BU0 has level-N0 structure for any
N0 ∈ N relatively prime to p, due to the classical purity theorem and the fact that R0

is a strictly henselian local ring). We consider now liftings of BV to abelian schemes
over R0/xn

1R0 (such liftings do exist). These liftings are in 1-1 correspondence with
liftings of the p-divisible group of BV . Thus there is a unique lift BY0 of BV having
GY0 as its p-divisible group. Obviously BY0 ×Y0 U0 = BU0 .

Step C. We now treat the general case by induction on d ∈ N. Let now d≥ 2.
First we apply the inductive assumption to Ry := R0

[
1
y

]
(with y an arbitrary regular

parameter of R0): Ry is a regular scheme of dimension d (the local rings of the maximal
points of Ry are very healthy regular schemes over different DVR’s, so the inductive
assumption can be applied). So we can assume that U0 = Spec(R0) \ Spec(R0/m0)
with m0 the maximal ideal of R0.

Step D. Then BU0×Ux (with x=x1 and with Ux =Spec(R0/xR0)\Spec(R0/m0))
extends to an abelian scheme B1 over Spec(R0/xR0). Let TB1 (resp. TBt

1
) be the

tangent space of B1 (resp. of Bt
1). Both are free module over Rx := R0/xR0 of

dimension d(BU ). The liftings of an abelian scheme over R0/xnR0 which is a lift of
B1, to an abelian scheme over R0/xn+1R0, are parameterized by sections of a principal
homogeneous space of TB1 ⊗TBt

1
. But this free Rx-module has the same sections over

Spec(Rx) as over Ux. So there is a unique way of lifting (compatibly) B1 to an abelian
scheme BY0 over Y0 which over U0 is BU0 . This completes the induction, and ends the
proof of the part of 3.2.2 1) and 3) involving healthy regular schemes.

The above Seps B to D can be easily adapted to get the part of 3.2.2 3) pertaining
to p-healthy regular schemes. This ends the proof of 3.2.2 1) and 3).

3.3. The complex points of an integral canonical model. Let p be a
rational prime and let (G,X, H) be an arbitrary triple, with H a hyperspecial subgroup
of G(Qp).

3.3.1. We have ShH(G,X)(C) = G(Z(p))\(X ×G(Ap
f ))/Z(G)p where G(Z(p)) :=

G(Q) ∩H and Z(G)p is the closure of Z(G)(Q) ∩H in G(Ap
f ) [Mi4, 4.11].

3.3.2. Lemma. G(Ap
f ) permutes transitively the connected components of

ShH(G,X)C.

Proof. If Gder is simply connected, this results from 3.3.1 and from [De1, 2.5] (by
passage to limit). For an arbitrary G, we have to use the well known trick [MS, 3.4]
(cf. 3.2.7 9)) for reducing the problem to the case when Gder is simply connected (as
described in [Mi4, 4.19]).
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3.3.3. Corollary. G(Z(p)) permutes transitively the connected components of
X.

3.4. Methods of constructing integral models. Let Sh(G,X) be an arbi-
trary Shimura variety. In essence there are four methods of constructing good integral
models of quotients of Sh(G,X):
1) By proving first that a suitable quotient of Sh(G,X) is the moduli scheme para-

metrizing some objects which make sense over O(v)-schemes (with v a prime of
E(G,X)), and that in fact we have a moduli scheme over O(v). Such a moduli
scheme over O(v), in a suitable context, is (expected to be) an integral canonical
model of Sh(G,X) (cf. 3.2.8-9).

2) By taking the normalization of the closure of a quotient of Sh(G,X) into a good
integral model of a quotient of another Shimura variety Sh(G1, X1) (here we need
an injective map (G,X) ↪→ (G1, X1)) (cf. what follows below).

3) By taking the normalization of a good integral model of a quotient of Sh(G,X)
into the ring of fractions of a quotient of another Shimura variety Sh(G1, X1)
(here we need a finite map (G1, X1) → (G,X)) (cf. 6.1.2).

4) By taking the quotient through a (torsion) group action on a connected compo-
nent of a good integral model of a quotient of Sh(G,X) (here the group action is
related to a finite map (G,X) → (G1, X1)) (cf. 6.2.2).
These methods are supported by well known ideas pertaining to Shimura varieties

(like 3.2.14 and 3.2.7 9)). Variants for 1) are obtained by working over a DVR faithfully
flat over O(v) (instead of O(v)). The method 2) is used for constructing integral
canonical models of a Shimura variety Sh(G,X) of abelian type for which there is
a Shimura variety Sh(G1, X1) of Hodge type with Gder = Gder

1 and (Gad, Xad) =
(Gad

1 , Xad
1 ) (cf. 3.2.15, 5.1 and 6.2.3). The method 4) is used for passing from the

existence of integral canonical models of these Shimura varieties to the existence of
integral canonical models of all Shimura varieties of abelian type (cf. [Mi4, 4.11 and
4.13]; see also 3.4.5 and 6.2.2). The method 3) is used for the passage from the abelian
type case to the preabelian type case (cf. 6.1).

We start with an injective map f : (G,X, H, v) ↪→ (G1, X1,H1, v1). We assume
that (G1, X1,H1, v1) has a normal integral model M1 over O(v). Let M be the nor-
malization of the closure of Sh(G,X)/H in M1 (cf. 3.2.14). It has an obvious G(Ap

f )-
continuous action (p being the rational prime divided by v). Let E := E(G,X).

3.4.1. Proposition. M is a normal integral model of (G,X, H, v). It has the
EP (or EEP, or WEP, or SEP) if M1 has it.

Proof. Obviously M has the EP (or EEP, etc.) if M1 has it. Let H0 be a compact
open subgroup of G(Ap

f ) such that:

i) the subgroup H0 ×H of G(Af ) is smooth for (G,X);
ii) there is a compact open subgroup K0 of G1(Ap

f ) including H0, and such that for
any compact open subgroup K1 of K0, M1/K1 is a normal scheme of finite type
over O(v) and étale over M1/K0.
The existence of such a subgroup H0 is implied by the fact that M1 is a normal

integral model and by 2.11.
Let H1 ⊂ H2 be two open subgroups of H0. Let Pi be the normalization of

the closure of the generic fibre of M/Hi in M1/Hi, for i = 1, 2 ( ME/Hi is a closed
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subscheme of M1E/Hi, cf. 3.2.14). We get the following diagram:

M M −−−−→ M1y
y

y
M/H1

g1−−−−→ P1 −−−−→ M1/H1y
y

y
M/H2

g2−−−−→ P2 −−−−→ M1/H2.

The conditions i) and ii) and the fact that M is Hi-invariant imply that the two
right squares are Cartesian. So M is a pro-étale cover of P1 and P2. The generic fibre
of M/Hi is a scheme of finite type over E. M1/Hi is a projective limit of schemes of
the form M1/T with T an open subgroup of K0 including Hi. So there is an open
subgroup Ki of K0, with Hi ⊂ Ki, such that the morphism ME/Hi → M1E/Ki is
a closed immersion. As the morphism M/Hi → M1/Ki is integral, we deduce that
Pi is integral over the closure Si of PiE in M1E/Ki, and has the same generic fibre
as Si. As Si is an excellent scheme (it is of finite type over O(v)), we get that Pi is
finite over Si, and so of finite type over O(v). P1 and P2 are faithfully flat over O(v).
g1 and g2 are integral morphisms between flat schemes over O(v) having the same
generic fibre. The normality of P1 and P2 implies that g1 and g2 are isomorphisms;
so M/H1 → M/H2 is an étale morphism between schemes of finite type over O(v) (as
the morphism P1 → P2 is so). We conclude that M is a normal integral model. This
ends the proof of the proposition.

3.4.1.1. Remark. The above proposition as well as 3.4.2-3 below remain true
if H and H1 are just compact open subgroups of G(Qp) and respectively of G1(Qp)
satisfying f(H) ⊂ H1, or if O(v) is replaced by an arbitrary DVR O faithfully flat over
O(v).

3.4.2. Remark. The above proof shows that M is a pro-étale cover of a normal
scheme P of finite type over O(v). As O(v) is a universally catenary ring, all the
maximal points of M have dimension d + 1, where d = dim X (as the dimension
formula holds between O(v) and any connected component of P [Ma, p. 85]).

3.4.3. Remark. For any compact open subgroup H0 of G(Ap
f ) small enough,

M/H0 is the normalization of a closed subscheme of M1/H0. If M is a subscheme of
M1, then we do not need to take any normalization.

3.4.4. Corollary. We assume that M1 has the EP. Then M is an integral
canonical model iff M (as a scheme) is formally smooth over O(v).

3.4.5. Expectation. Let M be a smooth integral model of a quadruple
(G,X, H, v) over a DVR O. Let p be the rational prime divided by v. Let H0 be a
subgroup of G(Ap

f ) such that the subgroup H0 × H of G(Af ) is smooth for (G,X).
We do expect that under some mild conditions (like the index of ramification e of O
satisfying: e < p− 1) M is a pro-étale cover of M/H0.

This expectation is based on two facts. First we can prove it (under the restriction
e < p−1) for the case of a quadruple of preabelian type (for p≥ 5 cf. 6.4.2.1; for p = 3
cf. [Va2]). Second we have the following considerations.
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Let H̃0 be an open subgroup of H0 such that M is a pro-étale cover of M/H̃0

(cf. the definition of a smooth integral model). We can assume that H̃0 is a normal
subgroup of H0. Let C0 := H0/H̃0. It is a finite group. Then M/H0 is the quotient of
M/H̃0 by C0 (cf. the definition of a continuous action). The action of C0 on the generic
fibre of M/H̃0 is free (as Sh(G,X)/H × H̃0 is an étale cover of Sh(G,X)/H × H0).
But then it is expected (cf. 3.4.5.1 below) that the action of C0 on M/H̃0 is free. If
this is so then M/H̃0 is an étale cover of M/H0 (so M is a pro-étale cover of M/H0).

3.4.5.1. Proposition. Let p be a rational prime. Let V be a complete DVR
which is a faithfully flat Z(p)-algebra, and has an index of ramification e < p− 1. Let
C be a finite (abstract) group acting on a regular formally smooth V -algebra R in such
a way that it acts freely on R

[
1
p

]
. Let V1 be the DVR obtained by adjoining to V a

primitive p-th root of unity. We assume that either the order of C is relatively prime
to p, or it is p and the subring RC of R formed by elements fixed by C is such that
the affine scheme Spec(RC ⊗V V1) is locally factorial. Then C acts freely on R.

Proof. We assume that we do have a situation with a non-free action. We can
assume that C is a finite cyclic group of prime order l. Let πV be a uniformizer of V
and let kV be its residue field. We can also assume that R is a local ring.

If l is different from p this is well known. We can assume further on that V is a
complete DVR of index of ramification e < p − 1, that kV is an algebraically closed
field, and that R = V [[x1, ...xd]] is the ring of formal power series in d variables with
coefficients in V . We can write R = ⊕γ∈ bCRγ , with Ĉ the dual group of C (i.e. the

group of characters of C), and with C acting on Rγ through the character γ ∈ Ĉ. Now
it is trivial to see that if for a non-trivial character γ of C, Rγ is different from zero,
then the action of C on R

[
1
p

]
is not free (i.e. there is an element y of the maximal ideal

mR of R, whose image in mR/m2
R is not zero and is different from the image of πV in

mR/m2
R, and which belongs to an Rγ , for a non-trivial character γ; this disturbs the

free action of C on R
[
1
p

]
). Contradiction. For this part we do not need that e < p− 1.

Let now l = p. We abbreviate the notion of unique factorization domain by UFD.
From the theory of tamely totally ramified extensions of W (kV ), and from the fact
that e is smaller than p − 1, we deduce that the index of ramification of V1 is e1, a
multiple of p− 1 relatively prime to p. In fact e1 = l.c.m.(p− 1, e).

Let us first recall the well known fact:

3.4.5.2. Let M be a torsion free V -module separated with respect to the πV -
topology, and let 1M be its identity automorphism. Then any V -automorphism aM of
M such that ap

M = 1M and aM modulo πV is the identity, is the identity automor-
phism.

Proof. Writing aM = 1M + πV bM with bM ∈ End(M), by induction on n ∈ N,
we can check that bM is of the form πn−1

V cM with cM ∈ End(M). As M is separated
with respect to the πV -topology, we deduce that End(M) is separated with respect to
this topology. So bM = 0. This is the only place where we need that e < p−1 (3.4.5.2
is not true if e≥ p− 1). This proves 3.4.5.2.

So the case l = p results once we show that the action of C on R/πV R is trivial.
As V is complete we deduce that the completion of R is of the form V ′[[x1, ..., xd]],
with V ′ a finite étale DVR extension of V . V ′ is a subring of R (R is normal). C acts
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on it trivially (we assumed that the action is non-free). So V ′ ⊂ RC . This allows us to
replace V by V ′ and V1 by V ′

1 , where Spec(V ′
1) is a connected open-closed subscheme

of Spec(V1 ⊗V V ′). Not to complicate the notations, we assume that V = V ′. So
R1 := R⊗V V1 is an integral domain.

Let π1 be a uniformizer of V1. Let O1 be the local ring of the generic point of
the special fibre of Spec(R1). C acts on it. Let RC

1 and O2 := OC be the subrings of
R1 and respectively of O1 formed by elements fixed by C. We have RC

1 = RC ⊗V V1.
π1R1 and π1R

C
1 are prime ideals of R1 and respectively of RC

1 .
Oi, i = 1, 2, are discrete valuation rings having the same index of ramification

equal to e1 (both being V1-algebras). Let Ki be the field of fractions of Oi, i = 1, 2.
As V1 contains the p-th roots of unity, and as the action of C on R is non-trivial,

there is y ∈ K1 such that C acts on it through a non-trivial character γ of C. So
yp ∈ K2, but y /∈ K2. By reasons of dimension, we deduce that K1 is a Kummer
extension of K2. We get the situation:

(3.4.5.3) K1 is a Galois extension of K2 of degree p, obtained by adjoininig a
p-th root of an element of K2.

In all that follows y denotes an element of K1 \ K2 such that yp ∈ K2. We
repeatedly replace it by y1 = yyC , with yC ∈ K2.

If the action of C on the residue field of O1 is non-trivial (i.e. if the action of C
on R/πV R is non-trivial), then we deduce easily that the residue field k1 of O1 is a
Galois extension of the residue field k2 of O2 (k2 ⊂ kC

1 , where kC
1 is the subfield of k1

formed by elements fixed by C; but k1 is a Galois extension of kC
1 of degree p, and so

by reasons of dimension we must have kC
1 = k2). We deduce that Spec(O1) is a Galois

cover of Spec(O2).
The morphism Spec(R1) → Spec(RC

1 ) is étale above points of Spec(RC
1 ) of char-

acteristic zero or of codimension 1. So Spec(RC
1 ) is regular in all these points (and so

is regular in codimension at most 1).

Step a). From the fact that RC
1 is a local UFD, we deduce that the Picard group

of Spec(RC
1 ) is trivial and isomorphic to its divisor class group. This implies that we

can assume that y is an invertible element of R1. In other words we can replace y by
y1 := yyC , with yC ∈ K2 such that, in any point of Spec(R1) of codimension 1, y1 is
an invertible element; so y1 is an invertible element of RC

1 (this can be deduced from
[M, th. 38], as RC

1 is a normal ring). In detail: For any prime p of RC
1 of codimension

1, as the ring extension RC
1 → R1 is étale above it, we deduce the existence of an

element yp ∈ K2 such that ypyp
p is an invertible element of the localization of RC

1 with
respect to the prime p. The elements yp, with p running through all the primes of RC

1

of codimension 1 are defining a Weil divisor. As this Weil divisor is linearly equivalent
to the zero divisor, we deduce the existence of an element yC ∈ K2 producing this
Weil divisor. We can take now y1 = yyC .

As a conclusion: the extension K1 of K2 is obtained by adjoining a p-th root (still
denoted by y) of an invertible element of RC

1 .

We can assume that kV is separably closed and that R1 is a complete local ring.
So the first fundamental group of Spec(R1) is trivial. Moreover RC

1 is a complete local
ring (as R1 is so, and as the inclusion RC

1 ↪→ R1 is finite). We deduce that the first
fundamental group π1(RC

1 ) of Spec(RC
1 ) is trivial (π1(RC

1 ) is a subgroup of C; but it
is not C as the inclusion RC

1 ↪→ R1 of complete local rings having the same residue
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field, is not étale).
We assume now that e divides p− 1. So e1 = p− 1.

Step b). If the image of y in k1 is not in k2, then we deduce by reasons of
dimension that k1 is obtained from k2 by adjoining a p-th root of an element of k2.
We get a contradiction with the fact that k1 is a Galois extension of k2. So the image
of y in k1 is in k2. Replacing y with y1 = yyC , with yC ∈ RC

1 , we can assume that
y is congruent to 1 modulo the ideal of RC

1 generated by π1. We can assume that
πp−1

1 = p.

Step c). Let now y = 1+π1y0, with y0 ∈ R1. So yp is congruent to 1+pπ1(y0 +
yp
0) modulo πp+1

1 RC
1 (or modulo πp+1

1 R1 as πp+1
1 R1 ∩ RC

1 = πp+1
1 RC

1 ). Let z0 ∈ RC
1

which modulo π1R
C
1 is y0 +yp

0 . The equation xp +x = z0 defines an étale RC
1 -algebra.

As π1(RC
1 ) = 0, we deduce that there is yC ∈ RC

1 such that yC is congruent to y0

modulo π1R1. Replacing y with y1 = y(1− π1y
C), we can assume that y is congruent

to 1 modulo π2
1R1 (we have p > 2 as e < p− 1).

Step d). Now by trivial induction on n ∈ N, we can assume that y is congruent
to 1 modulo πn+1

1 R1 (if y = 1 + πn
1 y0, with n ∈ N greater than 1, and with y0 ∈ R1,

then yp is congruent to 1 + πn+p−1
1 y0 modulo πn+p

1 RC
1 , or modulo πn+p

1 R1).

Step e). This implies, as RC
1 and R1 are complete with respect to the π1-

topology, that we can assume that yp = 1. As V1 contains the p-th roots of unity, this
contradicts the fact that K1 is a field.

The case when e1 is not p− 1 is entirely similar. The only difference is that the
above Steps c)-d) have to be applied intermingled. The trivial details are left to the
reader.

The contradiction of the Step e) ends the proof of 3.4.5.1.

3.4.5.4. Remarks. 1) It is an easy exercise now to see that once we assume in
3.4.5.1 that Spec(RC⊗V V1) is a locally factorial scheme, the condition on the order of
C (of being p) can be weaken: it is enough to assume that C is a p-elementary finite
group. From the fact that Spec(RC ⊗V V1) is a locally factorial scheme we deduce
easily that Spec(RC) is locally factorial, but we do not know if (or when) the converse
to this is true.

2) 3.4.5.1 can be formulated for regular formally smooth schemes instead of affine
such schemes as the condition of having a free action is local. We have inserted 3.4.5.1
for the case l = p mainly to give an idea how bad the singularities can be for a non-
free action (cf. 1) above). We hope to use it later on to the study of singularities
of different quotiens of different extended integral canonical models (to be defined in
3.5.1) (cf. 3.5.3).

3) For the order of C equal to p, the lemma 3.4.5.1 is not true if we do not assume
that Spec(RC ⊗V V1) is a locally factorial scheme, as it can be seen through examples
involving smooth schemes X over a DVR O faithfully flat over Z(p) and of index of
ramification 1, whose relative dimension is greater than p − 2. But if the relative
dimension of X over such a DVR O is less than p− 1, then any finite group acting on
it in such a way that it acts freely on its generic fibre, acts freely on X. This can be
checked starting from 3.4.5.2 and the fact that any representation of a cyclic group of
order p of degree less than p− 1 over such a DVR O is trivial.
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3.4.6. Remark. We come back to 3.4.1-3. In practice p is different from 2 and
then we can take H0 to be a product of its q-components Hq (q being an arbitrary
prime different from p), with H2 a compact open subgroup of G(Q2) small enough,
and with any other component Hq of it a maximal compact subgroup of G(Qq) (which
can be chosen to be a hyperspecial subgroup of G(Qq) if G is unramified over Qq).

3.4.7. Corollary. We assume that M1 has the EP. If Sh(G1, X1) is a Siegel
modular variety and if p is big enough (without an effectively computable lower bound)
then M is a closed subscheme of M1.

Proof. From 3.2.12 we deduce that M1 is the extension to O(v) of the integral
canonical model of (G1, X1,H1, v1) (see 3.2.9). Let H̃ be a compact open subgroup of
G(Af ) which is a product of its q-components H̃q (so H̃q is a hyperspecial subgroup
of G(Qq), for any big enough prime q). We assume that it is smooth for (G,X) and
that Sh eH(G,X) is a closed subscheme of the extension to E of Sh eK(G1, X1), with K̃
a compact open subgroup of G1(Af ) which is a product of its q-components, contains
H̃, and is small enough (cf. 3.2.9 and 4.1) so that Sh eK(G1, X1)E extends to a smooth
moduli scheme M1(K̃) over OE

[
1

N !

]
(with N ∈ N big enough and with OE the ring of

integers of E).
Taking N big enough we can assume that the closure M(H̃) of Sh eH(G,X) in

M1(K̃) is a smooth scheme over OE

[
1

N !

]
, that H̃q is a hyperspecial subgroup of G(Qq)

for any prime q ≥N , and that (cf. the proof of 3.4.1) for any such prime q, the nor-
malization of M(H̃)Z(q) in the ring of fractions of Sh eHq (G,X) is the integral canonical
model of the triple (G,X, H̃q). We can take now p≥N . This ends the proof of the
corollary.

3.4.8. Definition. With the notations of 3.2.3 1-2), a smooth (resp. normal)
integral model M (of Sh(G,X)/H over O) is said to be strongly smooth (resp. strongly
normal) if for any compact open subgroup H0 of G(Ap

f ) such that the subgroup H0×H

of G(Af ) is smooth for (G,X), M is a pro-étale cover of M/H0.

3.4.8.1. Remark. If M is a strongly normal integral model of ShH(G,X) over
O having the SEP, then any smooth integral model of ShH(G,X) over O is strongly
smooth (cf. rm. 4′) of 3.2.7). In particular, if there is a strongly normal integral model
of ShH(G,X) over O(v) having the EP and if e < p − 1, then any smooth integral
model of ShH(G,X) over O is strongly smooth. We do not know if (or when) the
condition e < p− 1 is needed.

3.5. Extended integral canonical models. Let (G,X, H, v) be an arbitrary
quadruple and let p be the rational prime divided by v.

3.5.1. Definition. A normal scheme M̃ over O(v) together with a G(Ap
f )×H-

continuous action is called an extended integral canonical model of (G,X, H, v) if:

a) There is a G(Ap
f )×H-equivariant isomorphism M̃E(G,X)

∼→Sh(G,X);

b) M̃/H is an integral canonical model of (G,X, H, v).

Similarly, we speak about an extended local integral canonical model of a quadru-
ple or about the extended integral canonical model of a triple.
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3.5.2. Remark. M̃ is determined by the integral canonical model M̃/H, be-
ing the normalization of M̃/H in the ring of fractions of Sh(G,X). So it exists iff
(G,X, H, v) has an integral canonical model. If v is relatively prime to 2, then any
extended integral integral model of (G,X, H, v) is uniquely determined up to unique
isomorphism.

3.5.3. Problem. For H̃ a compact open subgroup of G(Ap
f )×H determine the

type of singularities of M̃/H̃.

4. Shimura varieties of Hodge type and special families of tensors. Let
(G,X) be a Shimura pair defining a Shimura variety of Hodge type. Let f : (G,X) ↪→
(GSp(W,ψ), S) be an injection of it into a Shimura pair defining a Siegel modular
variety. We fix a family (sα)α∈J of tensors in spaces of the form W⊗m ⊗ W ∗⊗n,
m,n ∈ N, such that G is the subgroup of GSp(W,ψ) fixing its tensors. As G is
reductive we do get the existence of finite such families [De3, 3.1]. We do allow the
above family of tensors to be infinite. Let L be a Z-lattice of W such that we have a
perfect form ψ:L⊗ L → Z.

We start by reviewing the interpretation of the complex Shimura variety
Sh(G,X)C as a moduli space with respect to the Z-lattice L of W and the above
family of tensors. Then in 4.2-3 we treat the problem: for a rational prime p for which
G is unramified over Qp, find a Z-lattice L and a family of tensors (sα)α∈J (subject to
the above conditions) which are Z(p)-well adapted for using successfully the integral
version of Fontaine’s comparison theory [Fa3], and so for proving (cf. §5) the existence
of Shp(G,X).

4.1. Shimura varieties of Hodge type as moduli schemes. As G contains
the group of multiplications by scalars (cf. Definition 1 of 2.5), our tensors are in spaces
of the form (W ⊗W ∗)⊗m, m ∈ N. If sα ∈ (W ⊗W ∗)⊗m(α) then deg(sα) = 2m(α).
The form 2πiψ is a bilinear map W ⊗W → Q(1) := 2πiQ, inducing an isomorphism
W

∼−→ W ∗(1). Any x ∈ X defines a Hodge Q–structure on W and on W ∗, and the
above isomorphism W

∼−→ W ∗(1) is an isomorphism of Hodge Q–structures. This
gives us the right to think of the tensors sα as being in spaces of the form W ∗⊗2m(m).
Let L∗ ⊂ W ∗ be the dual Z-lattice of L. What follows is very close to [MS, ch. 2]
except that we do not work in a rational context: we work with principally polarized
abelian varieties and not with their isogeny classes.

We consider quadruples of the form [A, pA, (vα)α∈J, k] where:

a) (A, pA) is a principally polarized abelian variety over C;

b) (vα)α∈J is a family of Hodge cycles of A;

c) k is an isomorphism H1(A,Z) ⊗ Af
can= Vf (A)

k∼−→ W ⊗ Af taking the Betti
realization wα of vα into sα,∀α ∈ J, mapping H1(A,Z) ⊗ Ẑ onto L ⊗ Ẑ and
inducing a symplectic similitude between (H1(A,Z)⊗ Ẑ, pA) and (L⊗ Ẑ, ψ).

We define A(G,X, W,ψ) to be the set of isomorphism classes of quadruples of the
above form satisfying the following conditions:

(i) there exists a similitude isomorphism (H1(A,Q), pA) ∼→ (W,ψ) taking the Betti
realization wα of vα into sα, ∀α ∈ J;

(ii) composing the homomorphism hA:S→ GSp(H1(A,R), pA), defined by the Hodge
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structure on H1(A,R), with an isomorphism GSp(H1(A,R), pA) ∼→GSp(W ⊗
R, ψ), induced by an isomorphism as in (i), we get an element of X.
We have a right action of G(Af ) on A(G,X, W,ψ) defined by:

[A, pA, (vα)α∈J, k] · g = [A′, pA′ , (vα)α∈J, g−1k].

A′ is the abelian variety, from the same isogeny class as A, defined by the Z-lattice
of H1(A,Q) induced from L⊗ Ẑ through the isomorphism g−1 ◦ k of H1(A,Q)⊗ Af ,
while pA′ is the only rational multiple of pA which produces a principal polarization of
A′ (see [De1, 4.7] for the theorem of Riemann used here). Here as well as in e) below
we identify a polarization with its Betti realization.

There is a G(Af )-equivariant bijection

f(G,X,W,ψ): Sh(G,X)(C) ∼→A(G,X, W,ψ)

defined as follows. To [h, g] ∈ Sh(G,X)(C) = G(Q) \ X × G(Af ) we associate the
quadruple [A, pA, (vα)α∈J, k] where:

d) A is associated to the Hodge structure (W,h) and the Z-lattice H1(A,Z) of

W induced from the Z-lattice L of W through k:Vf (A) = W ⊗ Af

g−1

∼−→ W ⊗ Af (i.e.
k(H1(A,Z)⊗ Ẑ) = L⊗ Ẑ);

e) pA is the only (rational) multiple of ψ which gives birth to a principal polar-
ization of A;

f) ∀α ∈ J, the Betti realization of vα is sα.
The inverse g(G,X,W,ψ) of f(G,X,W,ψ) is defined as follows. Let [A, pA, (vα)α∈J, k] ∈

A(G,X, W,ψ). We choose a similitude isomorphism iA: (H1(A,Q), pA) ∼→ (W,ψ) as
in (i). It produces an isomorphism ĩA:GSp(H1(A,Q), pA) ∼→GSp(W,ψ). We define
h ∈ X to be ĩAR ◦ hA (hA being the homomorphism S→ GSp(H1(A,R), pA) defining

the Hodge structure of A) and g ∈ G(Af ) to be the composite map W ⊗ Af

k−1

∼−→
Vf (A) = H1(A,Q)⊗ Af

iA⊗1∼−→ W ⊗ Af . Then

g(G,X,W,ψ)([A, pA, (vα)α∈J, k]) = [h, g].

Taking (G,X) = (GSp(W,ψ), S) and J = φ, we get a bijection between
Sh(GSp(W,ψ), S)(C) and the isomorphism classes of principally polarized abelian
varieties over C of dimension gW (with 2gW = dimQ(W )) having (compatibly) level-
N symplectic similitude structure for any N ∈ N. So to give a C-valued point of
Sh(GSp(W,ψ), S) is the same as to give a triple [A, pA, (lN )N∈N], where (A, pA) is
a principally polarized abelian variety over C of dimension gW , for which we have
a compatible system of similitude isomorphism lN : (L/NL, ψ) ∼→ (H1(A,Z/NZ), pA)
(N ∈ N). The compatibility means that if N, M ∈ N are such that N |M , then lN is
obtained from lM by tensoring with Z/NZ.

4.1.0. For N ∈ N let K(N) := {g ∈ GSp(W,ψ)(L⊗Ẑ) | g mod N is the identity}.
Then the set ShK(N)(GSp(W,ψ), S)(C) is in one to one correspondence with the set of
isomorphism classes of principally polarized abelian varieties over C having a level-N
symplectic similitude structure. This implies (cf. [De1, 4.21]) that Sh(GSp(W,ψ), S)
is the Q–scheme representing the functor that sends a Q–scheme T to the set of
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isomorphism classes of principally polarized abelian schemes (of dimension gW ) over
T , having (compatibly) level-N symplectic similitude structure for any N ∈ N (see
[Mu] why this functor is representable). So Sh(G,X) is the closed subscheme (cf.
[De1, 1.15 and 5.9]) of Sh(GSp(W,ψ), S)E(G,X) whose complex points are those triples
[A, pA, (lN )N∈N] for which:

(4.1.1) the isomorphism k−1:L⊗ Ẑ ∼→H1(A,Z)⊗ Ẑ, defined by the fact that mod N
it is lN , ∀N ∈ N, when tensored with Q, takes sα to the Betti realization wα

of a Hodge cycle vα of A (∀α ∈ J);

(4.1.2) H1(A,Q) together with pA and the family of tensors (wα)α∈J satisfies the
above two conditions (i) and (ii).

4.1.3. Lemma. Let Z = Spec(R) be an integral affine scheme over C and let
(A, pA) be a principally polarized abelian scheme over Z, having (compatibly) level-N
symplectic similitude structure (defined by an isomorphism lN :L⊗Z/NZ ∼→A[N ]) for
any N ∈ N . Let gZ :Z → Sh(GSp(W,ψ), S) be the morphism induced by the above
data. For every α ∈ J, we assume the existence of a cycle tα ∈ F 0(H1

dR(A/Z) ⊗
H1

dR(A/Z)∗)⊗m(α) (we recall that 2m(α) = deg(sα)), annihilated by the Gauss-Manin
connection ∇ (of A). Let f1, f2: Spec(C) → Z be two complex points. If the quadru-
ple [A, pA, (tα)α∈J, k] (with k:H1(A, Ẑ) ∼→L ⊗ Ẑ such that its inverse mod N is lN ;
here we identify a Hodge cycle with its de Rham component) becomes a quadruple of
A(G,X, W,ψ) in the point f1, then it becomes a quadruple of A(G,X, W,ψ) in the
point f2 also (i.e. the morphism gZ ◦ f2: Spec(C) → Sh(GSp(W,ψ), S) factors through
Sh(G,X)).

Proof. There is an integral affine scheme Y = Spec(T ) of finite type over C, with
T a subring of R, such that (A, pA) and its cycles (tα)α∈J descend to (B, q) and cycles
(uα)α∈J.

We have ∇uα = 0, ∀α ∈ J. Let T ↪→ T1 be an injective ring homomorphism, with
T1 a smooth integral C-algebra, such that Spec(T1)(C) → Y (C) is surjective (cf. the
resolution of singularities; we can pass from Y to an open affine subscheme containing
f1 and f2 to get the surjectivity part). Let h1, h2:Spec(C) → Y1 = Spec(T1) be two
points such that the diagram

Spec(C)
h1−−−−→−−−−→
h2

Y1

f1

y
yf2

yj

Z −→ Y

is commutative (the morphisms j and Z → Y are associated to the inclusions T ↪→ T1

and respectively T ↪→ R).
We denote by (B1, q1) and (u1

α)α∈J the pullback through j of (B, q) and (uα)α∈J.
Let h:B1 → Y1 be the morphism defining the abelian scheme B1. We get that
∇u1

α = 0, and so u1
α ∈ (R1h∗(C) ⊗ (R1h∗(C))∗)⊗m(α), ∀α ∈ J. As u1

α is rational
in h1, we deduce that u1

α ∈ (R1h∗(Q)⊗R1h∗(Q)∗)⊗m(α), ∀α ∈ J. So u1
α is rational in

h2, ∀α ∈ J. From [De3, p. 36] we deduce that the tensors (h∗2u
1
α)α∈J are de Rham com-

ponents of Hodge cycles (vα)α∈J of A2 := A×Z f2Spec(C) (their étale components are
automatically determined). As Y1(C) is connected, we easily deduce that A2 together
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with (vα)α∈J satisfy the condition 4.1.2. The isomorphisms (lN )N∈N are producing
an isomorphism k2:H1(A2,Z)⊗ Ẑ ∼→L⊗ Ẑ. The fact that k−1

2 carries sα to the Betti
realization of vα (condition 4.1.1) can be seen working mod N (for any N ∈ N). Multi-
plying by a natural number big enough all vα and sα, we can work with families (ṽα)α∈J

and (s̃α)α∈J assumed to be integral with respect to H1(A,Z)⊗ Ẑ and V (Z)⊗ Ẑ. The
fact that k2(ṽα) = s̃α, ∀α ∈ J, results from the analogue property of the isomorphism
k1:H1(A1,Z)⊗Ẑ ∼→L⊗Ẑ (with A1 := A×Z f1Spec(C)) and from the fact that a level-N
symplectic similitude structure on Z can be descended to an integral affine Y -scheme
YN of finite type over C (i.e. for any given N ∈ N we can assume that the isomorphism
lN is defined over Y , and so over Y1). From the characterization of Sh(G,X)(C) (cf.
4.1.0), we deduce that the morphism gZ ◦ f2: Spec(C) → Sh(GSp(W,ψ), S) factors
through Sh(G,X) (with [A2, pA2 , (vα)α∈J, k2] ∈ A(G,X, W,ψ)).

4.1.4. Remark. A similar result can be proved if, instead of Sh(GSp(W,ψ), S)
and Sh(G,X), we work with M := ShKp

(GSp(W,ψ), S) and N := ShHp
(G,X), where

Kp := {g ∈ GSp(W,ψ)(Qp) | g(L ⊗ Zp) = L ⊗ Zp} and Hp := Kp ∩ G(Qp) (p
being a fixed rational prime). This follows from the fact that a situation of the form

Spec(C)
f1−−−−→−−−−→
f2

Z → M, with f1 factoring through N, can be lifted to a situation

Spec(C)
f10−−−−→−−−−→
f20

Z1 → Sh(GSp(W,ψ), S),

with f10 factoring through Sh(G,X), and with Z1 an integral affine Z-scheme.

4.1.5. Remark. Later on we need a formal version of 4.1.3-4. We work under
the hypotheses of 4.1.3 with R = C[[z1, ..., zn]] a ring of formal power series over C,
and with f1 the complex point of Z associated to the surjective ring homomorphism
R ³ C taking zi to zero. But instead of assuming that tα are parallel with respect
to ∇, we assume just that tα are annihilated by δ

δzi
. Then the generic point w (this

replaces the point f2 of 4.1.3) of Z is mapped through gZ into Sh(G,X), i.e. the cycles
tα, become (in w) de Rham components of Hodge cycles of Aw (the fibre of A over
w), and the étale components of these Hodge cycles are related to vα (through the
family of isomorphisms (lN )N∈N) as expected.

It is enough to see the first part, i.e. that tα becomes in w the de Rham component
of a Hodge cycle of Aw, ∀α ∈ J (the second part involving the expected relation is
entirely the same as in the above proof of 4.1.3). This is a result of Faltings. The
proof of this is entirely analogous to the proof of its integral version [Fa3, rm iii) after
th. 10]. The only difference is that now we have to use the strictness property of maps
between Hodge structures, instead of the strictness property of maps between objects
of MF(V0) (cf. [Fa1] for the definition of MF(V0); here V0 is a Witt ring over a perfect
field).

4.1.6. Remark. Sometimes it is more convenient to work with families (sα)α∈J

such that G is the subgroup of GL(W ) (and not of GSp(W,ψ)) fixing its tensors.
This has the advantage that we can be loose about mentioning alternating forms
(like ψ) or different Tate-twists (to be compared with 5.2.9). In particular, in such a
situation, the form ψ is uniquely determined by an isomorphism as in (i) of 4.1, up to
scalar multiplication with a rational number: so it is more natural to denote the set
A(G,X, W,ψ) just by A(G,X, W ).
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4.2. Digression on reductive Lie algebras. Till the end of §4 the notations
to be introduced are independent of the ones in 4.1. Let W be a finite vector space over
an arbitrary field of characteristic zero. All the reductive Lie subalgebras of gl(W )
considered in 4.2 are assumed to satisfy the following condition: the elements of their
centers are semisimple endomorphism of W .

Let g ⊂ gl(W ) be (such) a reductive Lie subalgebra. It is known (cf. [Bou1, ch1.
1, th. 4]) that the above assumption implies that the restriction to g of the trace form
Tr on gl(W ) is perfect (for a, b ∈ gl(W ), Tr(a, b) is the trace of the endomorphism ab
of W ). For any vector subspace m of gl(W ) let

m⊥ := {x ∈ gl(W ) | Tr(xy) = 0, ∀ y ∈ m}.
In particular we get a direct sum decomposition gl(W ) = g⊕ g⊥.

4.2.1. Convention. Any time we have a situation as above, we denote by π(g)
(or by πW (g)) the projector of gl(W ) defined by π(g)(x) = x if x ∈ g and π(g)(x) = 0
if x ∈ g⊥.

The Lie subalgebra of gl(W ) centralizing π(g) under the adjoint representation is
of the form g⊕ u, where

u := {y ∈ g⊥ | [g, y] ⊂ g, [g⊥, y] ⊂ g⊥} = {y ∈ g⊥ | [g, y] = 0}.
The last equality is due to the fact that [g, g⊥] ⊂ g⊥ and Tr([a, b], c) = Tr(a, [b, c]),
∀ a, b, c ∈ gl(W ).

4.2.2. Proposition. Let g ⊂ h ⊂ gl(W ) be inclusions of reductive Lie algebras.
We consider reductive Lie algebras g1 satisfying : a) g ⊂ g1 ⊂ h, b) [g, g] = [g1, g1].
They form a set S. Then an element g1 of S is maximal under the relation of inclusion
if and only if g1 = h ∩ {the Lie subalgebra of gl(W ) centralizing π(g1)}.

Proof. If g1 = h ∩ {the Lie subalgebra of gl(W ) centralizing π(g1)} then

h ∩ g⊥1 ∩ {centralizer of g1 in gl(W )} = 0.

This implies that there is no reductive Lie subalgebra of h strictly containing g1 and
having the same semisimple part as g1. So g1 is a maximal element of S.

Let now g1 be a maximal element of S. We deduce that the centralizer c of g1 in
h has no semisimple element included in g⊥1 . But c is a reductive Lie subalgebra of
gl(W ): the centralizer of g1 in gl(W ) is the Lie algebra of a reductive group (this can
be seen moving to an algebraically closed field and using irreducible representations),
and it is of the form c ⊕ c̄ with c and c̄ perpendicular with respect to the trace form
on gl(W ), c̄ being a subspace of h⊥; so the trace form on c is perfect. This implies
that c ∩ g⊥1 is zero, and so g1 is the subalgebra of h centralizing π(g1). Thie ends the
proof of the proposition.

4.2.3. Remark. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective map. If in
4.2.2 we take g = Lie(G) and h = gsp(W,ψ), then for any elemeny g1 of S there is a
uniquely determined (up to isomorphism) Shimura variety Sh(G1, X1) for which there
are injective maps f0: (G,X) ↪→ (G1, X1) and f1: (G1, X1) ↪→ (GSp(W,ψ), S) such
that f = f1 ◦ f0 and df1(Lie(G1)) = g1.

4.3. Special families of tensors.
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4.3.1. Definitions. Let (G,X) define an arbitrary Shimura variety. A pair
(G1, X1) is called an enlargement of (G,X) if there is an injective map f : (G,X) ↪→
(G1, X1) such that f(Gder) = Gder

1 and f(G) 6= G1. If i: (G,X) ↪→ (G2, X2) is an
injective map, by an enlargement of (G,X) in (G2, X2) we mean a pair (G1, X1), with
G $ G1 ⊂ G2, Gder = Gder

1 and X ⊂ X1 ⊂ X2. If f : (G,X) ↪→ (G1, X1) is an injective
map, then (G,X) is called saturated in (G1, X1) if it has no enlargement in (G1, X1).

4.3.1.1. Let now (G,X) be of Hodge type and let f : (G,X) ↪→ (GSp(W,ψ), S)
be an injective map. From 4.2.2-3 we deduce that either (G,X) is saturated in
(GSp(W,ψ), S) or there is an enlargement of (G,X) in (GSp(W,ψ), S) which is satu-
rated in (GSp(W,ψ), S).

The advantage of having injective maps (G,X) ↪→ (GSp(W,ψ), S) with (G,X)
saturated in (GSp(W,ψ), S) is: Lie(G) is the Lie subalgebra of gsp(W,ψ) centralizing
(just one tensor of degree 4 which is a projector of gl(W )) πW (g).

4.3.2. We consider now the following situation. Let (W,ψ) be a symplectic space
over a field of characteristic zero. Let G0 be a semisimple subgroup of GSp(W,ψ) and
let g0 := Lie(G0). Let G be a reductive subgroup of GSp(W,ψ) having G0 as its
derived subgroup and such that its Lie algebra g is the Lie subalgebra of gsp(W,ψ)
centralizing π(g) (cf. 4.2.2). We now list some useful tensors fixed by the group G.

We have gsp(W,ψ) = g ⊕ h, with h := gsp(W,ψ) ∩ g⊥. Let h = ⊕
i∈I

hi be a

direct sum decomposition of h in irreducible g-modules. Let mi be the kernel of the
representation g → gl(hi). We deduce the existence of a reductive Lie subalgebra
gi of g such that g is the direct sum of Lie algebras g = gi ⊕ mi [Bou1, p. 57].
We have faithful irreducible representations gi ↪→ gl(hi). Associated to the direct sum
decomposition gl(W ) = g⊕ ⊕

i∈I
hi⊕gsp(W,ψ)⊥ we consider the projectors pi: gl(W ) →

gl(W ), the image of pi being hi, ∀ i ∈ I. For every i ∈ I, let ri be the projection of
gl(W ) on gi associated to the direct sum decomposition gl(W ) = gi ⊕ mi ⊕ h ⊕
gsp(W,ψ)⊥.

For i ∈ I, let ki be the Casimir element of the representation gi ↪→ gl(hi) (we
have gi 6= 0, as g is the subalgebra of gsp(W,ψ) centralizing π(g)).

ki induces a linear map qi: gl(W ) → gl(W ) such that qi|hi: hi → hi is an isomor-
phism. We choose a linear combination of (qi)i∈I with coefficients in Z such that the
resulting linear map q: gl(W ) → gl(W ) has the property that q|h: h → h is an isomor-
phism (using induction, it is enough to handle the case when I has two elements; but
this case is obvious, as Z is infinite). Let q̄: gl(W ) → gl(W ) be the linear map such
that q̄ is zero on g⊕ gsp(W,ψ)⊥ and q̄|h: h → h is (q|h)−1.

For i ∈ I, let ti: gl(W ) → gl(W )∗ be the linear map such that ti is zero on
mi⊕h⊕gsp(W,ψ)⊥ and ti|gi: gi → g∗i is the isomorphism induced by the restriction to
gi of the trace form Trhi on gl(hi). Explicitly: if x ∈ gi, then ti(x)(y) = Trhi(x, y). For
i ∈ I, let si: gl(W )∗ → gl(W ) be the linear map which is zero on (mi⊕h⊕gsp(W,ψ)⊥)∗

and si|g∗i : g∗i → gi is (ti|gi)−1.
Let t: gl(W ) → gl(W )∗ and s: gl(W )∗ → gl(W ) be linear maps defined in the

same manner as ti and si, but for the representation g ↪→ gl(W ).
Let

B: gl(W ) → gl(W )∗

be the linear map which is zero on g⊥0 and B|g0: g0 → g∗0 is the isomorphism induced
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by the Killing form on g0. Let

B∗: gl(W )∗ → gl(W )

be the linear map obtained from B in the same manner as the tensors si were obtained
from ti.

The tensors π(g0), π(g), B, B∗, q̄, t and s, as well as the tensors pi, ri, si and ti,
i ∈ I, are centralized by g, and so fixed by the group G.

4.3.3. Notation. Let W̃ be a finite vector space over a field k of characteristic
zero and let g̃ be the Lie algebra of a semisimple subgroup G̃ of GL(W̃ ). We call an sl2
Lie subalgebra of g̃⊗ k̄ standard if with respect to a Weyl direct sum decomposition
g̃⊗ k̄ = t ⊕

α∈Φ
gα, with Φ a system of roots associated to a maximal torus T of G̃k̄

(here t = Lie(T )), is generated by gα and g−α, for some α ∈ Φ. We denote by s(g̃, W̃ )
the maximum dimension which appears among the irreducible subrepresentations of
W̃ ⊗ k̄ of any standard sl2 Lie subalgebra of g̃⊗ k̄.

4.3.4. Definitions. Let O be a discrete valuation ring, let π be a uniformizer
of it, and let K be its field of fractions. Let (W,ψ) be a symplectic space over K.
Let (sα)α∈J be a family of tensors in spaces of the form W⊗m ⊗W ∗⊗n. The family
of tensors (sα)α∈J is called essentially finite, if the O-submodule of the tensor algebra
of W ⊕ W ∗ generated by its tensors, is a free O-module of finite rank. Let R be a
faithfully flat integral ring over O. A free R-module M satisfying M

[
1
π

]
= W⊗K R

[
1
π

]
,

is said to envelop the above family of tensors with respect to ψ, if ψ induces a perfect
form ψ:M ⊗M → R, and if all the tensors of the family (sα)α∈J are in spaces of the
form M⊗m ⊗M∗⊗n. Let H be a reductive subgroup of GSp(W,ψ) fixing the tensors
of the above family. The family of tensors (sα)α∈J is said to be O-well positioned with
respect to ψ for the group H if the following condition is satisfied:

(4.3.5) For any faithfully flat integral ring R over O and for any free R-module
M , satisfying M

[
1
π

]
= W ⊗K R

[
1
π

]
, and enveloping the family of tensors (sα)α∈J with

respect to ψ, the closure of HR[1π] in GSp(M, ψ) is a reductive group scheme HR over
R.

In addition, if there is an O-lattice MO of W enveloping the family of tensors
(sα)α∈J with respect to ψ, then we say that our family of tensors is O-very well
positioned with respect to ψ for the group H.

We have variants, depending on the class of O-algebras we use in 4.3.5. If we use
the class of normal integral faithfully flat O-algebras (resp. of reduced faithfully flat
O-algebras) we obtain the notion of weakly (resp. strongly) O-well (or O-very well)
positioned families of tensors with respect to ψ for the group H.

4.3.6. Remarks. 0) Warning: if H extends to a reductive group over O, we do
not require that the extension of it to R is HR.

1) If the family of tensors (sα)α∈J is O-well positioned (resp. O-very well po-
sitioned) with repsect to ψ for the group H, then the family (sα)α∈J is O-well po-
sitioned (resp. O-very well positioned) with respect to ψ̃ for the group H̃, where
ψ̃:W ∗⊗W ∗ → K is the perfect alternating form on W ∗ obtained from ψ through the
isomorphism f̃ :W ∼→W ∗ canonically induced by ψ, (f̃(x)(y) = ψ(x, y)), and where H̃

is the subgroup of GSp(W ∗, ψ̃) corresponding to H under the canonical identification
of GL(W ) with GL(W ∗) produced by f̃ .
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2) The family of tensors (sα)α∈J is O-well positioned with respect to ψ for H iff
it is well positioned with respect to ψ for Hder and for the toric part of Z(H) (cf.
3.1.6.1). The same remains true in a weakly (this is obvious) or strongly (cf. the
considerations of 3) below: Lie exists in this situation; of course the proof of 3.1.6
applies as well) context.

3) Let R be a noetherian, reduced, faithfully flat local O-algebra. Let M be a
free R-module of finite rank, and let H ′ be a reductive subgroup of GL(M)R[1π]. Let
{Ii|i ∈ {1, ..., r}}, with r ∈ N, be a set of ideals of R which are intersection of prime
ideals of R of codimension zero. We assume that ∩i=r

i=1Ii = 0, and that the closure of
H ′

R/Ii[1π]
in GL(M ⊗R/Ii) is a reductive group H ′

i over R/Ii, ∀i ∈ {1, ..., r}. We also

assume that there is a free R-submodule Lie of End(M) such that Lie
[
1
π

]
is Lie(H ′)

(for instance if there is a projector of End(M
[
1
π

]
) on Lie(H ′) enveloped by M). Then

the closure H ′
R of H ′ in GL(M) is a reductive group over R.

To see this we can assume that R = Rsh and that r = 2. As the fibres of H ′
i,

i = 1, 2, are connected, we deduce that the fibres of H ′
R are connected. The ring R/Ii

is also strictly henselian, and so H ′
i is a split group. This implies that H ′ itself is

split. Let H
′′
R be a split reductive group over R having H ′ as its generic fibre. The

reductive subgroups H ′
iR/I1+I2

of GL(M⊗R/I1+I2) are identical (they have the same
Lie algebra, cf. the assumption on the existence of Lie, and they are identical over
Spec(R/I1 + I2)red). We denote these subgroups by H ′

12. As H
′′
R is smooth, and as we

have this identity, the amalgamated sum of H ′
1 and H ′

2 along H ′
12 is a reductive group

over R which can be identified with H
′′
R. We get a homomorphism q:H

′′
R → GL(M)

factoring through H ′
R. As q is a closed embeding over R/Ii we deduce that q itself is

a closed embedding.

4.3.7. Remarks. 1) We could have worked out 4.3.4 without the relative con-
text, i.e. with respect to ψ. The relative context is all we need for applications to
Shimura varieties of Hodge type. When the role of ψ is irrelevant (for instance in
4.3.10 b)) we do not mention with respect to ψ.

2) The definition of O-well positioned families of tensors presented here is different
from the one in [Va1, 3.7.4], where we also asked that the subgroup of GSp(M, ψ) fixing
vα, ∀α ∈ J, is a group scheme whose connected components of the origin of its fibres
are (reductive groups defined by) the fibres of HR.

3) Let R0 be an integral ring and let MR0 be a free R0-module of finite rank. Let
K0 be the field of fractions of R0, and let GK0 be a subgroup of GL(M ⊗K0). It is
not always true (cf. [BT, 3.2.15]) that the closure GR0 of GK0 in GL(MR0) is a group
subscheme of GL(MR0). However, GR0 is a group subscheme of GL(MR0) if it is a
flat scheme over R0.

So, in 4.3.5, the fact that the closure HR of HR[1π] in GSp(M, ψ) is a group
subscheme of GSp(M, ψ) is part of the requirements on a family of tensors (sα)α∈J in
order to be O-well positioned with respect to ψ for the group H. To show that HR is
a reductive group scheme over R, we need to check two things:

a) that HR is flat over R (and so a group subscheme of GSp(M, ψ));

b) that the fibres of HR over Spec(R) are reductive groups (over fields).

4) If the family of tensors (sα)α∈J is essentially finite, for proving that it is O-well
positioned with respect to ψ for the group H, it is enough to check 4.3.5 only for
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integral rings R which are faithfully flat and of finite type over O (and so noetherian).
To see this, let R and M be as in 4.3.5. We choose a basis B of M . It naturally
produces a basis of the tensor algebra of M ⊕M∗. Let R1 be a finitely generated O-
subalgebra of R such that B is included in W ⊗K R1

[
1
π

]
. Let R2 be the O-subalgebra

of R generated by R1 and by the coefficients of all sα with respect to the above basis
of the tensor algebra of M ⊕M∗. R2 is a finitely generated O-algebra as the family of
tensors (sα)α∈J is essentially finite. Let M2 be the free R2-submodule of M generated
by the elements of B. We have M2

[
1
π

]
= W ⊗K R2

[
1
π

]
. Moreover M2 envelopes the

family of tensors (sα)α∈J. So, if the closure of HR2[1π] in GSp(M2, ψ) is a reductive
group scheme over R2, then, by pull back, the closure of HR[1π] in GSp(M, ψ) is a
reductive group scheme over R.

We assume now that there is a projector of End(W ) on Lie(H) fixed by H,
and which is part of our family. Localizing R, replacing it by a quotient R2 of Rsh

dominating R, or by R1, where Spec(R1) is an integral finite flat scheme over Spec(R)
(the operation of taking the closure of HR[1π] in GSp(M, ψ) is well behaved with respect
to these operations, cf. a) and b) of 3) above and 4.3.6 3)) we can assume, for checking
4.3.5, that:

c) R is a noetherian strictly henselian integral local ring with an algebraically
closed residue field, and HR0 := HR ×R0 is a reductive group scheme over R0, where
R0 is the open subscheme of Spec(R) defined by the complement of the maximal ideal
of R.

d) This allows us to pass from O to its strict henselization Osh, and so we can
assume that O is a strictly henselian DVR.

e) If moreover K is of characteristic zero (so O is an excellent ring), we have
to deal only with excellent rings (as the set of excellent rings is stable under the
operations performed in this remark).

f) If K is of positive characteristic and if O is a Nagata ring, we have to deal only
with Nagata noetherian rings (as the set of such rings is stable under the operations
performed in this remark, cf. [Ma, ch. 12]).

5) If the family of tensors (sα)α∈J is essentially finite, if the extra condition
needed to get c)-f) above (involving a projector of End(W )) is satisfied, and if K is of
characteristic zero (so O is an excellent ring), then, for checking 4.3.5, we can assume
that R is an integral noetherian complete local ring having an algebraically closed
residue field. In other words we can replace R (with R the localization of an integral
finitely generated O-algebra with respect to a prime lying over the maximal ideal of
O) to its completion R̂: R̂ is a reduced ring (as R is an excellent ring); so 3.4.6 3)
applies. So we can replace O with the completion of Osh (cf. also to 4) above), i.e.
we can assume that O is a strictly henselian complete DVR.

5′) If in 4) and 5) we work with the weakly (resp. strongly) O-well positioned
property, we do not have to make any assumption on the existence of a good projector
of End(W ) as part of the family of tensors. We get c)-f) and 5) above, but always as-
suming that we have normal integral domains (resp. reduced rings) instead of integral
rings.

6) All concrete families of tensors used in this paper are essentially finite and fit
in the strongly context. Any essentially finite family of tensors in spaces of the form
W⊕m ⊕W ∗⊕n, with m,n ∈ N, is of bounded degree, but the converse to this is not
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true.
7) Any time we can replace O with another DVR O1 (faithfully flat over O), we

can replace the family of tensors (sα)α∈J with the family of tensors (sα1)α∈J1 (of the
tensor algebra of (W ⊕W ∗)⊗O O1) formed by linear combinations (with coefficients
in O1) of the tensors (sα)α∈J. If the family of tensors (sα)α∈J is essentially finite,
then the family of tensors (sα1)α∈J1 is also essentially finite.

8) To check 4.3.5 for a noetherian ring R, we can assume that it is local, and that
HR0 is a reductive group scheme over R0, where R0 is the open subscheme of Spec(R)
defined by the complement of the maximal ideal of R, cf. 3) above, even if the family
of tensors (sα)α∈J is not essentially finite. In 4.3.4-5 we could have worked with M a
projective (instead of free) R-module, but this would have made no difference.

9) The role of O is mostly just to fix up the notations. For the greatest part
of 4.3.4-17 it can be replaced by any other integral noetherian scheme Z, and then
the role of R is replaced by an arbitrary integral flat Z-scheme. We will not stop to
state the results in this generality, as they can be immediately deduced from the ones
stated.

4.3.8. Remark. The tensors which give a lot of information about the modules
enveloping them, are projections and isomorphisms.

4.3.9. Remark. If H1 is a reductive subgroup of H with Hder
1 = Hder, then

any weakly O-well positioned family of tensors (with respect to ψ) for H is also a
weakly O-well positioned family of tensors (with respect to ψ) for H1. This results
easily from 3.1.6 and from the fact that the closure in a torus TR (over a normal ring
R as in 4.3.5) of a subtorus of the generic fibre of TR, is a torus over R: this is a local
statement for the étale topology of Spec(R), so we can assume that TR is split and
then we can make use of characters of TR. The same thing remains true for weakly
O-very well positioned families of tensors.

4.3.10. Proposition. With the notations of 4.3.2, if W is a vector space over
Q, then:

a) there is N ∈ N, such that for any prime p not dividing N , the family of tensors
formed by π(g), q̄, and by pi, ri, si and ti, i ∈ I, is strongly Z(p)-very well positioned
with respect to ψ for the group G;

b) for any odd prime p≥ s(g0,W ), the family of three tensors formed by π(g0), B
and B∗ is strongly Z(p)-well positioned for the group G0.

Proof. Let L be a Z-lattice in W such that ψ induces a perfect form ψ:L⊗L → Z.
As the family of tensors of a) is finite, we deduce the existence of a number N ∈ N,
such that for any prime p not dividing N , L ⊗ Z(p) envelopes the family of tensors
of a) with respect to ψ. So a) follows once we show the strongly Z(p)-well positioned
part. We fix a prime p not dividing N , for the case a), respectively an odd prime
p≥ s(g0,W ), for the case b). Let R be a reduced faithfully flat Z(p)-algebra and let
S := R

[
1
p

]
. Let M be a free R-module, with M⊗S = W⊗QS, enveloping the family of

tensors of a) with respect to ψ, respectively enveloping the family of tensors of b). We
have to show that the closure G(M) of GS in GSp(M, ψ) in case a), and respectively
that the closure G0(M) of G0S in GL(M) in case b), are reductive groups over R. We
can assume that R is a local reduced noetherian ring (cf. 4.3.7 4)) (4.3.6 3) as well
as 4.3.7 4) give us the right to assume that R is also integral; but we think it is quite
instructive not to do so). Let m be its maximal ideal.
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Case a). Let g(M) := (g ⊗ S) ∩ gl(M). We have g(M) ⊂ gsp(M, ψ) :=
Lie(GSp(M, ψ)). Let

A := ((gsp(M, ψ)/g(M))⊗R/m)g(M).

(the upper right index refers to the operation of taking the elements annihilated by
g(M)).

Claim 1. We have A = 0.

This results from the following facts.

(a) The fact that the family of tensors (pi, ti, si, ri)i∈I is enveloped by M implies
that the trace form on gi(M) := ri(gl(M)) associated to its representation on
hi(M) := pi(gl(M)) is perfect. So the Casimir element ki of this representation
induces a linear map gl(M) → gl(M).

(b) The fact that q̄ is enveloped by M implies that the linear combination of ki used
in the formation of q̄, induces an endomorphism q: gl(M) → gl(M) such that its
restriction to h(M) := ⊕

i∈I
hi(M) is an isomorphism h(M) ∼→ h(M).

(c) Any element of A is annihilated by q̄ (as q̄ is the endomorphism induced by a
sum of Casimir elements).

A = 0 implies that the Lie subalgebra of gsp(M/mM) centralizing the reduction
of π(g) modulo m, is g(M)/mg(M). This implies that the scheme G(M) has smooth
fibres.

Moreover it is smooth in the R-valued point defining its origin. To check this, let
R0(G(M)) be the ring of the completion of G(M) in the origin, and let R[[g(M)]] be
the ring of formal power series defined by the free R-module g(M). We get a natural
epimorphism i0(R):R[[g(M)]] ³ R0(G(M)). If R is integral, by reasons of dimension,
we get that i0(R) is an isomorphism. As R is reduced, this implies that i0(R) is an
isomorphism: the kernel of i0(R) is included in P[[[g(M)]], for any prime ideal P of R
of codimension zero.

The fact that π(g) is enveloped by M implies that the trace form on g(M)/mg(M)
is perfect and so the Lie algebra of the nilpotent radical of the connected component
of the origin of G(M)×R Spec(R/m) is zero (cf. [Bou1, p. 41]). From this we deduce
easily (cf. [SGA3, vol. 3, p. 12] and [Ti, 3.8.1]) that the connected component of the
origin of any fibre of G(M) is a reductive group scheme. From 3.1.2.1 c) and [Hart,
ex. 4.11 pg. 107] we deduce that all the fibres of G(M) are connected. From this and
the fact that G(M) is smooth in the origin we deduce that G(M) is a smooth scheme
over R.

We conclude that G(M) is a reductive group scheme over R, and so condition
4.3.5 (for reduced rings) is satisfied. This proves a).

Case b). We can assume, cf. 4.3.7 5′), that R is a noetherian excellent strictly
henselian local ring, that R/m is an algebraically closed field, and that G0(M)R0 is a
semisimple group over the open subscheme R0 of Spec(R) defined by the complement
of the maximal point Spec(R/m) of Spec(R). From the properties implied by the
excellence property we need just that R is an N -1 ring (cf. def. of [Ma, 31.A]), i.e.
the normalization Rn of R in its ring of fractions is a finite R-module, and in particular
it is a noetherian ring. As above we can also assume (cf. 4.3.6 3) or 4.3.7 4)) that R
is integral; but we think it is instructive not to do so.
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Part 1. The integrality of π(g0) gives us a direct sum decomposition gl(M) =
g0(M)⊕ g0(M)⊥ and the integrality of B and B∗ implies that the Killing form b(M)
on g0(M) is perfect. Let Aut(g0(M)) be the group scheme (of finite type) over R
defined by the Lie algebra automorphisms of g0(M), and let G0(M)ad be the connected
component of the origin of Aut(g0(M)), defined as the closure in Aut(g0(M)) of the
connected component of the origin of the fibres of Aut(g0(M)) over points of Spec(R)
of codimension zero.

Claim 2. G0(M)ad is a subgroup of Aut(g0(M)). It is a semisimple adjoint
group over R, having g0(M) as its Lie algebra.

Proof. We first remark that for any algebraically closed field k̄ which is an R-
algebra, Lie(Aut(g0(M))k̄) is the Lie algebra of the differentiations of g0(M)⊗ k̄; the
same argument -based on the fact that the Killing form of g0(M) ⊗ k̄ is perfect- as
in the characteristic zero case, gives us Lie(Aut(g0(M)k̄)) = g0 ⊗ k̄. So, by reasons
of dimension, the tangent space in the origin of G0(M)ad is also g0 ⊗ k̄. This implies
that Aut(g0(M)) is smooth (over R) in the origin (the argument for this is the same
as the one used in Claim 1, in a similar situation) and that every fibre of it is a smooth
group, which is the extension of a semisimple adjoint group by a finite étale group.
The finite étale group corresponds to outer automorphism of the Lie algebra of the
semisimple part of the extension.

As R is a strictly henselian ring, we deduce from the smoothness of Aut(g0(M))
in the origin, by using translations, that Aut(g0(M)) is smooth over R in any point
of the connected component of the origin of a fibre of it. All these points belong to
G0(M)ad, and by reasons of dimension, they are smooth points of G0(M)ad.

But G0(M)ad has all its fibres connected: an inner automorphism of a semisimple
Lie algebra can not specialize to an outer automorphism. To see this, we first remark
that g0(M) is defined over a subring of R which is finitely generated over Z. So
everything comes down to checking this in the case of a complete DVR, having an
algebraically closed residue field. If R is such a ring, then the open subscheme of
G0(M)ad defined by putting together the connected component of the origin of its
fibres is a semisimple group, and so everything results from 3.1.2.1 c).

So G0(M)ad is a smooth subgroup of Aut(g0(M)) and has connected fibres. So
G0(M)ad is a semisimple group over R (cf. the above statement on the fibres of
Aut(g0(M))). We have Lie(G0(M)ad) = Lie(Aut(g0(M)) = g0(M). G0(M)ad is an
adjoint group as its fibres over points of Spec(R) of codimension zero are. This ends
the proof of claim 2.

Part 2. Let g0(M) = t ⊕
α∈Φ

gα be a Weyl direct sum decomposition of g0(M) with

respect to a system of roots Φ associated to the Lie algebra t of a maximal split torus
T ad of G0(M)ad (T ad exists as R is a strictly henselian local ring). For any α ∈ Φ
let Ga,α be the subgroup of G0(M)ad having gα as its Lie algebra. The inequality
p≥ s(g0,W ) implies that for any α ∈ Φ, every x ∈ gα, as an endomorphism of M ,
satisfies xp = 0. Let α be an arbitrary emlement of Φ. Let V (gα) be the affine scheme
over R defined by the R-module gα (for an R-algebra R1, V (gα)(R1) = gα ⊗ R1).
There is a natural identification V (gα) = Ga,α.

The homomorphism exp:V (gα) → GL(M), defined on an R-valued point x ∈ gα

by exp(x) =
∑p−1

i=0
xi

i! (the above sum is an isomorphism of M as x is a nilpotent en-
domorphism of M), is an isomorphism: at the Lie algebra level we get an isomorphism
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Lie(V (gα)) ∼→ gα. We deduce that Ga,α(R) ⊂ GL(M)(R) and so the groups Ga,α can
be considered as subgroups of GL(M).

We treat first the special case when R is a complete DV R with an algebraically
closed residue field. Let Gsc

0 S be the semisimple simply connected group cover of
G0(M)adS . Using [Ti, 3.1.1] we get that the subgroup of Gsc

0 S(S) generated by the
subgroups Ga,α(R) is hyperspecial. It is mapped under the composite homomorphism
Gsc

0 S→ G0(M)S → GL(M)S into GL(M)(R). From 3.1.2.1 a) and c) we deduce that
G0(M) is a reductive (and so semisimple) subgroup of GL(M).

We come back to the general case. The special case implies directly that:
d) The reduced subscheme of the connected component of the origin of any fibre

of G0(M) is a semisimple group scheme.

Claim 3. There is a subtorus T of GL(M) having t as its Lie algebra.

Proof. First we remark that TS is well defined (it is the inverse image of T ad
S

under the natural homomorphism G0(M)S → G0(M)adS ). So TS is a split torus. Let
C be the set of characters of TS through which it acts on M ⊗ S. We consider the
direct sum decomposition M ⊗S = ⊕γ∈CMγ

S associated to the faithful representation
TS ↪→ GL(M ⊗S). So TS acts on Mγ

S through the character γ. We need to show that
the above direct sum decomposition of M ⊗ S extends to a direct sum decomposition
of M , i.e. that the natural R-linear map

iT :⊕γ∈CMγ → M,

with Mγ := M ∩Mγ
S , is an isomorphism.

To see this, let B(Φ) be a basis of roots of Φ. Let α ∈ B(Φ). Let sl2(α) be the
Lie subalgebra of g0(M) generated by gα and g−α. As g0(M) is the Lie algebra of
the adjoint group G0(M)ad, and as p > 2, we deduce that it is an sl2 Lie algebra over
R; so the notation is justified. As an R-module, it is isomorphic to R3. We choose
a standard basis {hα, xα, yα} of it. So xα ∈ gα, yα ∈ g−α, hα ∈ [gα, g−α], and the
formulas hα = [xα, yα], [hα, xα] = 2xα and [hα, yα] = −2yα are satisfied. hα is a
semisimple element of t. Over S it generates the Lie algebra of a subtorus TSα of
GL(M ⊗ S). It is a split torus, as it is a subtorus of the split torus TS .

The key fact is: as p≥ s(g0,W ), we deduce that the eigenvalues of hα, as a
semisimple endomorphism of M , are integers in the set A(α) = {−p+1,−p+2, ..., p−
1}. For any i ∈ A(α) let M(i) be the R-submodule of M formed by elements on which
hα acts as multiplication with i. So if any two such integers are not congruent mod
p (and so they are not congruent modulo m) (this is the case if p > 2s(g0,W )) then
M = ⊕i∈A(α)M(i). To see that this remains true even when two distinct eigenvalues
are congruent mod p we have to make use of xα and yα.

We need to show that for any i ∈ {1, ..., p − 1}, if v(p − i) ∈ M(p − i) and
v(−i) ∈ M(−i) are such that

(1) v(p− i) + v(−i) ∈ mM,

then v(p− i) ∈ mM(p− i) and v(−i) ∈ mM(−i). We can assume that p− i≥ i. We
prove this by induction on i ∈ {1, ..., p−1

2 }.
So let us first treat the case when i = 1. Applying first xα to the relation (1)

a couple of times v(−1) gets annihilated. Applying then yα to the result the same
number of times (to bring the things back) we get something which is a multiple of
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v(p − 1) by an integer which is non-zero mod p. But what we get is in mM . In
fact it is in mM(p− 1): we get this by applying first p− 1 times xα to (1) and then
applying (backwards) p − 1 times yα to (1). So v(p − 1) ∈ mM(p − 1). Similarly
we get that v(−1) ∈ mM(−1). We deduce that M(p − 1) and M(−1) are direct
summands of M , and so they are free (R being a local ring). For j ∈ {1, ..., p− 1} let
Mj(p−1) = xj

α(M(p−1)). It is a submodule of M(p−1−2j). Let M0(p−1) := M(p−1)
and let

M̃(p− 1) := ⊕p−1
j=0Mj(p− 1).

Using the fact that p is greater then all eigenvalues of the endomorphism hα of M
we deduce that yα(Mi(p − 1)) = Mi−1(p − 1), ∀i ∈ {1, ..., p − 1}. This implies that
M̃(p− 1) is a direct summand of M , and so a free R-module.

To proceed further on we just have to repeat everything for i = 2 and for the
quotient sl2(α)-module M/M̃(p − 1). Then we repeat everything for i = 3 and the
new sl2(α)-module which is the quotient of M/M̃(p − 1) (by a similarly constructed
M̃(p− 2) submodule), etc. The induction becomes obvious.

We conclude that M is a direct sum of submodules on which hα acts diagonally.
This implies that TSα extends to a subtorus Tα of GL(M).

Let T̃ :=
∏

α∈B(Φ) Tα. As the subtori Tα of GL(M), α ∈ B(Φ), commute one
with each other, we get a group homomorphism iT̃ : T̃ → GL(M), obtained by taking
the product of homomorphisms Tα ↪→ GL(M). Over S, iT̃ factors through TS . Let T

be the quotient of T̃ by the finite flat group subscheme (over R) of T̃ , which over S

is the kernel of the factorization T̃S → TS ; this finite flat group scheme is the kernel
of iT̃ . The notation is justified, i.e. the fibre of T over S is indeed the torus TS we
previously considered. We get a homomorphism T → GL(M). T is a split torus over
R as R = Rsh.

The group of characters of T is the same as the group of characters of TS . So T
acts on M through the characters γ ∈ C, achieving a direct sum decomposition of M
on submodules on which it acts diagonally through the characters of C. This proves
that iT is an isomorphism and that T is a subtorus of GL(M). This ends the proof
of claim 3.

Let now
U(M) := T ×

∏

α∈Φ

Ga,α.

Let uM :U(M) → GL(M) be the morphism defined by taking the product of the
inclusions of the factors of U(M) in GL(M). It factors through G0(M). We have:

e) uM is injective on points with values in fields (i.e. it is radicial);
f) In any R/m-valued point of the group scheme U(M), uM induces an injection

at the level of tangent spaces, producing a surjection at the level of cotangent spaces;
g) At the level of completions of local rings (defined by an R/m-valued point of

U(M)), uM induces an epimorphism.
e) is a direct consequence of d) above (cf. [Bo, 14.14] and the particular case).

As over R/m uM is a locally closed immersion (cf. the special case), using translates
(U(M) being smooth over R), it is enough to check part f) in the origin of U(M).
But in this case it results from the fact that the tangent space of U(M) in the origin
Spec(R) ↪→ U(M) is g0(M) (cf. the definition of the factors of U(M) and of the
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expression of their Lie algebras), and from the fact that g0(M) is a direct summand
of gl(M) (as π(g0) is enveloped by M). Part g) is a direct consequence of f) and of
the fact that R/m is an algebraically closed field.

We consider the simply connected group cover G0(M)sc of G0(M)ad. T fixes
π(g0), as TS does. So T acts under the adjoint representation on g0(M). We get a
homomorphism mT :T → Aut(g0(M)). As Aut(g0(M)) is a subgroup of GL(g0(M)),
the kernel of mT is the same as the kernel of the representation of T on g0(M).
But any linear representation of a split torus (over R) is a direct sum of irreducible
one-dimensional representations (associated to characters). So ker(mT ) is a finite flat
group scheme over R. The quotient of T by it is a subtorus of GL(g0(M)), and so a
subtorus of G0(M)ad: any torus over a field is a geometrically connected variety. This
subtorus of G0(M)ad is nothing else but the subtorus T ad we considered in the first
paragraph of Part 2.

The inverse image of T ad under the natural isogeny G0(M)sc → G0(M)ad is a
maximal torus T sc of G0(M)sc. We get an isogeny isc:T sc → T ad of split tori over R.
Its kernel is the center of G0(M)sc. Moreover isc factors through T , as this happens
over S. We get another isogeny of split tori T sc → T . Let CT be its kernel. It is a
finite flat group scheme over R, contained in the center of G0(M)sc. Let G̃0(M) be
the semisimple group over R which is the quotient of G0(M)sc by CT . From the very
construction of CT we get that G̃0(M)S is G0(M)S .

We want to show that G0(M) is G̃0(M). We have a morphism l0: G̃0(M)S →
G0(M). We view it as a rational map from G̃0(M) to G0(M). We also view it, keeping
the same notation, as a rational map from G̃0(M) to GL(M).

We have a canonical homomorphism G̃0(M) → G0(M)ad. U(M) is an open
subscheme of G̃0(M): each factor of U(M) (i.e. T and eachGa,α, α ∈ Φ) are subgroups
of G̃0(M). This is obvious for Ga,α, i.e. the subgroup Ga of G̃0(M), corresponding to
an element α ∈ Φ, is mapped isomorphically into the subgroup Ga,α of G0(M)ad (we
are dealing only with central isogenies). For T this is obvious from its construction.
So we can apply [SGA3, vol. 3, p. 172]; we get:

h) The rational map l0 is defined in codimension 1.

We first assume that R is a normal ring, i.e. that R = Rn. From h) and from
[BLR, th. 1 of 4.4] we deduce that l0 can be extended to a morphism l1: G̃0(M) →
GL(M). l1 is a group homomorphism, as G̃0(M) is a smooth scheme over R, and as
the fibre of l1 over S is a group homomorphism. From the special case we deduce that
all the fibres of l1 are closed immersions. But l1 is proper (as its fibre over S is proper,
this results from the valuative criterion of properness, cf. 3.1.2.1 c)), and so it is a
finite morphism. From Nakayama’s lemma we deduce that l1 is a closed immersion,
and so, G̃0(M) = G0(M). This ends the proof in the case R = Rn.

We would like to point out that if R is as in the special case (i.e. it is a complete
DVR with an algebraically closed field), from 3.1.2.1 c) we get directly that l1 is a
closed embedding. This represents a second proof of the special case without reference
to [Ti, 3.1.1], but based on the elementary result [BLR, th. 1 of 4.4]: the facts e-g)
above, obtained based on d) above, were not needed to get h).

We now come back to the genaral case (i.e. we do not assume anymore that
R = Rn). From the fact that the result is known for Rn, and from the fact that Rn is a
finite R-module, we deduce the existence of a finite morphism G̃0(M)Rn → GL(M). It
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factors through G0(M), producing a finite dominant morphism G̃0(M)Rn
→ G0(M).

We deduce that:
i) The reduced scheme defined by G0(M)R/m is a semisimple group having as its

Lie algebra g0(M)⊗R/m.
This implies that the localization of uM in the R-valued point defining the origin of

GL(M), is a finite morphism. From g) above we deduce that it is a closed embedding.
This implies that around the origin, uM is a closed embedding. We deduce that G0(M)
is smooth in the origin. As any R/m-valued point of U(M) has a lift to R (as R is a
strictly henselian ring), using translations with R-valued points of G0(M), we deduce
from i) above, that G0(M) is smooth in all its R/m-valued points. As G0(M)R0 is
smooth over R0, we deduce that G0(M) is a smooth scheme over R, and so it is a
subgroup of GL(M). From the fact that G0(M)R0 is a semisimple group over R0, and
from i) above, we get that G0(M) is a semisimple group over R. This ends the proof
of the case b) and so of the proposition.

4.3.10.1. Remarks. 1) 4.3.10 b) remains true if instead of Q (and Z(p)) we
work with an arbitrary field K of characteristic zero, which is the field of fractions of
a DVR O of mixed characteristic (and with O), and if, instead of π(g0), we work with
any other projector π0 of gl(W ) on g0 centralized by g0 (the role of π(g0) was just to
produce a direct sum decomposition gl(W ) = g0 ⊕ g⊥0 ).

Moreover, the condition p > 2 is not needed: If p = 2 = s(g0,W ) then 4.3.10 b)
remains true as it can be easily checked. Of course in the majority of cases for p = 2
we get a non-perfect Killing form on g0(M). However:

1′) Part 2 of the above proof of 4.3.10 b) is a result independent of Part 1 (we
just needed that there is an adjoint group over R whose Lie algebra is g0(M)). It is a
result on representations of a Lie algebra of an adjoint group, and so it remains true
even if the Killing form (or the trace form) on g0(M) is not perfect.

Part 1 of the above proof of 4.3.10 a) is a result on the existence of adjoint groups
having a prescribed Lie algebra which is subject to the condition that its Killing form
is perfect.

2) 4.3.10 a) remains true if instead of Z we work with any other Dedekind domain
D of characteristic zero having an infinite number of maximal ideals (the number N
being replaced by a non-zero ideal of D).

3) 4.3.10 admits versions in positive characteristic. Of course, some precautions
have to be taken. For instance the restriction of the trace form on gl(W ) to g0 (or g)
might not be perfect. Concentrating just on 4.3.10 b) we can state:

4.3.10.2. With the notations of 4.3.4, we assume that there is a projection π0 of
gl(W ) on g0, annihilated by g0, and that the Killing form on g0 is perfect. If s(g0,W )
is not greater than the characteristic p of the residue field of O, if this residue field
is perfect, and if p > 2, then the family of tensors formed by π0, B and B∗ (as the
Killing form on g0 is perfect, we can define B and B∗ as in 4.3.2) is strongly O-well
positioned for the group G0.

The proof of this is entirely analogous to the proof of 4.3.10 b). We just have to
check -it is easy- that the condition s(g0,W )≤ p can be used in the same manner as
in the proof of 4.3.10 b) (instead of e) of 4.3.7 4) we have to use d) and f) of 4.3.7
4)). It can be easily checked that the condition on the residue field being perfect is
not needed.
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4.3.10.3. The family of tensors of 4.3.10 a) is not so suited for explicit compu-
tations, while the one of 4.3.10 b) is. The advantage offered by the family of tensors
of 4.3.10 a) is: it cuts out of gsp(M, ψ) the Lie algebra of the group G(M) (cf. Claim
1 of 4.3.10) by using only one tensor π(g). However we do not use it in the rest of
the paper. There are variants of 4.3.10 a) when GSp(W,ψ) is replaced by another
reductive subgroup of GL(W ).

4.3.11. Example. We consider the case of Shimura varieties of PEL type, to
emphasize that the (incipient) idea of using Z(p)-very well positioned families of tensors
goes back to [LR]. We use the situation and notations used in [Ko, ch. 5]. For simplicity
we denote the nondegenerate Q–valued alternating form on V by ψ.

Claim. The elements of OB form a family of tensors which is strongly Z(p)-very
well positioned with respect to ψ for the group G.

Proof. The conditions imposed on B imply that the group scheme over Z(p) de-
fined by the invertible elements of OB is reductive.

We get that the group scheme C over Z(p) defined as the centralizer of OB in
GL(L) is reductive. This is a property of linear representations of semisimple algebras
over discrete valuation rings of mixed characteristic. In our case, passing from Z(p) to
W (F), OB ⊗W (F) is a finite product of algebras of the form End(N), with N a finite
free W (F)-module. So, inside V ⊗QW (F)

[
1
p

]
we can find a W (F)-lattice M such that M

is a direct sum of irreducible representations of OB ⊗W (F) (and so M/pM is a direct
sum of irreducible representations of OB ⊗ F). Using the fact that the determinants
(as defined in loc. cit.) of OB with respect to L ⊗W (F) and with respect to M are
the same, we deduce that the two representations of OB ⊗ F on M/pM and on L⊗ F
are isomorphic. So C is indeed a reductive group scheme over Z(p). It is defined by
the invertible elements of a Z(p)-order of a semisimple Q–algebra.

Moreover there is n ∈ N such that 1
n times the bilinear form b on Lie(C) induced

by the trace form Tr on gl(L) is perfect. This can be read out from the end of [Sh,
2.1]. For instance, with the terminology and notations of the loc. cit., we can take
n = m

2 if L is of type I, II or III, etc. Here we use that B is a simple Q–algebra.
The fact that OB is self-dual with respect to ψ implies that Lie(C) = c ⊕ c⊥,

with c := Lie(C) ∩ Lie(GSp(L,ψ)) and with c⊥ := Lie(C) ∩ Lie(GSp(L,ψ))⊥ (here
Lie(GSp(L,ψ))⊥ refers to perpendicularity with respect to the trace form). So the
closure GZ(p) of the connected component G of the origin of the intersection of CQ
with GSp(V, ψ) in GSp(L,ψ) is a reductive group scheme over Z(p).

To see this let G be the connected component of the origin of the special fibre of
GZ(p) . The above direct sum decomposition of Lie(C) implies that the dimension of
Lie(G) is equal to the dimension of G, and so G is a smooth group over Fp. So GZ(p)

is smooth over Z(p) in the points of G. From the fact that 1
nb is a perfect form on

Lie(C), we deduce that G is a reductive group over Fp. This results from the fact that
the Lie algebra n of the nilpotent radical of G is zero as it is included in the null space
of the restriction mod p of the symmetric bilinear form 1

nb: [Bou1, p. 41] implies
that n is perpendicular to c, while from the definition of b and c⊥ we get that n is
perpendicular to c⊥; here perpendicularity is with respect to 1

nb. From 3.1.2.1 c) we
deduce easily that GZ(p) is a reductive group over Z(p) (i.e. its special fibre is G).

Using 3.1.2.1 a) and c), and the determinant condition of [Ko, ch. 5], the same
things remain true if we work with an arbitrary reduced ring R which is faithfully flat
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over Z(p), with a free R-module M which satisfies M
[
1
p

]
= W ⊗ R and envelopes the

elements of OB with respect to ψ (i.e. with the same arguments we get that the group
scheme over R defined by the invertible elements of B ⊗Z(p) R is reductive, that its
centralizer in GL(M) is a reductive group scheme CR over R, and that GR[1p] extends
to a reductive subgroup GR of GL(M)). This ends the proof of the claim.

4.3.12. Remark. We start with an injective map (G,X) ↪→ (GSp(W,ψ), S).
Let B we the subalgebra of End(W ) formed by elements fixed by G; it is a semisimple
Q–algebra. The connected component G1 of the origin of the subgroup of GSp(W,ψ)
fixing B contains G, and we get an injective map (G,X) ↪→ (G1, X1) (with X1 de-
termined naturally by X). (G1, X1) defines a Shimura variety (it is easy to see that
the axiom SV3 of 2.3 is satisfied) of PEL type (cf. their def.; see [Mi4, p. 161]). We
call it the PEL-envelope of (G,X) with respect to the injective map f . The tensors
of degree 2 does not allow us to distinguish (G,X) from (G1, X1). So we were forced
in 4.3.10 to make use of tensors of degree 4, to be able to conclude that the closure
of G in a GL(L(p)) (for some particular Z(p)-lattices L(p) of W ) is a reductive group
scheme over Z(p).

4.3.13. The case of a torus. We consider a situation of the form T ↪→ GL(M)
with T the connected component of the origin of the center of a reductive subgroup G
of GL(M), and with M a free module of finite rank over a discrete valuation ring O.
Let B be the subalgebra of End(M), formed by endomorphisms commuting with G.
Then B forms a family of tensors which is strongly O-very well positioned for T . To
see this we can assume (cf. 4.3.7 5′)) that O is a strictly henselian DVR. Then T is a
split torus and M = ⊕α∈JMα, with J a set of characters of T , and with T acting on
Mα through the character α (∀α ∈ J). Now the subfamily of B (cf. 4.3.7 7)) formed
by the projections of M on Mα (α ∈ J) (they are fixed by G) associated to the above
direct sum decomposition, is obviously strongly O-very well positioned for T .

4.3.14. Remark. Let G0 ↪→ G ↪→ GSp(W,ψ) be injective group homomor-
phisms between reductive groups over Q. Let p be a rational prime. We assume the
existence of a family of tensors (vα)α∈J0 in spaces of the form W⊗m ⊗W ∗⊗n which
is Z(p)-very well positioned with respect to ψ for the group G. We assume also the
existence of a Z(p)-lattice L enveloping the above family of tensors with respect to ψ
and such that there is a torus T of the closure GZ(p) of G in GSp(L,ψ) having as its
centralizer in GZ(p) , the closure of G0 in GSp(L,ψ).

Fact. The family of tensors (vα)α∈J0 can be enlarged (by adding only tensors of
degree 2) to a family of tensors (vα)α∈J, with J ⊃ J0, which is Z(p)-very well positioned
with respect to ψ for the group G0.

This is a direct consequence of 4.3.13. A similar result can be stated for strongly
or weakly Z(p)-very well positioned families of tensors.

4.3.15. Remark. Let O be a DVR and let (M, ψ) be a symplectic space over
its field of fractions K. Let O1 be a DVR which is an étale cover of O and let K1 be
its field of fractions. Let G be a reductive subgroup of GSp(M, ψ). If there is a family
of tensors (sα)α∈J1 in spaces of the form M⊗m ⊗M∗⊗n ⊗O1 which is strongly (resp.
weakly) O1-very well positioned for the group GK1 , and if there is an O-lattice L of M
such that L⊗O1 envelopes the above family of tensors with respect to ψ, then there
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is a family of tensors (wβ)β∈J of degree not bigger than the maximal degree of the
tensors of (sα)α∈J1 , situated in spaces of the form M⊗m ⊗M∗⊗n, which is enveloped
by L and strongly (resp. weakly) O-very well positioned with respect to ψ for G. This
is so due to the fact that the tensors of L⊗m⊗L∗⊗n⊗O1 fixed by the reductive group
GO1 , the closure of GK1 in GSp(L⊗O1, ψ), are linear combinations with coefficients
in O1 of tensors of L⊗m ⊗ L∗⊗n fixed by the reductive group GO, the closure of G
in GSp(L,ψ). We can take the family (wβ)β∈J of tensors showing up in such linear
combinations of the tensors of (sα)α∈J1 . The same thing remains true when we do not
work in the relative context (i.e. when we replace GSp(M, ψ) by GL(M) and there is
no alternating form ψ on M).

4.3.15.1. 4.3.15 remains true if instead of O1 we work with the completion of O
(the argument is the same).

4.3.16. The relative PEL situation. Let O be a discrete valuation ring of
mixed characteristic and let K be its field of fractions. Let M be a free module of
finite rank over O. Let G be a reductive subgroup of GL(M) and let L ⊂ End(M) be
a semisimple algebra over O. So L⊗Osh is a product of algebras of the form End(P )
with P a free module over Osh. We assume that the subgroup C(L) of GL(M) fixing
L is a reductive group over O and that the connected component G0 of the origin of
C(L) ∩ G (defined as the closure in G of the connected component the origin of the
generic fibre of C(L) ∩G) is a reductive group over O, containing the maximal torus
of the center of G. We assume that the bilinear form on g := Lie(Gder) induced by
the trace form Tr on End(M) is perfect, and that π(g) leaves invariant Lie(C(L)).
We also assume that one of the following two conditions is satisfied:

1) There is a torus T of G such that G0 is contained in the centralizer G0 of
T in G, Gab

0 = G0ab and the inclusion Gder
0 ↪→ G0der becomes over Osh the diagonal

embedding of Gder
0 in a product of a finite number of copies of Gder

0 , which are permuted
transitively (under conjugation) by the invertible elements of L⊗Osh;

2) A rational multiple of Tr restricts to a perfect form on Lie(C(L)).
Let (sα)α∈J be a family of tensors of the tensor algebra of M ⊕ M∗ fixed by

G, which is enveloped by M and is O-very well positioned for G. Then the family
of tensors formed by (sα)α∈J, π(g), and all the tensors of degree 2 fixed by G0 and
enveloped by M (the elements of L are examples of such tensors), is O-very well
positioned for G0. The proof of this presents no difficulty, being just an extended
version of 4.3.11 and 4.3.14. The same remains true in a strongly or weakly context.

We refer to the above situation as the relative situation defined by the triple
(G,L, T ) (resp. by the pair (G,L)) if condition 1) (resp. condition 2)) above is
satisfied. When 2) above is satisfied we get the relative PEL situation generalizing
4.3.11. We would like to remark that in 4.3.11 the tensor π(g) is still present in
disguise: cf. the connection between ψ and OB (see [Ko, ch. 5]).

4.3.17. Remark. If in 4.3.4 we have W = W1 ⊕ W2 and ψ = ψ1 ⊕ ψ2 (with
(Wi, ψi) a symplectic space over K), if Hi is a reductive subgroup of GSp(Wi, ψi),
and if (sα)α∈Ji is a family of tensors of the tensor algebra of Wi⊕W ∗

i which is O-well
positioned with respect to ψi for Hi, i = 1, 2, then the family of tensors (sα)α∈J1∪J2∪{1}
(of the tensor algebra of W ⊕W ∗; here s1 is the projection of W on W1 having W2 as
its kernel) is O-well positioned with respect to ψ for H := H1 ×H2. The same thing
remains true for O-very well positioned families of tensors, or in a context without
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ψ, or in a strongly or weakly context, or if H is replaced by a reductive group H̃,
obtained from H in the same manner as we got G3 from G1×G2 in Example 3 of 2.5.

5. The basic result. We present the standard procedure for proving the exis-
tence of integral canonical models of Shimura varieties of Hodge type.

5.1. Theorem. Let (G,X) define a Shimura variety of Hodge type and let p > 2
be a prime such that G is unramified over Qp. We assume that the pair (G,X) satisfies
the following condition with respect to the prime p:

(*) There is an injective map f : (G,X) ↪→ (GSp(W,ψ), S) such that there is a
family of G-invariant tensors (vα)α∈J0 in spaces of the form (W ⊗ W ∗)⊗m

(with m ∈ N) and of degree not bigger than 2(p − 2), which is Z(p)-very well
positioned with respect to ψ for the group G .

Then Shp(G,X) exists and has the EEP.

Proof. For the sake of clarity we divide the proof into steps.

5.1.1. Step 0. Preliminaries. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective
map for which there is a family of G-invariant tensors in spaces of the form (W ⊗
W ∗)⊗m and of degree not bigger than 2(p − 2), which is Z(p)-very well positioned
with respect to ψ for the group G. We fix such a family (vα)α∈J0 and a prime v of
E := E(G,X) dividing p.

Let L be a Z-lattice of W such that Lp := L⊗Z(p) envelopes the family (vα)α∈J0

and we have a perfect form ψ:L ⊗ L → Z. This implies (cf. def. 4.3.4) that the
closure GZ(p) of G in GSp(Lp, ψ) is a reductive group scheme over Z(p). So the group
H := {g ∈ G(Qp) | g(Lp ⊗ Zp) = Lp ⊗ Zp} is a hyperspecial subgroup of G(Qp).
Due to 3.2.7 it is enough to work with (G,X, H, v). Let Kp := {g ∈ GSp(W,ψ)(Qp) |
g(L⊗ Zp) = L⊗ Zp}. It is a hyperspecial subgroup of GSp(W,ψ)(Qp).

The fact that G is unramified over Qp implies that v is unramified over p [Mi3,
4.7]. Let F := k(v). Let M be the extension to O(v) of the integral canonical model
Shp(GSp(W,ψ), S) of (GSp(W,ψ), S, Kp, p) (cf. 3.2.9). Let N be the normalization of
the closure of ShH(G,X) in M. Let V0 := W (F) and let K0 be its field of fractions.
Let N̄ := NV0 and M̄ := MV0 .

We claim that N̄ is formally smooth over V0. For this it is enough to show that
the completion of the local ring of N̄ in a point Spec(F) → N̄ is V0[[X1, . . . , Xd]], with
d := dim X. This is achieved at the end of Step 5 (of 5.5 below).

5.1.2. Step 1. The moduli setting. We start with an arbitrary point

y: Spec(F) ↪→ N̄.

From the definition of N̄ we deduce (cf. 3.4.2) the existence of a morphism

mV : Spec(V ) → N̄

lifting y, with V the normalization of V0 in a finite field extension K of K0.
Using the interpretation of Shp(GSp(W,ψ), S) as a moduli scheme (working with

the lattice L) (see 3.2.9 and 4.1), we get a universal principally polarized abelian
scheme (A,PA) over Shp(GSp(W,ψ), S) (of relative dimension equal to half the di-
mension of W over Q), having (compatibly) level-N symplectic similitude structure
for any N ∈ N satisfying (p,N) = 1. Let (AM,PM) and (AN,PN) be its pull back to
M and respectively to N.
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mV gives birth to a principally polarized abelian scheme (A, pA) over V , having
(compatibly) level-N symplectic similitude structure for any N ∈ N satisfying (p,N) =
1. We fix an embedding j: K̄ ↪→ C. We still denote by j its restriction to K, V , K0 or
V0. The morphism Spec(K̄) → ShH(G,X)K0 = NK0 induced by mV can be lifted to
a morphism u: Spec(K̄) → Sh(G,X)K0 such that the point x ∈ Sh(G,X)(C) induced
from u through the inclusion j, is of the form [h, a] with the p-component of a equal
to one (i.e. a ∈ G(Ap

f ) as we have Af = Ap
f × Qp). This results from the fact that

G(Qp) = G(Q)H [Mi3, 4.9].
The subgroup of GSp(W,ψ) fixing (vα)α∈J0 might not be G. Let (vα)α∈J, with

J ⊃ J0, be an enlarged family of tensors such that G is the subgroup of GSp(W,ψ)
fixing them. If J \ J0 is finite (we can assume this, cf. [De3, 3.1], but it is irrelevant
for what follows), then the family of tensors (vα)α∈J is essentially finite.

We think of Sh(G,X)C as the moduli scheme associated to the injective map f ,
the lattice L and the family of tensors (vα)α∈J (cf. 4.1). Using d), e) and f) of 4.1 for
the point x, we deduce that:

a) the isogeny class of AC is given by the pair (W,h);

b) AC has a family (tα)α∈J of Hodge cycles, the Betti realization of tα being vα;

c) the linear map Vf (AC) = W ⊗Af
a−1

−−→ W ⊗Af induces a similitude isomorphism
(H1(AC,Z)⊗ Ẑ, pA) ∼→ (L⊗ Ẑ, ψ) (pA being the polarization of A).

As a ∈ G(Ap
f ) we deduce that H1(AC,Z) ⊗ Zp = L ⊗ Zp (this identification is

unique up to an isomorphism of L⊗Zp induced by an element of G(Z(p)) := G(Q)∩H)
and that (under this identification) pA = β(p)ψ, with β(p) ∈ Gm(Z(p)). Let

H1
ét := H1

ét(AC,Zp) = H1
ét(AK̄ ,Zp);

it is identified with L∗ ⊗ Zp. So there is a family of tensors (vα)α∈J in spaces of the
form (H1

ét ⊗H1∗
ét )⊗m ⊗Qp such that:

(5.1.3) ∀α ∈ J, vα is the p-component of the étale component of tα.

(5.1.4) There is a cycle ψ̃:H1
ét⊗H1

ét → Zp(−1), which is a perfect alternating form (it
comes from the polarization of the Q–Hodge structure on W ∗ = H1(AC,Q)
induced from the Q–Hodge structure on W defined by h). The cycle ψ̃ differs
from the perfect alternating form p̃V :H1

ét ⊗ H1
ét → Zp(−1) (induced by the

principal polarization pA) just by multiplication with a Zp-unit. It is fixed by
the Galois group Gal(K̄/K).

(5.1.5) For any integral ring R which is faithfully flat over Zp, and for every free
R-module MR satisfying MR

[
1
p

]
= H1

ét⊗Zp
R

[
1
p

]
, and enveloping the family of

tensors (vα)α∈J0 with respect to ψ̃, the closure of GR[1p] in GSp(MR, ψ̃) is a
reductive group over Spec(R).

(5.1.6) The subgroup of GSp(H1
ét ⊗Qp, ψ̃) fixing the family (vα)α∈J is exactly GQp .

(5.1.7) The Galois group Gal(K̄/K) fixes the tensors (vα)α∈J.

For 5.1.5-6 we think of G as a subgroup of GL(W ∗). 5.1.5 results from 4.3.5 and
4.3.6 1) as the family (vα)α∈J0 is Z(p)-well positioned with respect to ψ for the group
G. 5.1.3-4 and 5.1.6 are trivial.
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5.1.8. 5.1.7 results from the fact that the family (tα)α∈J of Hodge cycles of AC is
defined over K: from the fact that the abelian variety A over V has level-N structure
for any N ∈ N relatively prime to p, we deduce that the l-components of the étale
components of the Hodge cycles of this family are defined over K (here l is an arbitrary
prime different from p).

5.2. Step 2. Crystalline machinery.

For 5.2.1-10 and 5.2.13-14 we follow closely [Fa3]. The new things are 5.2.1.1 and
the use of the ring R̃e.

5.2.1. Let π be a uniformizer of V . As V is totally ramified over V0, there is an
Eisenstein polynomial fe(T ) ∈ V0[T ] of degree e := [K : K0] such that fe(π) = 0 is a
minimal equation for π over V0. Denoting R := V0[[T ]], we get V = R/feR.

Let Se be the subring of K0[[T ]] generated by R and divided powers fn
e

n! , n ∈ N. As
pn

n! ∈ R, ∀n ∈ N, and as fe is an Eisenstein polynomial, this is the same as the subring
of K0[[T ]] generated by R and divided powers (T e)n

n! , n ∈ N. Let Re be the p-adic
completion of Se and let R̃e be the completion of Se with respect to the (decreasing)
filtration given by its ideals In = I [n], n ∈ N ∪ {0}, where I := (p, fe(T )) = (p, T e).
So R̃e is the projective limit of artinian rings Se/In, n ∈ N. We recall that I [n] is the
ideal generated by elements of the form β

a1
1

a1!
. . .

βam
m

am! , with m,a1, ..., am non-negative
integers such that a1 + · · ·+ am ≥ n, and with β1, . . . , βm ∈ I.

We get that the V0-algebra R̃e (resp. Re) is contained in K0[[T ]] and consists of
power series Σn≥ 0anTn such that the sequence of numbers bn = an

[
n
e

]
!, n ∈ N ∩ {0},

is integral, i.e. bn ∈ V0, ∀n ∈ N ∪ {0}, (resp. it is integral and convergent to zero).
Here we used p > 2.

Let Φ be the Frobenius of Se, Re or R̃e extending the Frobenius automorphism of
V0 and such that Φ(T ) = T p. A decreasing filtration is defined on Re and R̃e by the
rule: For m ∈ N∪{0}, Fm(Re) is the ideal of Re obtained as the p-adic completion of
the ideal of Se generated by divided powers fn

e

n! with n ≥ m, while Fm(R̃e) = ImR̃e.
We have ring epimorphisms Se ³ V0, Re ³ V0, R̃e ³ V0 defined by the rule

Σn≥0anTn → a0. We have also a ring epimorphism R̃e ³ V , sending T to π.

5.2.1.1. Remark. Se/pSe is a local ring with the property that any element of
its maximal ideal is nilpotent. Its residue field is F. So any reductive group over Se is
a split group, and so any reductive group over Re is also a split group.

5.2.2. Keeping the notations of 5.1, let (M, ΦM ,∇) be the Frobenius crystal over
Re defined by taking the dual of the Lie algebra of the universal vector extension of
the abelian variety A (or of the p-divisible group associated to A) (see [Fa3]).

M is a free Re-module of dimension dimRe(M) = dimQ(W ) endowed with an
Re-submodule F 1(M). ∇ is an integrable connection (nilpotent mod p) on M . ΦM

is a ∇-parallel Φ-linear endomorphism of M . The restriction of ΦM to F 1(M) is

divisible by p and we have an isomorphism
(
M + 1

pF 1(M)
)
⊗Re ΦRe

ΦM∼−→ M . We

have M/F 1(Re)M = H1
dR(A/V ). The submodule F 1(M) of M is the inverse image

of the Hodge filtration of H1
dR(A/V ) defined by A, under the surjective map M ³

M/F 1(Re)M = H1
dR(A/V ). So F 1(Re)M ⊂ F 1(M).
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Using F 1(M) the tensor algebra of M⊕M∗ gets a natural filtration. In particular
we speak about Fn(M⊗2n), with n ∈ N.

5.2.2.1. Let (M0, ϕ0) := (M, ΦM ) ⊗Re V0. It is the contravariant Dieudonné-
module of AF. There is an isomorphism

(M
[
1
p

]
,ΦM ) ∼→ (M0, ϕ0)⊗Re

[
1
p

]

of Frobenius isocrystals [Fa3, ch. 6].

5.2.3. Let V̄ be the integral closure of V in K̄ and let V̄ ∧ be its p-adic completion.
Let S0 be the ring consisting of sequences (xn)n∈N∪{0}, with xn ∈ V̄ /pV̄ and xn−1 =
xp

n, ∀n ∈ N. Gal(K̄/K) acts naturally on S0.
The Gal(K̄/K)-module Qp(1) can be identified with sequences (µn)n∈N∪{0} of p-

power roots of unity (these are elements of V̄ ) such that µn−1 = µp
n, ∀n ∈ N. Taking

such sequences modulo p, we get a group homomorphism γ:Qp(1) → Gm(S0) respect-
ing the Galois actions. For an element z ∈ V̄ , we choose a sequence (z(n))n∈N∪{0} of
elements of V̄ such that z(0) = z and z(n− 1) = z(n)p, ∀n ∈ N. Taking this sequence
modulo p we obtain an element z ∈ S0, well defined by z up to multiplication with an
element of γ(Zp(1)).

Let W (S0) be the ring of Witt vectors of S0. Let θ:W (S0) ³ V̄ ∧ be the ring
epimorphism defined by θ((x0, x1, . . . )) =

∑
n≥0 pnxn,n, where (xn,m)m∈N∪{0} is the

sequence (of elements of V̄ /pV̄ ) used for defining xn ∈ S0. Let ξ := f((π, 0, 0, . . . )).
It is a generator of the kernel Iθ of θ.

Let B+(V ) be the Fontaine’s ring defined as the p-adic completion of the di-
vided power hull of the ideal Iθ of W (S0). B+(V ) is a W (S0)-algebra and so a
V0-algebra, as W (S0) is a V0-algebra. It has a (decreasing) filtration Fn(B+(V )) by
divided powers: Fn(B+(V )) is the p-adic completion of I

[n]
θ , n ∈ N ∪ {0}. We have

B+(V )/F 1(B+(V )) = V̄ ∧. The Frobenius of W (S0) extends to a Frobenius Φ of
B+(V ) (it makes sense to still denote it by Φ, cf. 5.2.4). The Galois group Gal(K̄/K)
acts in an obvious manner on B+(V ), respecting its filtration.

There is a well defined homomorphism

β:Zp(1) → F 1(B+(V )),

obtained by taking log of the homomorphism obtained by composing the Teichmüller
map Qp(1) → Gm(W (S0)) (obtained from γ) with the canonical homomorphism
Gm(W (S0)) → Gm(B+(V )). We have Φ ◦ β = pβ. We also denote by β the im-
age of a fixed generator of Zp(1) through this log map β.

5.2.3.1. Let B+
dR(V ) be the completion of B+(V )⊗Qp in the filtration topology.

We have B+
dR(V )/F 1(B+

dR(V )) = K̄∧ := V̄ ∧[
1
p

]
. Let BdR(V ) := B+

dR(V )
[
1
β

]
. It

has a decreasing filtration (F i(BdR(V ))i∈Z obtained from the filtration of B+
dR(V ) by

declaring 1
β ∈ F−1(BdR(V )). As K is separable over K0 and so formally smooth over

it, we can lift the inclusion K ↪→ K̄∧ = B+
dR(V )/F 1(B+

dR(V )) to a K0-monomorphism
K ↪→ B+

dR(V ).

5.2.4. There is an injective homomorphism of filtered rings

iV :Re ↪→ B+(V )
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defined by: T → π. It respects Frobenius. We have Fn(B+(V ))∩Re = Fn(Re), ∀n ∈
N ∪ {0}, and an isomorphism of graded V̄ ∧-algebras grF (Re) ⊗V V̄ ∧ ∼→ grF (B+(V ))
[Fa3, ch. 4], induced by iV . As M is a crystal over Re, the tensor product M ⊗Re

B+(V ) acquires a canonical Gal(K̄/K)-action.

5.2.5. Let us return to the situation of 5.1. The integral version of Fontaine’s
comparison theorem [Fa3, th. 7] provides us with an injective linear map of filtered
B+(V )-modules

ρ:M ⊗Re B+(V ) ↪→ H1
ét ⊗Zp B+(V ).

The filtration on M ⊗Re B+(V ) is the tensor product one, while the filtration on
H1

ét ⊗Zp B+(V ) is the one induced by the filtration of B+(V ). We list the properties
of ρ we need.

(5.2.6) ρ respects Frobenius and the Galois actions.
(5.2.7) Inverting p, we obtain an isomorphism denoted by ρ1.
(5.2.8) A tensor vα ∈ (H1

ét ⊗H1∗
ét )⊗r(α) ⊗Qp, α ∈ J0 (resp. α ∈ J \ J0) corresponds

through ρ1 to an element wα ∈ F 0
(
(M ⊗ M∗)r(α)

)
(resp. to an element

wα ∈ F 0
(
(M ⊗M∗)⊗r(α)

[
1
p

])
), with r(α) := 1

2 deg(vα).

(5.2.9) We have ΦM (wα) = wα and ∇wα = 0, ∀α ∈ J.
(5.2.10) Under the identification M/F 1(Re)M

[
1
p

]
= H1

dR(AK/K), the tensor wα is
mapped into the de Rham component of the Hodge cycle tα, ∀α ∈ J.

(5.2.11) The bilinear maps p̃V , ψ̃:H1
ét⊗H1

ét → Zp(−1) are inducing bilinear maps M⊗
M → Re(1) = βRe which become perfect alternating forms p̃M , ψ̃M :M ⊗
M → Re.

(5.2.12) The subscheme G̃Re of GSp(M, ψ̃M ) obtained by taking the closure of the
subgroup GRe[1p] of GSp(M

[
1
p

]
, ψ̃M ) fixing wα, ∀α ∈ J, is a reductive group

scheme over Spec(Re), isomorphic to GRe.

5.2.6-7 are part of Fontaine’s comparison theory. The existence of p̃M , ψ̃M (of
5.2.11) results from 5.2.13 below or from the functorial character of Fontaine’s com-
parison theory (for the category of p-divisible groups over V ). The fact that p̃M , ψ̃M

are perfect can be seen looking at their restriction modulo F 1(Re).
The bilinear map ψ̃ induces an isomorphism (H1

ét)
∗ ∼→H1

ét(1) (of Galois modules)
and ψ̃M induces an isomorphism M ∼→M∗(1) (of filtered Frobenius crystals). So we get
isomorphisms (H1

ét⊗H1∗
ét )⊗m ∼→H1⊗2m

ét (m) and (M⊗M∗)⊗m ∼→M⊗2m(−m), ∀m ∈ N.
Using these isomorphisms, 5.2.9 and the part of 5.2.8 involving the family of

tensors (vα)α∈J\J0 , result from the Fontaine’s theory. If n ∈ N, then:

5.2.13. The Qp-vector spaces spanned by a Galois-invariant class wét ∈
H1

ét

[
1
p

]⊗2n(n) (also called an étale Tate-cycle) are in one to one correspondence,

through the map ρ1, with the Qp-vector spaces spanned by a class w ∈ Fn
(
M⊗2n

[
1
p

])

which is ∇-parallel and fixed by Φn
M := ΦM/pn. The correspondence is achieved

through the formula ρ1(w ⊗ 1) = wét ⊗ βn.

5.2.13 has been stated in terms of Qp-vector spaces as there is no natural choice for β
(cf. 5.2.3); we could have also stated it in terms of free Zp-modules of rank one. The
part of 5.2.8 concernining the family of tensors (vα)α∈J0 , results from the fact that
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(vα)α∈J0 are integral (i.e. they are tensors of the tensor algebra of H1
ét ⊕H1∗

ét ) with
deg(vα) ≤ 2(p − 2), ∀α ∈ J, and from the following key supplement of 5.2.13 [Fa3,
cor. 9]:

5.2.14. If n ≤ p− 2, then in the correspondence of 5.2.13, wét is integral (i.e an
element of H1⊗2n

ét (n)) if and only if w is integral (i.e. iff w ∈ Fn(M⊗2n)).

5.2.15. We now prove 5.2.10. This property results from the following observa-
tions.

1) Tensoring the isomorphism ρ1 with BdR(V ) (using the canonical two inclusions
B+(V ) ↪→ B+

dR(V ) ↪→ BdR(V )), we get an isomorphism, which can be written in the
form

ρ2:H1
dR(A/V )⊗V BdR(V ) ∼→H1

ét ⊗Zp BdR(V )

(the inclusion V → BdR(V ) is induced by the inclusion K ↪→ B+
dR(V ) of 5.2.3.1; we

have used the canonical identification M ⊗Re V = H1
dR(A/V ) and 5.2.2.1).

2) The isomorphism ρ2 is nothing else but the isomorphism which comes up in
the de Rham conjecture, proved in [Fa1] (with slight correction in the unpublished
[Fa2]) (i.e. the comparison map for the p-divisible group of an abelian variety over V
is the same as the comparison map for the abelian variety itself- cf. [Fa3, introd. to
ch. 6]).

3) The Hodge cycles (tα)α∈J are de Rham cycles. This means that ρ2 takes the
de Rham component tαdR of tα into the p-component of the étale component vα of
tα.

1) is obvious. For proving 2) it is enough to show that the isomorphism

ρ3:M0 ⊗V0 B(V ) ∼→H1
ét ⊗Zp B(V )

(with B(V ) := B+(V )
[

1
pβ

]
) obtained from ρ1 through the isomorphism M

[
1
p

] ∼→M0 ⊗
Re

[
1
p

]
of 5.2.2.1), is exactly the isomorphism

ρ4:M0 ⊗V0 B(V ) ∼→H1
ét ⊗Zp

B(V )

of the crystalline cohomology, defined for the abelian variety A over V (see [Fa1, 5.6]).

To see this it is enough to show that the isomorphism ρ3 ◦ ρ−1
4 of H1

ét ⊗B(V ):
i) preserves the F 0-filtrations,
ii) and becomes identity on H1

ét ⊗ F 0(B(V ))/F 1(B(V )).
This is so due to the fact that there is no element of End(H1

ét) ⊗ F 1(B(V )) fixed by
Frobenius.

Due to the way in which H1
ét can be recovered from H1

dR(AK/K) through the
comparison map, we get that ρ−1

4 takes H1
ét into F 0(B(V )). This implies i).

For ii) it is enough to check that the Hodge-Tate structures defined on H1
ét ⊗

F 0(B(V ))/F 1(B(V )) by the two isomorphisms ρ3 and ρ4 are the same. This is done
(by direct computation) in [Fa5, the proof of th. 4] for abelian varieties over Spec(V [x])
(with x an independent variable), and so, due to functoriality (under the morphism
Spec(V [x]) → Spec(V )), for abelian varieties over V .

The proof of 3) is almost contained in [Bl]. The extra ingredient is an improve-
ment in Principle B of [Bl, 3.1], as our abelian variety might not be defined over Q̄, a
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condition required in [Bl, 3.1] (of course as N is defined over O(v), we can select the
lift mV : Spec(V ) → N̄0 of y in such a way that the abelian variety A is defined over
Q̄). This improvement in Principle B is achieved by the trick of Lieberman.

We can think of the de Rham component wα of tα as a tensor of H1
dR(A/V )⊗2r(α),

and so as a tensor of H
2r(α)
dR (Ar(α)/V ), where Ar(α) is the product of A over V taking

r(α) times (for instance A2 = A ×V A). If r(α) = 1, there is nothing to be proved
(ρ2 respects algebraic cycles of degree 2). For r(α) ≥ 2 we get 3) above for tα as a
consequence of the following general principle.

5.2.16. Principle B. Let L be the field of fractions of a complete DVR of mixed
characteristic having a perfect residue field of characteristic p. Let Y be a geometrically
connected smooth variety over L, and let Π:B → Y be an abelian scheme over Y . Let
n≥ 2. Then if a pair v = (vét, vdR), with vét ∈ H0(Y, R1Π∗(Qp)⊗2n(n)) and with
vdR ∈ H0(Y, R1

dR(B/Y )⊗2n), is a de Rham cycle in a point z1 ∈ Y (L), then it is a de
Rham cycle in any other point z2 ∈ Y (L).

Proof. Let Bn be the n-times product of B over Y . All the spectral sequences
connecting the cohomology of Bn with the cohomology of Y degenerate (this is called
the trick of Lieberman). This results from the fact that Bn has many endomorphisms
over Y -which have to respect the spectral sequences- defined by multiplying with
integers the different factors B of Bn. For every pair (r, q) of positive integers we
obtain commutative diagrams (which are part of these spectral sequences)

Er,q
2

d−−−−→ Er+2,q−1
2

ã

y
yb̃

Er,q
2

d−−−−→ Er+2,q−1
2 ,

where ã and b̃ are multiplications with some integers n1 and n2. For a suitable choice
of multiplications on the factors B of Bn, we can achieve n1 6= n2.

This implies that the L-linear map

H2n
dR(Bn/L) → H0(Y, R1

dR(B/Y )⊗2n)

is surjective. The rest of the proof is exactly as in [Bl, 3.1].

5.2.17. We are left with the proof of 5.2.12. We first remark that once we know
that G̃Re is a reductive group scheme over Spec(Re), the fact that it is isomorphic to
GRe (Re is a Z(p)-algebra) is a direct consequence of the fact that G̃Re and GRe are
both split reductive groups (cf. 5.2.1.1) and of 5.2.7-8 (which guarantees that they
are isomorphic over Spec(B+(V )

[
1
p

]
) (cf. the uniqueness of a split reductive group

associated to a given root datum; see [SGA3, vol. 3, p. 305]).

5.2.17.1. To prove that G̃Re is indeed a reductive group over Re we can move
over the faithfully flat Re-algebra Re1 := Re ⊗V0 V . Re1 is an integral ring: it is a
subring of K[[t]]. It is also a V -algebra. We have an isomorphism

ρ0:M ⊗Re Re1

[
1
p

]
∼→H1

dR(AK/K)⊗K Re1

[
1
p

]
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taking wα into tαdR, ∀α ∈ J, and taking p̃M into the perfect form pA:H1
dR(A/V ) ⊗

H1
dR(A/V ) → V . It is defined starting from the isomorphism M

[
1
p

] ∼→M0 ⊗V0 Re
[
1
p

]

of 5.2.2.1, and from the isomorphism M/F 1(Re)M ∼→H1
dR(A/V ).

The fact that ρ0 takes wα into tαdR, ∀α ∈ J, results from 5.2.15 3), as the
extension of ρ−1

0 to BdR(V ) (we have a natural inclusion Re1 ↪→ BdR(V ), cf. 5.2.3)
when composed with the extension of ρ1 to BdR(V ) is nothing else but the isomorphism
ρ2 of 5.2.15 (cf. the way ρ0 and ρ2 are defined). Obviously ρ0 takes p̃M into pA (cf.
the def. of p̃M and the functoriality of 5.2.2.1).

5.2.17.2. We have an isomorphism

H1
ét ⊗K ∼→H1

dR(AK/K)

taking vα into tαdR, ∀α ∈ J, and taking ψ̃ into pA:H1
dR(AK/K)⊗H1

dR(AK/K) → K.
To see this, we first remark that such an isomorphism exists over the field LdR(u)

obtained from the field of fractions of BdR(V ) by adjoining a square root of β. This
results from 5.2.13 1) and 2): ρ2 takes pA into βψ̃ (cf. 5.2.11), and so over LdR(u),
by changing the extension of ρ2 (to LdR(u)) by a scalar factor u, we get rid of the
scalar β. Now everything results from the well known fact: H1

ff (K,GK) = 0, as V is
a complete DVR with an algebraically closed residue field. Here the right lower index
ff refers to the faithfully flat topology.

5.2.17.3. From 5.2.17.1-2 we get an isomorphism

ρ5:H1
ét ⊗Re1

[
1
p

]
∼→M ⊗Re Re1

[
1
p

]

taking vα into wα, ∀α ∈ J, and taking ψ̃ into p̃M . From 5.1.5 we deduce (cf. 5.2.8)
that the closure of the subgroup of GSp(M ⊗Re Re1

[
1
p

]
, p̃M ) fixing wα, ∀α ∈ J, in

GSp(M⊗Re1, p̃M ) is a reductive group scheme over Spec(Re1). So G̃Re is a reductive
group scheme over Spec(Re). This ends the proof of 5.2.12.

5.2.18. Remark. It is an easy exercise to see that under the identifications

H1
dR(AK/K) = M ⊗Re K ∼→M0 ⊗V0 Re⊗K = M0 ⊗K

(as defined by inverting p in the isomorphisms of 5.2.2 and 5.2.2.1), ∀α ∈ J, tαdR is
an element of the tensor algebra of (M0 ⊕M∗

0 )
[
1
p

]
, and so we could have avoided the

replacement of Re by Re1 in 5.2.17.1-3.

5.2.19. Remark. In applications of 5.1 to the proof of the main results of 6.4,
we use only families of G-invariant tensors (vα)α∈J0 in spaces of the form (W⊗W ∗)⊗m

(with m ∈ N) and of degree not bigger than 2(p−2), which are Z(p)-very well positioned
for the group G (i.e. we do not work in the relative situation with respect to ψ).
Moreover we can choose the family (vα)α∈J such that G is the subgroup of GL(W )
fixing it. This simplifies the things, in the sense that we do not have to keep track of
all bilinear forms (ψ, pA, p̃M , etc.) we came across.

5.3. Step 3. The existence of a good morphism Spec(V0) → N lifting y.

5.3.1. Let M̃ := M ⊗Re R̃e be the Frobenius crystal over R̃e obtained by extension
of scalars. It is the dual of the Lie algebra of the universal vector extension of the
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p-divisible group over V (p) := V/pV associated to the abelian scheme A1 := AV (p).
At the level of filtrations we have F 1(M) ⊗Re R̃e ⊂ F 1(M̃): F 1(M̃) is the pullback
of the Hodge filtration of H1

dR(A1/V (p)) defined by A1, through the surjective map
M̃ ³ M̃ ⊗ eRe V (p) = M ⊗Re V (p) = H1

dR(A1/V (p)).
Let G eRe and GV be the reductive groups obtained from GRe through the canon-

ical ring homomorphism Re ↪→ R̃e ³ V . Let MV := M̃ ⊗ eRe V = M ⊗Re V =
H1

dR(A/V ) and let F 1(MV ) be its Hodge filtration defined by A. It has the prop-
erty that F 1(MV )⊗V jC is the F 1,0 summand of the Hodge direct sum decomposition
H1

dR(A/V ) ⊗V jC = F 1,0 ⊕ F 0,1 (here j is the inclusion of 5.1.2). Let µC:Gm →
GL(MV ⊗j C) be the cocharacter such that γ ∈ Gm(C) acts as identity on F 0,1 and
as multiplication with γ−1 on F 1,0. µC factors through GV ×V jC. Let µ1:Gm → GV

be a cocharacter which over C becomes conjugate to µC. Let MV = F 1
V ⊕ F 0

V be the
direct sum decomposition obtained from µ1: γV ∈ Gm(V ) acts as multiplication with
γ−1

V on F 1
V and as identity on F 0

V .
Let P 1 be the parabolic subgroup of GV which leaves invariant F 1(MV ) and

let P 2 be the parabolic subgroup of GV which leaves invariant F 1
V . As µ1 and µC

are conjugate over C, we deduce that P 1
K and P 2

K become conjugate over C and so
they are conjugate over K̄. As P 1

K and P 2
K are defined over K, we deduce from

[Bo, 20.9] that they are conjugate over K, i.e. there is an element g ∈ GV (K) such
that gP 2

Kg−1 = P 1
K . From the Iwasawa decomposition [Ti, 3.3.2] we deduce that

GV (K) = GV (V )P 2(K). This implies the existence of an element g0 ∈ GV (V ) such
that g0P

2g−1
0 = P 1. We get a direct sum decomposition MV = F̄ 1 ⊕ F̄ 0, with

F̄ 1 = g0(F 1), associated to the cocharacter µ := g0µ1g
−1
0 :Gm → GV . The parabolic

subgroup of GV which leaves invariant F̄ 1 is P 1. This implies F 1(MV ) = F̄ 1. To see
this we can move to C. There is an element g1 ∈ GV (C) such that g1(F 1(MV )⊗C) =
F̄ 1 ⊗ C and so g1P

1
Cg−1

1 = P 1
C. We deduce that g1 ∈ P 1(C) (cf. [Bo, 11.16]) and so

F 1(MV )⊗ C = F̄ 1 ⊗ C.

5.3.2. Lemma. The cocharacter µ:Gm → GV can be lifted to a cocharacter
µ̃:Gm → G eRe.

Proof. Let b0 be the ideal of R̃e generated by the divided powers of fe. Let
bn := b0 + InR̃e, n ∈ N. Let Sn := Spec(R̃e/InR̃e) and Tn := Spec(R̃e/bn). Tn is a
closed subscheme of Sn and of Tn+1, while Sn is a closed subscheme of Sn+1, n ∈ N.
We have Tn+1 ∩ Sn = Tn.

We first remark that
R̃e = proj.lim. R̃e/InR̃e

and
V = proj.lim. R̃e/bn

(as p > 2 and as R̃e/InR̃e is p-adically complete); the projective systems are indexed
by n ∈ N. Second we show: if µn:Gm → GSn

(with n ∈ N) is a cocharacter such that
µn|Tn = µ|Tn, then there is a cocharacter µn+1:Gm → GSn+1 such that µn+1|Tn+1 =
µ|Tn+1 and µn+1|Sn = µn (here if i0:Y0 ↪→ Y is a closed embedding and if ν is a
morphism between two Y -schemes, we denote by ν|Y := i∗0ν).

To prove this, let µ̃n+1:Gm → GSn+1 be any (group homomorphism) lift of µn (cf.
[SGA3, vol. 2, p. 48]). Now µ̃n+1|Tn+1 and µ|Tn+1 are two lifts of µ|Tn. From loc.
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cit. we deduce the existence of an element hn ∈ ker(G eRe(Tn+1) → G eRe(Tn)) such that
hn(µ̃n+1|Tn+1)h−1

n = µ|Tn+1. From the smoothness of G eRe we deduce the existence
of an element h0 ∈ ker(G eRe(Sn+1) → G eRe(Sn)) such that under the homomorphism
G eRe(Sn+1) → G eRe(Tn+1) it goes to hn. Then µn+1 = h0µ̃n+1h

−1
0 satisfies the required

conditions.
We start with a cocharacter µ1:Gm → GS1 lifting µ|T1. We build up inductively

µn:Gm → GSn as above. Conclusion: we can choose µ̃ in such a way that µ̃|Sn = µn,
n ∈ N. Obviously µ̃|V = µ. This ends the proof of the lemma.
5.3.3. Let now µ̃:Gm → G eRe be a cocharacter lifting µ. It achieves a direct sum
decomposition M̃ = F̃ 1 ⊕ F̃ 0 with the property that F̃ 1 ⊗ eRe V = F 1(MV ).

As Spec(R̃e) is a projective limit of nilpotent thickenings of V (p), from the de-
formation theory of principally polarized abelian schemes (cf. [Me]; see also [FC, p.
14]) we deduce the existence of a principally polarized abelian scheme (Ã, pÃ) over
R̃e associated to the filtered crystal (M̃, F̃ 1,ΦM ,∇) (we still denote by ΦM and ∇
the Frobenius and the connection on M̃ induced from those on M by extension of
scalars: the ring homomorphism Re → R̃e respects the Frobenius) and the symplectic
form p̃fM on M̃ (obtained from p̃M by extension of scalars; it guarantees that we get
things over Spec(R̃e) and not only over Spf(R̃e)), such that under the epimorphism
R̃e ³ V , it becomes (A, pA) (this results from the fact that F 1(MV ) = F̃ 1⊗ eRe V and
that p̃V is obtained from p̃fM by tensorization).

5.3.3.1. Lemma. The morphism m̃:Spec(R̃e) → M̄ associated to (Ã, pÃ) and
its level-N symplectic similitude structures (lifting those of A1), factors through the
closure of NK0 in M̄.

Proof. We can move from R̃e to RC := C[[T ]] under the composition

g̃: R̃e ↪→ R̃e⊗V0 V
g̃0
↪→ R̃e⊗V0 V

g̃1
↪→C[[T ]].

(the first inclusion being the natural one). g̃0 is the affine transformation taking T into
pie−1T +π, with π the uniformizer of V used in 5.2.1. This is well defined as the series∑∞

n=0
πen

n! is convergent in V (as p > 2). g̃1 is the inclusion defined by the inclusion
j:V ↪→ C (of 5.1.2) and by the fact that it takes T into T

j(π)e−1 . Under the canonical

surjective map Ω eRe/V0
³ Ω eRe/V0

, with Ω eRe/V0
the free module over R̃e generated by

dT , the Gauss-Manin connection of M̃ (defined by Ã), becomes the extension to M̃ of
the connection ∇ of M (of 5.2.2). This implies that δ

δT annihilates wα, ∀α ∈ J. The
principally polarized abelian variety over C, obtained from the principally polarized
abelian variety over Spec(RC) induced from (Ã, pÃ) through g̃, by taking (in RC)
T = 0, is the extension of (A, pA) to C induced by j. We have δT

δ(πe−1T+π) = π1−e and
δT

δπe−1T = 1
πe−1 . Now everything results from 4.1.5. This ends the proof of the lemma.

5.3.4. Let R̃en be the normalization of R̃e in its field of fractions. The natural
surjection R̃e ³ V0 factors through R̃en (due to the graded structure of R̃en inherited
as a subring of K0[[T ]], cf. 5.2.1) producing a natural surjection R̃en ³ V0. From
5.3.3.1 and the definition of N we get a morphism

Spec(R̃en) → N̄.
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So we get a morphism

m0: Spec(V0) → N̄

lifting y. It gives birth to:

(5.3.5) a principally polarized abelian scheme (A0, p0) over Spec(V0) (it is obtained
from (AN,PN) by pull back) having (compatibly) level-N symplectic similutide struc-
ture for any N ∈ N satisfying (N, p) = 1 (defined by a similitude isomorphism
kN : (L⊗Z/NZ, ψ) ∼→ (A[N ], p0) of principally quasi-polarized finite flat group schemes
over V0);

(5.3.6) a family (t0α)α∈J of Hodge cycles of A0K0 (we recall that K0 = V0

[
1
p

]
).

We have:

(5.3.7) The quadruple [A0C, p0C, (t0α)α∈J, k] is a class of A(G,X, W,ψ) (see 4.1) (here
k is induced as in 4.1.1 from the the isomorphisms kN , N ∈ N, while the embedding
V0 ↪→ C is the inclusion j of 5.1.2).

(5.3.8) Under the identifications

H1
dR(A0/V0) = M0 = H1

crys(A0F/V0) = M̃ ⊗ V0

the de Rham component uα of t0α is obtained from wα through the epimorphism
R̃e ³ V0, ∀α ∈ J, and is a tensor of (M0 ⊗M∗

0 )⊗r(α)
[
1
p

]
if α ∈ J \ J0 and a tensor of

(M0 ⊗M∗
0 )⊗r(α) if α ∈ J0.

(5.3.9) If ϕ0 is the Frobenius endomorphism of M0, we have ϕ0(uα) = uα, ∀α ∈ J.

(5.3.10) The polarization p0 induces a perfect alternating form ψ0: M0⊗M0 → V0(1)
(i.e. ψ0(ϕ0(t), ϕ0(z)) = pσ(ψ0(t, z)), σ being the Frobenius automorphism of V0).

(5.3.11) There is a direct sum decomposition M0 = F 1⊕F 0, with F 1 as the Hodge fil-
tration of M0 = H1

dR(A0/V0) defined by A0, such that uα ∈ F 0
(
(M0 ⊗M∗

0 )⊗r(α)
[
1
p

])
,

∀α ∈ J.

(5.3.12) The subgroup of GSp(M0, ψ0) obtained by taking the closure of GK0 (the
subgroup of GSp(M0

[
1
p

]
, ψ0) fixing uα, ∀α ∈ J) is the reductive group scheme GV0 ,

and the decomposition M0 = F 1 ⊕ F 0 is associated to a cocharacter µ0:Gm → GV0 ,
with β0 ∈ Gm(V0) acting through µ0 as multiplication with β−i

0 on F i, i = 0, 1.

All these things result from the analogue properties (see 5.2.8-12) of the family of
tensors (wα)α∈J (situated in spaces of the form (M ⊗M∗)⊗m

[
1
p

]
) (5.3.9 results from

5.2.9 and the isomorphism of Frobenius crystals M
[
1
p

]
= M0 ⊗Re

[
1
p

]
of 5.2.2.1).

5.4. Step 4. Local deformation.

5.4.1. Let R̄ := V0[[z1, . . . , ze]] be a ring of formal power series with coefficients in
V0, and let ΦR̄ denote the Frobenius-lift on R̄, which extends the Frobenius σ of V0 and
sends zi → zp

i . Let Ā be an abelian scheme over Spec(R̄). Let M(Ā) := H1
dR(Ā/R̄).

It is a free R̄-module of rank twice the relative dimension d(Ā) of Ā. Let F 1(M(Ā))
be its Hodge filtration. We have:

(a) F 1(M(Ā)) is a direct summand in M(Ā); its rank as a free R̄-module is d(Ā).
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(b) There is a ΦR̄-linear endomorphism ΦA:M(Ā) → M(Ā) whose restriction to
F 1(M(Ā)) is divisible by p and such that it induces a ∇(Ā)-parallel isomorphism

ΦA:
(
M(Ā) +

1
p
F 1(M(Ā))

)⊗R̄ ΦR̄
R̄ ∼→M(Ā).

Here the connection ∇(Ā) on M(Ā) is induced from the Gauss-Manin connection
∇Ā (of Ā) on M(Ā), through the canonical surjective map ΩR̄/V0

³ ΩR̄/V0
, with ΩR̄/V0

the free R̄-module having as a basis dz1, ..., dze. The connection on the left-hand side
is induced from ∇(Ā). We refer to the quadruple

(M(Ā), F 1(M(Ā)),ΦA,∇(Ā))

as the p-divisible object of Fontaine’s category MF[0,1](R̄) (this category is defined in
the same manner as for smooth V0-algebras; see [Fa1]) defined by Ā.

The above facts are just a variant of Grothendieck-Messing’s theory, cf. [Me].

5.4.2. Let now Spec(R̄0) be the completion of Sp(M0, ψ0) in the origin. We
have an isomorphism R̄0

∼→V0[[z1, . . . , zē]], with ē := 2`2 + ` for ` := 1
2 dimQ(W ). Let

Spec(R0) be the completion of the derived subgroup Gder
V0

of GV0 in the origin. We
have R0

∼→V0[[z1, . . . , ze1 ]], with e1 := dim Gder. The inclusion Gder
V0

↪→ Sp(M0, ψ0)
produces a surjection r0: R̄0 ³ R0. We choose identifications R̄0 = V0[[z1, . . . , zē]]
and R0 = V0[[z1, . . . , ze1 ]] such that the epimorphism r0 of V0-algebras is defined by:
zi → zi if i ≤ e1, and zi → 0 if i > e1. Let now ΦR̄0

and ΦR0 be the Frobenius lifts of
R̄0 and respectively R0 such that they take zi → zp

i and are compatible with σ.

5.4.3. Let Oy be the local ring of y in M̄, let Ôy be its completion and let
(Ay, pAy

) be the principally polarized abelian scheme over Spec(Ôy) obtained from
(AM,PM) through the composite morphism Spec(Ôy) → M̄ → M. We fix an iso-
morphism Ôy

∼→V0[[z1, . . . , ze2 ]], with e2 := dim Sh(GSp(W,ψ), S), such that the epi-
morphism Ôy ³ V0, associated to the morphism Spec(V0) → M̄ induced from m0, is
identity on V0 and sends zi to zero. Let Φy be the Frobenius-lift on Ôy, such that it
extends the Frobenius of V0 and sends zi to zp

i . Let (My, F 1
y ,Φ,∇y) be the p-divisible

object of MF[0,1](Ôy) defined by Ay. The principal polarization pAy
induces a perfect

alternating form ψy:My ⊗My → Ôy.

5.4.4. We consider now the triple (MR̄0
, F 1

R̄0
,Φ0) defined by MR̄0

:= M0 ⊗V0

R̄0, F 1
R̄0

:= F 1 ⊗V0 R̄0 and Φ0 := gSp(ϕ0 ⊗ 1), with gSp the universal element of
Sp(M0, ψ0)(R̄0) defined by the natural morphism Spec(R̄0) → Sp(M0, ψ0).

From [Fa3, th. 10] we deduce easily the existence of an abelian scheme AR̄0
over

Spec(R̄0), with A0 = AR̄0
×R̄0

V0 (the surjection R̄0 ³ V0 is the identity on V0 and
sends all zi to 0), and such that the p-divisible object of MF[0,1](R̄0) defined by AR̄0

is exactly (MR̄0
, F 1

R̄0
,Φ0,∇0) (the connection ∇0 on MR̄0

is uniquely determined by
the considered triple, cf. loc. cit.).

There is a unique principal polarization pR̄0
on AR̄0

(that is why we get an abelian
scheme over Spec(R̄0) and not only over Spf(R̄0)) corresponding to ψ0 and lifting the
principal polarization p0 of A0 (cf. the theory of deformation of principally polarized
abelian schemes). The principally polarized abelian scheme (AR̄0

, pR̄0
) endowed with

the level-N (symplectic similitude) structures lifting those of A0, is obtained from
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(Ay, pAy
) (and its level-N symplectic similitude structures obtained from those of

(AM,PM) by pull back) through a morphism corresponding to a ring homomorphism
αy: Ôy → R̄0 (here N ∈ N, (N, p) = 1). Warning: αy might not respect the two
Frobenius Φy and ΦR̄0

.

5.4.4.1. If (AR0 , pR0
) is the principally polarized abelian scheme over Spec(R0)

obtained from (Ay, pAy
) through r0 ◦ αy, then the p-divisible object of MF[0,1](R0)

defined by AR0 (together with p
R0

) can be identified with (MR0 , FR0 ,Φ1,∇1) (together
with ψ0), where MR0 := M0 ⊗V0 R0, F 1

R0
:= F 1 ⊗V0 R0, Φ1 := gGder(ϕ0 ⊗ 1), with

gGder the universal element of Gder
V0

(R0) (this results from the fact that r0 respects the
Frobenius actions), and with ∇1 the unique integrable connection on MR0 such that
Φ1 is ∇1-parallel ([Fa3, th. 10]).

From the uniqueness of such a connection ∇1, we deduce (cf. [Fa3, rm. ii) after
th. 10]) that it respects the Gder

V0
-action. This means that ∇1 is of the form d + γR0 ,

with γR0 ∈ Lie(Gder
V0

) ⊗ ΩR0/V0 . Here ΩR0/V0 is the free module over R0 having as a
basis dz1, ..., dze1 . As Gder

V0
⊂ GV0 , we deduce that ∇1uα = 0, ∀α ∈ J. As the Gauss-

Manin connection on MR0 associated to AR0 becomes under the canonical surjection
ΩR0/V0 ³ ΩR0/V0 the connection ∇1, we deduce that δ

δzi
annihilates uα, ∀α ∈ J

(i = 1, e1). We have (AR0 , pR0)⊗R0 V0 = (A0, p0) (as αy takes the ideal (z1, . . . , ze2)
into the ideal (z1, . . . , zē)).

5.4.5. The morphism Spec(R0)
q0−→ M̄ associated to (AR0 , pR0

) and its level-N
symplectic similitude structures, N ∈ N such that (N, p) = 1, induced from those of
(A0, p0) (R0 is a strictly Henselian ring) factors through the closure of ShH(G,X)K0 in
M̄ (moving from V0[[z1, . . . , ze1 ]] to C[[z1, . . . , ze1 ]], this results from 5.4.4.1 and 4.1.5),
and so it factors through N̄ (R0 being a normal ring). We denote this factorization
by q1:Spec(R0) → N̄.

5.4.6. The Lie algebra g := Lie(GV0) is the Lie subalgebra of gsp :=
Lie(GSp(M0, ψ)) centralizing uα, ∀α ∈ J. So g ⊗ K0 is left invariant by ϕ0. Let
F 0(g) := {x ∈ g | x(F 1) ⊂ F 1} and F 1(g) := {x ∈ g | x(F 1) = 0}. Similarly we define
for i = 0, 1, F i(gsp). F i(g) is the intersection of g with F i(gsp), i = 0, 1. This implies
that F i(g) are direct summands in g. We deduce easily that the quadruple

(g, ϕ, F 0(g), F 1(g))

is a p-divisible object of MF[−1,1](V0), i.e.

ϕ(
1
p
F 1(g) + F 0(g) + pg) = g

(this Frobenius transform is included in g and is a direct summand of gsp, cf. the
existence of µ0 in 5.3.12; so it is g). We call it the (Shimura) filtered Lie σ- crystal
attached to the V0-lift m0 of y. Forgeting the filtration we get the (Shimura) Lie
σ-crystal (g, ϕ) attached to the point y.

Similarly we get that g0 := Lie(Gad
V0

) gets a filtration, and g0

[
1
p

]
gets a Frobenius

automorphism (still denoted by ϕ), resulting in a p-divisible object of MF[−1,1](V0).
So we similarly speak about the (Shimura) adjoint Lie σ-crystal attached to y, etc.

5.4.7. From 5.4.5-6, we deduce the existence of a commutative diagram of V0-
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schemes
T1

t0⊂−−−−→ T0

∩yi1

∩yi0

Spec(R0) ⊂−−−−→ Spec(R̄0)yq1

yq̄1

N̄ −→ M̄

and a morphism m1:Spec(V0) → T1 such that:
a) T0 = Spec(V0[[z1, . . . , ze2 ]]) = Spec(Ôy) and T1 = Spec(V0[[z1, . . . , zd]]) (we

recall that d = dim X = dim Sh(G,X));

b) q̄1 is the morphism associated to αy: Ôy → R̄0;
c) t0, i0 and i1 are closed immersions;
d) the tangent space of T0 (in t0 ◦m1) is a direct supplement of F 0(sp(M0, ψ0))

in sp(M0, ψ0);
e) the tangent space of T1 (in m1) is a direct supplement of F 0(g) in g;
f) q1 ◦ i1 ◦m1 = m0.

We have d = dimV0(g/F 0(g)) and e2 = dimV0(sp(M0, ψ0)/F 0(sp(M0, ψ0))) (to justify
these formulas it is enough to remark that these dimensions are computing the di-
mension of the (compact) dual Hermitian symmetric space of a connected component
of X and respectively of S; this can be seen moving over C and using 5.3.1). Here
we identify the tangent space of Spec(R0) (resp. of Spec(R̄0)) (in the V0-valued point
obtained by taking all zi = 0) with the Lie algebra of Gder

V0
(resp. of Sp(M0, ψ0)).

5.4.8. Lemma. The ring homomorphism Ôy
qy−→ Ôy associated to q̄1 ◦ i0 is an

isomorphism.

Proof. It is enough to show that the tangent map of qy is an isomorphism. If
this is not true, we deduce the existence of an epimorphism Ôy

aC³ C := F[ε]/(ε2)
such that the composition bC := aC ◦ qy factors through F, i.e. bC = i ◦ pr, where
pr: Ôy ³ F is the homomorphism of V0-algebras taking zi into 0, and i:F ↪→ C is
the natural inclusion. But the Kodaira Spencer map of the F -crystal over Spec(C)
attached to the abelian scheme over Spec(C) obtained from Ay through bC is injective
(cf. 5.4.7). On the other hand, as bC = i ◦ pr, it is zero. We reached a contradiction.
This proves the lemma.

The above lemma details the last sentence of [Fa3, rm. iii) after th. 10].

5.5. Step 5. End of proof. Let O0
y be the local ring of y in N̄. From 5.4.7-8

we deduce that the ring homomorphism n:O0
y → O := V0[[z1 . . . , zd]], associated to

the morphism q1 ◦ i1:T1 → N̄, induces by completion an epimorphism r: Ô0
y ³ O. But

Ô0
y and O are local excellent normal rings of the same dimension. This implies thar r

is an isomorphism. As y was an arbitrary point of N̄, we conclude that N̄ is formally
smooth over V0 and so N is formally smooth over O(v). From 3.4.4 we deduce that
N is an integral canonical model of the quadruple (G,X, H, v) having the EEP. This
ends the proof of 5.1.



488 a. vasiu

5.5.1. Remark. From 5.5 and 5.4.7 we deduce that we can identify Spec(Ô0
y)

with the completion of the quotient GV0/PV0 in the V0-valued point of it defined by
the origin of GV0 (here PV0 is the parabolic subgroup of GV0 having F 0(g) as its Lie
algebra) (to be compared with [Fa3, ch. 7]).

5.6. Comments.

5.6.1. Corollary. If H0 is a compact open subgroup of G(Ap
f ) small enough

then N/H0 is the normalization of the closure of ShH0×H(G,X) in M/H0, and is a
quasi-projective scheme. The morphism N̄/H0 → M̄/H0 is a formal immersion in
any point of N̄/H0(F).

The quasi-projectiveness part is a consequence of the fact that M is a pro-étale
cover of a quasi-projective smooth scheme over O(v) (cf. [Mu]).

5.6.2. Corollary. The integral canonical model Shp(G,X, H) of the triple
(G,X, H) is obtained by taking the normalization of the closure of ShH(G,X) in the
extension to the normalization of Z(p) in E(G,X) of the integral canonical model of
the quadruple (GSp(W,ψ), S, Kp, p). It has the EEP.

5.6.3. Example. Using 4.3.11 we recover (for primes p≥ 3) the well known
results (cf. [Ko]) concerning the existence of integral canonical models of Shimura
varieties of PEL type.

5.6.4. Remark. Morally N should be a closed subscheme of M. To see why
this should be so, we can move to V0. We start with two V0-valued points of N̄, x0

and x1, giving birth to the same F-valued point y of the special fibre of M̄, and which
give birth to two different K0-valued points of N̄, z0 and z1. Using a prime l different
from p, and using the level-lN structures for any N ∈ N, we get that the two families
of tensors of the tensor algebra of H1

ét(AF,Ql)⊕H1
ét(AF,Ql)

∗ (here AF is the abelian
variety over F obtained from AMV0 through the point y) defined by the two families
of l-components of étale components of the Hodge cycles with which the two abelian
varieties over K0 (obtained from ANV0 through the points z0 and z1) are naturally
endowed, are the same.

This should imply that the two families of tensors of the tensor algebra of (M0⊕
M∗

0 )
[
1
p

]
(with M0 := H1

crys(AF, V0)) defined by the de Rham components of the above
two families of Hodge cycles, are the same (this is true if we have only cycles of
degree 2, as they come from endomorphisms of A). If this is true, then we easily get
that actually x0 and x1 give birth to the same F-valued point of N̄ (cf. 5.4.7-8; see
also 5.5.1). At least in the case of the PEL situation [Ko, ch. 5], we do regain the
well-known fact that N is a closed subscheme of M.

However if p is a rational prime big enough, N is a closed subscheme of M (cf.
3.4.7). In [Va2] we show how the validity of the Langlands-Rapoport conjecture (men-
tioned in 1.7) for N implies that N is a closed subscheme of M.

5.6.5. Remark. 5.3.4 remains true for any V0-valued point of N. More generally:
for any W (k)-valued point of N (with k an algebraically closed field of characteristic
p) we get:

a) A principally polarized abelian scheme (A, pA) over W (k) (obtained from (AN,PN)
by pull back) having (compatibly) level-N symplectic similitude structure for any
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N ∈ N satisfying (N, p) = 1 (defined by a similitude isomorphism kN : (L ⊗
Z/NZ, ψ) ∼→ (A[N ], pA) of principally quasi-polarized finite flat group schemes
over W (k));

b) A family (tα)α∈J of Hodge cycles of AB(k) (with B(k) := W (k)
[
1
p

]
).

We have:

c) Under the identification of H1
dR(A/W (k)) = M = H1

crys(Ak/W (k)) the de-Rham
component uα of tα belongs to (M ⊗ M∗)⊗r(α)

[
1
p

]
if α ∈ J \ J0, and to (M ⊗

M∗)⊗r(α) if α ∈ J0.

d) ϕ(uα) = uα, ∀α ∈ J, ϕ being the Frobenius endomorphism of M .

e) The polarization pA induces a perfect alternating form ψ: M ⊗ M → W (k)(1)
(we have ψ(ϕ(t), ϕ(z)) = pσ(k)(ψ(t, z)), σ(k) being the Frobenius automorphism
of W (k)).

f) There is a direct sum decomposition M = F 1⊕F 0, with F 1 as the Hodge filtration
of H1

dR(A/W (k)) = M defined by A, such that uα ∈ F 0((M ⊗ M∗)⊗r(α)
[
1
p

]
),

∀α ∈ J.

g) The subgroup of GSp(M⊗B(k), ψ) fixing uα, ∀α ∈ J, is (reductive and identified
with) GB(k). The subgroup GW (k) of GSp(M, ψ), obtained by taking the closure
of GB(k), is a reductive group scheme over W (k), and the decomposition M =
F 1⊕F 0 is associated to a cocharacter µW (k):Gm → GW (k), with β0 ∈ Gm(W (k))
acting through it as multiplication with β−i

0 on F i, i = 0, 1.

h**) There is an isomorphism

H1
ét(AB(k)

,Zp)⊗Zp W (k) ∼→H1
dR(A/W (k))

taking the p-component of the étale component of tα into (de Rham component)
uα (of tα), for any α ∈ J.

The part a)-g) is just a reformulation of 5.3.4 for a W (k)-valued point of N. A
proof of h) will be given in [Va2]. Its proof solves positively the following conjecture
of Milne (slight restatement):

5.6.6. Conjecture ([Mi5, 0.1]). Let Ã be an abelian scheme over the ring
W (k) of Witt vectors of an algebraically closed field k of characteristic p and let
B(k) := W (k)

[
1
p

]
. Let (sδ)δ∈I be a family of Hodge cycles of Ã, including a polar-

ization. We assume that the closure in GL(Lp), with Lp := H1
ét(ÃB(k)

,Zp), of the
subgroup of GL(Lp⊗Qp) fixing the p-component of the étale component of sδ, ∀δ ∈ I,
is reductive. We also assume that p is big enough with respect to the dimension of Ã.
Then, for some (any) faithfully flat W (k)-algebra R(k), there is an isomorphism of
R(k)-modules

Lp ⊗Zp
R(k) ∼→H1

dR(Ã/W (k))⊗W (k) R(k)

mapping, for any δ ∈ I, the p-component of the étale component of sδ into de Rham
component of sδ.

5.6.7. Remark. The well known results for integral canonical models of Siegel
modular varieties (pertaining to universal principally polarized abelian schemes over
them) concerning the existence of an ordinary isogeny type in positive characteristic
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and the existence of canonical lifts of ordinary abelian varieties (over perfect fields),
remain valid for our model N. We get results pertaining to the principally polarized
abelian scheme (AN,PN) over it (cf. 1.6 and [Va2]); we call special any such principally
polarized abelian scheme over N.

5.6.8. Remark. In [Va2] we will see that in the majority of cases the whole of
5.6.5 remains true without assuming that the (perfect) field k is algebraically closed.

5.6.9. Remark. We can work out 5.1 with a family of tensors which is Zp-very
well positioned instead of a family of tensors which is Z(p)-very well positioned. The
only thing changed is: we get Qp-linear combination of (components of) of Hodge
cycles instead of (components of) Hodge cycles. Even better: in 5.1 it is enough
to assume the existence of a family of tensors (of degrees not bigger than 2(p − 2))
enveloped by Lp ⊗ V0 and which is V0-well positioned for GK0 . This is a consequence
of the proof of 5.1: we needed that condition 4.3.5 to be satisfied for rings of the form
Re1; but they are V0-algebras. However this often boils down to an enlarged family of
tensors (of degrees not bigger than 2(p− 2)) of the tensor algebra of W ⊕W ∗, which
is Z(p)-very well positioned for G with respect to ψ. For instance, this is so, if we are
dealing with strongly V0-well positioned families of tensors (cf. 4.3.15 and 4.3.15.1):
this is the case we encounter in 6.5-6 (cf. 4.3.10 and 4.3.13); however we will not
bother to mention strongly in 6.5-6 (as we think it is irrelevant).

5.6.10. Remark. We could have worked out the proof of 5.1 working at some
finite level: i.e. working with some quotients N/H0 (with H0 as in 5.6.1) and M/Kp

0

(with Kp
0 a compact open subgroup of GSp(W,ψ)(Ap

f ) properly chosen). This would
have just slightly complicated the presentation. In [Va2] we refine the things: we
work in such a finite level context, with points in perfect fields (here we worked with
algebraically closed fields of characteristic p).

5.7. A practical form of the basic result.

5.7.1. Theorem. Let (G,X) ↪→ (GSp(W,ψ), S) be an injective map and let
p≥ 5 be a rational prime. We assume the existance of a Z(p)-lattice L of W such that
ψ induces a perfect form ψ: ÃL ⊗ L → Z(p) and the closure of G in GSp(L,ψ) is a
reductive group GZ(p) over Z(p) (so G is unramified over Qp). If the Killing form on
Lie(Gder

Z(p)
) and the form T on Lie(Gder

Z(p)
) induced (by restriction) by the trace form on

End(L) are both perfect, then Shp(G,X) exists and has the EEP.

Proof. This is a direct consequence of 4.3.10 b), 4.3.13, 3.1.6 and 5.1. We present
the details.

Let G0 := Gder and let g0 := Lie(G0). We have

s(g0,W ) = 2.

This can be easily checked starting from [De2, 1.3.7] (i.e. starting from the fact that
all the weights given irreducible subrepresentations of W ⊗ C of a simple Lie algebra
factor of g0 ⊗ C are minimal weights-poides minuscules- cf. [Bou2, ch. VIII, §7.3]).
The fact that the Killing form and the trace form T on g0 are both perfect, can be
restated (with the notations of 4.3.2): the tensors (of degree 4) π(g0), B and B∗ (can
be viewed -cf. 4.1- as tensors) of the tensor algebra of W ⊕ W ∗ are enveloped by
the Z(p)-lattice L. So the family of tensors formed by π(g0), B and B∗ is Z(p)-well
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positioned for G0 (cf. 4.3.10 b)). Now 4.3.13 guarantees the existence of a family of
endomorphisms (vα)α∈J1 of L fixed by G, which is Z(p)-well positioned with respect to
the connected component of the origin of Z(G). Let (vα)α∈J0 be the family of tensors
formed by putting π(g0), B, B∗ and (vα)α∈J1 together. So J1 ⊂ J0.

The family of G-invariant tensors (vα)α∈J0 is enveloped by L and Z(p)-well posi-
tioned with respect to G (cf. 3.1.6).

For any α ∈ J0 we have deg(vα) ∈ {2, 4} and so deg(vα) is not bigger than
2(p− 2) (as p is at least 5). Now everything results from 5.1. This ends the proof of
the theorem.

5.7.2. Notations. Let G̃0 =
∏

i∈K G̃i be a product of simple adjoint groups
over a field. Let

B(G̃0) :=
∏

i∈K

B(G̃i)

where, for any i ∈ K, B(G̃i) is 6(l + 1) if G̃i is of Al or Cl Lie type, 6(l − 1) if G̃i is
of Dl Lie type, and 6(2l − 1) if G̃i is of Bl Lie type with l≥ 2.

Let (G0, X0) be an adjoint Shimura variety of abelian type with G0 a simple
Q–group. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective map with (Gad, Xad) =
(G0, X0). Let g0 be the Lie algebra of G0 (or of Gder). Let h0 be a non-compact
simple factor of g0 ⊗ R. We denote by A(G0, X0,W ) the number of elements of the
set I defined by an isomorphism W ⊗R ∼→W0⊕⊕i∈IWi of h0-modules, with h0 acting
trivially on W0 and with each Wi as an irreducible non-trivial h0-module. It depends
only on the representation of g0 on W , and not on the choice of G or of h0 (cf. [De2,
2.3.4]). So the notation A(G0, X0,W ) is justified.

5.7.2.1. Lemma. The factor δ0, that relates the Killing form K on a split simple
Lie algebra over Z

[
1

B(G0)

]
(of the same Lie type as G0) and the trace form T on it

associated (cf. [De2, 1.3.6]) to the irreducible representation of it given by a weight
wi corresponding (cf. [De2, 1.3.7]) to the representation Wi of h0 (it does not depend
on the element i ∈ I!) (so K = δ0T), is an invertible element of Z

[
1

B(G0)

]
. Moreover

K and T are perfect forms.

This is an easy computation, using the coroots of the clasical Lie algebras (they
are described in [Bou2, ch. 8, §13]) starting from the fact that any two g-invariant
perfect bilinear forms on an absolutely simple Lie algebra g over a field of characteristic
zero differ one from another just by mutiplication with a non-zero element of the field.
It should be also compared with the explicit form of the Killing form of the (complex)
classical Lie algebras [He, formulas (5), (16) and (22) of ch. 3 §8]. The extra thing
needed besides these formulas is the fact (implied by the mentioned computation)
that over an algebraically closed field of charactersistic zero the trace forms on a
so(n) Lie algebra defined by the representations associated to the fundamental weights
corresponding to the roots α1 and αl, with l = [n

2 ], differ one from each other by an
integral power of two (here α1 and αl are having the usual meaning; cf. [Bou2, ch. 8,
§13] page 193 if n ∈ N is odd and page 208 if n is even).

5.7.3. Remark. The conditions (in 5.7.1) that p≥ 5 and the above two bilinear
forms on Lie(Gder

Z(p)
) are perfect, are equivalent to: p does not divide the product

B(Gad)
∏

i∈K

A(Gad
i , Xad

i ,W ),
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where (Gad, Xad) =
∏

i∈K(Gad
i , Xad

i ), with all Gad
i as simple Q–groups. Here the

numbers A(Gad
i , Xad

i ,W ) are computed starting from an injective map (Gi, Xi) ↪→
(GSp(W,ψ), S) factoring through the injective map (G,X) ↪→ (GSp(W,ψ), S), cf.
2.12 1).

5.7.4. Remark. In 5.7.1 we can use instead of the bilinear form on Lie(Gder
Z(p)

)
induced by the trace form on gl(L) any other bilinear form induced by a bilinear form
on gl(L) which is fixed by GZ(p) (cf. 4.3.10.1)). Even better: it is enough that such a
bilinear form on gl(L) is defined only over V0 = W (Z/pZ) (cf. 5.6.9).

5.7.5. Example: Classical Spin modular varieties of odd dimension
(and rank two). Let l≥ 3 be an integer. Let G := SO(2, 2l − 1) be the Q–group
whose points in a Q–algebra R are those matrices g in SL(2l + 1, R) which leave
invariant the quadratic form −x2

1−x2
2 +x2

3 + ...+x2
2l+1, i.e. tgI2,2l−1g = I2,2l−1, with

I2,2l−1 the diagonal matrix of order 2l + 1 having −1 on the first two lines and +1 on
the others.

Let Sh(G,X) be the adjoint Shimura variety with X a double copy of the Her-
mitian symmetric domain of type BD I(p=2,q=2l−1) (cf. the classification of symmetric
domains [He, p. 518]). G is an absolutely simple adjoint group of type Bl which splits
over Q(i). We have dim X = 2l − 1 and E(G,X) = Q.

Let f : (G1, X1) ↪→ (GSp(W,ψ), S) (with (Gad
1 , Xad

1 ) = (G,X)) be the injective
map defined by the Spin representation of the simply connected cover Gder

1 of G (this
representation is defined over Q as Gder

1 splits over Q(i)). We have dimQ(W ) = 2l

if l mod 4 is 1 or 2, and dimQ(W ) = 2l+1 if l mod 4 is 0 or 3 (cf. [Sa, p. 458]).
Gder

1 = Spin(2, 2l− 1) is a Spin group, and Z(G1) = Gm acts on W by multiplication
with scalars (so Gab

1 = Gm). For any prime p, G1 is unramified over Qp. We have
A(G,X, W ) = 1. We call Sh(G1, X1) the classical Spin modular variety of dimension
2l − 1 (and rank two) (cf. [Va4] for the use of the word classical).

Let h := Lie(Gder
1 ) and let πW (h) be the projection of gl(W ) on h associated to the

direct sum decomposition gl(W ) = h⊕h⊥ (h⊥ is the subspace of gl(W ) perpendicular
to h with respect to the trace form on gl(W )). Let B: gl(W ) → gl(W )∗ be the linear
map which is zero on h⊥ and B|h: h → h∗ is the isomorphism induced by the Killing
form on h, and let B∗: gl(W )∗ → gl(W ) be the linear map which is zero on (h⊥)∗ and
B∗|h∗: h∗ → h is (B|h)−1. If l mod 4 is 1 or 2 , then Lie(G1) is the Lie subalgebra of
gl(W ) centralizing πW (h) due to the fact that the representation Gder

1 C → GL(WC)
is irreducible. So (G1, X1) is saturated in (GSp(W,ψ), S). If l mod 4 is 0 or 3
then the maximal connected subgroup G2 of GSp(W,ψ) fixing πW (h) contains G1,
Gder

2 = Gder
1 , but Gab

2 is a torus of dimension 2 (the representation Gder
1 C → GL(WC) is

not irreducible, just the representation Gder
1 R → GL(WR) is irreducible). So (G1, X1)

is not saturated in (GSp(W,ψ), S).
Let now p be a prime not dividing 6(2l− 1) and let L be a Z(p)-lattice of W such

that ψ induces a perfect form ψ:L⊗ L → Z(p) and the closure of G1 in GSp(W,ψ) is
a reductive group over Z(p) (the existence of such a Z(p)-lattice results from the fact
that the Spin representation of G1 has a Z(p)-version).

Now the family of tensors formed by πW (h), B and B∗ is integral with respect to
L (i.e. it is enveloped by L) (for instance, for πW (h) this means that it is a projector
of gl(L)) and is Z(p)-very well positioned for the group G1 (cf. 5.7.1-3). This implies
that the Killing form on the Lie algebra hL := h ∩ gl(L) and the restriction to hL of
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the trace form on gl(L) are both perfect. Let Kp := {g ∈ GSp(W,ψ)(Qp)|g(L⊗Zp) =
L⊗Zp} and let H1 := K ∩G1(Qp). Kp is a hyperspecial subgroup of GSp(W,ψ)(Qp)
and H1 is a hyperspecial subgroup of G1(Qp). The normalization of the closure of
ShH1(G1, X1) in the integral canonical model M of (GSp(W,ψ), S, Kp, p) is an integral
canonical model N of (G1, X1,H1, p) (cf. 5.7.1 and 5.6.2). The universal (principally
polarized) abelian scheme over M (obtained by choosing a Z-lattice LZ such that
L = LZ ⊗ Z(p) and ψ:L ⊗ L → Z is perfect) gives birth to a principally polarized
abelian scheme (AN,PN) over N of dimension 1

2 dimQ(W ). N admits plenty of smooth
toroidal compactifications and the abelian scheme AN extends to semi-abelian schemes
over these smooth toroidal compactifications of N (cf. [Va3]).

If l = 3 then dimQ(W ) = 16 and we obtain abelian schemes of dimension 8. If
l = 4 then dimQ(W ) = 32 and we obtain abelian schemes of dimension 16. If l = 5
then dimQ(W ) = 32 and we obtain abelian schemes of dimension 16. If l = 6 then
dimQ(W ) = 64 and we obtain abelian schemes of dimension 32.

5.7.6. Remark. For l = 10 we get the Shimura variety Sh(G1, X1) associated
to the moduli space of complex K3 surfaces.

For more examples, including the case of classical Spin modular varieties of even
dimension (and rank 2), see [Va4].

5.8. Integral good embeddings in a Siegel modular variety.

5.8.1. Definition. Let the pair (G,X) define a Shimura variety of Hodge type.
Let p (resp. p≥ 5) be a rational prime such that G is unramified over Qp. We say
that (G,X) (or Sh(G,X)) has a good embedding (resp. a very good embedding) (in
a Siegel modular variety) with respect to p, if there is an injective map f : (G,X) ↪→
(GSp(W,ψ), S) such that the hypotheses of 5.1 (resp. of 5.7.1) are satisfied. Similarly,
we speak about an injective map (G,X) ↪→ (GSp(W,ψ), S) as being a good embedding
or a very good embedding with respect to p. We use a similar terminology when triples
or quotients are involved.

5.8.2. Remark. If (G,X) defines a Shimura variety of Hodge type, if p is a
rational prime such that G is unramified over Qp, and if (G,X) has a good embedding
with respect to p, then Shp(G,X) exists (cf. 5.1) and we can study its points in fields
of positive characteristic using the machinery of crystalline cohomology (cf. the proof
of 5.1 and [Va1-2]).

5.8.3. Definition. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective map and
let p be a prime such that G is unramified over Qp. A Z(p)-lattice L of W is called
good with respect to f if ψ induces a perfect form ψ:L⊗ L → Z(p) and if the closure
of G in GSp(L,ψ) is a reductive group over Z(p).

5.8.4. Proposition. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective map with
Gad a simple Q–group. Let l be the rank of a simple factor of Gad

C (i.e. Gad is of Al,
Bl, Cl or Dl Lie type) and let N(Gad) be the number of non-compact simple factors
of Gad

R . Let

p≥max(5, 2l,
dim(W )
2lN(Gad)

)

be a rational prime. If there is a Z(p)-lattice of W good with respect to f , then f is a
very good embedding with respect to p.
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Proof. This results from 5.7.1 and 5.7.3. We have just to remark that dim(W ) is
at least 2lN(Gad)A(Gad, Xad,W ) (with equality only for G = GSp(W,ψ)) (this is an
easy consequence of [De2, 2.3.7 b)]; for m,n≥ 2 positive integers we have mn≥m+n),
and that all the prime factors of B(Gad) are smaller than max(5, 2l) (cf. 5.7.2).

5.8.5. Remark. If in 5.8.4 we concentrate in just one Lie type of rank l
we can obtain even better estimates than the estimate of 5.8.4 which works for
all Lie types of rank l. For instance, if (Gad, Xad) is of type DRl , with l ≥ 5,
then we need p≥max(5, l, dim(W )

2l−1N(Gad)
). If Gad is of type Bl, l ≥ 1, then we need

p≥max(5, 2l, dim(W )
2lN(Gad)

), etc. In the mentioned cases, these estimates are a conse-
quence of the dimension formula of the Spin representation of a split orthogonal Lie
algebra (over C) (see [Bou2, ch. 8, §13]).

5.8.6. Corollary. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective map. Let
p be a prime greater or equal to max(5, 2 + dim(W )/2) (resp. greater or equal to
max(5,dim(W )/2)). If there is a Z(p)-lattice of W good with respect to f , then f is a
very good embedding (resp. is a good embedding) with respect to p.

Proof. If p− 2≥max(3,dim(W )/2) then this is a consequence of 5.8.4-5. If p≥ 5
and 2p ∈ {dim(W ),dim(W ) + 2}, and if f is not a very good embedding with respect
to p, then either G = GSp(W,ψ) or 2p = dim(W )+ 2 and Gad is an absolutely simple
Q-group of Ap+1 Lie type. In both these cases we get immediately that we are in the
context described in 4.3.11; so 5.6.3 applies.

5.8.7. Corollary. Let f : (G,X) ↪→ (GSp(W,ψ), S) be an injective map. Then
there is N(G,X) ∈ N effectively computable such that f is a (very) good embedding
with respect to any prime p≥N(G,X) with the property that G is unramified over Qp.

Proof. Let L be a Z-lattice of W such that we get a perfect form ψ:L⊗ L → Z.
There is a number N(G,L, f) ∈ N such that for any prime p≥N(G,L, f) the closure of
G in GSp(L⊗Z(p), ψ) is a reductive group scheme over Z(p). It is effectively computable
(for instance cf. 4.3.10 b)). Now we can take N(G,X) = max

(
N(G,L, f),dim(W )/2

)
,

cf. 5.8.6.

For the following result we assume 5.6.5 h).

5.8.8. Corollary. The Milne’s conjecture (see 5.6.6) is true if the prime p is
bigger than max(5,dim(A)).

Proof. We use the notations of 5.6.6. Let f : (G,X) ↪→ (GSp(W,ψ), S) be the
injective map defined by (A, pA) (here pA is the polarization of A defined by some
sδ(0), δ(0) ∈ I) and the reductive family (sδ)δ∈I\{δ(0)} (cf. 2.12 3)) with respect to pA.
From the hypotheses of 5.6.6 we deduce that there is a Z(p)-lattice L of W good for f .
If pA is a principal polarization then this is a direct consequence of 5.8.6 and of 5.6.5
h) (cf. definitions 5.8.1 and 5.8.3). If pA is not a principal polarization, then we have
to apply the Zarhin’s trick [Za]: replacing A by (A×At)4 the numbers A(Gi, Xi,W )
defined in 5.7.1-3 for the injective map f , are replaced by numbers which are 8 times
bigger. As we are taking p≥ 5, this does not change anything (cf. the proof of 5.8.4),
and so we do not have to replace dim(W )/2 by 4 dim(W ). It is easy to see that the
Zarhin’s trick does not destroy the Zp-étale reductiveness part. This ends the proof
of the corollary.
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Actually we do not need to assume that A is polarized (as 5.6.6 speaks about)
(cf. [Va2]). For better estimates than max(5,dim(A)) see [Va2].

5.8.9. Remark. If in 5.8.6-8 we concentrate just on one specific type of Shimura
varieties, we can obtain much better estimates, cf. 5.8.5.

6. The existence of integral canonical models. First we complete (cf. 6.1-2
and 6.8) the steps (introduced in 3.4) needed to construct integral canonical models
of Shimura varieties of preabelian type. Then we digress very briefly (cf. 6.3) on
conjugates of such models. The main results are gathered in 6.4, while their proves
spread till the very end of 6.8. Besides the tools developed in the previous chapters
we rely heavily on [De2]. In particular, as a main new idea, we build up an integral
version (6.5.1.1) of [De2, 2.3.10].

6.1. The going up between finite maps.

6.1.1. Let Sh(G,X) be a Shimura variety of Hodge type and let f : (G,X) ↪→
(GSp(W,ψ), S) be an injective map. Let p≥ 3 be a prime. We assume the existence of
a Z(p)-lattice L of W which is good for f . Let (G,X, H, v) be a quadruple of (G,X)
having an integral canonical model M, with v dividing p.

6.1.2.* Theorem. We consider a finite map f : (G1, X1,H1, v1) → (G,X, H, v).
Then (G1, X1,H1, v1) has an integral canonical model M1 having the EEP, obtained
by taking the normalization of MO(v1) in the ring of fractions R of ShH1(G1, X1). M1

is a pro-étale cover of an open closed subscheme of MO(v1) .
If Shp(G,X, H) exists, then Shp(G1, X1,H1) also exists, has the EEP, and is the

normalization of Shp(G,X, H) in R.

A complete proof of 6.1.2 will be presented in [Va3]. For a discussion, and a proof
in the majority of cases, see 6.8.

6.1.2.1. Warning. The results below (as well as 6.1.2) whose numbers have a
right ∗, in the case of Shimura pairs (G,X) of preabelian type which are neither of
abelian type nor of compact type, are fully proved in this paper only in the generic
situation, i.e. working with a prime (or primes in some cases, like in 6.4.4) p which
is (or are) big enough, with an upper bound depending only on (G,X) (cf. 6.8.5).
See 6.8 for an explanation. As 6.8.0-2 explain how we prove (in [Va2] and in [Va3])
6.1.2 in the remining cases (see also 6.8.6), we felt it is appropriate to state the main
results and remarks in the way we did. The labelled results are fully proved here in
the abelian type case and in the compact type case.

6.2. The going down between finite maps.

6.2.1. Let f : (G,X) → (G1, X1) be a cover such that E(G,X) = E(G1, X1) (cf.
[MS, 3.4]). Let E := E(G,X). We consider a map (G,X, H, v) → (G1, X1,H1, v)
defined by f , with v a prime of E(G,X) dividing a rational prime p≥ 2. Let V0 =
W (k(v)) = W (F) and let A be the kernel of the homomorphism G → G1. We recall (cf.
2.4) that A is a torus such that H1(Gal(k/k), A(k)) = 0 for any field k of characteristic
zero. Let B := Gab.

6.2.2. Theorem. We assume that (G,X, H, v) has an integral canonical model
M and that MV0 has the EEP. We also assume that either
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a) p is relatively prime to the order Q of the center of the simply connected
semisimple group cover of Gder

1 and M is a quasi-projective integral model, or
b) there is an injective map f2: (G2, X2) ↪→ (GSp(W,ψ), S) which is a good em-

bedding with respect to the prime p > 2 and we have Gder
2 = Gder and (Gad

2 , Xad
2 ) =

(Gad, Xad).
Then (G1, X1,H1, v) has an integral canonical model M1. Moreover the natural

morphism M → M1 is a pro-étale cover.

Proof. As the proof is quite long we itemize the steps (ideas).
A) [Mi4, 4.11 and 4.13] contains all that is needed to see how to construct an

integral model M1 of (G1, X1,H1, v) over O(v), as a quotient of M. We just need to
remark that such a quotient always exists as a scheme: M is a quasi-projective integral
model (in case b) cf. 5.6.1 and 5.8.1-2), and so we can quote [Mu1, p. 112]. We want
to prove that the morphism M → M1 is a pro-étale cover (this implies that M1 is a
smooth integral model) and that M1 has the EP.

B) Let S1 be an integral healthy regular scheme over O(v) and let q:S1E → M1 be
a morphism. Let S0 be the normalization of S1 in the ring of fractions of S1E ×M1 M.
For proving that M1 has the EP, we need to show that q extends to a morphism
S1 → M1. For seeing this it is enough to show that S0 is a pro-étale cover of S1

(as M has the EP and as a pro-étale cover of a healthy regular O(v)-scheme is also a
healthy regular O(v)-scheme, cf. 3.2.2 4)). From the classical purity theorem we get:
it is enough to work with S1 the spectrum of a discrete valuation ring O faithfully
flat over Z(p). We can assume that O is complete with an algebraically closed residue
field, and so that it is a V0-algebra.

C) The key fact for checking that M1 has the EP is:

Fact. A connected component of M1V0 is the quotient of a connected component
C0 of MV0 by a commutative group Cp which is a Q2-torsion group.

Proof. M1V0 is the quotient of MV0 by the group A(Ap
f )/A(Z(p)), where A(Z(p)) is

the closure of A(Z(p)) := A(Q)∩H in A(Ap
f ): this is an easy consequence of [Mi4, 4.13].

We assume first that Gder is simply connected. So (cf. [De1, 2.4-5]) the set of connected
components of MV0 are in one-to-one correspondence to the set B(Ap

f )/B(Z(p)), with
B(Z(p)) having the analogue meaning of A(Z(p)). If moreover G1 = Gad

1 we just have
to add (cf. the sublemma below) that the canonical homomorphism A → B has finite
kernel of order a divisor of Q.

Sublemma. Let t:T1 → T2 be an isogeny of Q–tori. Let T0 be its kernel. Let p
be a prime such that T2 is unramified over Qp. Let H(Ti) be the hyperspecial subgroup
of Ti(Qp), i = 1, 2. Let Ti(Z(p)) := H(Ti)∩Ti(Q); we denote by Ti(Z(p)) its closure in
Ti(Ap

f ), i = 1, 2. Let Q(t) be the least common multiple of the orders of elements of the
group T0(C). Then the kernel of the natural homomorphism tp:T1(Ap

f )/T1(Z(p)) →
T2(Ap

f )/T2(Z(p)) is a Q(t)2-torsion group.

Proof. Let a ∈ ker(tp). Let ã ∈ T1(Ap
f ) representing it. There is a sequence

(bn)n∈N of elements of T2(Z(p)) converging to t(ã) ∈ T2(Ap
f ): T2(Ap

f ) is a topological
group having a countable basis of neighbourhoods of its identity element. Let cn ∈
T1(Z(p)) such that its image in T2(Z(p)) is b

Q(t)
n . As T2(Ap

f ) is a locally compact
group, and as T0(Ap

f ) is a compact group, we deduce the existence of a subsequence
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(cn)n∈N(1), with N(1) an infinite subset of N, converging to an element a1 ∈ T1(Z(p)).
Obviously ãQ(p)2a

−Q(p)
1 ∈ T1(Z(p)) is the identity element. So aQ(p)2 = 1. This proves

the sublemma.

For proving the above fact in the general case it is enough to remark that:

– there is a cover (G0, X0,H0, v0) → (G,X, H, v) with Gder
0 a simply connected

semisimple group (cf. rm. 10) of 3.2.7) and so we can apply the previous argument
involving only connected components (we do not need to assume that (G0, X0,H0, v0)
has an integral canonical model, as the argument on connected components can be
performed over C) for the induced cover (G0, X0,H0, v0) → (G1, X1,H1, v);

– the proof of lemma 6.2.3 allows us to shift the situation to the case when
G1 = Gad

1 (even for p = 2).

D) S0 is a disjoint union of integral schemes. As Cp is an Q2-torsion group, we
get that S0 has the property that any abelian scheme A over the generic fibre of a
connected component S0

0 of S0, having level-lN structures for any N ∈ N (with l a
rational prime relatively prime to p), extends to an abelian scheme over a finite integral
cover of S0

0 , and so S0 is an almost healthy normal scheme over O(v). For checking
this, we can assume that A is defined over a finite flat DVR extension O1 of O. The
Galois-representation on H1

ét(AK1 ,Zl) of the Galois-group of the field of fractions K1

of O1, has an image a Q2-torsion group, and so it has a finite image (cf. [Se, 1.3] and
the structure of l-adic Lie groups). So the Néron-Ogg-Shafarevich criterion applies.

Due to the EEP enjoyed by MV0 , we get a morphism S0 → M. This implies that
q extends to a morphism S1 → M1 and so S0 is a pro-étale cover of S1. This implies
that M1 has the EP.

E) In case a), Q2 is relatively prime to p. So the smoothness of M1 is a conse-
quence of 3.4.5.1 and of [Mi4, 4.11 and 4.13].

In case b) for checking the smoothness of M1 we have to work harder. Let M2

be the integral canonical model of a quadruple (G2, X2,H2, v2), with v2 a prime of
E(G2, X2) dividing the same prime of E(Gad, Xad) = E(Gad

2 , Xad
2 ) as v (cf. 5.8.1-2).

We choose a Z(p)-lattice Lp of W such that there is a family of tensors of degrees
not bigger than 2(p− 2) situated in Z(p)-modules of the form (Lp ⊕ L∗p)

⊗m (m ∈ N),
which is Z(p)-very well positioned with respect to ψ for G2. We can assume that
H2 = G2(L⊗ Zp) (cf. 3.2.7.1).

We can choose the connected component C0 of MV0 such that over an embedding
of V0 into C, its complex points are defined by equivalence classes of the form [x, 1],
with x running through the points of a a connected component X0 of X (cf. 3.3). The
lemma 6.2.3 allows us to identify C0 with the connected component C2 of M2V0 of whose
complex points (under the same embedding of V0 in C) are defined by equivalence
classes of the same form [x2, 1], with x2 running through the points of a connected
component of X2, which can be identified with X0.

F) For the smoothness of M1 we need just to show that Cp acts freely on C0.
[De2, 2.1.7] allows us to identify (this is achieved by shifting the things to C) Cp with
the quotient of a subgroup C1

p of Gad(Q) ∩ Had (here Had is defined starting from
H or H2 as in 3.2.7 2)), leaving invariant X0 (and so leaving invariant X, cf. f) of
3.2.7 2)); so C1

p is a subgroup of Aut((G2, X2,H2)), cf. def. 9) of 3.2.7. A normal
subgroup C2

p of C1
p acts trivially on C0, and we can view Cp as a subgroup of C1

p/C2
p .

But Aut((G2, X2,H2)) acts on M2 as p > 2 (cf. rm. 4) of 3.2.7). Now everything
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results from the following proposition (applied to the case when Hp
2 is a small enough

open subgroup of G2(Ap
f )):

6.2.2.1. Proposition. Let g ∈ Aut((G2, X2,H2)) and let Hp
2 be a compact

subgroup of G2(Ap
f ) such that g belongs to the normalizer of Hp

2 × H2 in G2(Af )
and M2/Hp

2 × H2 is smooth over O(v2). We assume that the universal principally
polarized abelian scheme over M2 obtained through the map f2 and lattice L (cf. 5.1.2),
descends to a principally polarized abelian scheme over M2/Hp

2 ×H2, having a level-N
symplectic similitude structure for some N ∈ N, N ≥ 3 and relatively prime to p (i.e.
we assume that Hp

2 is small enough). We also assume that a power of g acts trivially
on M2/Hp

2 ×H2. If g fixes an F-valued point y of M2V0/Hp
2 ×H2, then it fixes a V1-

valued point of M2V0/Hp
2 ×H2 specializing to y, with V1 a DVR finite flat extension

of V0.

Proof. We need to show that g does not act freely on the generic fibre of the local
ring of y in M2V0/Hp

2 ×H2. From 3.4.5.1 we deduce that we can assume that gp acts
trivially on M2V0/Hp

2 ×H2.
Let (M0, ϕ0) and (g0, ϕ0) be the (Shimura) σ-crystal and respectively the Shimura

adjoint Lie σ-crystal attached to y (and the map f2) (cf. 5.4.6; the assumption that
the universal abelian scheme over M2 descends to M2/Hp

2 × H2 allows us to define
them as in loc. cit.). Here g0 is the Lie algebra of an adjoint group Gad

2V0
whose

generic fibre is Gad
2K0

(cf. 5.4.6). Writing Gad
2V0

as a product of simple adjoint groups,
ϕ0 permutes cyclically the Lie algebras of these factors. This allows us to write (g0, ϕ0)
as a product of whose factors correspond to the cycles of the permutation (of the set of
simple factors of Gad

V0
) we get. We group together the factors of this product whose Lie

algebras are not included in the F 0-filtration defined by an arbitrarily chosen V0-lift
z0 of y (cf. 5.6.4). We get what we call the non-trivial part (gnt

0 , ϕ0) of the (Shimura)
adjoint Lie σ-crystal (g0, ϕ0) (we still denote by ϕ0 its restriction to gnt

0

[
1
p

]
). Let Gadnt

2V0

be the factor of Gad
2V0

whose Lie algebra is gnt
0 . Let Gadnc

2V0
be its factor whose simple

factors have the property that their Lie algebras are not included in the F 0-filtration of
g0 defined by the lift z0 (to M2V0) of y (cf. 5.4.6). Let P adnt

2F be the parabolic subgroup
of Gadnt

2F whose Lie algebra is the natural F 0-filtration of gnt
0 /pgnt

0 . Let P2V0 (P adnt
2V0

)
be the parabolic subgroup of G2V0 (resp. of Gadnt

2V0
) leaving invariant the F 1-filtration

of M0 defined by the chosen V0-lift z0 of y (resp. defined as the image of P2V0 in Gadnt
2V0

under the canonical quotient homomorphism G2V0 → Gadnt
2V0

). For a presentation of
this in a more general and adequate context cf. [Va2].

The first key fact is: g gives birth to an isomorphism g0 of (gnt
0 , ϕ0), with gp

0

acting trivially.

For checking this let (G2, X2,H2) → (G2 × G2, X2 × X2,H2 × H2) be the map
defined by the inclusion of G2 into G2 × G2 whose projections are the identity and
respectively the automorphism g of G2. It factors through a Hodge quasi product
(G3, X3,H3) of (G2, X2,H2) with itself (to be compared with Example 3 of 2.5, where
this is detailed for pairs). Composing this map with the Segre embedding we get a
map f3: (G2, X2,H2) → (GSp(W ⊕W,ψ⊕ψ), S2, GSp((Lp⊕Lp)⊗Zp)) which is still a
good embedding with respect to p (cf. 4.3.17). Using the fact that f3 factors through
(G3, X3) we deduce that the (Shimura) adjoint Lie σ-crystal (g1, ϕ1) attached to y
(and the map f3) is a Lie subcrystal of the product of (g0, ϕ0) with itself. As above
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we define (gnt
1 , ϕ1). Moreover the first projection (of G3 on G2) allows us to identify

(gnt
1 , ϕ1) with (gnt

0 , ϕ0), while the second projection gives us the desired isomorphism
g0 of (gnt

0 , ϕ0).
g0 can be viewed as an element of Gadnt

2V0
(V0) acting on its Lie algebra by conju-

gation; to see why g0 it is not an outer automorphism of gnt
0 we just have to remark

that:
– it leaves invariant the simple factors of Gadnc

2V0
(this can be seen moving to C: X0

is a product of simple Hermitian symmetric domains, indexed by the simple factors of
Gadnc

2V0
; any element of C1

p , as an automorphism of X0, is a product of automorphisms
of such factors of X0);

– it commutes with ϕ0 (and so it leaves invariant P adnt
2F ).

Moreover gp
0 belongs to any parabolic subgroup of Gadnt

2V0
lifting P adnt

2F (as gp acts
trivially on M2/Hp

2 ×H2). This implies that the components of gp
0 corresponding to

the non-compact simple factors of Gadnt
2V0

(i.e. to simple factors of Gadnc
2V0

) are trivial.
As gp

0 commutes with ϕ0 we deduce that gp
0 is the identity element of Gadnt

2V0
(V0).

G) The second key fact is the following general fact:

Lemma. Let HO be a semisimple adjoint group over a DVR O of mixed charac-
teristic. Let p be the characteristic of the residue field of O. We assume that the index
of ramification of O is 1. Let PO be a parabolic subgroup of HO and let gO ∈ HO(O)
be an element of order p which mod p lies in PO(O/pO). Let Spec(O) be the comple-
tion of HO/PO in the O/pO-valued point defined by the origin of HO/pO. Then gO

does not act freely on O
[
1
p

]
. In other words: there is a finite flat DVR extension O1

of O, and there is a parabolic subgroup P 1
O1

of HO1 such that its special fibre is the
scalar extension of PO/pO, and gO, viewed as an O1-valued point of HO1 , belongs to
P 1

O1
(O1).

Proof. We can assume that O is the Witt ring of an algebraically closed field of
characteristic p. Let O2 be the DVR extension of O obtained by adjoining the p-th
roots of unity. Let G be the finite flat group scheme over O obtained by taking the
closure in HO of the subgroup of its generic fibre generated by gO.

We can assume that G is isomorphic to Z/pZ: if p > 3 this is always so, cf. 3.2.1.1
2)); if p = 2 and if gO mod p is the identity, then the lemma is trivial.

We have a canonical O2-homomorphism

Spec(R1) = GO2 → µp = Spec(R)

which over O2

[
1
p

]
is an isomorphism. The nice thing is: at the level of rings we have

an inclusion R ↪→ R1 such that pR1 ⊂ R. This can be seen using elementary matrix
operations of the same nature as the ones needed to compute the discriminant of O2

over O. This (together with the fact that the special fibre of G is a subgroup of the
special fibre of PO) implies that the natural morphism GO2 → HO/PO factors through
µp. We get a morphism sp:µp → Spec(O). We deduce that we have an action of µp

on Spec(O)O2 which inverting p becomes the action of gO on it. To check this it is
enough to show that the ring homomorphism

r:O⊗O O2 → R1 ⊗O O

describing the action of GO2 on Spec(O)O2 factors through R⊗O O. Let Spec(O/I) be
the smallest flat O-subscheme of Spec(O) through which sp factors. It is enough to
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show that the ring homomorphism O → R1 ⊗ O/I obtained from r, factors through
R⊗ O/I. But this is obvious.

Now the same arguments of the proof of 3.4.1.5 used in the case when we were
dealing with a group of order relatively prime to p apply to get that the action of µp

on Spec(O
[
1
p

]
), is not a free action. This ends the proof of the lemma.

H) We come back to the proof of 6.2.2.1. From this lemma we deduce that g0

belongs to a parabolic subgroup P2V1 of Gadnt
2V1

whose special fibre is P adnt
2F , with V1 a

DVR finite flat extension of V0.
But this implies that g0 does not act freely on the generic fibre of M2/Hp

2 ×H2:
under the identification (cf. 5.5.1) of the completion Ôy of the local ring of y with the
ring O of the completion of G2V0/P2V0 = Gadnt

2V0
/P adnt

2V0
in its V0-valued point defined

by the origin of G2V0 , the action of g0 on Ôy becomes the natural action of g0 on O

(it is enough to check this for V0-valued points of O, as they are Zariski dense; but
for such points this is obvious, cf. the way the action of g0 on (gadnt

0 , ϕ0) was defined,
and cf. the theory of deformation of a principally polarized abelian variety).

It is worth making this explicit. The parabolic subgroup P2V1 of Gadnt
2V0

gives birth
to an F 1-filtration of M0⊗V1. The identification of 5.5.1 shows that it cooresponds to
an abelian variety over V1 obtained from the universal abelian scheme over M2V0/Hp

2×
H2 through a V1-valued point z lifting y. Now g fixes z.

This ends the proof of 6.2.2.1 and so of 6.2.2.

From now on we assume for the sake of simplicity that p > 2.

6.2.3. Lemma. Let (Gi, Xi,Hi, vi), i = 1, 2, be two quadruples with Gder =
Gder

1 and such that they have the same adjoint quadruple (G0, X0,H0, v0). Let p be
the rational prime divided by v0. Then Shp(G1, X1,H1) exists and has the EP iff
Shp(G2, X2,H2) exists and has the EP. Assuming the existence of these integral mod-
els, the connected components of the extension to Osh

(v1)
of the integral canonical model

of (G1, X1,H1, v1) are isomorphic to the connected components of the extension to
Osh

(v2)
= Osh

(v1)
of the integral canonical model of (G2, X2,H2, v2).

Proof. We can assume that we have a finite map f : (G1, X1,H1) → (G2, X2,H2)
(cf. rm. 3) of 3.2.7). We first assume that Shp(G2, X2,H2) exists and has the EP.
Using the toric part triple of (G1, X1,H1) we can assume (cf. 3.2.8) that f is injec-
tive. So ShH1(G1, X1) is an open closed subscheme of ShH2(G2, X2), cf. 3.2.14-
15. As E(G1, X1) = E(G2, X2), we deduce that the closure of ShH1(G1, X1) in
Shp(G2, X2,H2) is the integral canonical model Shp(G1, X1,H1). Obviously
Shp(G1, X1,H1) has the EP.

We assume now that Shp(G1, X1,H1) exists and has the EP. Let E(Gi, Xi)(p) be
the normalization of Z(p) in E(Gi, Xi), i = 1, 2. From [Mi3, 4.7] we deduce that the
affine scheme Spec(E(Gi, Xi)(p)) is an étale cover of Spec(Z(p)). Let C be a connected
component of the image of the natural morphism m: ShH1(G1, X1) → ShH2(G2, X2).
Let H be the subgroup of G2(Ap

f ) leaving invariant C. From 3.3.2 we deduce that it is
enough to show that C is the generic fibre of a regular formally smooth E(G2, X2)(p)-
scheme Cp having the EP, and on which H acts continuously so that: the resulting
H-action on C is the natural one, and there is a compact open subgroup H0 of H

such that Cp is naturally a pro-étale cover of the smooth quasi-compact E(G2, X2)(p)-
scheme Cp/H0. As Shp(G1, X1,H1) exists we deduce the existence of C′p, defined as
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Cp, but working over E(G1, X1)(p) instead of over E(G2, X2)(p). Let Spec(E(p)) be the
Galois extension of Spec(E(G2, X2)(p)) generated by Spec(E(G1, X1)(p)). Let C be
the resulting Galois group. Due to the EP enjoyed by the extension C

′′
p of C′p to E(p),

we have a natural Galois-descent datum: C acts on C
′′
p . The extension of m, viewed

as a Z(p)-morphism, to K0 identifies each connected component of ShH1(G1, X1)K0

with a connected component of ShH2(G2, X2)K0 , cf. 3.2.14-15 and the fact that each
component of ShH1(G1, X1)K0 is geometrically connected over K0 (as Shp(G1, X1,H1)
exists). This together with [Mu1, p. 112] implies that the Galois-descent datum is
effective, and so that Cp exists: it has the EP as C′p has it, and as Spec(E(G1, X1)(p))
is an étale cover of Spec(E(G2, X2)(p)) (so B) of 3.2.2 4) applies).

The last part of the lemma involving connected components over Osh
(v2)

is trivial.
This proves the lemma.

6.2.3.1. Remark. From the proof of 6.2.2 and 6.2.3 we deduce that for any
finite map (G1, X1,H1) → (G2, X2,H2) a connected component of ShH1(G1, X1)C is
a Galois cover of a connected component of ShH2(G2, X2)C, with a Galois group which
is an M -torsion abelian pro-finite group, with M equal to the second power of the
least common multiple of the order of elements of the center of the simply connected
group cover of G2der

C (we can assume that G2 is an adjoint group and that G1der is
simply connected; now everything results from the Step C) of the proof of 6.2.2).

6.2.4. Corollary. Let (G,X, H) be a triple having an integral canonical model
M. We assume that it has the EP, and that its extension to V0 has the EEP. We also
assume that either

a) the prime p (such that H ⊂ G(Qp)) is relatively prime to the order of the center
of the simply connected semisimple group cover of Gder and M is a quasi-projective
integral model, or

b) there is a pair (G2, X2) for which condition b) of 6.2.2 is satisfied.
Then any other triple (G1, X1,H1) such that (Gad, Xad) = (Gad

1 , Xad
1 ) and there

is an isogeny Gder → Gder
1 , has also an integral canonical model M1 having the EP.

Proof. This is a direct consequence of 6.2.2-3, and of 3.2.7 10).

6.2.4.1.* Corollary. Under the assumptions 6.2.2 b), any integral canonical
model M3 of a Shimura quadruple (G3, X3,H3, v3) having the same adjoint quadruple
as (G,X, H, v) is a strongly smooth integral model (cf. def. 3.4.8).

Proof. Let Hp
1 ⊂ Hp

2 be two open subgroups of G3(Ap
f ) such that the morphism

M3 → M3/Hp
1 is a pro-étale cover and the generic fibre of the finite morphism

q:M3/Hp
1 → M3/Hp

2 is a Galois cover. We need to show that q itself is a Galois
cover. This is just a problem of connected components. We use the notations of 6.2.2.
So we can move over V0. We can assume that we are dealing with a connected compo-
nent C3 of M3V0 which over an embedding of V0 into C corresponds to complex points
defined by equivalence classes of the form [x, 1], with x running through the points of
a connected component of X3 (cf. 3.3.2 and 2.3).

We first treat the case when there is an isogeny Gder
2 → Gder

3 . Using a cover
(G4, X4,H4, v4) → (G3, X3,H3, v3), with Gder

4 = Gder
2 , the arguments of [Mi4, 4.11

and 4.13] allow us (cf. 6.2.3 and 5.8.1-2) to assume that Gder
3 = Gder

2 . But this case
results from 6.2.2.1 (cf. the proof of 6.2.2).
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To see the general case, the same argument using a cover allows us to assume that
Gder

3 is the simply connected group cover of Gder
2 (cf. 6.1.2 and 6.2.3). We consider (cf.

3.2. 7 10) a cover f5: (G5, X5,H5, v5) → (G2, X2,H2, v2) such that Gder
3 = Gder

5 . Let
C5 be a connected component of the extension to V0 of the integral canonical model
of (G5, X5,H5, v5) dominating C2 and such that its complex points can be described
in a similar manner as the complex points of C2 or of C3. We can assume that Hp

1

is as small as you want. This together with 6.2.3 allow us to shift our attention to
quotients of C5. We get everything in the following context:

a) we have a compact subgroup Hp
i0 of Gi(Ap

f ), i ∈ {2, 5}, acting freely on Ci and
producing a quotient Ci/Hp

i0 of finite type; moreover f5(H
p
50) ⊂ Hp

20;
b) the natural morphism C5/Hp

50 → C2/Hp
20 is an étale cover (cf. also 6.1.2);

c) we have a finite group C(2) which is the quotient of a subgroup of the group
Aut((Gad

2 , Xad
2 ,Had

2 )) leaving invariant Ci and normalizing Hp
i0, i ∈ {2, 5}, through a

subgroup of it acting trivially on C5/Hp
50.

We need to prove: if C(2) acts freely on the generic fibre of C5/Hp
50 then it acts

freely on C5/Hp
20. This is easy: We can asume that C(2) is a cyclic group of order p (cf.

3.4.5.1); as C(2) also acts on C2/Hp
20 such that the étale morphism C5/Hp

50 → C2/Hp
20

(cf. c)) is C(2)-equivariant, if the statement is not true, then from 6.2.2.1 and from
b) above, we deduce easily that C(2) does not act freely on the generic fibre C5/Hp

50.
Contradiction. So C(2) does act freely on C5/Hp

50. This ends the proof of the corollary.

6.2.5. Remark. There are examples of almost healthy normal schemes which
are not noetherian. Such examples can be constructed by taking the normalization of
a DVR in an infinite Galois extension of its field of fractions, having a Galois group
of finite exponent.

6.2.6. Remarks. 1) There are variants for 6.2.2, 6.2.3-4 (which might be useful
in the case of Shimura varieties of special type). For instance:

– in 6.2.2 if we do not assume that E(G,X) = E(G1, X1) then we have to work
with triples instead of quadruples (to be compared with 6.2.3);

– in 6.2.3-4 we can work with quadruples but then we either have to restrict to
smooth integral models having a weaker extension property (like the WEP or REP)
or we need to find extra arguments to be able to shift the EP.

Also there are variants for 6.2.3-4 for p = 2. The limitations for p = 2 come only
from the fact that we can not prove 6.1.2 for p = 2 and from the the fact that we do
not now the unicity of an integral canonical with respect to a prime dividing 2 (cf.
3.2.4). These variants will be stated in [Va5].

2)* The integral canonical models of 6.2.4.1 are quasi-projective as M is so (cf.
its proof; see also the proof of 6.4.1).

6.2.7. Warning. Any attempt to try to prove 6.1.2 directly (using arguments
similar to the ones in 3.4.5.1 and 6.2.2) is meaningless (cf. the two examples below).
So we can not handle 6.1.2 just by using geometrically connected components and
making use of 3.2.11 (which gives us these V0-valued points). However see 6.8.

Example 1. Let Y := V0[x]
[

1
1−px2

]
, and let Y1 := Y [y]/(y2+2pxy+p). Spec(Y1)

is a finite cover of Spec(Y ), which becomes an étale cover by inverting p. Moreover
the generic fibre of Spec(Y1) is geometrically connected over K0. Obviously Y1 is a
regular ring which is not an étale Y -algebra.
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Example 2. Let Y := V0[x]
[

1
pp−1(1−x)p−1−xp(p−1)p−1

]
and let Y1 := Y [y]/(yp +

pxy + p(1− x)). The situation is as above. The extra nice thing is that Spec(Y1) has
plenty of V0-valued points (which is not the case in the above example), as it can be
easily checked.

6.3. Conjugates of integral canonical models of Shimura varieties. We
make use of the notations pertaining to conjugates of Shimura varieties used in [Mi1,
p. 335-6]. Let (G,X, H, v) be a quadruple having an integral canonical model M over
O(v) and let p be the rational prime divided by v. Let τ be an automorphism of C
and let x be a special point of X. We denote by τv the prime of τE(G,X) such that
O(τv) is τO(v). Let τ,xH be the image of H under the isomorphism G(Qp) → τ,xG(Qp)
defined by spp(τ). It is a hyperspecial subgroup of τ,xG(Qp).

6.3.1. Lemma. τM is an integral canonical model of (τ,xG, τ,xX, τ,xH, τv) (hav-
ing EEP if M does).

Proof. Here τM is defined in the same manner as τE(G,X). Obviously τM has
the EP. It has the EEP if M does have it. τM has a τ,xG(Ap

f )-continuous action due
to the fact that M has a G(Ap

f )-continuous action and due to [Mi1, ch. 2, 4.2 b) and
5.5 b)]. Using again the loc. cit. and the smoothness of M, we get that τM is also a
smooth model (over O(τv)). This ends the proof of the lemma.

6.4. The main results.

6.4.1.* Theorem. Let Sh(G,X) be a Shimura variety of preabelian type. Let
p≥ 5 be a prime such that G is unramified over Qp. Then Shp(G,X) exists and has
the EP. As a scheme it is a pro-étale cover of a quasi-projective smooth scheme over
(the normalization in E(G,X) of) Z(p).

Proof. Let (G,X, H, v) be a quadruple of preabelian type with v dividing a ra-
tional prime p≥ 5. From 6.4.2 below we deduce the existence of an injective map
f : (G1, X1) ↪→ (GSp(W,ψ), S) which is a good embedding with respect to p, and such
that (Gad

1 , Xad
1 ) = (Gad, Xad). We use the notations of the SQSPT introduced in

3.2.7 3). From 3.2.7 2) and 5.8.2 (cf. def. 5.8.1), we deduce that (G1, X1,H1) has
an integral canonical model having the EEP. From [Mu] and 5.6.2 we deduce that as
a scheme it is a pro-étale cover of a quasi-projective smooth scheme over Z(p). The
statement of 6.1.2 implies that (G4, X4,H4) has an integral canonical model having
the EEP, which as a scheme is a pro-étale cover of a quasi-projective smooth scheme
over Z(p). From 6.2.3 we deduce that (G2, X2,H2) has an integral canonical model
which as a scheme is a pro-étale cover of a quasi-projective smooth scheme over Z(p).
It has the EP and its extension to V0 has the EEP. From 6.2.2 b) we deduce that
(G,X, H) has an integral canonical model M. As the quotient of a quasi-projective
scheme smooth through a free action of a finite group is still a quasi-projective smooth
scheme (cf. [Mu, p. 112]) we deduce that M is a pro-étale cover of a quasi-projective
smooth scheme over Z(p). From 3.2.2 4) we deduce that it also has the EP. This ends
the proof of the theorem.

If (G,X, H, v) is of abelian type then we can make use of a SQSAT with Gder
1 not

depending on i ∈ {1, 2, 3, 4} (cf. 3) and 10) of 3.2.7 and 6.4.2). So we can make use
of 6.2.3 (instead of 6.1.2) for concluding that (G4, X4,H4) has an integral canonical
model having the EEP and which as a scheme is a pro-étale cover of a quasi-projective
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smooth scheme over Z(p) (as (G1, X1,H1) has an integral canonical model having these
properties).

6.4.1.1. Remarks. 1)* From 6.4.1 we deduce that any integral canonical model
of a quadruple (G,X, H, v) of preabelian type, with (v, 6) = 1, is a quasi-projective
integral model.

2) In the context of 6.4.1, if Sh(G,X) is of compact type, then Shp(G,X) is a
pro-étale cover of a projective smooth scheme over Z(p).

From the proof of 6.4.1 (see also 6.8) we deduce that for seeing this, we can assume
that we do have an embedding (G,X) ↪→ (GSp(W,ψ), S) good with respect to p. As
different quotients of Shp(GSp(W,ψ), S) have (plenty of smooth projective) toroidal
compactifications (cf. [FC]) which are moduli of semi-abelian varieties, we deduce
that different quotients of Shp(G,X) admit compactifications (obtained by taking the
normalization of some closures in the previously considered compactifications), which
are projective schemes and moduli of semi-abelian varieties. We need to show that,
in our case, these quotients are in fact identical to their compactifications. This is
equivalent to showing that over this compactifications we have in fact abelian schemes
(not just semi-abelian schemes). This is an easy consequence of [FC, ii) of 10.1, p. 88]
(the argument is the same as the one used in the first key fact of the proof of 3.2.3.2
b)).

3) 6.4.1 fulfils the expectation of [Mi4, 2.17].

6.4.2. Theorem. Let Sh(G,X) be an adjoint Shimura variety of abelian type.
Let p≥ 5 be a prime such that G is unramified over Qp. Then there is a Shimura
variety Sh(G1, X1) of Hodge type having Sh(G,X) as its adjoint variety and having
a good embedding in a Siegel modular variety with respect to p, and such that for
any other Shimura variety Sh(G2, X2) of abelian type having Sh(G,X) as its adjoint
variety, there is an isogeny Gder

1 → Gder
2 .

The proof of 6.4.2 is presented in 6.5-6.

6.4.2.1.* Corollary. Any integral canonical model M of a Shimura quadruple
(G,X, H, v) of preabelian type, with (v, 6) = 1, is a strongly smooth integral model.

This is a direct consequence of 6.4.1-2 and 6.2.4.1. We would like to remark that
if (G,X) is of abelian type then we do not need to make use of 6.1.2 (cf. the proof of
6.2.4.1 and of 6.4.2).

This corollary implies that many other smooth integral models are strongly
smooth, cf. 3.4.8.1.

6.4.2.2.* Corollary. If in 6.4.2.1 above there is a quadruple (G1, X1,H1, v1)
having the same adjoint quadruple as (G,X, H, v), admitting an embedding
(G1, X1,H1, v1) ↪→ (GSp(W,ψ), S),Kp, p), and such that there is an isogeny Gder →
Gder

1 , then MOsh
(v)

has the EEP.

Proof. This is a consequence of 6.2.2-3 and 6.1.2 (cf. 6.4.1 and the def. of the
EEP). If the pair (G,X) is of abelian type then we do not need to use 6.1.2.

6.4.3. Let (G,X) define a Shimura variety of preabelian type. Let S be the set
of primes whose elements are 2, the primes p for which G is ramified over Qp, and 3 if
G is unramified over Q3 but Sh3(G,X) does not exist (if a quadruple (G1, X1,H1, v1)
with v1 dividing a rational prime p≥ 3, has an integral canonical model, then we
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expect that Shp(G1, X1) does exist; this is motivated by rm. 8) of 3.2.7 and by the
proof of 5.1, where was irrelevant with which prime of the reflex field dividing p we
were working). Let AS

f be the ring of finite adèles with all the q-components, q ∈ S,
omitted. We have Af = (

∏
q∈SQq) × AS

f . Let HS be a compact open subgroup of
G(AS

f ) which is a product of its q-components (for primes q 6∈ S ) and such that every
q-component of it is a hyperspecial subgroup Hq of G(Qq). We call such a subgroup
of G(AS

f ) hyperspecial. It is defined by the property that it is a compact subgroup
of G(AS

f ) of maximal volume (with respect to any Haar measure on G(AS
f )): this is a

consequence of [Ti, p. 55].

6.4.4.* Theorem. For any open subgroup HS of G(
∏

q∈SQp) such that HS×HS

is smooth for (G,X), there is a quasi-projective smooth scheme M(HS) over the nor-
malization O(S) of Z

[
1Q

q∈S q

]
in E(G,X), whose generic fibre is ShHS×HS(G,X), and

such that the normalization S̃h(G,X) of M(HS) in the ring of fractions of Sh(G,X)
has the properties:

a) It admits a G(
∏

q∈SQq)×HS-continuous action;

b) For every prime q /∈ S, the group G(Qq) acts continuously on S̃h(G,X) ×
O(S)

[
1
q

]
and the quotient of S̃h(G,X) × Z(q) by Hq gets a G(Aq

f )-continuous action,
together with which it is the integral canonical model of the triple (G,X, Hq).

Proof. It is enough to show that there is a finite set S1 of rational primes con-
taining S and a quasi-projective smooth scheme M1 over the normalization O(S1) of
Z

[
1Q

q∈S1
q

]
in E(G,X), whose generic fibre is ShHS×HS(G,X), and such that for any

prime p /∈ S1 the normalization of M1Z(p) in ShHp(G,X) is the integral canonical
model of the triple (G,X, Hp): if q ∈ S1 \ S, and if Mq is the integral canonical model
of the triple (G,X, Hq), then Mq/HS×

∏
p/∈S∪{q}Hp is a smooth scheme over the nor-

malization of Z(q) in E(G,X) (cf. 6.4.2.1); but now M1 and Mq/HS ×
∏

p/∈S∪{q}Hp

(for q ∈ S1 \ S) can be glued together along their generic fibres.
Part a) is trivial. We denote by P (G,X) the statement of the existence of a set of

rational primes S1 and of a scheme M1 as above for the Shimura pair (G,X). 6.4.2.1
gives us the right to assume (for proving P (G,X)) that HS is as small as desired. So
the fact that P (G,X) is true for (G,X) of Hodge type is a direct consequence of the
proof of 3.4.7.

We treat now the case when Sh(G,X) is an arbitrary Shimura variety of pre-
abelian type. Let Sh(G1, X1) be a Shimura variety of Hodge type having Sh(Gad, Xad)
as its adjoint variety. Let (G2, X2) → (Gad, Xad) be a cover with Gder

2 a simply con-
nected semisimple group and with E(G2, X2) = E(Gad, Xad) (cf. [MS, 3.4]). Let
(G3, X3) be the fibre product of (G1, X1) and (G2, X2) over (Gad, Xad) (cf. 2.4.0).

From 6.2.4.1 and the statement of 6.1.2 we deduce easily that P (G3, X3) is true as
P (G1, X1) is true (i.e. the normalization of a scheme M1 as above, but for (G1, X1),
in the ring of fractions of a quotient of Sh(G3, X3) by a subgroup of G3(Af ) which is
smooth for (G3, X3), is a smooth scheme over the normalization O(S1) of Z

[
1Q

q∈S1
q

]

in E(G3, X3), for S1 a large enough finite set of rational primes).
We have Gder

2 = Gder
3 (both are simply connected semisimple groups having

the same adjoint group). From 3.2.14-15 (applied to the injective map (G3, X3) ↪→
(G2, X2)× (Gab

3 , Xab
3 ) defined by the natural projection of (G3, X3) on (G2, X2) and
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by the canonical map (G3, X3) → (Gab
3 , Xab

3 )) we deduce easily that P (G2, X2) is true
as P (G3, X3) is true.

The proof of 6.2.2 implies that P (Gad, Xad) is true as P (G2, X2) is true.
The same argument used in getting that P (G3, X3) is true as P (G1, X1) is true,

we deduce from 6.4.5 below (applied to the canonical finite map (G,X) → (Gad, Xad)),
that P (G,X) is true as P (Gad, Xad) is true. This ends the proof of the theorem.

As in the proof of 6.4.1, if (G,X) is of abelian type, we do not need to use the
statement of 6.1.2 (as we can use instead of it 6.2.3 and 3.2.14-15).

6.4.5. Lemma. Let f0: (G0, X0,H0) → (G1, X1,H1) be a finite map of triples
having integral canonical models M0 and respectively M1. We assume that the prime
p such that H1 ⊂ G1(Qp) is greater than 2 and that M0 and M1 have the EP. We
also assume that either

a) the order q of the center of the semisimple simply connected group cover of
G0der is relatively prime to p and M0 is a quasi-projective integral model, or

b)* p ≥ 5 and (G0, X0) is of preabelian type, or
c) M0 and M1 are pro-étale covers of proper smooth Z(p)-schemes.
Then the natural morphism M0 → M1 makes M0 to be a pro-étale cover of an

open closed subscheme of M1, and so M0 is the normalization of M1 in the ring of
fractions of M0.

Proof. Let V0 be the completion of the strict henselization of Zp. We can move
over V0 (i.e. we can shift from triples to quadruples). This is allowed as M0 is a
scheme over the normalization of Z(p) in E(G0, X0) and as this normalization is an
étale cover of the normalization of Z(p) in E(G1, X1) (cf. [Mi3, 4.7]) over which M1

is defined. Let v0 be a prime of E(G0, X0) dividing p, and let v1 be the prime of
E(G1, X1) divided by v0. For i = 0, 1, let Mi

V0
be the extension to V0 of the integral

canonical model of the quadruple (Gi, Xi,Hi, vi).
From 6.2.3 and rm. 10) of 3.2.7 we deduce that we can assume that f0 is a cover.

So case a) results from 6.2.2. To handle the other two cases we first remark that the
normalization N of M1

V0
in the ring of fractions of M0

V0
has local rings of points of

codimension 1 isomorphic to local rings of M0
V0

of codimension 1. To see this it is
enough (due to the EP enjoyed by N and M0

V0
) to check that any such ring is a DVR.

In case c) this is a consequence of 6.4.1.1 2) and of [Mi4, 4.13]. In case b) this is a
consequence of 6.4.2.2 and of 6.2.2: we can assume that G0der is simply connected; so
the proof (Steps B), C) and D)) of 6.2.2 applies (it shows the existence of a natural
morphism from the spectrum of such a ring into M0

V0
; using the natural morphism

M0
V0
→ N, we get the desired result).
From this and [Mi4, 4.13] we deduce that N is unramified over M1

V0
in all these

points. As M0
K0

= NK0 is a pro-étale cover of an open closed subscheme of M1
K0

,
we deduce from the classical purity theorem that N is a pro-étale cover of an open
closed subscheme of M1

V0
. In particular N is a regular formally smooth scheme over

V0 having the EP (cf. C) of 3.2.2 4)). As M0
V0

also has these two properties we get
(cf. rm. 7) of 3.2.3.1) N = M0

V0
. This ends the proof of the lemma.

The proof of 6.8.1 shows that in fact we can handle the case a) as the other two
cases, without making reference to the involved 6.2.2, and so without assuming that
M0 is a quasi-projective integral model.
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6.4.5.1.* Corollary. Let f : (G1, X1,H1, v1) → (G2, X2,H2, v2) be a finite map
between two quadruples of preabelian type. We assume that v1 is relatively prime to
6. Let m:M1 → M2 ×O(v1) be the natural morphism (cf. rm. 4) of 3.2.7) defined by
f . Then m is the composite of a pro-étale cover with an open closed embedding. A
similar result is true if we work with triples.

6.4.6. Remarks. 1)* If (Y, U) is an extensible pair with Y a healthy regular
scheme over Spec(Z

[
1Q

q∈S q

]
, then any morphism U → M(HS) extends uniquely to

a morphism Y → M(HS) (for a proof of this see 6.7). With the terminology to be
introduced in [Va6] these schemes M(HS) are integral canonical models of their generic
fibres.

2)* These smooth schemes M(HS) are the analogue of the schemes attached to
Siegel modular varieties parameterizing principally polarized abelian schemes (of a
given dimension) and having a finite level symplectic similitude structure. Of course
there are variants of 6.4.4 (and of 1) above) with S replaced by a larger set of primes
(not necessarily finite). But all these variants are a consequence of 6.4.4 (and resp. of
1) above).

3)* We call S̃h(G,X) the extended integral canonical model of Sh(G,X) with
respect to HS. As schemes S̃h(G,X) and M(HS) do not depend on the hyperspecial
subgroup HS of G(AS

f ).
To check this let HS

1 be another hyperspecial subgroup of G(AS
f ). It is enough to

show the existence of cartesian squares of the form

ShKS(G,X)
i
KS−−−−→ ShKS

1
(G,X)

r

y
yr1

ShHS×HS(G,X) iH−−−−→ ShHS×HS
1
(G,X),

where KS (resp. KS
1 ) stands for an arbitrary product of the factors of HS (resp. of

HS
1 ), where r and r1 are the natural quotient morphisms, and where iH and iKS are

isomorphism (cf. rm. 7) of 3.2.3.1).
If G is a torus then we have nothing to show. If G is an adjoint group this is

a consequence of 2.3 and of the fact that any two hyperspecial subgroups of G(AS
f )

are G(AS
f )-conjugate (cf. [Ti, p. 47]). The same argument works in the case when

we have a cover (G,X) → (Gad, Xad) (as we have epimorphisms G(Ql) ³ Gad(Ql),
for any prime l). A simple argument based on connected components allows us to
shift this independence property to any Shimura variety of preabelian. In detail:
we consider the fibre product (cf. 2.4.0) of the natural map (G,X) → (Gad, Xad)
with a cover (G1, X1) → (Gad, Xad) such that Gder

1 = Gder. We get finite maps
f1: (G2, X2) → (G1, X1) and f : (G2, X2) → (G,X), with Gder

2 = Gder. Moreover f
is a cover. From [Mi4, 4.11] we deduce that we can replace (G,X) by (G2, X2). We
have an injective map (G2, X2) ↪→ (G3, X3) := (G1, X1) × (Gab

2 , Xab
2 ) defined by f1

and the natural map (G2, X2) → (Gab
2 , Xab

2 ). So we can transfer the things (known
to be true for (G3, X3)) to (G1, X1) (cf. 3.2.14-15).

This justifies the notation M(HS) and the following terminology: the scheme
S̃h(G,X) is referred to as the unramified Shimura scheme defined by (G,X). Warning:
the association S̃h(G,X) to (G,X) is not functorial. There are two obstructions to
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this: the first one is derived from 3.1.2.2 2), while the second one is derived from
the fact that S depends on (G,X). However 6.7.2 below is quite enough for many
functorial purposes in the context of S̃h(G,X).

4) 6.4.5 has a variant for quadruples: If (G0, X0,H0, v0) → (G1, X1,H1, v1) is
a finite map between two quadruples, with (v0, 2) = 1, having integral canonical
models M0 and respectively M1, and if either a) or c) of 6.4.5 is true, then the natural
morphism M0 → M1

O(v0)
is the composite of a pro-étale cover with an open closed

embedding.
5) In 6.2.4 a) it is enough to assume that (v, 6) = 1 and that M is a quasi-

projective integral model: 6.2.3 and 3.2.7 11) allows us to assume that Gad is a simple
Q–group. Now everything results from 6.2.4 and 6.4.2 once we remark that the centers
of semisimple simply connected groups of E6, E7 or Dl Lie type have orders a power
of 2 or 3. If we exclude the E6 factors than we can replace (v, 6) = 1 by (v, 2) = 1.
The same applies to 6.2.2.

6)* The philosophy of 6.4.4 is: to generalize Serre’ s lemma [Mu1, p. 207] to
the context of Shimura varieties of preabelian type, we just have to check things in
characteristic zero.

6.4.7. Remark. If (G,X) is the pair (G1, X1) of 5.7.5 for l = 10, then different
open subschemes of the schemes M(HS) × O(S)

[
1
N

]
are moduli schemes of polarized

(or just pseudo-polarized) K3-surfaces having some finite level-structure (cf. [Va6]).

6.4.8. Remark. For the p = 2 and p = 3 theory of Shimura varieties of pre-
abelian type see [Va5] and [Va2]. In [Va2] we prove that 6.4.1-2 remain true for p = 3.
So in 6.4.3 we have 3 ∈ S iff G is ramified over Q3.

6.4.9.* Remark. We do not know if all integral canonical models whose exis-
tence is guaranteed by 6.4.1 do have the EEP (cf. 3.2.2 4)). However they do have
an extension property broader than the EP. This is with respect to healthy normal
schemes (over the required localizations of Z) whose local ring in a point of mixed
characteristic and of codimension 1, is a DVR (this can be easily checked starting
from 6.1-2 and A) of 3.2.2 4)). In fact it is enough that these local rings are certain
inductive limits of discrete valuation rings (cf. the proof of 6.2.2; for instace if they are
inductive limits of discrete valuation rings whose transition homomorphisms, at the
level of fields of fractions, are of degree dividing a fix number M ∈ N). Similarly for
the schemes M(HS) constructed in 6.4.4 we have a broader extension property than
the one mentioned in rm. 1) of 6.4.6.

From 3.2.12 and 6.4.1 we get directly:

6.4.10.* Criterion. Let (G,X, H, v) be a quadruple of preabelian type, with
(v, 6) = 1. Let M be a normal integral model of it over O(v) having the SEP. Then
M is the integral canonical model of (G,X, H, v) (in particular M is a smooth integral
model and has the EP).

6.4.11. The compact case. We assume now that the pair (G,X) of 6.4.3 is of
compact type. So ShHS×HS(G,X) is a smooth projective scheme over E(G,X). From
6.4.1.1 2) and 6.4.4 we get directly:

A. Corollary. ShHS×HS(G,X) has good reduction with respect to any prime v
of E(G,X) not dividing a prime of S.
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A similar thing can be stated for any connected component Cg of ShHS×HS(G,X)C:

B. Corollary. Cg is naturally defined over a finite field extension E(Cg) of
E(G,X) unramified outside S, and its canonical model over Eg has good reduction
with respect to any prime of E(Cg) not dividing a prime of S.

C. Moreover: M(HS) is the unique proper smooth scheme over O(S) having
ShHS×HS(G,X) as its generic fibre. To see this let N(HS) be a proper smooth
scheme over O(S) having ShHS×HS(G,X) as its generic fibre. Using the extension
type property enjoyed by M(HS) (cf. 6.4.6 1)) we deduce the existence of a morphism
l:N(HS) → M(HS) which is the identity on generic fibres. From [Hart, 11.3, p. 279]
we deduce immediately that l is an isomorphism. The same thing remains true if
instead of O(S) we work with any regular flat O(S)-scheme D of dimension 1 such
that any smooth D-scheme is healthy (see 3.2.2 1)), and if M(HS) is replaced by its
extension to D: the same proof applies.

D. We can use this fact to give an alternating definition of an integral canonical
model of a quadruple (G,X, H, v) with (v, 6) = 1:

Theorem. An integral model of (G,X, H, v) over O(v) is the integral canonical
model of (G,X, H, v) iff it is a smooth proper integral model.

This theorem answers a question of M. Flach.

6.5. A proof of 6.4.2 in the case when p does not divide B(G).

6.5.1. First we prove that it is enough to treat the case when G is a Q–simple
group. To check this let (G,X) be a product of two Shimura pairs (Gi, Xi) of adjoint
type, i = 1, 2, for which 6.4.2 is true. As G is unramified over Qp we deduce that the
group Gi is also unramified over Qp, i = 1, 2. Let (Gi

1, X
i
1) ↪→ (GSp(W i, ψi), Si) be

an embedding good with respect to p, with (Giad
1 , Xiad) = (Gi, Xi), and such that

for any other Shimura pair (Gi
2, X

i
2) of preabelian type having (Gi, Xi) as its adjoint

variety, there is an isogeny Gider
1 → Gider

2 (i = 1, 2). Let (G3
1, X

3
1 ) be a Hodge quasi

product of the two Shimura pairs (G1
1, X

1
1 ) and (G2

1, X
2
1 ) of Hodge type (cf. Example

3 of 2.5). Now the Segre embedding (G3
1, X

3
1 ) → (GSp(W 1 ⊕W 2, ψ1 ⊕ ψ2), S0) is a

good embedding with respect to p (cf. 4.3.17). Moreover G3der
1 = G1der

1 × G2der
1 . So

for any Shimura variety (G3
2, X

3
2 ) of abelian type such that its adjoint variety is the

adjoint variety of (G3
1, X

3
1 ), there is an isogeny G3der

2 → G3der
1 (cf. [De2, 2.3.8]).

So we can assume that G is a simple Q–group. We deduce the existence of a
totally real number field F and of an absolutely simple adjoint group Gs over F such
that G = ResF/QGs [De2, 2.3.4]. As before V0 = W (Z/pZ). For any number field E
we denote by E(p) the normalization of Z(p) in E. Let GZ(p) be an adjoint group over
Z(p) having G as its fibre over Q (cf. 3.1.3), and let G̃Z(p) be the semisimple simple
connected group cover of it. We have:

a) GV0 is a product of [F : Q] copies of a split adjoint group of the same Lie type
as G (this is obvious).

b) As G is unramified over Qp, F is unramified over p and Gs
Fi

is unramified over
Fi, where F⊗Qp =

∏
i∈Ip

Fi, with Fi local fields (we have GQp =
∏

i∈Ip
ResFi/Qp

Gs
Fi

).

[De2, 2.3.10] admits a Z(p)-version:



510 a. vasiu

6.5.1.1. Theorem. Let K be a quadratic totally imaginary extension of F ,
unramified over p. Then there is a Shimura variety Sh(G1, X1) of Hodge type such
that:

a) Sh(G,X) is its adjoint variety;
b) for any Shimura variety Sh(G̃1, X̃1) of abelian type with (G̃ad

1 , X̃ad
1 ) = (G,X),

there is an isogeny Gder
1 → G̃der

1 ;
c) its reflex field is the the composite field of E(G,X) and E(ResK/QGm, hT )

(where (ResK/QGm, hT ) is the zero dimensional Shimura pair defined in [De2, 2.3.9]);
d) it has a good embedding in a Siegel modular variety with respect to p.

Proof. The proof is divided in two parts. First we treat the case when p does not
divide B(G), then we continue in 6.6.5 with the general case. In this section 6.5 S,
K, KS , (G2, X2) and (G3, X3) have the same significance as in [De2, 2.3]. So S is a
set of nodes of the Dynkin diagram of GC, (G2, X2) and (G3, X3) are Shimura pairs,
while KS is a product of finite field extensions of Q. If (G,X) is of Bl, Cl or DHl type
(rep. of Al or DRl type) then to each simple factor of Gad

R it corresponds one (resp.
two) elements of S. We itemize the things we need.

i) We start with a representation W(p) of G̃Z(p) over Z(p) which over V0 is iso-
morphic to ⊕s∈SVp(s)n for a convenient number n ∈ N (to be compared with [De2,
2.3.10]). Here Vp(s) is the V0-representation of G̃V0 given by the fundamental weight
corresponding to s ∈ S (cf. [De2, 2.3]).

ii) The totally imaginary quadratic extension K of F is assumed to be unramified
above p (i.e. Spec(K(p)) is an étale cover of Spec(Z(p)).

iii) KS is unramified above p as G̃Z(p) splits over V0.

iv) The closure of G3 in GL(WZ(p)), with WZ(p) := K(p)⊗F(p) W(p), is a reductive
group G3Z(p)

over Z(p) (cf. [De2, 2.3] for the meaning of G3) (moving over V0 this
becomes obvious). Let G̃c+der

3 be the subgroup of G3 generated by Gder
3 , and by

the maximal subtorus of Z(G3) which over R is compact (cf. [De2, 2.3.3 and end of
2.3.10]). Let G̃3 be the subgroup of G3 generated by G̃c+der

3 and by the one dimensional
split torus acting as scalar multiplication on

W := WZ(p) ⊗Q.

So any homomorphism S → G3R defined by some x ∈ X3 factors through G̃3R (of
course instead of G̃3 we can work equally well with the smallest subgroup of G3

satisfying this property). We get a Shimura pair (G̃3, X̃3); here X̃3 is a disjoint union
of connected components of X3 defined by a G̃3(R)-conjugacy class of an arbitrary
x ∈ X3. This is a slight restatement of [De2, 2.3.3]: we do not always have X̃3 = X3,
as it can be seen easily (to be compared with 2.5.1) through examples in which F is
a totally real quadratic extension of Q.

Let G̃3Z(p) (resp. G̃c+der
3Z(p)

) be the closure of G̃3 (resp. of G̃c+der
3 ) in G3Z(p)

.

From loc. cit. we get that G̃3 is included in the group of symplectic similitude
isomorphisms defined by a non-degenerate alternating form on W .

v) There is a perfect alternating form ψ:WZ(p) ⊗WZ(p) → Z(p) such that we get
an injective map f : (G̃3, X̃3) ↪→ (GSp(W,ψ), S0) (here we write as an exception S0
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for what we have always denoted by S, not to create confusion with the meaning of S
in [De2, 2.3]).

This is so due to the fact that [De2, 1.1.18 b)] admits a Z(p)-version. To see this
we first remark that the bilinear forms WZ(p)⊗WZ(p) → Z(p) fixed by G̃3Z(p) form a free
module M over Z(p). Chosing n big enough (see 6.6.5 d) for an explicit presentation)
we can assume that we have such bilinear forms which are perfect and alternating.

In fact using the natural embedding SLm(Z(p)) ↪→ Sp2m(Z(p)) (as in 6.6.5 d1);
here Sp2m(Z(p)) is the group of symplectic isomorphisms defined by a perfect alter-
nating form on Z2m

(p) , etc.), m := dimZ(p)(WZ(p)), we get the existence of such a perfect
alternating bilinear form after we replace (if needed) n by 2n. This replacement cor-
responds to a replacement of W(p) by W(p) ⊕ W(p) and of WZ(p) by WZ(p) ⊕ WZ(p)

(cf. the way we defined W(p) in 6.6.5.1, and the definition of the connected com-
ponent of Z(G̃c+der

3 )). We would like to point out that this fact is convenient for
notations (and so used in what follows), but is irrelevant for what follows: we can
work equally well (to be compared with 6.7.2) without having (or knowing) that
the representation G̃c+der

3Z(p)
→ GL(W̃Z(p)) we get under the above natural embedding

SLm(Z(p)) ↪→ Sp2m(Z(p)) is a sum of two copies of its representation on WZ(p) .
Now we look at M as a group scheme over Z(p). The intersection of a non-empty

open (in the real topology) subset of MR(R) with the set of Z(p)-valued points of the
dense open subscheme M(pa) of M corresponding to perfect alternating bilinear forms
is not void: M(pa) has Z(p)-valued points; if ψ̃:WZ(p) ⊗WZ(p) → Z(p) corresponds to
z̃ ∈ M(pa)(Z(p)), then we can choose ψ such that mod p is ψ̃ mod p (standard
argument involving approximations with respect to non-equivalent valuations).

vi) Using 5.7.4 and 5.6.9 we get that if p does not divide B(G) (see 5.7.2 for the
meaning of it), then (G̃3, X̃3) ↪→ (GSp(W,ψ), S0) is a good embedding with respect
to p.

For checking this we first remark that we have

WV0 := WZ(p) ⊗ V0 = ⊕(i,s)∈I×SVp(s)i

as G3
der
V0

-modules, with I = {1, 2, ..., 2n}, the upper indices i just counting the numbers
of copies of Vp(s) we get. Moreover G3V0 leaves invariant any summand of this direct
sum decomposition. Let gl(WV0) = m0 ⊕ m1, with m0 the free V0-submodule of
End(WV0) leaving invariant any subspace Vp(s)i of WV0 , and with m1 the free V0-
submodule of End(WV0) taking, ∀(i0, s0) ∈ I × S, the summand Vp(s0)i0 of WV0 into
⊕(i,s)∈I(i0,s0)Vp(s)i (here I(i0, s0) := I × S \ {(i0, s0)}). Let π0 be the projector of
gl(WV0) on m0 associated to the above direct sum decomposition. Now to get vi) we
just have to apply 5.7.4 to the bilinear form b on gl(WV0) defined by

b(x, y) := ⊕(i,s)∈I×Sγ(i,s)Tr(i,s)(π0(x), π0(y)).

Here x, y ∈ gl(WV0), γ(i,s) are invertible elements of V0 having their sum still an invert-
ible element of V0, and Tr(i,s) is the trace form on End(Vp(s)i). Tr(i,s)(π0(x), π0(y))
makes sense as m0 = ⊕(i,s)∈I×SEnd(Vp(s)i). Obviously b is fixed by G3V0 and so by
G̃3V0 .

This ends the proof of 6.4.2 and 6.5.1.1 in the case when p does not divide B(G)
(cf. [De2, 2.3.10-13] for the requirements on E(G̃3, X̃3) = E(G3, X3) and on G̃der

3 =
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Gder
3 expressed in 6.5.1.1 b) and c)).

6.6. The proof of 6.4.2 and 6.5.1.1 (the general case). We continue to
use the same notations as in 6.5. We present two proves of the general case of 6.4.2:
the first one (6.6.3), based on the (sophisticated) proposition 6.6.2, and a second one
(6.6.5) which is a simplified, down to earth, explicit version of the first one.

6.6.1. Notation. For any totally real number field F1 ⊃ F , we denote by
ShF1(G,X) the adjoint Shimura variety defined by the pair (GF1 , XF1), where GF1 :=
ResF1/QGs

F1
and XF1 is the Hermitian symmetric domain obtained as the GF1(R)-

conjugacy class of homomorphisms S→ GF1
R generated by the composite of any x ∈ X

with the natural inclusion GR ↪→ GF1
R . So XF1 is a disjoint union of [F1 : F ] copies

of X. We get a natural injective map fF1 : Sh(G,X) ↪→ ShF1(G,X). In particular
ShF (G,X) = Sh(G,X).

6.6.2. Proposition. There are injective maps

(G4, X4)
f0
↪→(G0, X0)

f1
↪→(G1, X1)

f2
↪→(GSp(W,ψ), S0)

having the properties:

a) there is a Z(p)-lattice L of W such that ψ induces a perfect bilinear form ψ:L⊗L →
Z(p) and the closures of G4, G0 and G1 in GSp(L,ψ) are reductive groups over
Z(p) denoted respectively by G4Z(p)

, G0Z(p) and G1Z(p) ;

b) (Gad
4 , Xad

4 ) = (G,X) and there is a totally real number field F1 ⊃ F such that
Sh(G0ad, X0ad) = ShF1(G,X);

c) the map f0 induces the canonical homomorphism fF1 :G = Gad
4 → G0ad = GF1 ;

d) G0
Z(p)

is the centralizer in G1
Z(p)

of a torus of G1
Z(p)

;

e) the homomorphism G0der → G1der induced by f1 is of the form ResF1/QfF1 for
fF1 :Gd

F1
→ G̃1

F1
a group homomorphism between semisimple groups over F1, with

G̃1ad
F1

a simple F1-group, and with Gd
F1

a cover of Gs
F1

;

f) f2 is an injective map obtained by the Z(p)-version of [De2, 2.3.10] explained in
6.5.1.1, with L = WZ(p) and with the number n (mentioned in i) of 6.5.1.1) a
power of 2;

g) p does not divide B(G1ad);

h) Gab
4 = G0ab;

i) If (G,X) is of DHl type, with l ∈ N, l≥ 4, then the embedding Gder
4 ↪→ G1der can

be lifted to an embedding at the level of semisimple simply connected group covers.
Moreover if (G,X) is of Al, Bl or DRl type, we can also get E(G1, X1) = Q.

Proof. The proof of 6.6.2 presents no difficulty. The statement of the proposition
makes its proof obvious (cf. also [Va5]). If (G,X) is of Bl (resp. DRl ) type, we can
take (G1, X1) of Bl+a (resp. DRl+a) type, with a a non-negative integer; if (G,X) is
of Cl (resp. DHl ) type, we can take (G1, X1) of Cal (resp. DHal) type, with a ∈ N; if G
is of Al type we can take G1 of Ca(l+1) type, with a ∈ N (to be compared with 6.6.5
below). In practice we take the number a to be 0 (when allowed), 1 or 2. We will
just add that we need F1 to be a totally real number field, containing F , unramified
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above p and big enough so that Gs splits over the completion of F1 with respect to
any finite prime of the ring of integers of F1.

For the last property (concerning the cases when we can take E(G1, X1) = Q)
needed for the proof of the Langlands-Rapoport conjecture (of 1.7) see [Va2]. We need
6.6.2 (presently) only for the p = 2 and p = 3 theory of Shimura varieties of preabelian
type.

6.6.3. Remark. 6.6.2 a) implies that G4 and G1 are unramified over Qp. From
5.7.1 and 6.6.2 g) we deduce that the injective map (G1, X1) ↪→ (GSp(W,ψ), S0) is a
(very) good embedding with respect to p. From 4.3.14 and 6.6.2 d) we deduce that
(G0, X0) ↪→ (GSp(W,ψ, S0) is a good embedding with respect to p. Now 4.3.16 and
b), c) and h) of 6.6.2 imply that (G4, X4) ↪→ (GSp(W,ψ), S0) is a good embedding
with respect to p. This ends the first proof of the general case of 6.4.2.

We present now what 6.6.2 becomes in the case of classical Spin modular varieties
of odd dimension (and rank 2).

6.6.4. Example. Let l≥ 3 be an integer. Let Sh(Gi, Xi), i = 0, 1, be two adjoint
Shimura varieties showing up in 5.7.5, with Gi = SO(2, 2l − 1 + 2i). The canonical
inclusion j0:G0 ↪→ G1 (corresponding to the identification of the group of invertible
matrices of dimension 2l + 1 with the subgroup of invertible matrices of dimension
2l + 3 having on the last two lines and columns just two diagonal 1’s) induces an
injective map j0: (G0, X0) ↪→ (G1, X1) and G0 is the centralizer in G1 of a torus of
G1 of dimension 1. 4.3.14 and 5.7.5 put together imply that for any prime p≥ 5,
Shp(G0, X0) exists.

If (G,X) = (G0, X0) = (Gad
0 , Xad

0 ) and if p is a prime not dividing B(G) =
6(2l−1), then in 6.6.2 we can take G4 = G0 = G1 and for the map f2 we can take the
map associated to the Spin representation described in 5.7.5. So Gab

4 = Gm. If p≥ 5
divides 2l− 1 then in 6.6.2 we can take G4 = G0, the adjoint of f1 to be j0, and as f2

the map associated to the Spin representation of the simply connected group cover of
G1.

6.6.5. An explicit proof of the above Z(p)-version of [De2, 2.3.10]. Here
we present the second part of the proof of 6.5.1.1. Let T be a maximal torus (cf.
the argument in 3.1.4 based on [Ha, 5.5.3]) of the simply connected group Gsc

F(p)
(cf.

3.1.3) over F(p) having as its fibre over F , the simply connected group cover of Gs,
and such that for any embedding F ↪→ R, TR is compact. Then TF splits over a Galois
extension E of F unramified above p. Choosing the smallest such Galois extension,
we get that E is a CM-field (as TR is a compact torus for any embedding F ↪→ R).
We need T (and E) just to fix a little bit the notations.

We consider homomorphisms (between reductive groups over E(p))

Gsc
E(p)

h0→Gd
E(p)

h1
↪→ G̃E(p)

h2
↪→GL(WE(p))

such that:
a) WE(p) is a free E(p)-module of finite rank.

b) G̃E(p) is semisimple; G̃ad
E(p)

is a split simple group over E(p) such that p does not

divide B(G̃ad
E(p)

).

c) h0 is an isogeny. Here Gsc
E(p)

is the extension of Gsc
F(p)

to E(p).
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d) h1 is an E(p)-version of the map fF1 mentioned in 6.6.2 e). Namely:
d1) If Gs is of Al Lie type, then we take WE(p) of dimension 2(l + 1) over E(p). h0

is an isomorphism. Let ψ0:WE(p) ⊗WE(p) → E(p) be a perfect alternating form.
We choose a basis {e1, e2, ..., e2l+2} of WE(p) with respect to which ψ0 has the
standard form, i.e. if 1≤ i≤ j ≤ 2(l + 1), then ψ0(ei, ej) = 1 if j = i + l + 1 and
zero otherwise. We identify Gsc

E(p)
with SLl+1E(p)

. We take h2 ◦ h1 such that it
takes A ∈ SLl+1E(p)

(E(p)) into the element of GL(WE(p)) that acts as A on the
submodule of WE(p) generated by the first l + 1 elements of the chosen basis, and
as (At)−1 on the submodule of WE(p) generated by the last l + 1 elements of the
chosen basis. If p does not divide B(Gs) = 6(l + 1), we take G̃E(p) = Gd

E(p)
(with

h1 as identity). If p divides 6(l + 1), we take G̃E(p) = Sp(WE(p) , ψ0), and h1 and
h2 as the obvious inclusions (as p does not divide B(G̃ad

E ) = 6(l + 2); we recall
that p ≥ 5).

d2) Let now (G,X) be of type DRl . We take Gd
E(p)

= Gsc
E(p)

= Spin(2l)E(p) . We take
h2 ◦ h1 to be the composition of the embedding Spin(2l)E(p) ↪→ Spin(2l + 2)E(p)

(which results by passage to simply connected group covers of the homomorphism
SO(2l)E(p) → SO(2l + 2)E(p) described in terms of matrices by the rule: A ∈
SO(2l)E(p)(E(p)) goes to the matrix having A on the first 2l lines and columns
and having on the last two lines and columns just two diagonal 1’s), with the
Spin representation of Spin(2l + 2)E(p) . If p divides B(Gs) = 6(2l − 1), we take
G̃E(p) = Spin(2l + 2)E(p) (B(G̃ad

E ) = 6(2l + 1)) and if p does not divide B(Gs) we
take G̃E(p) = Gd

E(p)
(and the obvious homomorphisms h1 and h2).

d3) If Gs is of Bl Lie type, then the situation is entirely analogous to the situation
described in d2) (cf. 5.7.5).

d4) Let now Gs be of Cl Lie type. We take Gsc
E(p)

= Gd
E(p)

= Sp(W 1
E(p)

, ψ1), with
W 1

E(p)
a free module over E(p) of dimension 2l and with ψ1:W 1

E(p)
⊗W 1

E(p)
→ E(p)

a perfect alternating bilinear form. We choose a E(p)-basis {e1, e2, ..., e2l} of
W 1

E(p)
with the property that for 1≤ i≤ j ≤ 2l, ψ0(ei, ej) = 1 if j = l + i and zero

otherwise. We take: WE(p) = W 1
E(p)

⊕W 1
E(p)

a direct sum of two copies of W 1
E(p)

.
Let ψ0 be an alternating form on it such that: ψ0(x, y) is ψ1(x, y) if x, y belong to
the same copy W 1

E(p)
of WE(p) , and is equal to zero (resp. u(p)) if x = ei belongs

to the second copy and y = ej belongs to the first one and i is different from
j (resp. and i = j). Here u(p) is an arbitrary invertible element of E(p) which
makes ψ0 to be a perfect form. For instance u(p) = 2 works for all primes p≥ 5,
as it can be seen easily computing the determinant of the matrix associated to
ψ0. We take h2 ◦ h1 to be defined by: A ∈ Sp(W 1

E(p)
, ψ)(E(p)) acts on WE(p) as

A on the first copy W 1
E(p)

and as (At)−1 on the second copy W 1
E(p)

. If p does not

divide B(Gs) = 6(l + 1), then we take G̃E(p) = Gd
E(p)

, and if p divides B(Gs),

then we take G̃E(p) = Sp(WE(p) , ψ0) (as p does not divide B(G̃ad
E ) = 6(l + 2)).

d5) If (G,X) is of type DHl , the situation is entirely analogous to the one described in
d4) (we just have to replace the alternating forms by symmetric bilinear forms),
except that h0 is not an isomorphism, but an isogeny of degree 2. We have
Gd

E(p)
= O(2l)E(p) .
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e) Gd
E(p)

is the centralizer of a torus T̃ of G̃E(p) (cf. d1) to d5) above).

The composition h2 ◦ h1 ◦ h0 is the representation:
– in the case d1): direct sum of the representations associated to the fundamental

weights corresponding to the roots α1 and αl (see [De2] for the notations and the role
of the roots; see also [Mi3, 1.21]);

– in cases d2) and d3): direct sum of two copies of the Spin representation;
– in cases d4) and d5): direct sum of two copies of the representation associated

to the fundamental weight corresponding to the root α1.

6.6.5.1. We now come back to i-vi) of the proof of 6.5.1.1. All the above part of
6.6.5 had just the role of making 6.5.1.1 i) well-fitted for the general case.

We take W(p) = WE(p) . The group Gm(F ) acts on W(p)

[
1
p

]
by multiplication

(WE(p) is a module over F(p), cf. a)). We get the situation:

Gder
3Z(p)

↪→ ResE(p)/Z(p)
Gd

E(p)
↪→ G̃0 := ResE(p)/Z(p)

G̃E(p) ↪→ GL(WZ(p)),

with G̃0(Z(p)) = G̃E(p)(E(p)) acting on WZ(p) = K(p) ⊗F(p) W(p) through its canonical
action on W(p). This is the explicit version of 6.5.1.1 i).

We keep ii) and iii) of 6.5.1.1. We have n = 2[E : F ].
Case 1. We consider first the case when Sh(G,X) is a Shimura variety of Bl,

Cl, DRl or DHl type, or of Al type but with trivial involution (cf. [De2, 2.3.12]). We
choose G3 as explained in [De2, 2.3.13] (i.e. we choose G2 as small as allowed). So
the connected component of the center of G3Z(p)

commutes with G̃0. This takes care

of 6.5.1.1 iv). We keep 6.5.1.1 v). The injective map f : (G̃3, X̃3) ↪→ (GSp(W,ψ), S0)
(we recall that W = WZ(p) ⊗Q) is a good embedding with respect to p, with WZ(p) a
good Z(p)-lattice for the map f . This is a consequence of the fact that the family of
tensors fixed by G̃3 formed by the set of elements of the algebra L̃ of endomorphisms
of WZ(p) fixed by G̃3Z(p) and by the family F of 3 tensors of degree 4 (this is the family
described in 4.3.10 b) for the embedding G̃0

Q ↪→ GL(W )) is enveloped by WZ(p) and
is Z(p)-very well positioned for G3. To check this we use 4.3.6.2). 4.3.13 takes care of
the connected component of the origin of Z(G̃3), while 4.3.16 takes care of G̃der

3 . To
see this last part we just have to remark that (cf. 6.6.5 d) and e)):

– we have a relative PEL situation (G̃0, L̃, ResE(p)/Z(p)
T̃ );

– the family of tensors F is Z(p)-well positioned for the group G̃0
Q and is enveloped

by WZ(p) , cf. 4.3.10 b) and 6.6.5 b) and d).
This ends the explicit (second) proof of 6.4.2 as well as the proof of 6.5.1.1, in

these cases.
Case 2. We consider now the case when (G,X) is of type Al, and has a non-trivial

involution (as def. in [De1, 3.7]). We first remark that ResKS/QGm acts on W(p)

[
1
p

]

(cf. the proof of [De2, 2.3.10]). We have to take some precautions: keeping the 6.5.1.1
iv), the connected component G of the origin of the center of G3Z(p)

does not commute
with G̃0. However GQ is generated by two subtori: one is ResK/QGm (it commutes
with G̃0

Q), and another one which is a subtorus T (KS) of ResKS/QGm producing an
isogeny ResF/QGm×T (KS) → ResKS/QGm (cf. [De2, 2.3.10]). But T (KS) lies inside
G̃0
Q (cf. d1) above); in fact T (KS) is a subtorus of the generic fibre of ResE(p)/Z(p)

T̃
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(cf. e) and d1) above). So keeping 6.5.1.1 v), we still get (the argument is the same
as in case 1 above) that the map f : (G̃3, X̃3) ↪→ (GSp(W,ψ), S0) is a good embedding
with respect to p: again we have a relative PEL situation (G̃0, L̃, ResE(p)/Z(p)

T̃ ) (cf.
4.3.16). In other words the family of endomorphism of WZ(p) commuting with G̃3Z(p) ,
together with the family F of three tensors (defined as in case 1) is Z(p)-very well
positioned for G̃3 and is enveloped by WZ(p) (cf. d1) above).

In fact it is an easy exercise to see that we can choose ψ in 6.5.1.1 v) so that,
replacing if needed (G̃3, X̃3) by an enlargement (see def. 4.3.1) of it in (GSp(W,ψ), S0)
(so we are not anymore interested to have G̃3 as a subgroup of G3), the injective map
(G̃3, X̃3) ↪→ (GSp(W,ψ), S0) is a PEL type embedding, and that the conditions of
[Ko, ch. 5] are satisfied for p (i.e. we are in the situation described in 4.3.11). In
fact, referring to 6.5.1.1 v), we just need to choose z̃ ∈ M(pa)(Z(p)) such that the
Z(p)-subalgebra of End(WZ(p)) formed by endomorphisms fixed by G̃3Z(p) , is self dual
with respect to ψ̃.

This completes the explicit (second) proof of 6.4.2 as well as the proof of 6.5.1.1.

6.6.6. Remark. Except 6.5.1.1 vi), 6.6.3-4, everything in 6.5-6 remains valid
for p = 3 (but working with B(∗)

3 instead of B(∗); with ∗ substituting a simple adjoint
group over a field). Even for p = 2 some part of 6.5-6 remains valid. We apply this
remark in the building of the p = 2 and p = 3 theory of Shimura varieties of preabelian
type (cf. [Va5]).

6.7. The proof of rm. 1) of 6.4.6. For any reductive group G̃ over Q we
denote by U(G̃) the set of primes l such that G̃ is unramified over Ql.

6.7.1. Remark. In 6.5.1.1 we can choose the number field K and the Shimura
pair (G1, X1) such that U(G) \ {2} = U(G1) \ {2}. This is a consequence of the proof
of 6.5.1.1: Gab

3 is unramified over Ql if K and KS are unramified over Ql; if G is
unramified over Ql then the number fields KS and F are unramified over l (cf. 6.5.1
b) and 6.5.1.1 iii)). So we just need K to be unramified over l for all primes l > 2 such
that G is unramified over Ql. For instance we can take K = F (i). More generally: we
can take K = F (

√−d), where d ∈ N divides the discriminant of F .
If there is a prime l such that G is ramified over Ql (for instance if F or E(G,X)

is different from Q) then we can choose K and (G1, X1) such that U(G) = U(G1).
All these extend to the context of 6.4.2 (i.e. when Sh(G,X) is not a simple

Shimura variety).

6.7.2. Lemma. For any Shimura variety of Hodge type Sh(G,X) there is an
injective map f : (G,X) ↪→ (GSp(W,ψ), S) such that for any prime l ∈ U(G) there is a
hyperspecial subgroup of G(Ql) contained in a hyperspecial subgroup of GSp(W,ψ)(Ql).

Proof. We start with an arbitrary embedding f : (G,X) ↪→ (GSp(W,ψ), S). It
takes care of all primes l ∈ U(G) \ B(f), with B(f) ⊂ U(G) a finite set. For any
l ∈ B(f) we choose arbitrarily a hyperspecial subgroup Hl of G(Ql). It is contained
in a maximal compact open subgroup of GSp(W,ψ)(Ql). But composing the natural
map from (G,X) to a Hodge quasi product (cf. Example 3 of 2.5) of n copies of
(GSp(W,ψ), S), with n ∈ N big enough and suitable chosen, with the Segre embedding
of this product into (G1, X1) := (GSp(W⊕n, ψ⊕n), Sn) we do get that Hl is contained
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in a hyperspecial subgroup of G1(Ql) (cf. the structure of maximal compact subgroups
of GSp(W,ψ)(Ql)). The good values of n depend only on the dimension of W over Q.
So some n ∈ N works for all l ∈ B(f).

In fact we can always take n = 2: Hl is contained in a hyperspecial subgroup of
GL(W )(Ql) (cf. 3.1.2.2 2)), and so 6.6.5 d1) applies.

Now the injective map (G,X) ↪→ (G1, X1) has the desired property. This ends
the proof of the lemma.

6.7.3.* Now we are ready to prove rm. 1) of 6.4.6. We use the notations of
6.4.3-4. We assume that 6.4.1-2 are true for p = 3 also (cf. 6.4.8) (otherwise we have
to assume that 3 /∈ S). From def. 3.4.8 and 6.4.2.1 we deduce that we can assume
that the open subgroup HS of G(

∏
q∈SQq) is as small as desired. This implies (cf.

6.4.5.1 and 3.2.3.1 5)) that we can assume that (G,X) is of adjoint type. 3.2.16 allows
us to assume that G is a simple Q–group of adjoint type. From 6.7.1, 6.4.5.1, and
C) of 3.2.2 4) (and 6.4.2.1) we deduce that we can assume that (G,X) is of Hodge
type. But this case is an easy consequence of 6.7.2 and 3.2.15: for HS small enough
we have a (special) (universal) principally polarized abelian scheme over M(HS) (to
be compared with 3.4.7 and 4.1). This ends the proof of rm. 1) of 6.4.6.

6.8. About the proof of 6.1.2. Here we present the proof of 6.1.2 as far as
the tools presented in the present paper allow. For the last part of the non-compact
case we have to refer either to [Va2] or to [Va3]. We keep the notations of 6.1.

6.8.0. The part about triples implies and is implied by the part about quadru-
ples. So we start using triples. For the case p = 3 we refer to [Va2-3]. Here we
consider p > 3. From rm. 10) of 3.2.7 and 6.2.3 we deduce that we can assume that
f : (G1, X1,H1) → (G,X, H) is a cover. Moreover we can assume that Gder

1 is a simply
connected semisimple group. From rm. 11) of 3.2.7 we deduce that we can assume
that Gad is a simple Q–group.

We can assume that (G1, X1) is not of abelian type (cf. the proof of 6.4.1).
So (G1,H1) is of DHl type (cf. 6.4.2 and [De2, 2.3.10]). In particular the order of
the center of Gder

1 is a power of 2. From [De1, 2.4-5] and 3.2.8 we deduce that the
connected components of ShH1(G1, X1)C are defined over K0 . As before K0 is the
field of fractions of V0 = W (F).

Let N be the normalization of M in the ring of fractions of ShH1(G1, X1). It gets
naturally a G1(Ap

f )-continuous action. So N is a quasi-projective integral model of the
triple (G1, X1,H1) (cf. 6.4.1 for the quasi-projectiveness part). Moreover it has the
EEP. So we just need to show that it is a smooth integral model. For this it is enough
to show that it is a pro-étale cover of the open closed subscheme M′ of M defined
as the image of N in M. We can move over V0, and so we come back to quadruples.
From 6.2.3.1 we get:

Fact. A connected component of ShH(G,X)K0 is the quotient of a connected
component of ShH1(G1, X1)K0 by a 4-torsion pro-finite group.

6.8.1. Lemma. We assume that for any connected component CF of M′
F there

is a V0-valued point of NV0 giving birth to an F-valued point of NV0 which is mapped
into an F-valued point of CF. Then N is a pro-étale cover of M′.

Proof. Everything boils down (cf. the above fact) in showing that: if R =
V0[[x1, ..., xd]] is a ring of formal power series in d variables with coefficients in V0,
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then there is no étale cover Z of Spec(R
[
1
p

]
) of degree 2, such that denoting by R1 the

normalization of R in the field of fractions of Z, we do have a surjection R1 ³ V0,
but Spec(R1) is not an étale cover of Spec(R).

The proof of this is easy: Z corresponds to a field extension of the field of fractions
of R defined by an equation x2 = z, where z is an invertible element of the unique
factorization domain R

[
1
p

]
. As R1 is not an étale cover of R, we deduce that we

can assume that z = pz1, with z1 a unit of R. So we can not have surjections
Spec(R1) ³ V0. This ends the proof of the lemma.

In fact the result of the above proof remains true if we replace “étale cover Z of
Spec(R

[
1
p

]
) of degree 2” by: solvable Galois cover Z of Spec(R

[
1
p

]
) of degree relatively

prime to p. Everything boils down to Kummer extensions, for which the above proof
applies (to be compared with Step a) of 3.4.5.1).

6.8.2. Criteria. The hypothesis of the above lemma is satisfied if one of the
following condition is satisfied:

a) M admits smooth toroidal compactifications.
b) The F-valued points of MF obtained by specializing K0-valued special points of

MK0 (cf. def. 2.10) are dense in MF.

Criterion a) is a consequence of 3.2.11 (which guarantees that N has plenty of
V0-valued points) and of 3.3.2. Criterion b) can be easily checked starting from [Mi4,
4.12] and 2.7-8) (see [Va2]).

In [Va3] we prove a) (see 1.8), while in [Va2] we prove b) (cf. 1.6.1 and the density
property referred to in 1.6.2). From 6.8.2 a) and 6.4.1.1 2) we get (without a reference
to [Va3]) directly:

6.8.3. Corollary. If Sh(G,X) is of compact type then 6.1.2 is true.

6.8.4. Remark. 6.8.2 a) can be replaced by the condition: the connected com-
ponents of M

k(v)
are permuted transitively by G(Ap

f ). This condition is satisfied
(cf. 3.3.2) if there is an open subgroup H0 ⊂ G(Af ) such that M/H0 has smooth
compactifications.

From 6.8.2 a), 6.4.4, and the existence of smooth toroidal campactifications of
Sh(G,X) (cf. [Har]), we get (without a reference to [Va3]):

6.8.5. Fact. There is Ñ(G1, X1) ∈ N, depending only on the pair (G1, X1),
such that 6.1.2 is true if p > Ñ(G1, X1).

6.8.6. The remaining cases. From the above discussion we deduce that the
cases of 6.1.2 which are not covered by 6.8.3 or by the abelian situation and are needed
for the full prove of 6.1.2, can be summarized as follows. Keeping the notations of
6.1.2, we can assume (cf. also Example 5 of 2.5) that:

– (Gad, Xad) is a simple adjoint variety of DHl type (l ∈ N, l ≥ 4) such that the
Q–rank of Gad is positive; (so Gad

R does not have compact factors).

We distinguish two cases: (Gad, Xad) has a trivial or a non-trivial involution. If it
has a trivial involution then E(Gad, Xad) = Q, and we can assume that the embedding
f is a PEL type embedding (cf. case 1 of 6.6.5 and [De2, 2.3.13]; the argument is the
same as in case 2 of 6.6.5). So we are reduced to the situation described in the case
D of [Ko, ch. 5] (so E(G,X) = Q, cf. [De2, 2.3.13]; see also [Zi, p. 107]). It is an
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easy exercise to check that condition 6.8.2 b) is satisfied (Hint: use 1.6; in this case
the results of the paragraph before 1.6.1 can be easily checked). But if (Gad, Xad) has
a non-trivial involution, then E(Gad, Xad) is a quadratic imaginary extension of Q,
and the situation can not be reduced to the PEL type situation. Moreover the ideas
of 6.6.2 do not apply: with the notations of 6.6.2, if (G,X) is of DHl type and has
non-trivial involution, then (G1, X1) is of DHal type and has non-trivial involution, cf.
its proof; here a ∈ N. In particular 6.6.2 i) offers no simplification. So we do need, as
mentioned above, either [Va2] or [Va3] to handle this second case.
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[Bo] A. Borel, Linear Algebraic Groups, Grad. Text Math., 126, Springer-Verlag, 1991.

[Bou1] N. Bourbaki, Lie groups and Lie algebras, Chapters 1-3, Springer-Verlag, 1989.
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