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CRYSTALLINE BOUNDEDNESS PRINCIPLE

BY ADRIAN VASIU

ABSTRACT. – We prove that an F -crystal (M,ϕ) over an algebraically closed field k of characteristic
p > 0 is determined by (M,ϕ) mod pn, where n � 1 depends only on the rank of M and on the greatest
Hodge slope of (M,ϕ). We also extend this result to triples (M,ϕ,G), where G is a flat, closed subgroup
scheme of GLM whose generic fibre is connected and has a Lie algebra normalized by ϕ. We get two
purity results. If C is an F -crystal over a reduced Fp-scheme S, then each stratum of the Newton polygon
stratification of S defined by C, is an affine S-scheme (a weaker result was known before for S noetherian).
The locally closed subscheme of the Mumford scheme Ad,1,N k defined by the isomorphism class of a
principally quasi-polarized p-divisible group over k of height 2d, is an affine Ad,1,N k-scheme.
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RÉSUMÉ. – Nous prouvons qu’un F -cristal (M,ϕ) défini sur un corps k algébriquement clos de
caractéristique p > 0 est déterminé par (M,ϕ)mod pn, où n � 1 dépend seulement du rang de M et de la
plus grande pente de Hodge de (M,ϕ). On étend ce résultat aux triplets (M,ϕ,G), où G est un sous-groupe
fermé et plat de GLM dont la fibre générique est connexe et a une algèbre de Lie normalisée par ϕ. Nous
obtenons deux résultats de pureté. Si C est un F -cristal sur un Fp-schéma réduit S, alors chaque strate de
la stratification du polygone de Newton de S défini par C est un S-schéma affine (un résultat moins général
était déjà connu pour S noethérien). Le sous-schéma localement fermé du schéma de Mumford Ad,1,N k

défini par la classe d’isomorphisme d’un groupe p-divisible principalement quasi polarisé sur k de hauteur
2d est un Ad,1,N k-schéma affine.
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1. Introduction

Let p ∈N be a prime. Let k be a perfect field of characteristic p. Let k̄ be an algebraic closure
of k. Let W (k) be the Witt ring of k. Let B(k) := W (k)[ 1p ] be the field of fractions of W (k).
Let σ := σk be the Frobenius automorphism of k, W (k), and B(k). A group scheme H over
Spec(W (k)) is called integral if H is flat over Spec(W (k)) and HB(k) is connected (i.e. if the
scheme H is integral). Let Lie(HB(k)) be the Lie algebra over B(k) of HB(k). If H is smooth
over Spec(W (k)), let Lie(H) be the Lie algebra over W (k) of H . If O is a free module of finite
rank over some commutative Z-algebra R, let GLO be the group scheme over Spec(R) of linear
automorphisms of O.

Let (r, d) ∈N× (N∪ {0}), with r � d. Let D be a p-divisible group over Spec(k̄) of height
r and dimension d. It is well known that if d ∈ {0,1, r − 1, r}, then:

(∗) D is uniquely determined up to isomorphism by its p-torsion subgroup scheme D[p].
But (∗) does not hold if 2 � d � r − 2. In 1963 Manin published an analogue of (∗) for

2 � d � r − 2 but unfortunately he separated it into three parts (see [28, p. 44, 3.6, and 3.8] and
below). Only recently, this paper and [36] contain explicit analogues of (∗) for 2 � d � r − 2.
The two main reasons for this delay in the literature are: (i) the widely spread opinion, which
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246 A. VASIU
goes back more than 40 years, that p-divisible groups involve an infinite process, and (ii) the
classification results of [28, p. 44] were rarely used. Our point of view is that F -crystals in locally
free sheaves of finite rank over many Spec(k)-schemes Y involve a bounded infinite process. In
this paper we give meaning to this point of view for the case Y = Spec(k̄). We start with few
definitions.

1.1. DEFINITIONS. –
(a) By a latticed F -isocrystal with a group over k we mean a triple (M,ϕ,G), where M is

a free W (k)-module of finite rank, where ϕ is a σ-linear automorphism of M [ 1p ], and where
G is an integral, closed subgroup scheme of GLM , such that the Lie subalgebra Lie(GB(k)) of
End(M [ 1p ]) is normalized by ϕ. Here we denote also by ϕ the σ-linear (algebra) automorphism

of End(M [ 1p ]) that takes e ∈ End(M [ 1p ]) into ϕ ◦ e ◦ ϕ−1 ∈ End(M [ 1p ]). If G = GLM , then
often we do not mention G and we omit “with a group”.

(b) By an isomorphism between two latticed F -isocrystals with a group (M1,ϕ1,G1) and
(M2,ϕ2,G2) over k we mean a W (k)-linear isomorphism f :M1

∼−→ M2 such that ϕ2 ◦ f =
f ◦ϕ1 and the isomorphism GLM1

∼−→GLM2 induced by f , takes G1 onto G2.

The pair (M [ 1p ],ϕ) is called an F -isocrystal over k. If we have pM ⊆ ϕ(M) ⊆ M , then the
pair (M,ϕ) is called a Dieudonné module over k. For g′ ∈ G(B(k)) let g′ϕ be the σ-linear
automorphism of M [ 1p ] that takes x ∈ M [ 1p ] into g′(ϕ(x)) ∈ M [ 1p ]. The triple (M,g′ϕ,G) is
also a latticed F -isocrystal with a group over k.

Often there exists a “good” class M of motives over k that has the following property. The
crystalline realization of any motive M in M is naturally identified with (M,gMϕ) for some
gM ∈G(W (k)) and moreover GB(k) is the identity component of the subgroup of GLM [ 1p ] that

fixes some tensors of the tensor algebra of M [ 1p ]⊕Hom(M [ 1p ],B(k)) which do not depend on
M and which are (expected to be) crystalline realizations of motives over k that are intrinsically
associated to M. For instance, see [40, §5 and §6] for contexts that pertain to classes of H1

motives of abelian varieties over Spec(k) which are associated to k-valued points of a (fixed)
good integral model of a Shimura variety of Hodge type. The paper [40] and many previous
ones (like [25]) deal with particular cases of such triples (M,ϕ,G)’s: the pair (M,ϕ) is a
Dieudonné module over k, the group scheme G is reductive, and there exists a semisimple
element sϕ ∈ G(B(k)) whose eigenvalues are 1 and p and such that ϕs−1

ϕ is a σ-linear
automorphism of M . Any good classification of the triples (M,gMϕ,G) up to isomorphisms
defined by elements of G(W (k)), is often an important tool toward the classification of motives
in M.

Classically, one approaches the classification of all triples (M,gϕ,G) with g ∈ G(W (k)), up
to isomorphisms defined by elements of G(W (k)), in two steps. The first step aims to classify
(M [ 1p ], gϕ,GB(k))’s up to isomorphisms defined by elements of G(B(k)). The second step aims
to use the first step in order to study (M,gϕ,G)’s.

A systematic and general approach to the first step was started in [24], which works in the
context in which the group GB(k) is reductive, k = k̄, and the pair (M [ 1p ],GB(k)) has a Qp

structure (MQp ,GQp) with respect to which ϕ becomes gϕ(1MQp
⊗σ) for some gϕ ∈ G(B(k));

thus, in order to classify (M [ 1p ], gϕ,GB(k))’s up to isomorphisms defined by elements of
G(B(k)), one only has to describe the image Gϕ of the set {ggϕ | g ∈ G(W (k))} in the set
B(GQp) of σ-conjugacy classes of elements of GQp(B(k)) = G(B(k)). Even if k = k̄, in
general such Qp structures do not exist (for instance, they do not exist if the group GB(k) is
commutative and (Lie(GB(k)),ϕ) has non-zero slopes).

One can define two natural equivalence relations Iϕ and Rϕ on the set underlying the group
G(W (k)) as follows. A pair (g1, g2) ∈G(W (k))2 belongs to Iϕ (respectively to Rϕ) if and only
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CRYSTALLINE BOUNDEDNESS PRINCIPLE 247
if there exists g12 ∈G(W (k)) (respectively g12 ∈G(B(k))) such that g12g1ϕ = g2ϕg12. The set
of isomorphism classes of (M,gϕ,G)’s (up to isomorphisms defined by elements of G(W (k)))
is in natural bijection to the quotient set G(W (k))/Iϕ. The quotient set G(W (k))/Rϕ is a
more general version of the above type of sets Gϕ. In general, the natural surjective map
G(W (k))/Iϕ � G(W (k))/Rϕ is not an injection and some of its fibres have the same
cardinality as k. In general, one can not “recover” (M,gϕ,G) and its reductions modulo powers
of p from the equivalence class [g] ∈ G(W (k))/Iϕ and from the triple (M [ 1p ], gϕ,GB(k)). The
last two sentences explain why in this paper, for the study of the quotient set G(W (k))/Iϕ and of
(reductions modulo powers of p of) (M,gϕ,G)’s, we can not appeal to the results of [24,37], etc.
In addition, the language of latticed F -isocrystals is more general and more suited for reductions
modulo powers of p, for endomorphisms, for deformations, and for functorial purposes than the
language of either σ-conjugacy classes or equivalence classes of Iϕ.

If g1, g2, g12 ∈G(W (k)) satisfy g12g1ϕ = g2ϕg12, it is of interest to keep track of the greatest
number n12 ∈N∪ {0} such that g12 and 1M are congruent mod pn12 . As the relation Iϕ is not
suitable for this purpose, it will not be used outside this introduction.

The set {(M,gϕ,G) | g ∈ G(W (k))} is in natural bijection to G(W (k)). Any set of the
form {(M,gϕ,G) | g ∈ G(W (k))} will be called a family of latticed F -isocrystals with a
group over k. This paper is a starting point for general classifications of families of latticed
F -isocrystals with a group over k̄. The fact that such classifications are achievable is supported
by the following universal principle.

1.2. MAIN THEOREM A (Crystalline Boundedness Principle). – Suppose k = k̄. Let
(M,ϕ,G) be a latticed F -isocrystal with a group over k. Then there exists a number
nfam ∈N∪ {0} that is effectively bounded from above and that has the property that for any
pair (g, gnfam) ∈ G(W (k))2 such that gnfam is congruent mod pnfam to 1M , there exist isomor-
phisms between (M,gϕ,G) and (M,gnfamgϕ,G) which are elements of G(W (k)).

Thus the equivalence class [g] ∈ G(W (k))/Iϕ depends only on g mod pnfam ; this supports
our bounded infinite process point of view. If G = GLM and (M,ϕ) is a Dieudonné module
over k, then Main Theorem A is a direct consequence of [28, p. 44, 3.6, and 3.8]. By a classical
theorem of Dieudonné (see [7, Thms. 3 and 5], [28, §2], [5, Ch. IV, §4], or [14, Ch. III, §6]),
the category of p-divisible groups over Spec(k) is anti-equivalent to the category of Dieudonné
modules over k. Thus we get a new proof of the following result which in essence is due to
Manin and which is also contained in [36].

1.3. COROLLARY. – There exists a smallest number T (r, d) ∈ N ∪ {0} such that any
p-divisible group D over Spec(k̄) of height r and dimension d, is uniquely determined up to
isomorphism by its pT (r,d)-torsion subgroup scheme D[pT (r,d)]. Upper bounds of T (r, d) are
effectively computable in terms of r.

1.4. On the proof of Main Theorem A

The proof of Main Theorem A (see 3.1) relies on what we call the stairs method. The method
is rooted on the simple fact that for any t ∈N and every y, z ∈ End(M), the two automorphisms
1M + pty and 1M + ptz of M commute mod p2t. To outline the method, we assume in this
paragraph that G is smooth over Spec(W (k)). Let m ∈ N ∪ {0} be the smallest number for
which there exists a W (k)-submodule E of Lie(G) that contains pm(Lie(G)) and that has a
W (k)-basis {e1, e2, . . . , ev} such that for l ∈ {1, . . . , v} we have ϕ(el) = pnleπ(l), where π is
a permutation of the set {1, . . . , v} and where nl’s are integers that have the following stairs
property. For any cycle (l1, . . . , lq) of π, the integers nl1 , . . . , nlq are either all non-negative or
all non-positive. The existence of m is implied by Dieudonné’s classification of F -isocrystals
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248 A. VASIU
over k (see [28, §2]). In general, the W (k)-submodule E is not a Lie subalgebra of Lie(G).
For any g̃ ∈ G(W (k)) congruent mod p2m+t to 1M , there exists ẽ ∈ E such that the elements
g̃ and 1M + pm+tẽ of GLM (W (k)) are congruent mod p2m+1+t. Due to this and the stairs
property, for p � 3 there exists an isomorphism between (M, g̃ϕ,G) and (M,ϕ,G) which is an
element g̃0 ∈ G(W (k)) congruent modpm+t to 1M (see 3.1.1). If p = 2, then a slight variant
of this holds. Exponential maps (see 2.6) substitute from many points of view the classical
Verschiebung maps of Dieudonné modules; for instance, one can choose g̃0 to be an infinite

product of exponential elements of the form
∑∞

i=0
pi(m+1)

i! ei, where e ∈ E. See 2.2 to 2.4 for
the σ-linear preliminaries that are necessary for the estimates which give us the effectiveness
part of Main Theorem A. These estimates provide inductively upper bounds of m in terms of
dim(GB(k)) and of the s-number and the h-number of the latticed F -isocrystal (Lie(G),ϕ) over
k (see 2.2.1(e) for these two non-negative integers which do not change if ϕ is replaced by gϕ).

1.5. Complements, examples, and applications

See 3.2 for interpretations and variants of Main Theorem A in terms of reductions modulo
powers of p; in particular, see 3.2.4 for the passage from Main Theorem A to Corollary 1.3.
In 3.3 we improve (in many cases of interest) the upper bounds (of nfam, etc.) we obtain in 3.1.1
to 3.1.5.

In Section 4 we include four examples. It is well known that if the p-divisible group D is
ordinary, then D is uniquely determined up to isomorphism by D[p] and moreover D has a
unique lift to Spec(W (k̄)) (called the canonical lift) that has the property that any endomorphism
of D lifts to it. Example 2 identifies the type of latticed F -isocrystals with a group over k̄ to which
the last two facts generalize naturally (see 4.3.1 and 4.3.2). Example 4 shows that if r = 2d,
d � 3, and the slopes of the Newton polygon of D are 1

d and d−1
d , then D is uniquely determined

up to isomorphism by D[p3] (see 4.5).
In Section 5 we list four direct applications of Main Theorem A and of 3.2. First we present the

homomorphism form of Main Theorem A (see 5.1.1). Second we define transcendental degrees
of definition for many classes of latticed F -isocrystals with a group over k̄ (see 5.2). When the
transcendental degrees of definition are 0, we also define (finite) fields of definition. In particular,
Theorem 5.2.3 (when combined with Lemma 3.2.2) implies that it is possible to build up an atlas
and a list of tables of isomorphism classes of p-divisible groups (endowed with certain extra
structures) over Spec(k̄) that are definable over the spectrum of a fixed finite field Fpq , which
are similar in nature to the atlas of finite groups (see [3]) and to the list of tables of elliptic curves
over Spec(Q) (see [4]).

Let N ∈ N \ {1,2} be relatively prime to p. Let Ad,1,N be the smooth, quasi-projective
Mumford moduli scheme over Spec(Fp) that parametrizes isomorphism classes of principally
polarized abelian schemes with level-N structure and of relative dimension d over Spec(Fp)-
schemes (see [33, Thms. 7.9 and 7.10]). Third we apply the principally quasi-polarized version of
Corollary 1.3 (see 3.2.5) to get a new type of stratification of Ad,1,N . Here the word stratification
is used in a wide sense (see 2.1.1) which allows the number of strata to be infinite. The strata
we get are defined by isomorphism classes of principally quasi-polarized p-divisible groups
of height 2d over spectra of algebraically closed fields of characteristic p; they are regular
and equidimensional (see 5.3.1 and 5.3.2). Moreover, this new type of stratification of Ad,1,N

satisfies the purity property we define in 2.1.1, i.e. its strata are affine Ad,1,N -schemes (see 5.3.1
and 5.3.2). Variants of 1.3, 3.2.5, 3.2.6, and 5.3.2 but without its purity property part, are also
contained in [36].

Fourth we get a new proof (see 5.4) of the “Katz open part” of the Grothendieck–Katz
specialization theorem for Newton polygons (see [22, 2.3.1 and 2.3.2]).
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The main goal of Section 6 is to prove the following result (see 6.1 and 6.2).

1.6. MAIN THEOREM B. – Let C be an F -crystal in locally free sheaves of finite rank over a
reduced Spec(Fp)-scheme S. Then the Newton polygon stratification of S defined by C satisfies
the purity property (i.e. each stratum of it is an affine S-scheme).

A variant of Main Theorem B was obtained first in [10, 4.1], for the particular case when S
is locally noetherian. The fact that the variant is a weaker form of Main Theorem B is explained
in 6.3(a). The main new idea of Section 6 is: Newton polygons are encoded in the existence of
suitable morphisms between different evaluations of F -crystals (viewed without connections) at
Witt schemes of (effectively computable) finite lengths. The proof of Main Theorem B combines
this new idea with the results of Katz (see [22, 2.6 and 2.7]) on isogenies between F -crystals of
constant Newton polygons over spectra of (perfections of) complete, discrete valuation rings that
are of the form k̄[[x]].

2. Preliminaries

See 2.1 for our main notations and conventions. See 2.2 for few definitions and simple
properties that pertain to latticed F -isocrystals with a group over k. In particular, in 2.2.2 we
define Dieudonné–Fontaine torsions and volumes of latticed F -isocrystals. Inequalities and
estimates on such torsions are gathered in 2.3 and 2.4 (respectively); they are essential for
examples and for the effectiveness part of 1.2. In 2.5 we apply [42] to get Zp structures for many
classes of latticed F -isocrystals with a group over k̄. In 2.6 and 2.7 we include group scheme
theoretical properties that are needed in Sections 3 and 4. In 2.8 we present complements on
the categories M(Wq(S)) we will introduce in 2.1. In 2.9 we recall two results of commutative
algebra. Sections 2.8 and 2.9 are not used before 5.4. For Newton polygons of F -isocrystals over
k we refer to [22, 1.3].

2.1. Notations and conventions

By w we denote an arbitrary variable. If q ∈N, let Fpq be the field with pq elements. If R is
a commutative Fp-algebra, let W (R) be the Witt ring of R and let Wq(R) be the ring of Witt
vectors of length q with coefficients in R. We identify R = W1(R). Let ΦR be the canonical
Frobenius endomorphism of either W (R) or Wq(R); we have Φk = σk = σ. Let R(pq) be R
but viewed as an R-algebra via the q-th power Frobenius endomorphism Φq

R :R → R. If R is
reduced, let Rperf := ind limq∈N R(pq) be the perfection of R.

Let M(Wq(R)) be the abelian category whose objects are Wq(R)-modules endowed with
ΦR-linear endomorphisms and whose morphisms are Wq(R)-linear maps that respect the ΦR-
linear endomorphisms. We identify M(Wq(R)) with a full subcategory of M(Wq+1(R)) and
thus we can define M(W (R)) :=

⋃
q∈NM(Wq(R)).

If S is a Spec(Fp)-scheme, in a similar way we define Wq(S), ΦS , M(Wq(S)), and
M(W (S)). We view Wq(S) as a scheme and by a Wq(S)-module we mean a quasi-coherent
module over the structure ring sheaf OWq(S) of Wq(S). The formal scheme W (S) is used only
as a notation. If S = Spec(R), then we identify canonically M(Wq(R)) = M(Wq(S)) and
M(W (R)) = M(W (S)). If t ∈ {1, . . . , q} and ∗(q) is a morphism of M(Wq(S)), let ∗(t)
be the morphism of M(Wt(S)) that is the tensorization of ∗(q) with Wt(S). Let Stop be the
topological space underlying S. All crystals over S (i.e. all crystals on Berthelot’s crystalline
site CRIS(S/Spec(Zp))) are in locally free sheaves of finite rank. An F -crystal C over S
comprises from a crystal M over S and an isogeny Φ∗

S(M) → M of crystals over S; let
hC ∈N∪ {0} be the smallest number such that phC annihilates the cokernel of this isogeny. We
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250 A. VASIU
identify an F -crystal (respectively an F -isocrystal) over Spec(k) with a latticed F -isocrystal
(M,ϕ) over k that has the property that ϕ(M) ⊆ M (respectively with an F -isocrystal over
k as defined in Section 1). The pulls back of F -crystals C and C∗ over S to an S-scheme S1

(respectively to an affine S-scheme Spec(R1)) are denoted by CS1 and C∗S1 (respectively by
CR1 and C∗R1 ).

Let (M,ϕ,G) be a latticed F -isocrystal with a group over k. We refer to M as its W (k)-
module. Let rM ∈ N ∪ {0} be the rank of M . If f1 and f2 are two Z-endomorphisms of either
M or M [ 1p ], let f1f2 := f1 ◦ f2. Two Z-endomorphisms of M are said to be congruent mod pq

if their reductions mod pq coincide. Let M∗ := Hom(M,W (k)). Let

T (M) :=
⊕

t,u∈N∪{0}
M⊗t ⊗W (k) M∗⊗u.

We denote also by ϕ the σ-linear automorphism of T (M)[ 1p ] that takes f ∈ M∗[ 1p ] into

σfϕ−1 ∈ M∗[ 1p ] and that acts on T (M)[ 1p ] in the natural tensor product way. The canonical

identification End(M [ 1p ]) = M [ 1p ]⊗B(k) M∗[ 1p ] is compatible with the ϕ actions (see 1.1(a) for

the action of ϕ on End(M [ 1p ])). If O is either a free W (k)-submodule or a B(k)-vector subspace

of T (M)[ 1p ] such that ϕ(M) ⊆ M , then we denote also by ϕ the σ-linear endomorphism of O

induced by ϕ. The W (k)-span of tensors v1, . . . , vn ∈ T (M)[ 1p ] is denoted by 〈v1, . . . , vn〉. The
latticed F -isocrystal (M∗,ϕ) over k is called the dual of (M,ϕ). We emphasize that the pair
(M∗,ϕ) involves no Tate twist. A bilinear form on M is called perfect if it defines naturally a
W (k)-linear isomorphism M ∼−→M∗.

Let G̃B(k) be a connected subgroup of GLM [ 1p ]. As ϕ is a σ-linear automorphism of M [ 1p ], the

group {ϕg̃ϕ−1 | g̃ ∈ G̃B(k)(B(k))} is the group of B(k)-valued points of the unique connected

subgroup of GLM [ 1p ] that has ϕ(Lie(G̃B(k))) as its Lie algebra (see [1, Ch. II, 7.1] for the

uniqueness part). So as ϕ normalizes Lie(GB(k)), for g ∈G(B(k)) we have ϕgϕ−1 ∈ G(B(k));
in what follows this fact is used without any extra comment.

In this paragraph we assume ϕ(M) ⊆ M . We also refer to (M,ϕ,G) as an F -crystal with
a group over k. The Hodge slopes of (M,ϕ) (see [22, 1.2]) are the non-negative integers
h1, . . . , hrM

such that the torsion W (k)-module M/ϕ(M) is isomorphic to
⊕rM

i=1 W (k)/(phi).
If O is a W (k)-submodule of M such that ϕ(O) ⊆ O, we denote also by ϕ the σ-linear
endomorphism of M/O induced by ϕ. We refer to the triple (M/pqM,ϕ,GWq(k)) as the
reduction mod pq of (M,ϕ,G). If G = GLM , then often we do not mention G and GWq(k)

and we omit “with a group”. The reduction (M/pqM,ϕ) mod pq of (M,ϕ) is an object of
M(Wq(k)).

If a, b ∈ Z with b � a, let S(a, b) := {a,a + 1, . . . , b}. If l ∈ N, if ∗ is a small letter,
and if (∗1, . . . ,∗l) is an l-tuple which is either an element of Zl or an ordered W (k)-basis
of some W (k)-module, then we define ∗t for any t ∈ Z via the rule: ∗t := ∗u, where u ∈
{1, . . . , l} ∩ (t + lZ). If x ∈R, let [x] be the greatest integer of the interval (−∞, x].

2.1.1. Conventions on stratifications
Let K be a field. By a stratification S of a reduced Spec(K)-scheme X (in potentially an

infinite number of strata), we mean that:
(i) for any field L that is either K or an algebraically closed field that contains K , a set SL

of disjoint reduced, locally closed subschemes of XL is given such that each point of XL

with values in an algebraic closure of L factors through some element of SL;
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(ii) if i12 :L1 ↪→ L2 is an embedding between two fields as in (a), then the reduced scheme of
the pull back to L2 of any member of SL1 , is an element of SL2 ; so we have a natural pull
back injective map S(i12) :SL1 ↪→SL2 .

If the inductive limit of all maps S(i12) exists (respectively does not exist) in the category of
sets, then we say that the stratification S has a class which is (respectively is not) a set. Each
element of some set SL is referred as a stratum of S . We say S satisfies the purity property if
for any field L as in (a), every element of SL is an affine XL-scheme. 1 Thus S satisfies the
purity property if and only if each stratum of it is an affine X-scheme. If all maps S(i12)’s are
bijections, then we identify S with SK and we say S is of finite type.

2.2. Definitions and simple properties

In this section we introduce few notions and simple properties that pertain naturally to latticed
F -isocrystals.

2.2.1. Complements to 1.1
(a) A morphism (respectively an isogeny) between two latticed F -isocrystals (M1,ϕ1) and

(M2,ϕ2) over k is a W (k)-linear map (respectively isomorphism) f :M1[ 1p ] → M2[ 1p ]
such that fϕ1 = ϕ2f and f(M1)⊆ M2. If f is an isogeny, then by its degree we mean pl,
where l is the length of the artinian W (k)-module M2/f(M1).

(b) By a latticed F -isocrystal with a group and an emphasized family of tensors over k we
mean a quadruple (

M,ϕ,G, (tα)α∈J
)
,

where (M,ϕ,G) is a latticed F -isocrystal with a group over k, where J is a set of
indices, and where tα ∈ T (M) is a tensor that is fixed by both ϕ and G, such that GB(k)

is the subgroup of GLM [ 1p ] that fixes tα for all α ∈ J . If (M1,ϕ1,G1, (t1α)α∈J ) and

(M2,ϕ2,G2, (t2α)α∈J ) are two latticed F -isocrystals with a group and an emphasized
family of tensors (indexed by the same set J ) over k, by an isomorphism between them
we mean an isomorphism f : (M1,ϕ1,G1) ∼−→ (M2,ϕ2,G2) such that the W (k)-linear
isomorphism T (M1) ∼−→T (M2) induced by f , takes t1α into t2α for all α ∈ J .

(c) By a principal bilinear quasi-polarized latticed F -isocrystal with a group over k we mean
a quadruple (M,ϕ,G,λM ), where (M,ϕ,G) is a latticed F -isocrystal with a group over
k and where λM :M ⊗W (k) M → W (k) is a perfect bilinear form with the properties
that the W (k)-span of λM is normalized by G and that there exists c ∈ Z such that we
have λM (ϕ(x),ϕ(y)) = pcσ(λM (x, y)) for all x, y ∈ M . We refer to λM as a principal
bilinear quasi-polarization of (M,ϕ,G), (M,ϕ), and (M [ 1p ],ϕ). Let G0 be the Zariski
closure in GLM of the identity component of the subgroup of GB(k) that fixes λM . We
refer to (M,ϕ,G0) as the latticed F -isocrystal with a group over k of (M,ϕ,G,λM ). The
quotient group GB(k)/G0

B(k) is either trivial or isomorphic to Gm.
By an isomorphism between two principal bilinear quasi-polarized latticed F -isocrystals

with a group (M1,ϕ1,G1, λM1) and (M2,ϕ2,G2, λM2) over k we mean an isomorphism
f : (M1,ϕ1,G1) ∼−→ (M2,ϕ2,G2) such that we have λM1(x, y) = λM2(f(x), f(y)) for all x,
y ∈ M1. We speak also about principal bilinear quasi-polarized latticed F -isocrystals with a
group and an emphasized family of tensors over k and about isomorphisms between them;
notation (M,ϕ,G, (tα)α∈J , λM ).

1 This is a more practical, refined, and general definition than any other one that relies on codimension 1 statements on
complements. See Remark 6.3(a) below.
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If the form λM is alternating, we drop the word bilinear (i.e. we speak about principal quasi-
polarized latticed F -isocrystals with a group over k, etc.).

(d) We say the W -condition holds for the latticed F -isocrystal with a group (M,ϕ,G) over k

if there exists a direct sum decomposition M =
⊕b

i=a F̃ i(M), where a, b ∈Z with b � a,
such that M =

⊕b
i=a ϕ(p−iF̃ i(M)) and the cocharacter μ :Gm →GLM defined by the

property that β ∈ Gm(W (k)) acts on F̃ i(M) through μ as the multiplication by β−i,
factors through G. In such a case we also refer to (M,ϕ,G) as a p-divisible object with a
group over k. We refer to the factorization μ :Gm → G of μ as a Hodge cocharacter of
(M,ϕ,G). For i ∈ S(a, b) let F i(M) :=

⊕i
j=b F̃ j(M). We refer to the decreasing and

exhaustive filtration (F i(M))i∈S(a,b) of M as a lift of (M,ϕ,G). If G = GLM , we also
refer to (M,ϕ) as a p-divisible object over k.

Here “W ” stands to honor [42, p. 512] while the notion “p-divisible object” is a natural
extrapolation of the terminology “object” introduced in [11, §2].

(e) By the shifting number (to be abbreviated as the s-number) of a latticed F -isocrystal
(M,ϕ) over k we mean the smallest number s ∈ N ∪ {0} such that ϕ(psM) ⊆ M
(equivalently such that ϕ(M) ⊆ p−sM ). By the greatest Hodge slope (to be abbreviated
as the h-number) of (M,ϕ) we mean the greatest Hodge slope h of (M,psϕ), i.e. the
unique number h ∈N∪{0} such that we have ph−sM ⊆ ϕ(M) and ph−s−1M � ϕ(M).

We have s = 0 if and only if (M,ϕ) is an F -crystal over k; in this case h is the number h(M,ϕ)

defined in 2.1. We have s = 0 and h ∈ {0,1} if and only if (M,ϕ) is a Dieudonné module over k.
Let s∗ and h∗ be the s-number and the h-number (respectively) of (M∗,ϕ). We have

ϕ(M∗) = ϕ(M)∗ ⊆ ps−hM∗ but ϕ(M∗) � ps−h+1M∗. Thus s∗ = max{0, h − s}. As (M,ϕ)
is the dual of (M∗,ϕ), we also have s = max{0, h∗ − s∗}. So if s = 0, then s∗ = h and
h∗ ∈ S(0, h). If s > 0, then s = h∗ − s∗ and thus h∗ = s + s∗ = max(s,h).

If s = 0, then the s-number and the h-number of (End(M),ϕ) = (M,ϕ) ⊗ (M∗,ϕ) are at
most s + s∗ = h and h + h∗ � 2h (respectively).

2.2.2. DEFINITIONS. –
(a) Let (M,ϕ) be a p-divisible object (M,ϕ) over k. We say (M,ϕ) is a cyclic Dieudonné–

Fontaine p-divisible object over k if there exists a W (k)-basis {e1, . . . , erM
} of M such

that for i ∈ S(1, rM ) we have an identity ϕ(ei) = pniei+1, where n1, . . . , nrM
are integers

that are either all non-negative or all non-positive. We refer to {e1, . . . , erM
} as a standard

W (k)-basis of (M,ϕ).
We say (M,ϕ) is an elementary Dieudonné–Fontaine p-divisible object over k if it is a
cyclic Dieudonné–Fontaine p-divisible object over k that is not the direct sum of two or
more non-trivial cyclic Dieudonné–Fontaine p-divisible objects over k.
We say (M,ϕ) is an elementary Dieudonné p-divisible object over k if there exists a
W (k)-basis {e1, . . . , erM

} of M such that for i ∈ S(2, rM ) we have an identity ϕ(ei) =
ei+1 and moreover ϕ(e1) = pn1e2 for some integer n1 that is relatively prime to rM .
We say (M,ϕ) is a Dieudonné–Fontaine (respectively a Dieudonné) p-divisible object
over k if it is a direct sum of elementary Dieudonné–Fontaine (respectively of elementary
Dieudonné) p-divisible objects over k.

(b) By the Dieudonné–Fontaine torsion (respectively volume) of a latticed F -isocrystal
(M,ϕ) over k we mean the smallest number

T(M,ϕ) ∈N∪ {0}

(respectively V(M,ϕ) ∈ N ∪ {0}) such that there exists a Dieudonné–Fontaine
p-divisible object (M1,ϕ1) over k̄ for which we have an isogeny
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f : (M1,ϕ1) ↪→ (M ⊗W (k) W (k̄),ϕ⊗σk̄) with the property that pT(M,ϕ)M ⊆ f(M1) (re-
spectively that M/f(M1) has length V(M,ϕ)). By replacing Dieudonné–Fontaine with
Dieudonné, in a similar way we define the Dieudonné torsion T+(M,ϕ) ∈ N ∪ {0} and
the Dieudonné volume V+(M,ϕ) ∈N∪ {0} of (M,ϕ).

2.2.2.1. Remarks. – (a) Any (elementary) Dieudonné p-divisible object over k is also an
(elementary) Dieudonné–Fontaine p-divisible object over k. Moreover, any Dieudonné–Fontaine
p-divisible object over k is definable over Fp.

(b) The existence of V+(M,ϕ) (and thus also of V(M,ϕ), T+(M,ϕ), and T(M,ϕ)) is
equivalent to Dieudonné’s classification of F -isocrystals over k̄. This and the fact that suitable
reductions (modulo powers of p) of p-divisible objects over k are studied systematically for the
first time in [14,15], explains our terminology.

(c) Classically one works only with Dieudonné p-divisible objects (as they are uniquely
determined by their Newton polygons) and with Dieudonné volumes (as they keep track of
degrees of isogenies); see [7,28,6,10], etc. But working with Dieudonné–Fontaine p-divisible
objects and torsions one can get considerable improvements for many practical calculations or
upper bounds (like the ones we will encounter in Section 3).

2.2.3. LEMMA. – Let K be an algebraically closed field that contains k. Let (M,ϕ) be a
Dieudonné–Fontaine p-divisible object over k with the property that ϕ(M) ⊆ M . Let h be the

h-number of (M,ϕ), let eM := max{rM , [ r2
M

4 ]}, let k1 be the composite field of k and FprM ! ,
and let m ∈N. We have the following two properties:

(a) For any endomorphism fheM+m of (M ⊗W (k) WheM+m(K),ϕ ⊗ σK), the reduction
fm mod pm of fheM+m is the scalar extension of an endomorphism of (M ⊗W (k)

Wm(k1),ϕ⊗ σk1). If (M,ϕ) is a Dieudonné p-divisible object over k, then the previous
sentence holds with eM being substituted by rM .

(b) Each endomorphism of (M ⊗W (k) W (K),ϕ ⊗ σK) is the scalar extension of an
endomorphism of (M ⊗W (k) W (k1),ϕ⊗ σk1).

Proof. – We write (M,ϕ) =
⊕s

i=1(Mi,ϕ) as a direct sum of elementary Dieudonné–Fontaine

p-divisible objects over k. Let {e(i)
1 , . . . , e

(i)
rMi

} be a standard W (k)-basis of (Mi,ϕ). We

check that (a) holds. Let i0 ∈ S(1, s) and let j0 ∈ S(1, rMi0
). We write fheM+m(e(i0)

j0
⊗ 1) =∑s

i=1

∑rMi
j=1 e

(i)
j ⊗ β

(i0i)
j0j , where all β

(i0i)
j0j ’s belong to WheM+m(K). Let rMi0i := l.c.m.

{rMi0
, rMi}; it is a divisor of rM !. If i = i0, then rMi0i = rMi0

� rM � eM . If i �= i0, then

rMi0
+ rMi � rM and thus we have rMi0i � rMi0

rMi � [ r2
M

4 ] � eM .

As fheM+m(ϕrMi0i (e(i0)
j0

)⊗ 1) = (ϕ⊗ σK)rMi0i (fheM+m(e(i0)
j0

⊗ 1)), we have an equality

p
m

(i0i)
j0 β

(i0i)
j0j = pq

(i0i)
j σ

rMi0i

K

(
β

(i0i)
j0j

)
∈WheM+m(K),(1)

where m
(i0i)
j0

∈ N ∪ {0} is such that ϕ
rMi0i (e(i0)

j0
) = p

m
(i0i)
j0 e

(i0)
j0

and where q
(i0i)
j ∈ N ∪ {0}

is such that ϕ
rMi0i (e(i)

j ) = pq
(i0i)
j e

(i)
j . The numbers m

(i0i)
j0

and q
(i0i)
j are at most hrMi0i and

so at most heM . Let s
(i0i)
j0j ∈ S(0, heM + m) be the unique number such that we can write

β
(i0i)
j0j = p

s
(i0i)
j0j β̃

(i0i)
j0j , with β̃

(i0i)
j0j ∈Gm(WheM+m(K)). From (1) we easily get that

t
(i0i)
j j := min

{
heM + m,m

(i0i)
j + s

(i0i)
j j

}
equals to min

{
heM + m,q

(i0i)
j + s

(i0i)
j j

}

0 0 0 0
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and that σ
rMi0i

K (β̃(i0i)
j0j ) and β̃

(i0i)
j0j coincide mod p

heM+m−t
(i0i)
j0j . Thus β̃

(i0i)
j0j mod p

heM+m−t
(i0i)
j0j

belongs to W
heM+m−t

(i0i)
j0j

(F
p

rMi0i ) and therefore β
(i0i)
j0j mod p

heM+m−t
(i0i)
j0j

+s
(i0i)
j0j belongs to

W
heM+m−t

(i0i)
j0j

+s
(i0i)
j0j

(F
p

rMi0i ). As −m
(i0i)
j0

� −t
(i0i)
j0j + s

(i0i)
j0j , we get that

β
(i0i)
j0j mod p

heM+m−m
(i0i)
j0 belongs to W

heM+m−m
(i0i)
j0

(F
p

rMi0i ) and thus also to

W
heM+m−m

(i0i)
j0

(k1). So due to the inequality m � heM +m−m
(i0i)
j0

, we have fm(e(i0)
j0

⊗1) ∈
M ⊗W (k) Wm(k1) for any pair (i0, j0) ∈ S(1, s)× S(1, rMi0

). Thus fm is the scalar extension
of an endomorphism of (M ⊗W (k) Wm(k1),ϕ⊗ σk1).

If (M,ϕ) is a Dieudonné p-divisible object over k, then the Hodge slopes of (Mi0 ,ϕ) are
0, . . . ,0, and some integer in S(0, h); thus m

(i0i)
j0

� h
rMi0i

rMi0
� hrMi � hrM . A similar argument

shows that q
(i0i)
j � hrM . Thus in the previous paragraph we can substitute eM by rM . So (a)

holds.
Part (b) follows from (a) by taking m→∞. �

2.2.4. Deviations of tuples
Let l ∈N. Let τ = (n1, . . . , nl) ∈Zl.
(a) Suppose

∑l
i=1 ni is non-negative (respectively is non-positive). Let P (τ) be the set

of pairs (t, u), where t ∈ S(1, l) and u ∈ S(t, l + t − 1) have the property that
all sums

∑u
i=v ni with v ∈ S(t, u) are non-positive (respectively are non-negative).

By the non-negative (respectively the non-positive) sign deviation of τ we mean the
non-negative integer max{0,−

∑u
i=t ni | (t, u) ∈ P (τ)} (respectively max{0,

∑u
i=t ni |

(t, u) ∈ P (τ)}).
(b) If

∑l
i=1 ni is non-negative (respectively is non-positive), then by the non-negative

(respectively the non-positive) value deviation of τ we mean the absolute value of the
sum of all non-positive (respectively of all non-negative) entries of τ . As a convention,
this sum is 0 if τ has no non-positive (respectively no non-negative) entries.

(c) If
∑l

i=1 ni is positive (respectively is negative), then by the sign deviation Sτ of τ we
mean its non-negative (respectively its non-positive) sign deviation. If

∑l
i=1 ni = 0, then

by the sign deviation Sτ of τ we mean the smaller of its non-negative and non-positive
sign deviations. We also use this definition with (sign, S) replaced by (value, W).

Samples: S(−1,1,−1,−1,1,1,0,−1) = 1 + 1 = 2, W(−1,1,−1,−1,1,1,0,−1) = 3,
S(1,1,−2,1,3) = W(1,1,−2,1,3) = 2, and S(−1,1,−1) = W(−1,1,−1) = 1.

2.3. Inequalities

Let (M,ϕ) be a latticed F -isocrystal over k. Obviously V(M,ϕ) � V+(M,ϕ) and
T(M,ϕ) � T+(M,ϕ). Moreover we have

T(M,ϕ) � V(M,ϕ) � T(M,ϕ)rM

and the same inequalities hold with (T,V) being replaced with (T+,V+).

2.3.1. LEMMA. – Let τ = (n1, . . . , nrM
) ∈ ZrM . Suppose there exists a W (k)-basis

{e1, . . . , erM
} of M such that for i ∈ S(1, rM ) we have ϕ(ei) = pniei+1. Then we have the

following sequence of three inequalities

T(M,ϕ) � Sτ � Wτ � |n1|+ |n2|+ · · ·+ |nrM
|.(2)
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Proof. – The second and the third inequalities follow from their very definitions.
We check the first inequality of (2) only in the case when

∑rM

i=1 ni > 0 and at least one entry
ni is negative, as in all other cases the first inequality of (2) is checked in the same way. We
perform the following type of operation.

Let u ∈ N ∪ {0} be the greatest number such that there exists t ∈ S(1, rM ) with the
property that nt−v,t :=

∑t
i=t−v ni is non-positive for all v ∈ S(0, u); we have nt+1 > 0,

nt−u−1 > 0, and
∑t

i=t−u−1 ni > 0. For v ∈ S(0, u) we replace et−v by ẽt−v := p−nt−v,tet−v .
Up to a cyclic rearrangement of τ , we can assume t − u = 1; so t = 1 + u and nrM

=
n0 = nt−u−1 > 0. The rM -tuple (ẽ1, . . . , ẽu+1, eu+2, . . . , erM

) is mapped by ϕ into the

rM -tuple (ẽ2, . . . , ẽu+1, eu+2, p
nu+2eu+3, . . . , p

nrM−1erM
, p

∑u+1

i=0
ni ẽ1). We have

∑u+1
i=0 ni =∑t

i=t−u−1 ni > 0. So if for all i ∈ S(u + 2, rM − 1) we have ni � 0, then the pair
(〈ẽ1, . . . , ẽu+1, eu+2, . . . , erM

〉,ϕ) is a cyclic Dieudonné–Fontaine p-divisible object over k and
we are done as by their very definitions, we have −nt−v,t ∈ S(0,Sτ) and thus pSτ annihilates
the quotient W (k)-module M/〈ẽ1, . . . , ẽu+1, eu+2, . . . , erM

〉; if this is not the case, we next deal
with the inoperated entries nu+2, . . . , nrM

.
We repeat the operation as follows. Let u1 ∈ N ∪ {0} be the greatest number such that

there exists t1 ∈ S(u + 2, rM ) with the property that nt1−v1,t1 :=
∑t1

i=t1−v1
ni is non-positive

for all v1 ∈ S(0, u1); we have nt1+1 > 0, nt1−u1−1 > 0, and
∑t1

i=t1−u1−1 ni > 0. Due
to the “greatest” property of u we have t1 − u1 > u + 2. For v1 ∈ S(0, u1) we replace
et1−v1 by ẽt1−v1 := p−nt1−v1,t1 et1−v1 and we repeat the operation for the inoperated entries
nu+2, nu+3, . . . , nt1−u1−1, nt1+1, nt1+2, . . . , nrM

. By induction on the number of remaining
inoperated entries (they do not have to be indexed by a set of consecutive numbers in S(1, rM )),
we get that the first inequality of (2) holds. �

2.3.2. Example. – If for i ∈ S(1, rM ) we have ni ∈ {−1,0,1}, then from (2) we get

T(M,ϕ) � Wτ = min
{
n−, n+

}
,(3)

where n− (respectively n+) is the number of i’s such that ni = −1 (respectively such that
ni = 1).

We now consider the case when rM � 3 and (n1, n2, . . . , nrM
) = (1,1, . . . ,1,−1). So

(M,ϕ) has a unique slope rM−2
rM

that is positive. As ϕ(M) � M , we have T(M,ϕ) � 1.
But T(M,ϕ) � 1, cf. (3). Thus T(M,ϕ) = 1. In fact (〈e1, . . . , perM

〉,ϕ) is an elementary
Dieudonné–Fontaine p-divisible object over k whose Hodge slopes are 0, 0, 1, . . . ,1. It is easy
to see that T+(M,ϕ) = rM − 2; so T+(M,ϕ) > T(M,ϕ) for rM > 3.

2.4. Estimates

Let (M,ϕ) be a latticed F -isocrystal over k. Let s and h be the s-number and the h-number
(respectively) of (M,ϕ). Let H be the set of slopes of (M [ 1p ],ϕ). If α ∈ H, we write α = aα

bα
,

where (aα, bα) ∈Z×N with g.c.d.(aα, bα) = 1.

2.4.1. LEMMA. – Suppose k = k̄. Let (a, b, c) ∈ N× (N ∪ {0})× (N ∪ {0}). There exists a
smallest number

d(a, b, c) ∈N∪ {0}

(respectively d+(a, b, c) ∈ N ∪ {0}) such that for any latticed F -isocrystal C over k of rank a,
s-number b, and h-number c, we have an inequality T(C) � d(a, b, c) (respectively T+(C) �
d+(a, b, c)). In particular, for any element g ∈ GLM (W (k)) we have T(M,gϕ) � d(rM , s, h).
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Moreover upper bounds of d(a, b, c) (respectively of d+(a, b, c)) are effectively computable in
terms of a, b, and c.

Proof. – As T(C) � T+(C), it suffices to prove the lemma for d+(a, b, c). To ease the
notations, we will assume that (rM , s, h) = (a, b, c) and that (M,ϕ) = C. We have

T+(M,ϕ) � s
(
max{bα | α ∈H}− 1

)
+ T+

(
M,psϕ

)
.(4)

To check this inequality we first remark that if O is a W (k)-submodule of M such that the pair
(O,psϕ) is an elementary Dieudonné p-divisible object over k and if {e1, . . . , erO

} is a standard
W (k)-basis of (O,psϕ) such that we have (psϕ)(ei) = ei+1 for all i ∈ S(1, rO − 1), then
the following pair (O′,ϕ) := (〈prOs−se1, p

rOs−2se2, . . . , p
serO−1, erO

〉,ϕ) is an elementary
Dieudonné p-divisible object over k. As (O[ 1p ],ϕ) is a simple F -isocrystal over k whose unique
slope belongs to H, we have rO � max{bα | α ∈ H}. From this and the fact that O/O′ is
annihilated by ps(rO−1), we easily get that (4) holds.

Thus it suffices to prove the existence of a number d+(a, b, c) that has all the required
properties under the extra assumption b = s = 0; as s = 0, we have H ⊆ [0, h]. We will use
an induction on a = rM . The case a = 1 is trivial. To accomplish for a � 2 the inductive passage
from a− 1 = rM − 1 to a = rM , we consider two disjoint cases.

Case 1. Suppose the F -isocrystal (M [ 1p ],ϕ) over k is not simple. Let α ∈ H. We consider
a short exact sequence 0 → (M1,ϕ) → (M,ϕ) → (M2,ϕ) → 0 such that the F -isocrystal
(M2[ 1p ],ϕ) over k is simple of α. For i ∈ S(1,2), the h-number of (Mi,ϕ) is at most h and we
have rMi < a = rM . By induction, there exists di ∈ N ∪ {0} that has upper bounds effectively
computable in terms of rMi and c = h and such that there exists a W (k)-submodule Oi of
Mi with the properties that rOi = rMi , that pdiMi ⊆ Oi, and that (Oi,ϕ) is a Dieudonné
p-divisible object over k. The map σbα − 1W (k) :W (k) → W (k) is onto. This implies that
paαM1 ⊆ (ϕbα − paα1M1)(M1). Let x ∈ O2 be such that ϕbα(x) = paαx and ϕbα−1(x) ∈
O2 \ pO2. If x̃ ∈ M maps into x, then there exists y ∈ M1 such that ϕbα(y) − paα(y) is
paα [ϕbα(x̃) − paα(x̃)] ∈ paαM1. Thus z := −y + paα x̃ ∈ M maps into paαx and we have
ϕbα(z) = paα(z). By choosing x to belong to a standard W (k)-basis of (O2,ϕ), we get that the
monomorphism i2 : (paαO2,ϕ) ↪→ (M2,ϕ) lifts to a monomorphism j2 : (paαO2,ϕ) ↪→ (M,ϕ).
As (O1 + j2(paαO2),ϕ) is a Dieudonné p-divisible object over k and as pd1+d2+aα annihilates
M/O1 + j2(paαO2), we get

T+(M,ϕ) � d1 + d2 + aα � d1 + d2 + hbα � d1 + d2 + hrM .(5)

Case 2. Suppose the F -isocrystal (M [ 1p ],ϕ) over k is simple of slope α. Thus a = rM = bα.

Let {e1, . . . , ea} ⊆ M be a B(k)-basis of M [ 1p ] such that e1 ∈ M \ pM , for i ∈ S(1, a − 1)

we have ϕ(ei) = ei+1, and ϕ(ea) = paαe1. For t ∈ S(1, a), let Mt := 〈e1, . . . , et〉 and M̃t :=
Mt[ 1p ]∩M . We have M1 = M̃1 and M̃a = M .

2.4.1.1. CLAIM. – There exists a strictly increasing sequence (ct)t∈S(1,a) of non-negative
integers that depends only on a = rM and c = h, that is effectively computable, and that has
the property that for any t ∈ S(1, a) we have inclusions

pct(M̃t) ⊆ Mt ⊆ M̃t.(6)

To check this claim we use induction on t ∈ S(1, a). Taking c1 := 0, (6) holds for t = 1.
Suppose there exists a number r ∈ S(1, a− 1) such that (6) holds for t ∈ S(1, r). We now check
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that (6) holds for t = r + 1. Thus we have to show that there exists an effectively computable
natural number cr+1 which is at least cr + 1 and for which we have

er+1 = ϕ(er) /∈ p1+cr+1M + M̃r.(7)

We write er+1 = ϕ(er) = pnrxr + yr , where xr ∈ M \ pM , nr ∈ N ∪ {0}, and yr ∈ M̃r . By
our initial induction (on ranks), we can speak about an effectively computable number dr ∈ N
that is at least max{d+(r,0, l) | l ∈ S(0, h)}. Let

cr+1 := cr + dr + r!ah.(8)

We show that the assumption nr > cr+1 leads to a contradiction. Let M̃0 := 0. Let ẽr ∈ M̃r

be such that we have a direct sum decomposition M̃r = M̃r−1 ⊕ 〈ẽr〉. Based on (6) (applied
with t = r), we can write er = yr−1 + lr ẽr , where yr−1 ∈ M̃r−1 and lr ∈ W (k) \ pcr+1W (k).
Let wr := σ(lr)−1(yr − ϕ(yr−1)) ∈ M̃r[ 1p ]. We have ϕ(ẽr) = wr + σ(lr)−1pnrxr ∈ M . As

nr > cr+1 > cr , we have σ(lr)−1pnrxr ∈ pnr−crM ⊆ M ; thus wr ∈ M̃r = M̃r[ 1p ]∩M . Let ηr

be the σ-linear endomorphism of M̃r that acts on M̃r−1 as ϕ does and that takes ẽr into wr;
thus ηr(er) = yr . The difference ϕ(ẽr)− ηr(ẽr) is σ(lr)−1pnrxr ∈ pnr−crM . Thus ϕ restricted
to M̃r and ηr , when viewed as maps from M̃r to M , coincide mod pnr−cr . From this and the
inequality nr − cr � h+1, we get that the pair (M̃r, ηr) is an F -crystal over k whose h-number
is at most h.

Let Or be a W (k)-submodule of M̃r such that pT+(M̃r,ηr)M̃r ⊆ Or and (Or, ηr) is a
Dieudonné p-divisible object over k. Let tr ∈ S(0,T+(M̃r, ηr)) be the smallest number such
that ptre1 ∈ Or \ pOr . We consider a direct sum decomposition (Or, ηr) = (Or,1, ηr) ⊕ · · · ⊕
(Or,sr , ηr) into elementary Dieudonné p-divisible objects over k; we can assume that the
indices are such that the component e1,1 ∈ Or,1 of ptre1 ∈ Or with respect to this direct sum
decomposition of Or , is not divisible inside Or,1 by p (i.e. we have e1,1 /∈ pOr,1). Let ur ∈ [0, h]
be the unique slope of (Or,1, ηr).

The element pr!aαe1 = ϕr!a(e1) is congruent mod pnr−cr to ηr!a
r (e1). As we have

pT+(M̃r,ηr)M̃r ⊆ Or , we get that ηr!a
r (e1,1) − pr!aαe1,1 ∈ ptr+nr−cr−T+(M̃r,ηr)Or,1; thus

ηr!a
r (e1,1) − pr!aαe1,1 ∈ pnr−cr−T+(M̃r,ηr)Or,1. As (Or,1, ηr) is an elementary Dieudonné

p-divisible object over k whose rank divides r!a and as e1,1 ∈ Or,1 \ pOr,1, there exists zr ∈
Or,1\pOr,1 such that ηr!a

r (e1,1) = pr!aurzr . Thus pr!aurzr−pr!aαe1,1 ∈ pnr−cr−T+(M̃r,ηr)Or,1.
As dr � T+(M̃r, ηr) and nr > cr+1, from (8) we get nr − cr − T+(M̃r, ηr) � r!ha + 1. As
h � max{ur, α}, we have r!ah + 1 > max{r!aur, r!aα}. Thus

nr − cr −T+(M̃r, ηr) > max{r!aur, r!aα}.(9)

From (9) and the relations pr!aurzr −pr!aαe1,1 ∈ pnr−cr−T+(Mr,ηr)Or,1 and zr, e1,1 ∈Or,1 \
pOr,1, we get that r!aur = r!aα. Thus α = ur and therefore a = rOr,1 � r. This contradicts the
fact that r ∈ S(1, a− 1). Thus nr � cr+1 and so (7) holds. Thus (6) holds for t = r + 1. As cr+1

depends only on r, a, h, cr , and dr and as (by induction) cr and dr depend only on r, a, and h,
we get that cr+1 depends only on a and c = h. This ends our second induction on t ∈ S(1, a).
Thus the claim holds.

We have pcaM = pcaM̃a ⊆ Ma ⊆ M , cf. (6). As (Ma,ϕ) is an elementary Dieudonné
p-divisible object over k, we get T+(M,ϕ) � ca. This ends case 2.
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The above two cases imply that T+(M,ϕ) has upper bounds that are effectively computable
in terms of a = rM and c = h. Thus the number d+(a,0, c) exists and has effectively computable
upper bounds in terms of a and c. This ends the initial induction (on ranks a) and so it also ends
the proof of Lemma 2.4.1. �
2.4.2. An interpretation

The estimates of the proof of 2.4.1.1 are different from the ones of [22, §I]. It seems to us
that loc. cit. can be used in order to improve these estimates. Accordingly, we now make the
connection between loc. cit. [10, §2], and 2.4.1.1. We situate ourselves in the context of case 2
of 2.4.1. Let O(α) be the Zp-algebra of endomorphisms of the unique elementary Dieudonné
p-divisible object over k of slope α. It is known that O(α) is an order of the central division
algebra over Qp whose invariant is the image of the non-negative rational number α in Q/Z, cf.
[5, Ch. IV, §3]. There exists a W (k)-submodule M̃ of M that contains p−[−(rM−1)α]M and such
that the pair (M̃,ϕ) is an α-divisible F -crystal over k (i.e. for all n ∈N we can write ϕn as p[nα]

times a σn-linear endomorphism ϕn of M̃ ), cf. [22, pp. 151–152]. As we have rMα ∈N∪ {0},
all slopes of (M,ϕrM

) are 0. Thus ϕrM
(M̃) = M̃ . Triples of the form (M̃,ϕ,ϕrM

) are easily
classified. Their isomorphism classes are in one-to-one correspondence to isomorphism classes
of torsion free O(α)-modules which by inverting p become free O(α)[ 1p ]-modules of rank 1, see
[10, 2.4 and 2.5]. It is easy to see that under this correspondence, Claim 2.4.1.1 is equivalent to
the following well known result.

2.4.2.1. CLAIM. – There exists a smallest number N(α) ∈ N which has effectively com-
putable upper bounds and for which the following property holds: for any element x ∈ O(α) \
pO(α), the length of the artinian Zp-module O(α)/O(α)x is at most N(α).

2.5. Standard Zp structures

Let (M,ϕ,G, (tα)α∈J ) be a latticed F -isocrystal with a group and an emphasized family
of tensors over k such that the W -condition holds for (M,ϕ,G) (see 2.2.1(b) and (d)). Let
M =

⊕b
i=a F̃ i(M), (F i(M))i∈S(a,b), and μ :Gm → G be as in 2.2.1(d). Each tensor tα ∈

T (M) is fixed by both μ and ϕ. Let μcan :Gm → GLM be the inverse of the canonical split
cocharacter of (M, (F i(M))i∈S(a,b),ϕ) defined in [42, p. 512]. Let M =

⊕b
i=a F̃ i

can(M) be

the direct sum decomposition such that the cocharacter μcan acts on F̃ i
can(M) via the −i-th

power of the identity character of Gm. We have F i(M) =
⊕i

j=b F̃ j
can(M) for all i ∈ S(a, b) and

M =
⊕b

i=a ϕ(p−iF̃ i
can(M)), cf. loc. cit. The cocharacter μcan fixes each tα (cf. the functorial

aspects of [42, p. 513]) and so it factors through G. As M =
⊕b

i=a ϕ(p−iF̃ i
can(M)), the resulting

cocharacter μcan :Gm →G is also a Hodge cocharacter of (M,ϕ,G) in the sense of 2.2.1(d).
Let σ0 := ϕμ(p). We have σ0(M) = ϕ(

⊕b
i=a p−iF̃ i(M)) = M . Thus σ0 is a σ-linear

automorphism of M and so also of T (M). For α ∈ J we have σ0(tα) = tα. Let MZp :=
{m ∈ M | σ0(m) = m}. We now assume k = k̄. So MZp is a free Zp-module such that we
have M = MZp ⊗Zp W (k) and tα ∈ T (MZp) for all α ∈ J . Let GQp be the subgroup of
GLMZp [ 1p ] that fixes tα for all α ∈ J ; its pullback to Spec(B(k)) is GB(k). Let GZp be the
Zariski closure of GQp in GLMZp

. As G is the Zariski closure of GB(k) in GLM , we get
that G is the pullback to Spec(W (k)) of GZp . If moreover we have a principal bilinear quasi-
polarization λM :M ⊗W (k) M → W (k) of (M,ϕ,G), then λM is also the extension to W (k) of
a perfect bilinear form λMZ on MZp .
p
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2.6. Exponentials

Let H = Spec(A) be an integral, affine group scheme of finite type over Spec(W (k)). Let
O be a free W (k)-module of finite rank such that we have a closed embedding homomorphism
H ↪→GLO; one constructs O as a W (k)-submodule of A (cf. [6, vol. I, Exp. VIB , 11.11.1]). If
p � 3, let EO := pEnd(O). If p = 2, let EO be the sum of p2 End(O) and of the set of nilpotent
elements of pEnd(O). Let

exp :EO →GLO

(
W (k)

)
be the exponential map that takes x ∈EO into

∑∞
i=0

xi

i! ; here x0 := 1O .
Let l ∈N. Here are the well known properties of the map exp we will often use.
(a) If p � 3 and x ∈ pl End(O), then exp(x) is congruent mod p2l to 1O + x.
(b) If p = 2, l � 2, and x ∈ pl End(O), then exp(x) is congruent mod p2l to 1O +x+ x2

2 and
is congruent mod p2l−1 to 1O + x.

(c) If x ∈ Lie(HB(k))∩EO , then exp(x) ∈ H(W (k)).
To check (c) it is enough to show that exp(x) ∈ H(B(k)). It suffices to check this under the

extra assumption that the transcendental degree of k is countable. Fixing an embedding W (k) ↪→
C, we can view H(C) as a Lie subgroup of GLO(C); so the relation exp(x) ∈H(B(k)) follows
easily from [20, Ch. II, §1, 3].

2.6.1. LEMMA. – Suppose H is smooth over Spec(W (k)). Let l ∈ N. Let gl ∈ H(W (k)) be
congruent mod pl to 1O . Then for any i ∈ S(1, l) there exists zi,l ∈ Lie(H) such that gl is
congruent mod pi+l to 1O + plzi,l.

Proof. – We use induction on i. The case i = 1 is trivial. Let z̄1,l be the reduction mod p of
z1,l. The passage from i to i + 1 goes as follows. We first consider the case when either p � 3
or p = 2 and i + 1 < l. Let gl+1 := gl exp(−plz1,l) ∈ H(W (k)); it is congruent mod pl+1 to
(1O + plz1,l)(1O − plz1,l) (cf. 2.6(a) and (b)) and so also to 1O . By replacing gl with gl+1, the
role of the pair (i+1, l) is replaced by the one of the pair (i, l+1). As 1O +plz1,l and exp(plz1,l)
are congruent mod pi+1+l (cf. 2.6(a) and (b)), by induction we get that gl = gl+1 exp(plz1,l) is
congruent mod pi+1+l to (1O + pl+1zi,l+1)(1O + plz1,l) and so also to 1O + pl(z1,l + pzi,l+1).
Thus as zi+1,l we can take the sum z1,l + pzi,l+1.

Let now p = 2 and i + 1 = l � 2. We have z̄2
1,l ∈ Lie(Hk), cf. [1, Ch. II, 3.1, 3.5, Lemma 3

of 3.19]. Thus there exists z̃1,l ∈ Lie(H) that is congruent mod 2 to z2
1,l. But 1O − 2lz1,l is

congruent mod 22l to exp(−2lz1,l) exp(−22l−1z̃1,l), cf. 2.6(b). The existence of zi+1,l is now
argued as in the previous paragraph but working with gl+1 := gl exp(−2lz1,l) exp(−22l−1z̃1,l) ∈
H(W (k)). This ends the induction. �

2.6.2. LEMMA. – Suppose H is smooth over Spec(W (k)). Let l ∈N. If zl ∈ Lie(H), then the
reduction mod p2l of 1O + plzl belongs to H(W2l(k)).

Proof. – We can assume p = 2 (cf. 2.6(a) and (c) applied with x = plzl) and l � 2 (as H is
smooth). By replacing 1O + 2lzl with (1O + 2lzl) exp(−2lzl), we can assume (cf. 2.6(b)) that
zl ∈ 2l−1 Lie(H). But this case is obvious (as H is smooth). �
2.7. Dilatations

In this section we study an arbitrary integral, closed subgroup scheme G = Spec(RG) of
GLM . Let W (k)sh be the strict henselization of W (k). If a : Spec(W (k)sh) → G is a morphism,
then the Néron measure of the defect of smoothness δ(a) ∈ N ∪ {0} of G at a is the length of
the torsion part of the coherent OSpec(W (k)sh)-module a∗(ΩG/Spec(W (k))). Here ΩG/Spec(W (k))
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



260 A. VASIU
is the coherent OG-module of relative differentials of G with respect to Spec(W (k)). As G
is a group scheme, the value of δ(a) does not depend on a and so we denote it by δ(G). We
have δ(G) ∈ N if and only if G is not smooth over Spec(W (k)), cf. [2, 3.3, Lemma 1]. Let
S(G) be the Zariski closure in Gk of all special fibres of W (k)sh-valued points of G. It is a
reduced subgroup of Gk . We write S(G) = Spec(RG/JG), where JG is the ideal of RG that
defines S(G).

By the canonical dilatation of G we mean the affine G-scheme G1 = Spec(RG1), where
RG1 is the RG-subalgebra of RG[ 1p ] generated by x

p , with x ∈ JG. The Spec(W (k))-scheme
G1 is integral and has a canonical group scheme structure with respect to which the morphism
G1 → G is a homomorphism of group schemes over Spec(W (k)), cf. [2, 3.2, p. 63 and (d) of
p. 64]. The morphism G1 → G has the following universal property (cf. [2, 3.2, Prop. 1]): any
morphism Y → G of flat Spec(W (k))-schemes whose special fibre factors through the closed
embedding S(G) ↪→Gk , factors uniquely through G1 →G. Either δ(G1) = 0 (i.e. G1 is smooth
over Spec(W (k))) or (cf. [2, 3.3, Prop. 5]) we have 0 < δ(G1) < δ(G).

By using at most δ(G) canonical dilatations, we get the existence of a unique smooth, affine
group scheme G′ over Spec(W (k)) that is endowed with a homomorphism G′ → G whose
fibre over Spec(B(k)) is an isomorphism and that has the following universal property (cf.
[2, 7.1, Thm. 5]): any morphism Y → G of Spec(W (k))-schemes with Y smooth, factors
uniquely through G′ → G. In particular, we can identify G′(W (k)sh) with G(W (k)sh). The
homomorphism G′ → G is called the group smoothening of G. Let

n(G) ∈ S
(
0, δ(G)

)
be the smallest number of canonical dilatations one has to perform in order to construct G′. We
have n(G) = 0 if and only if G is smooth over Spec(W (k)).

The closed embedding iG :G ↪→ GLM gets replaced by a canonical homomorphism
iG′ :G′ →GLM that factors through iG. We identify Lie(G′) with a W (k)-lattice of Lie(GB(k))
contained in End(M). Let dsm ∈ N ∪ {0} be the smallest number such that we have
pdsm(Lie(GB(k))∩End(M)) ⊆ Lie(G′)⊆ Lie(GB(k))∩End(M).

We fix a closed embedding homomorphism G′ ↪→ GLM ′ , where M ′ is a free W (k)-module
of finite rank (see beginning of 2.6). Let g ∈G′(W (k)) = G(W (k)).

2.7.1. DEFINITION. – Let n ∈N. We say g is congruent mod pn to 1M ′ (respectively to 1M )
if and only if the image of g in G′(Wn(k)) (respectively in G(Wn(k))) is the identity element.

2.7.2. LEMMA. – We have the following three properties:
(a) If g is congruent mod pn to 1M ′ , then g is also congruent mod pn to 1M .
(b) If g is congruent mod pn+n(G) to 1M , then g is also congruent mod pn to 1M ′ .
(c) We have an inequality dsm � n(G).

Proof. – Part (a) is trivial. We write G′ = Spec(RG′) and GLM = Spec(RM ). Let IG, IG1 ,
IG′ , and IM be the ideals of RG, RG1 , RG′ , and RM (respectively) that define the identity
sections. We have IG1 = IG[ 1p ]∩RG1 and IG′ = IG[ 1p ]∩RG′ .

We check (b). Let mg :RG → W (k) be the homomorphism that defines g; we have
mg(IG) ⊆ pn+n(G)W (k). Let m1g :RG1 → W (k) be the homomorphism through which mg

factors. We have m1g(IG1) ⊆ pn+n(G)−1W (k), cf. the very definition of RG1 . Part (b) follows
from a repeated application of this fact to the sequence of n(G) dilatations performed to
construct G′. The cokernel of the cotangent map (computed at W (k)-valued identity elements)
IG/I2

G → IG1/I2
G1

is annihilated by p, cf. the very definition of RG1 . By applying this
repeatedly, we get that the cokernel of the cotangent map IM/I2

M → IG′/I2
G′ is annihilated
4e SÉRIE – TOME 39 – 2006 – N◦ 2



CRYSTALLINE BOUNDEDNESS PRINCIPLE 261
by pn(G). Taking duals we get that the cokernel of the W (k)-linear Lie monomorphism
Lie(G′) ↪→ Lie(GB(k)) ∩ Lie(GLM ) is also annihilated by pn(G). As Lie(GLM ) is the Lie
algebra associated to End(M), we get that (c) holds. �
2.8. Complements on M(Wq(S))

Let q ∈ N and let l ∈ S(0, q). Let f :S1 → S be a morphism of Spec(Fp)-schemes. Let
fq :Wq(S1) → Wq(S) be the natural morphism of Spec(Z/pqZ)-schemes defined by f . Let C be
an F -crystal over S. In this section we include four complements on the category M(Wq(S)).

2.8.1. Pullbacks
Let f∗

q :M(Wq(S)) →M(Wq(S1)) be the natural pullback functor. So if S = Spec(R) and
S1 = Spec(R1) are affine and if h : (O,ϕO) → (O′,ϕO′) is a morphism of M(Wq(S)), then
f∗

q (h) is the morphism

h⊗ 1Wq(R1) :
(
O ⊗Wq(R) Wq(R1),ϕO ⊗ΦR1

)
→

(
O′ ⊗Wq(R) Wq(R1),ϕO′ ⊗ΦR1

)
.

In general Wq(S) ×Wq+1(S) Wq+1(S1) is not Wq(S1). Thus, in general the restriction of
f∗

q+1 to M(Wq(S)) and f∗
q do not coincide as functors from M(Wq(S)) to M(Wq(S1)) and

therefore the sequence of functors (f∗
q )q∈N does not define a pullback functor from M(W (S))

to M(W (S1)). If the Frobenius endomorphism of OS1 is surjective, then regardless of what S
is we have Wq(S) ×Wq+1(S) Wq+1(S1) = Wq(S1) and thus the sequence of functors (f∗

q )q∈N

does define a pullback functor f∗ :M(W (S)) →M(W (S1)).
If u is an object (or a morphism) of M(Wq(S)), then by its pullback to an object (or a

morphism) of M(Wq(S1)) we mean f∗
q (u). If t ∈N and if f∗

q+t(u) is an object (or a morphism)
of M(Wq(S1)), then we have f∗

q+t(u) = f∗
q (u). If S1 is the spectrum of a perfect field, we also

speak simply of the pullback of u via f , to be often denoted as f∗(u) (instead of either f∗
q (u) or

f∗
q+t(u)).

If S is integral, if kS is the field of fractions of S, and if u is a morphism of M(Wq(S)),
then we say Coker(u) is generically annihilated by pl if the pullback of u to a morphism of
M(Wq(kS)) = M(Wq(Spec(kS))) has a cokernel annihilated by pl.

2.8.2. The evaluation functor E
Let δq(S) be the canonical divided power structure of the ideal sheaf of OWq(S) that defines

the closed embedding S ↪→ Wq(S). The evaluation of the F -crystal C at the thickening (S ↪→
Wq(S), δq(S)) is a triple (Fq,ϕFq ,∇Fq ), where Fq is a locally free OWq(S)-module of finite
rank, where ϕFq :Fq →Fq is a ΦS-linear endomorphism, and where ∇Fq is an integrable and
topologically nilpotent connection on Fq , that satisfies certain axioms. In this paper, connections
as ∇Fq will play no role; on the other hand, we will often use the following object

E
(
C;Wq(S)

)
:= (Fq,ϕFq )

of M(Wq(S)). A morphism v :C→ C1 of F -crystals over S defines naturally a morphism

E
(
v;Wq(S)

)
:E

(
C;Wq(S)

)
→E

(
C1;Wq(S)

)
.

The association v →E(v;Wq(S)) defines a Zp-linear (evaluation) functor from the category of
F -crystals over S into the category M(Wq(S)).

To ease notations, let E(C;Wq(S1)) := E(CS1 ;Wq(S1)) and, in the case when S1 =
Spec(R1) is affine, let E(C;Wq(R1)) := E(C;Wq(S1)).
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The functorial morphism fq : (S1 ↪→ Wq(S1), δq(S1)) → (S ↪→ Wq(S), δq(S)) gives birth to
a canonical isomorphism (to be viewed as an identity)

cf ;q :f∗
q

(
E

(
C;Wq(S)

)) ∼−→E
(
C;Wq(S1)

)
.(10)

If e :S2 → S1 is another morphism of Spec(Fp)-schemes, then we have identities

(f ◦ e)∗q = e∗q ◦ f∗
q and ce;q ◦ e∗q(cf ;q) = cf◦e;q.(11)

In what follows we will use without any extra comment the identities (10) and (11).

2.8.3. Inductive limits
Let V ↪→ V1 be a monomorphism of commutative Fp-algebras. Suppose we have an inductive

limit V1 = ind limα∈Λ Vα of commutative V -subalgebras of V1 indexed by the set of objects Λ
of a filtered, small category. For α ∈Λ, let fα : Spec(Vα) → Spec(V ) be the natural morphism.

Let (O,ϕO) and (O′,ϕO′) be objects of M(Wq(V )) such that O and O′ are free Wq(V )-
modules of finite rank. Let (O1,ϕO1) and (O′

1,ϕO′
1
) be the pullbacks of (O,ϕO) and (O′,ϕO′)

(respectively) to objects of M(Wq(V1)). We consider a morphism

u1 : (O1,ϕO1) → (O′
1,ϕO′

1
)

of M(Wq(V1)) whose cokernel is annihilated by pl. We fix ordered Wq(V )-bases BO and
BO′ of O and O′ (respectively). Let B1 be the matrix representation of u1 with respect to
the ordered Wq(V1)-basis of O1 and O′

1 defined naturally by BO and BO′ (respectively). As
pl Coker(u1) = 0, for x′ ∈ BO′ we can write plx′ ⊗ 1 = u1(

∑
x∈BO

x ⊗ βxx′), where each
βxx′ ∈ Wq(V1). Let Vu1 be the V -subalgebra of V1 generated by the components of the Witt
vectors of length q with coefficients in V1 that are either entries of B1 or βxx′ for some pair
(x,x′) ∈ BO × BO′ . As Vu1 is a finitely generated V -algebra, there exists α0 ∈ Λ such that
Vu1 ↪→ Vα0 . This implies that u1 is the pullback of a morphism

uα0 :fα0∗
q (O,ϕO)→ fα0∗

q (O′,ϕO′)

of M(Wq(Vα0)) whose cokernel is annihilated by pl. Here are four special cases of interest.
(a) If V is a field and V1 is an algebraic closure of V , then as Vα’s we can take the finite field

extensions of V that are contained in V1.
(b) If V1 is a local ring of an integral domain V , then as Vα’s we can take the V -algebras of

global functions of open, affine subschemes of Spec(V ) that contain Spec(V1).
(c) We consider the case when V is a discrete valuation ring that is an N -2 ring in the sense

of [29, (31.A)], when V1 is a faithfully flat V -algebra that is also a discrete valuation ring, and
when each Vα is a V -algebra of finite type. The flat morphism fα0 : Spec(Vα0) → Spec(V ) has
quasi-sections, cf. [18, Ch. IV, Cor. (17.16.2)]. In other words, there exist a finite field extension
k̃ of k and a V -subalgebra Ṽ of k̃ such that: (i) Ṽ is a local, faithfully flat V -algebra of finite
type whose field of fractions is k̃, and (ii) we have a morphism f̃α0 : Spec(Ṽ ) → Spec(Vα0)
such that f̃ := fα0 ◦ f̃α0 is the natural morphism Spec(Ṽ ) → Spec(V ). As V is an N -2 ring,
its normalization in k̃ is a finite V -algebra and so a Dedekind domain. This implies that we can
assume Ṽ is a discrete valuation ring. For future use, we recall that any excellent ring is a Nagata
ring (cf. [29, (34.A)]) and so also an N -2 ring (cf. [29, (31.A)]). Let

ũ : f̃∗
q (O,ϕO) = f̃α0∗

q

(
fα0∗

q (O,ϕO)
)
→ f̃∗

q (O′,ϕO′) = f̃α0∗
q

(
fα0∗

q (O′,ϕO′)
)
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be the pullback of uα0 to a morphism of M(Wq(Ṽ )); its cokernel is annihilated by pl.
If V is the local ring of an integral Spec(Fp)-scheme U , then Ṽ is a local ring of the

normalization of U in k̃. So from (b) we get that there exists an open subscheme Ũ of this last
normalization that has Ṽ as a local ring and that has the property that ũ extends to a morphism
of M(Wq(Ũ)) whose cokernel is annihilated by pl.

(d) If V is reduced and V1 = V perf , we can take Λ = N and Vn = V (pn) (n ∈N).

2.8.4. Hom schemes
Let O1 and O2 be two objects of M(Wq(S)) such that their underlying OWq (S)-modules are

locally free of finite ranks. We consider the functor

Hom(O1,O2) : SchS → SET

from the category SchS of S-schemes to the category SET of sets, with the property that
Hom(O1,O2)(S1) is the set underlying the Z/pqZ-module of morphisms of M(Wq(S1)) that
are between f∗

q (O1) and f∗
q (O2); here f :S1 → S is as in the beginning of 2.8.

2.8.4.1. LEMMA. – The functor Hom(O1,O2) is representable by an affine S-scheme which
locally is of finite presentation.

Proof. – Localizing, we can assume that S = Spec(R) is affine and that O1 = (O1,ϕO1)
and O2 = (O2,ϕO2) are such that O1 and O2 are free Wq(R)-modules. For i ∈ {1,2} let
ri be the rank of Oi. Let Hom(O1,O2) be the affine space (of relative dimension qr1r2)
over Spec(R) with the property that for any commutative R-algebra R1, Hom(O1,O2)(R1)
is the set of Wq(R1)-linear maps x :O1 ⊗Wq(R) Wq(R1) → O2 ⊗Wq(R) Wq(R1). We have
an identity (ϕO2 ⊗ ΦR1) ◦ x = x ◦ (ϕO1 ⊗ ΦR1) if and only if x belongs to the subset of
Hom(O1,O2)(R1) that is naturally identified with Hom(O1,O2)(Spec(R1)). As the relation
(ϕO2 ⊗ ΦR1) ◦ x = x ◦ (ϕO1 ⊗ ΦR1) defines a closed subscheme of Hom(O1,O2) that is of
finite presentation, the lemma follows. �
2.9. On two results of commutative algebra

In 5.4 and Section 6 we will use the following two geometric variations of well known results
of commutative algebra.

2.9.1. LEMMA. – Let X and Y be two integral, normal, locally noetherian schemes. Let
u :X → Y be an affine morphism that is birational; let K be the field of fractions of either
X or Y . Let D(X) and D(Y ) be the sets of local rings of X and Y (respectively) that are
discrete valuation rings (of K). If D(Y )⊆ D(X), then u is an isomorphism.

Proof. – Working locally in the Zariski topology of Y , we can assume X = Spec(RX) and
Y = Spec(RY ) are also affine and noetherian. Thus (inside K) we have

RY ↪→RX =
⋂

V ∈D(X)

V ↪→
⋂

V ∈D(Y )

V = RY

(cf. [29, (17.H)] for the two identities). So RY = RX . Thus u is an isomorphism. �
2.9.2. LEMMA. – Let X ′ = Spec(R′) → X = Spec(R) be a morphism between affine

schemes which at the level of rings is defined by an integral (i.e. an ind-finite) monomorphism
R ↪→ R′. Then an open subscheme U of X is affine if and only if its pullback U ′ := U ×X X ′ to
X ′ is affine.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



264 A. VASIU
Proof. – It is enough to show that U is affine if U ′ is affine. The morphism U ′ → U is
surjective (see [29, (5.E)]). So as U ′ is quasi-compact (being affine), U is also quasi-compact.
Thus Xtop \U top is the zero locus in Xtop of a finite number of elements of R. So there exists
a finitely generated Z-subalgebra R0 of R such that U is the pullback of an open subscheme U0

of Spec(R0) through the natural morphism Spec(R) → Spec(R0).
Let Λ (respectively Λ′) be the set of finite subsets of R (respectively of R′). For α ∈ Λ

(respectively α′ ∈ Λ′), let Rα (respectively R′
α′ ) be the R0-subalgebra of R (respectively of

R′) generated by α (respectively by α′). Let Xα := Spec(Rα) and X ′
α′ := Spec(R′

α′). Let Uα

and U ′
α′ be the pullbacks of U0 to Xα and X ′

α′ (respectively). As U ′
α′ is a quasi-compact, open

subscheme of X ′
α′ , it is an X ′

α′ -scheme of finite presentation. As the scheme U ′ is affine, by
applying [18, Ch. IV, (8.10.5)] to the projective limit U ′ ↪→ X ′ = proj limα′∈Λ′ U ′

α′ ↪→ X ′
α′ of

open embeddings of finite presentation, we get that there exists β′ ∈ Λ′ such that U ′
β′ is affine.

Let β ∈ Λ be such that R′
β′∪β is a finite Rβ-algebra. As U ′

β′∪β = U ′
β′ ×X′

β′
X ′

β′∪β is affine,

the scheme Uβ is also affine (cf. Chevalley theorem of [16, Ch. II, (6.7.1)] applied to the finite,
surjective morphism U ′

β′∪β → Uβ). Thus U = Uβ ×Xβ
X is affine. �

3. Proof of Main Theorem A and complements

In 3.1 we prove Main Theorem A stated in 1.2. See formula (18) of 3.1.3 for a concrete
expression of the number nfam mentioned in 1.2. In 3.2 we include interpretations and variants
of 1.2 in terms of reductions modulo powers of p; in particular, see 3.2.4 for the passage from
1.2 to 1.3. See 3.3 for improvements of the estimates of 3.1.1 to 3.1.5 in many particular cases of
interest. If p � 3 let εp := 1. Let ε2 := 2.

3.1. Proof of 1.2

We start the proof of 1.2. Until 3.1.4 we will assume k = k̄. Let v := dim(GB(k)). It suffices to
prove 1.2 under the extra hypothesis v � 1. Let δ(G), n(G) ∈N ∪ {0}, the group smoothening
G′ → G of G, and the closed embedding homomorphism G′ ↪→ GLM ′ be as in 2.7. We have
G′(W (k)) = G(W (k)).

Let m := T(Lie(G′),ϕ) ∈ N ∪ {0}. Based on Definitions 2.2.2(a) and (b), there exists a
B(k)-basis B = {e1, . . . , ev} of Lie(GB(k)) formed by elements of Lie(G′) and there exists
a permutation π of S(1, v), such that the following three things hold:

(a) denoting E := 〈e1, . . . , ev〉, we have pm Lie(G′) ⊆ E ⊆ Lie(G′);
(b) if l ∈ S(1, v), then we have ϕ(el) = pnleπ(l) for some nl ∈Z;
(c) for any cycle π0 = (l1, . . . , lq) of π, the integers nl1 , . . . , nlq are either all non-negative or

all non-positive.
If we have nlj � 0 for all j ∈ S(1, q), let τ(π0) := 1. If there exists j ∈ S(1, q) such that

nlj < 0, let τ(π0) :=−1. Let n ∈N be such that

n � 2m + εp + n(G).(12)

Let gn ∈ G(W (k)) be congruent mod pn to 1M . So gn ∈ G′(W (k)) is congruent
mod pn−n(G) to 1M ′ (cf. 2.7.2(b)) and below we will only use this congruence.

3.1.1. CLAIM. – For any t ∈ N there exists g̃t ∈ G′(W (k)) = G(W (k)) congruent
mod pn−n(G)+t−1−m to 1M ′ and such that g̃tgnϕg̃−1

t ϕ−1 ∈ G′(W (k)) = G(W (k)) is con-
gruent mod pn−n(G)+t to 1M ′ . Thus there exists g̃0 ∈ G′(W (k)) = G(W (k)) congruent
mod pn−n(G)−m to 1M ′ and such that g̃0gnϕ = ϕg̃0.
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If t � 2 and if the element g̃t−1 exists, then we can replace the triple (n, t, gn) by the triple
(n + t − 1,1, g̃t−1gnϕg̃−1

t−1ϕ
−1). Thus using induction on t ∈ N, to prove the first part of the

claim we can assume that t = 1. As W (k) is p-adically complete, the second part of the claim
follows from its first part; this is so as we can take g̃0 to be an infinite product of the form
· · · h̃3h̃2h̃1 that has the property that for all c ∈ N the element h̃c ∈ G′(W (k)) = G(W (k))
is congruent mod pn−n(G)+c−1−m to 1M ′ and moreover h̃ch̃c−1 · · · h̃1gnϕh̃−1

1 · · · h̃−1
c ϕ−1 ∈

G′(W (k)) = G(W (k)) is congruent mod pn−n(G)+c to 1M ′ . Thus to prove the claim, it suffices
to prove its first part for t = 1.

For t = 1 we will use what we call the stairs method for E. Let zn ∈ Lie(G′) be such that gn

is congruent mod pn−n(G)+1 to 1M ′ + pn−n(G)zn. As n− n(G) � m + 1, based on 3.1(a) we
can write

pn−n(G)zn =
∑

l∈S(1,v)

pulclel,

where ul ∈N depends only on the cycle of π to which l belongs and where cl ∈ W (k). We take
the ul’s to be the maximal possible values subject to the last sentence. Thus

ul � n− n(G)−m � m + εp � εp � 1.(13a)

From (13a) and (12) we get

min
{
ul +ul′ | l, l′ ∈ S(1, v)

}
� 2

(
n−n(G)−m

)
� n−n(G)+ εp � n−n(G)+1.(13b)

Due to (13b), the product g̃
(1)
n :=

∏
l∈S(1,v)(1M ′ + pulclel) ∈ GLM ′(W (k)) is congru-

ent mod p2(n−n(G)−m) and so also mod pn−n(G)+1 to 1M ′ +
∑

l∈S(1,v) pulclel = 1M ′ +

pn−n(G)zn. The element g̃
(2)
n := (g̃(1)

n )−1gn ∈ GLM ′(W (k)) is congruent mod pn−n(G)+1 to
(1M ′ + pn−n(G)zn)−1(1M ′ + pn−n(G)zn) = 1M ′ . We have gn = g̃

(1)
n g̃

(2)
n . For l ∈ S(1, v) let

ql := −min{0, nl} ∈ N ∪ {0}. We will choose g̃1 ∈ G′(W (k)) to be a product∏
l∈S(1,v) exp(pul+qlxlel), with all xl’s in W (k). This last product makes sense, cf. 2.6(a) and

(b) and the fact that for p = 2 we have ul + ql � ul � m + ε2 � ε2 = 2.
For l ∈ S(1, v) we have ul = uπ(l). Thus

ϕg̃−1
1 ϕ−1 =

∏
l∈S(1,v)

exp
(
−pul+qlσ(xl)ϕ(el)

)
(14)

=
∏

l∈S(1,v)

exp
(
−pul+qπ−1(l)+nπ−1(l)σ(xπ−1(l))el

)
.

These exponential elements are well defined even if p = 2, as for p = 2 we have inequalities
ul + qπ−1(l) + nπ−1(l) � ul � ε2 � 2. Thus ϕg̃−1

1 ϕ−1 ∈G′(W (k)) = G(W (k)), cf. 2.6(c).
We have ϕg̃−1

1 ϕ−1 ∈G′(W (k)) = G(W (k)), cf. 2.6(c). We have to show that we can choose
the xl’s such that g̃1gnϕg̃−1

1 ϕ−1 ∈ G′(W (k)) is congruent mod pn−n(G)+1 to 1M ′ . It suffices to
show that if gn is not congruent mod pn−n(G)+1 to 1M ′ , then we can choose the xl’s such that
by replacing gn with gn+1g̃1gnϕg̃−1

1 ϕ−1 ∈ G′(W (k)), where gn+1 ∈ G′(W (k)) is congruent
mod pn−n(G)+1 to 1M ′ , we can also replace each ul by ul + tl, where tl ∈N depends only on
the cycle of π to which l belongs.

The element g̃1gnϕg̃−1
1 ϕ−1 ∈ G′(W (k)) is congruent mod pn−n(G)+1 to the product

g̃1g̃
(1)
n ϕg̃−1

1 ϕ−1. From (13a), (13b), (14), and 2.6(a) and (b), we get that ϕg̃−1
1 ϕ−1 is congruent

mod pn−n(G)+1 to
∏

l∈S(1,v)[1M ′ − pul+qπ−1(l)+nπ−1(l)σ(xπ−1(l))el]. A similar argument
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shows that g̃1 is congruent mod pn−n(G)+1 to
∏

l∈S(1,v)(1M ′ + pul+qlxlel). Thus the product

g̃1g̃
(1)
n ϕg̃−1

1 ϕ−1 of the three elements g̃1, g̃
(1)
n , and ϕg̃−1

1 ϕ−1, is congruent mod pn−n(G)+1 to
the following product of three elements∏

l∈S(1,v)

(
1M ′ + pul+qlxlel

) ∏
l∈S(1,v)

(
1M ′ + pulclel

)
×

∏
l∈S(1,v)

[
1M ′ − pul+qπ−1(l)+nπ−1(l)σ(xπ−1(l))el

]

and so (cf. (13b)) also to 1M ′ +
∑

l∈S(1,v) pul [pqlxl + cl − pqπ−1(l)+nπ−1(l)σ(xπ−1(l))]el.
To show that we can take each tl to be at least 1, it suffices to show that we can choose the xl’s

such that we have

pqlxl + cl − pqπ−1(l)+nπ−1(l)σ(xπ−1(l)) ∈ pW (k) ∀l ∈ S(1, v).(15)

In other words, by denoting with x̄ ∈ k the reduction mod p of an arbitrary element x ∈ W (k),
it suffices to show that for each cycle π0 = (l1, . . . , lq) of π there exist solutions in k of the
following circular system of equations over k

b̄lj x̄lj + c̄lj − d̄lj x̄
p
lj−1

= 0 with j ∈ S(1, q),(16)

where blj := pqlj and dlj := pqlj−1+nlj−1 (here we have l0 = lq , cf. end of 2.1).
If τ(π0) = 1, then qlj = qlj−1 = 0 and nlj−1 � 0; so pqlj xlj + clj − pqlj−1+nlj−1 σ(xlj−1) is

xlj + clj − pnlj−1 σ(xlj−1). If τ(π0) = −1, then qlj−1 = −nlj−1 � 0 and so we have pqlj xlj +
clj − pqlj−1+nlj−1 σ(xlj−1) = pqlj xlj + clj − σ(xlj−1); moreover, there exists j0 ∈ S(1, j) such
that qlj0

= −nlj0
> 0. Thus depending on the value of τ(π0) we have:

(+) b̄lj = 1 and d̄lj ∈ {0,1} for all j ∈ S(1, q), if τ(π0) = 1;
(−) d̄lj = 1 and b̄lj ∈ {0,1} for all j ∈ S(1, q) and moreover there exists j0 ∈ S(1, q) such

that b̄lj0
= 0, if τ(π0) = −1.

If τ(π0) = 1, then based on (+) we can eliminate the variables x̄lq , x̄lq−1 , . . . , x̄l3 , and x̄l2

one by one from the system (16). The resulting equation in the variable x̄l1 is of the form
x̄l1 = ūl1 + v̄l1 x̄

pq

l1
, where ūl1 and v̄l1 ∈ k. This equation defines an étale k-algebra. Thus (as

k is separably closed) the system (16) has solutions in k if τ(π0) = 1.
If τ(π0) = −1, then based on (−) (and on the fact that k is perfect) the values of x̄lj0−1 ,

x̄lj0−2 , . . . , x̄l1 , x̄lq , x̄lq−1 , . . . , x̄lj0
are one by one uniquely determined and so the system (16)

has a unique solution.
This ends the proof of the first part of the claim for t = 1 and so it also ends the proof of the

claim.

3.1.2. Inequalities involving s- and h-numbers
Let s′L and h′

L be the s-number and the h-number (respectively) of (Lie(G′),ϕ). Let sL and
hL be the s-number and the h-number (respectively) of (Lie(GB(k)) ∩ End(M),ϕ). We recall
from 2.7 that dsm ∈N∪ {0} is the smallest number such that we have inclusions

pdsm
(
Lie(GB(k))∩End(M)

)
⊆ Lie(G′) ⊆ Lie(GB(k))∩End(M).(17a)

We have psLϕ(Lie(GB(k)) ∩ End(M)) ⊆ Lie(GB(k)) ∩ End(M). Thus psL+dsmϕ(Lie(G′)) ⊆
psL+dsmϕ(Lie(GB(k)) ∩ End(M)) ⊆ pdsm(Lie(GB(k)) ∩ End(M)) ⊆ Lie(G′). From the very
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definition of s′L we get

s′L � sL + dsm.(17b)

The h-numbers of (Lie(GB(k)) ∩ End(M), pmax{sL,s′
L}ϕ) and (Lie(G′), pmax{sL,s′

L}ϕ) are
hL + max{sL, s′L} − sL and h′

L + max{sL, s′L} − s′L (respectively). From this and (17a) we
easily get that

h′
L + max{sL, s′L} − s′L � dsm + hL + max{sL, s′L} − sL.(17c)

From (17b), (17c), and the inequalities dsm � n(G) � δ(G) (see 2.7.2(c) and 2.7), we get

h′
L � hL + dsm + s′L − sL � hL + dsm + dsm � hL + 2δ(G).(17d)

3.1.3. End of the proof of 1.2
As v = dim(GB(k)), G′, and n(G) depend only on G and as s′L and h′

L depend only on the
family {(M,gϕ,G) | g ∈ G(W (k)) = G′(W (k))} of latticed F -isocrystals with a group over k,
the number

nfam := 2d(v, s′L, h′
L) + εp + n(G)(18)

is not changed if ϕ gets replaced by gϕ for some g ∈G(W (k)). As m � d(v, s′L, h′
L) (cf. 2.4.1),

we have nfam � 2m + εp + n(G). So from (12) applied with n = nfam and from 3.1.1, we get
that for any gnfam ∈G(W (k)) congruent mod pnfam to 1M , there exists an isomorphism between
(M,ϕ,G) and (M,gnfamϕ,G) defined by an element of G′(W (k)) = G(W (k)). This property
holds even if ϕ gets replaced by gϕ. As n(G) � δ(G), we have

nfam � 2d(v, s′L, h′
L) + εp + δ(G).(19)

So based on the effectiveness part of 2.4.1 and on (17b) and (17d), to end the proof of 1.2
it is enough to show that δ(G), sL, and hL are effectively bounded from above. But δ(G) is
effectively computable in terms of the ideal sheaf of OGLM

that defines the closed embedding
homomorphism G ↪→ GLM , cf. [2, 3.3, Lemma 2]. As the numbers sL and hL are effectively
computable in terms of (Lie(GB(k)),ϕ) and End(M) and as the connected group GB(k) is
uniquely determined by its Lie algebra (cf. [1, Ch. II, 7.1]), the numbers sL and hL are also
effectively computable in terms of the closed embedding homomorphism G ↪→GLM . This ends
the proof of 1.2.

3.1.4. DEFINITION. – Let (M,ϕ,G) be a latticed F -isocrystal with a group over k. By the
isomorphism number (to be abbreviated as the i-number) of (M,ϕ,G) we mean the smallest
number n ∈N∪{0} such that for any gn ∈ G(W (k̄)) congruent mod pn to 1M⊗W (k)W (k̄), there

exists an isomorphism between (M ⊗W (k) W (k̄),ϕ⊗σk̄,GW (k̄)) and (M ⊗W (k) W (k̄), gn(ϕ⊗
σk̄),GW (k̄)) which is an element of G(W (k̄)). If G = GLM , we also refer to n as the i-number
of (M,ϕ).

If (M,ϕ,G,λM ) and G0 are as in 2.2.1(c), then by the i-number of (M,ϕ,G,λM ) we mean
the i-number of its latticed F -isocrystal with a group (M,ϕ,G0) over k.

3.1.5. Example. – Suppose G is smooth over Spec(W (k)) and k = k̄. Thus n(G) = dsm = 0,
s′L = sL, h′

L = hL, and nfam = 2d(v, sL, hL) + εp. Let m := T(Lie(G′),ϕ). If n is as in 3.1.4,
then we have 0 � n � 2m + εp � 2d(v, sL, hL) + εp (cf. 3.1.1 and 3.1.3).
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3.2. Truncations

In 3.2.1 to 3.2.7 we work in a context that pertains to Dieudonné modules and to p-divisible
groups. In particular, in 3.2.1 and 3.2.2 we define and study D-truncations that are the crystalline
analogues (with a group) over k of truncated Barsotti–Tate groups over Spec(k). In 3.2.8 we
consider reductions modulo powers of p of those F -crystals with a group (M,ϕ,G) over k for
which G is smooth over Spec(W (k)). In 3.2.9 we introduce the F -truncations that generalize
the D-truncations.

3.2.1. On D-truncations
Let (r, d) ∈ N× (N ∪ {0}). Let (M,ϕ,G) be an F -crystal with a group over k. Until 3.2.8

we assume that (M,ϕ) is a Dieudonné module over k, that rM = r, that d is the dimension of
the kernel of ϕ mod p, that G is smooth over Spec(W (k)), and that the W -condition holds
for (M,ϕ,G). Let M = F̃ 0(M) ⊕ F̃ 1(M) be a direct sum decomposition such that M =
ϕ(F̃ 0(M)⊕ 1

p F̃ 1(M)) and the cocharacter μ :Gm →GLM that fixes F̃ 0(M) and that acts via

the inverse of the identical character of Gm on F̃ 1(M), factors through G (cf. 2.2.1(d)). The rank
of F̃ 1(M) is d. Let σ0 := ϕμ(p); it is a σ-linear automorphism of either M and T (M) (cf. 2.5).
As σ0 normalizes Lie(GB(k)) and End(M), it also normalizes Lie(G) = Lie(GB(k))∩End(M).
As G(W (k)) = G(B(k))∩GLM (W (k)), we have σ0G(W (k))σ−1

0 = G(W (k)).
Let q ∈ N. Let ϑ :M → M be the σ−1-linear endomorphism that is the Verschiebung map

of (M,ϕ); we have ϑϕ = ϕϑ = p1M . We denote also by ϑ its reduction mod pq . By the
D-truncation mod pq of (M,ϕ,G) we mean the quadruple(

M/pqM,ϕ,ϑ,GWq(k)

)
.

This quadruple determines (respectively is determined by) the reduction mod pq (respectively
mod pq+1) of (M,ϕ,G). We also refer to (M/pqM,ϕ,ϑ) as the D-truncation mod pq

of (M,ϕ). If (M1/pqM1,ϕ1, ϑ1,G1Wq(k)) is a similar D-truncation mod pq , then by an
isomorphism f : (M/pqM,ϕ,ϑ,GWq(k)) ∼−→ (M1/pqM1,ϕ1, ϑ1,G1Wq(k)) we mean a Wq(k)-
linear isomorphism f :M/pqM ∼−→ M1/pqM1 such that we have identities fϕ = ϕ1f and
fϑ = ϑ1f and the isomorphism GLM/pqM

∼−→ GLM1/pqM1 induced by f , takes GWq(k) onto
G1Wq(k).

If (M1,ϕ1,G1) is (M,gϕ,G) with g ∈ G(W (k)) and if f ∈ G(Wq(k)), then we say f is an
inner isomorphism between the D-truncation mod pq of (M,ϕ,G) and (M,gϕ,G).

3.2.2. LEMMA. – For g ∈ G(W (k)) the following two statements are equivalent:
(a) the D-truncations mod pq of (M,ϕ,G) and (M,gϕ,G) are inner isomorphic;
(b) there exists an element g̃ ∈ G(W (k)) such that g̃gϕg̃−1 = gqϕ, where gq ∈ G(W (k)) is

congruent mod pq to 1M .

Proof. – As G is smooth over Spec(W (k)), the reduction homomorphism G(W (k)) →
G(Wq(k)) is onto. Thus it suffices to check that (a) implies (b) under the extra assumptions that
the σ-linear endomorphisms ϕ and gϕ coincide mod pq and that the σ−1-linear endomorphisms
ϑ and ϑg−1 coincide mod pq . Let g0 := σ−1

0 gσ0 ∈ G(W (k)). Let g0,q ∈ G(Wq(k)) be g0

mod pq . We have ϕ = σ0μ(p−1) and gϕ = σ0g0μ(p−1). We get that the two endomorphisms
μ(p−1) and g0μ(p−1) of M coincide mod pq . Thus

(i) the element g0,q fixes F̃ 0(M)/pqF̃ 0(M) and is congruent mod pq−1 to 1M/pqM .
We have ϑ = pμ(p)σ−1

0 and ϑg−1 = pμ(p)g−1
0 σ−1

0 . We get that the two endomorphisms pμ(p)
and pμ(p)g−1

0 of M coincide mod pq . Thus pμ(p) and pμ(p)g0 also coincide mod pq and
therefore we have an inclusion
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(ii) (1M/pqM − g0,q)(F̃ 1(M)/pqF̃ 1(M)) ⊆ pq−1F̃ 0(M)/pqF̃ 0(M).

Let F̃−1(End(M)) be the maximal direct summand of End(M) on which μ acts via
the identity cocharacter of Gm. Thus F̃−1(End(M)) is the Hom(F̃ 1(M), F̃ 0(M)) factor
of the following direct sum decomposition End(M) = End(F̃ 1(M)) ⊕ End(F̃ 0(M)) ⊕
Hom(F̃ 1(M), F̃ 0(M))⊕Hom(F̃ 0(M), F̃ 1(M)) into W (k)-submodules.

Let Ubig
−1 be the closed subgroup scheme of GLM defined by the rule: if A is a commutative

W (k)-algebra, then Ubig
−1 (A) := 1M⊗W (k)A + F̃−1(End(M))⊗W (k) A � GLM (A). So Ubig

−1 is

the maximal subgroup scheme of GLM that fixes both F̃ 0(M) and M/F̃ 0(M); it is smooth over
Spec(W (k)). We have Lie(Ubig

−1 ) = F̃−1(End(M)). Let U−1 be the closed subgroup scheme of

Ubig
−1 defined by the rule:

U−1(A) := 1M⊗W (k)A +
(
Lie(G)∩ F̃−1

(
End(M)

))
⊗W (k) A.

The group scheme U−1 is smooth, unipotent, has connected fibres and its Lie algebra is the
direct summand Lie(G) ∩ F̃−1(End(M)) of F̃−1(End(M)). As U−1B(k) is connected and
Lie(U−1) ⊆ Lie(G), the group U−1B(k) is a closed subgroup of GB(k) (cf. [1, Ch. II, 7.1]).
Thus U−1 is a closed subgroup scheme of G. As μ factors through G, we have two identities
Lie(G) ∩ Lie(Ubig

−1 ) = Lie(U−1) and Lie(Gk) ∩ Lie(Ubig
−1k) = Lie(U−1k). Thus the intersection

U ′
−1 := G ∩ Ubig

−1 has smooth fibres and has U−1 as its identity component. As the group

Ubig
−1B(k)/U−1B(k) has no non-trivial finite subgroups, we have U−1B(k) = U ′

−1B(k). As Ubig
−1

is a complete intersection in GLM , U ′
−1 has dimension at least equal to 1 + dim(U−1k) at each

k-valued point. So as dim(U ′
−1k) = dim(Uk), the group U ′

−1B(k) = U−1B(k) is Zariski dense in

U ′
−1. Thus U−1 = U ′

−1 = G∩Ubig
−1 .

We have g0,q ∈ Ker(Ubig
−1 (Wq(k)) → Ubig

−1 (Wq−1(k))), cf. (i) and (ii). As U−1 = G ∩ Ubig
−1 ,

in fact we have g0,q ∈ Ker(U−1(Wq(k)) → U−1(Wq−1(k))). Thus, up to a replacement of g by
a Ker(G(W (k)) → G(Wq(k)))-multiple of it, we can assume that g0 ∈ U−1(W (k)). We write
g0 = 1M + pq−1u−1, where u−1 ∈ Lie(U−1).

Let g̃ := 1M + pqu−1 ∈ U−1(W (k)) � G(W (k)). As we have g̃−1 = 1M − pqu−1 and
g−1
0 = 1M − pq−1u−1, we get μ(p−1)g̃−1μ(p) = g−1

0 . Thus we compute that g̃gϕg̃−1 is
g̃gσ0μ(p−1)g̃−1μ(p)σ−1

0 ϕ = g̃gσ0g
−1
0 σ−1

0 ϕ = g̃g(σ0gσ−1
0 )−1ϕ = g̃gg−1ϕ = g̃ϕ. So as gq we

can take g̃. Thus (a) implies (b). Obviously (b) implies (a). �
3.2.3. COROLLARY. – Suppose k = k̄ and (M,ϕ) is the Dieudonné module of a p-divisible

group D over Spec(k) of height r = rM and dimension d. Let n ∈N ∪ {0} be the i-number of
(M,ϕ). Then n is the smallest number t ∈N∪ {0,∞} for which the following statement holds:

(∗) if D1 is a p-divisible group over Spec(k) of height r and dimension d and if D1[pt] is
isomorphic to D[pt], then D1 is isomorphic to D.

Proof. – The Dieudonné module of D1 is isomorphic to (M,gϕ) for some g ∈GLM (W (k));
moreover any such pair (M,gϕ) is isomorphic to the Dieudonné module of some p-divisible
group over Spec(k) of height r and dimension d. For q ∈ N, the classical Dieudonné theory
achieves also a natural one-to-one and onto correspondence between the isomorphism classes of
truncated Barsotti–Tate groups of level q over k and the isomorphism classes of D-truncations
mod pq of Dieudonné modules over k (see [14, pp. 153 and 160]). So (∗) holds if and only if
for any g ∈ GLM (W (k)), the fact that the D-truncations mod pt of (M,ϕ) and (M,gϕ) are
isomorphic implies that (M,ϕ) and (M,gϕ) are isomorphic. From this and 3.2.2 (applied with
G = GLM and q = t), we get that (∗) holds if and only if (M,ϕ) and (M,gϕ) are isomorphic for
all elements g ∈GLM (W (k)) congruent mod pt to 1M . Thus (∗) holds if and only if t � n. �
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3.2.4. Proof of 1.3
To prove 1.3, we can assume that k = k̄ and that (M,ϕ) is the Dieudonné module of D. Let n

be the i-number of (M,ϕ). Let nfam be as in 3.1.5 for G = GLM . We have n � nfam, cf. 3.1.5.
From 3.2.3 we get that D is uniquely determined up to isomorphism by D[pn] and so also by
D[pnfam ]. Thus the number T (r, d) exists and we have T (r, d) � nfam. From 3.2.3 we also get
that T (r, d) � n. If d ∈ {0, r}, then T (r, d) = nfam = n = 0. If d /∈ {0, r}, then the s-number
and the h-number of (End(M),ϕ) are 1 and 2 (respectively) and End(M) has rank r2. Thus for
d ∈ S(1, r − 1) we have (cf. 3.1.5)

n � T (r, d) � nfam � 2d
(
r2,1,2

)
+ εp.

So T (r, d) is effectively bounded from above in terms of r, cf. 2.4.1. This proves 1.3.

3.2.5. Principal quasi-polarizations
Suppose r = 2d = rM , k = k̄, and we have a principal quasi-polarization λM of (M,ϕ). We

refer to the triple (M,ϕ,λM ) as a principally quasi-polarized Dieudonné module over k. Let
G := Sp(M,λM ). Let n ∈N∪ {0} be the i-number of (M,ϕ,G). Let (D,λD) be a principally
quasi-polarized p-divisible group over Spec(k) whose principally quasi-polarized Dieudonné
module is isomorphic to (M,ϕ,λM ). The principally quasi-polarized Dieudonné module of any
other principally quasi-polarized p-divisible group over Spec(k) of height r = rM is of the form
(M,gϕ,λM ) for some g ∈ G(W (k)). So as in the proof of 3.2.3 we argue that n is the smallest
number t ∈N∪ {0,∞} for which the following statement holds:

(∗) if (D1, λD1) is a principally quasi-polarized p-divisible group over Spec(k) of height
r = 2d and if the principally quasi-polarized truncated Barsotti–Tate groups of level t of
(D1, λD1) and (D,λD) are isomorphic, then (D1, λD1) is isomorphic to (D,λD).

As in 3.2.4 we argue that there exists a smallest number T (d) ∈ N such that any principally
quasi-polarized p-divisible group over Spec(k) of height r = 2d is uniquely determined up to
isomorphism by its principally quasi-polarized truncated Barsotti–Tate group of level T (d). The
number T (d) is effectively bounded from above in terms of the relative dimension 2d2 + d of
G = Sp(M,λM ) over Spec(W (k)) and so also of d itself.

From the very definition of T (d) we get:

3.2.6. COROLLARY. – Suppose k = k̄. Let D be a p-divisible group over Spec(k) of
height r = 2d and dimension d. Let Dt be the Cartier dual of D. Then the number of
isomorphism classes of principally quasi-polarized p-divisible groups of the form (D,λD) is
bounded from above by the finite number of distinct truncations of level T (d) of isomorphisms
D ∼−→ Dt, i.e. by the number of elements of the following finite set of isomorphisms
Im(Isom(D,Dt)→ Isom(D[pT (d)],Dt[pT (d)])).

3.2.7. PROPOSITION. – Suppose k = k̄. Let R be the normalization of k[[w]] in an algebraic
closure K of k((w)). For ∗ ∈ {k,K} let D∗ be a p-divisible group over Spec(∗) of height
r and dimension d. Then Dk is the specialization (via Spec(R)) of a p-divisible group over
Spec(K) which is isomorphic to DK if and only if Dk[pT (r,d)] is the specialization (via
Spec(R)) of a truncated Barsotti–Tate group of level T (r, d) over Spec(K) which is isomorphic
to DK [pT (r,d)].

Proof. – It suffices to check the if part. Let GR be a truncated Barsotti–Tate group of level
T (r, d) over Spec(R) that lifts Dk[pT (r,d)] and that has the property that its fibre over Spec(K)
is isomorphic to DK [pT (r,d)]. Let R0 be a finite k[[w]]-subalgebra of R such that GR is the
pullback of a truncated Barsotti–Tate group GR0 of level T (r, d) over Spec(R0). As R0 is a
complete discrete valuation ring, there exists a p-divisible group D′

R over Spec(R0) that lifts

0
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both Dk and GR0 (cf. [21, 4.4(f)]). The pullback of D′
R0

to Spec(K) is isomorphic to DK (cf.
1.3) and it specializes (via Spec(R)) to Dk . �

We have a logical variant of 3.2.7 in the principally quasi-polarized context. We next consider
F -crystals with a group over k.

3.2.8. THEOREM. – Suppose k = k̄. Let (M,ϕ,G) be an F -crystal with a group over k; so
ϕ(M) ⊆ M . Let h be the h-number of (M,ϕ). Let m := T(Lie(G),ϕ) and let n := 2m + εp.
Let g ∈G(W (k)). Let t ∈N∪ {0}.

(a) Suppose G is smooth over Spec(W (k)) and there exists g̃h+n+t ∈G(Wh+n+t(k)) which
is an isomorphism between the reductions mod ph+n+t of (M,gϕ) and (M,ϕ). Then
there exists g̃0 ∈ G(W (k)) which is an isomorphism between (M,gϕ,G) and (M,ϕ,G)
and whose image in G(Wh+n+t(k)) is congruent mod pn−m+t to g̃h+n+t.

(b) If G = GLM , then the images of the two reduction homomorphisms Aut(M,ϕ) →
Aut(M/pn−m+tM,ϕ) and Aut(M/pn+h+tM,ϕ) → Aut(M/pn−m+tM,ϕ) are the
same.

Proof. – Part (b) is a practical application of (a) for the case when G = GLM . As G(W (k))
surjects onto G(Wh+n+t(k)), it suffices to prove (a) under the extra assumption that g̃h+n+t =
1M/ph+n+tM . So g mod ph+n+t fixes Im(ϕ(M) → M/ph+n+tM). But phM ⊆ ϕ(M) and so
g mod ph+n+t fixes also the Wh+n+t(k)-submodule phM/ph+n+tM of M/ph+n+tM . Thus
g is congruent mod pn+t to 1M . So the element g̃0 exists, cf. 3.1.1 (applied with G = G′,
M = M ′, and n(G) = 0). �
3.2.9. On F -truncations

One can generalize the D-truncations of 3.2.1 as follows. Let (M,ϕ,G) be a p-divisible
object with a group over k and let (F i(M))i∈S(a,b) be a lift of it (see 2.2.1(b) and (d)).
Let ϕi :F i(M) → M be the σ-linear map defined by the rule ϕi(x) = p−iϕ(x), where
x ∈ F i(M). We denote also by ϕi its reduction mod pq . By an inner isomorphism be-
tween (M/pqM, (F i(M)/pqF i(M))i∈S(a,b), (ϕi)i∈S(a,b),GWq(k)) and a similar quadruple
(M/pqM, (F i

1(M)/pqF i
1(M))i∈S(a,b), ((gϕ)i)i∈S(a,b),GWq(k)) defined by some lift

(F i
1(M))i∈S(a,b) of (M,gϕ,G) (with g ∈ G(W (k))), we mean an arbitrary element

f ∈ Im(G(W (k)) →G(Wq(k))) that has the following two properties:
(i) it takes F i(M)/pqF i(M) onto F i

1(M)/pqF i
1(M) for all i ∈ S(a, b);

(ii) we have fϕi = (gϕ)if for all i ∈ S(a, b).
By the F -truncation mod pq of (M,ϕ,G) we mean the set Fq(M,ϕ,G) of inner isomorphism

classes of quadruples (M/pqM, (F i(M)/pqF i(M))i∈S(a,b), (ϕi)i∈S(a,b),GWq(k)) we obtain
by allowing (F i(M))i∈S(a,b) to run through all lifts of (M,ϕ,G).

If (M,ϕ) is a Dieudonné module over k and if G is smooth, then it is easy to see that the
D-truncations mod pq of (M,ϕ,G) and (M,gϕ,G) are inner isomorphic if and only if the
F -truncations mod pq of (M,ϕ,G) and (M,gϕ,G) are inner isomorphic.

3.3. Refinements of 3.1.1

In many particular cases we can choose the W (k)-span E of 3.1.1(a) to be stable under
products and this can lead to significant improvements of the inequalities we obtained in 3.1.1 to
3.1.5. For the sake of generality, we now formalize such improvements in a relative context.

Let (M,ϕ,G) be a latticed F -isocrystal with a group over k. Until Section 4 we assume k = k̄.
Until Section 4 we also assume that there exists an integral, closed subgroup scheme G1 of GLM

which contains G and for which the following two conditions hold:
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(i) the triple (M,ϕ,G1) is a latticed F -isocrystal with a group over k;
(ii) there exist a B(k)-basis B1 := {e1, . . . , ev1} of Lie(G1B(k)) and a permutation π1 of

S(1, v1), that have the following four properties:
(ii.a) E1 := 〈e1, . . . , ev1〉 is a W (k)-submodule of End(M) such that E1E1 ⊆ E1;
(ii.b) each cycle (l1, . . . , lq) of π1 has the property that for j ∈ S(1, q) we have ϕ(elj ) =

pnlj elj+1 , where the integers nlj ’s are either all non-negative or all non-positive;
(ii.c) if v := dim(GB(k)) (so v ∈ S(1, v1)), then the intersection E := E1 ∩ Lie(GB(k))

has {e1, . . . , ev} as a W (k)-basis and moreover the permutation π1 normalizes
S(1, v);

(ii.d) for any t ∈ N and every element of G(W (k)) that has the form
1M +

∑
l∈S(1,v1)

ptxlel, where all xl’s belong to W (k), we have xl ∈ pW (k) for
all l ∈ S(v + 1, v1).

Let

E2 := E1

[
1
p

]
∩End(M) = Lie(G1B(k))∩End(M).

From (ii.a) we get that 1M + E2 is a semigroup with identity contained in End(M).

3.3.1. LEMMA. – There exists a closed subgroup scheme G2 of GLM that is defined by the
rule: if A is a commutative W (k)-algebra, then G2(A) is the group of invertible elements of the
semigroup with identity 1M⊗W (k)A + E2 ⊗W (k) A. We have G1 = G2.

Proof. – We show that G2 is an integral, closed subgroup scheme of GLM and that
Lie(G2B(k)) ⊆ E2[ 1p ] = E1[ 1p ]. If 1M ∈ E2, then 1M + E2 = E2 is a W (k)-subalgebra of
End(M) which as a W (k)-submodule is a direct summand; so obviously G2 is an integral,
closed subgroup scheme of GLM and we have Lie(G2B(k)) ⊆ E2[ 1p ] = E1[ 1p ].

We now consider the case when 1M /∈ E2. Let E3 := End(M) ∩ (E2[ 1p ] + B(k)1M ); it is a
W (k)-subalgebra of End(M) that has E2 as a two-sided ideal. The finite W (k)-algebra E3/E2

is isomorphic to a W (k)-subalgebra of B(k)1M and so to W (k)1M . So as W (k)-modules,
we have a direct sum decomposition E3 = E2 ⊕ W (k)1M . Let G3 be the integral, closed
subgroup scheme of GLM of invertible elements of E3. Let x ∈ 1M⊗W (k)A + E2 ⊗W (k) A

be an element that has an invertible determinant. The inverse x−1 ∈ End(M) of x belongs
to G3(A) and moreover modulo the ideal E2 ⊗W (k) A of E3 ⊗W (k) A it is 1M⊗W (k)A. Thus
x−1 ∈ 1M⊗W (k)A +E2 ⊗W (k) A. This implies that the group G2(A) is the group of all elements
of 1M⊗W (k)A + E2 ⊗W (k) A that have an invertible determinant. From this description of points
of G2, we get that G2 is an integral, closed subgroup scheme of either GLM or G3 and that we
have Lie(G2B(k)) ⊆ E2[ 1p ] = E1[ 1p ].

If x ∈ E1, then we have 1M + ptx ∈ G2(W (k)) for all t � 0. Thus E1[ 1p ] ⊆ Lie(G2B(k))
and therefore we have identities Lie(G1B(k)) = E1[ 1p ] = E2[ 1p ] = Lie(G2B(k)). So G1B(k) =
G2B(k), cf. [1, Ch. II, 7.1]. Thus G1 = G2. �

3.3.2. THEOREM. – We recall that conditions 3.3(i) and (ii) hold. Let m1 ∈ N ∪ {0} be the
smallest number such that pm1(E2) ⊆ E1 ⊆ E2. Let g ∈ G(W (k)) ∩ (1M + pjE1) with j ∈N.
If p = 2 we assume that either G = G1 or j � 2. We have:

(a) There exists g̃ ∈ G(W (k))∩ (1M + pjE1) which is an isomorphism between (M,gϕ,G)
and (M,ϕ,G).

(b) The i-number of (M,ϕ,G) is at most m1 + 1.

Proof. – To prove (a), we write g = 1M +
∑

l∈S(1,v1)
pjxl(j)el, where all xl(j)’s belong to

W (k). By induction on t ∈ {j, j +1, . . .} we construct an element g̃t ∈G(W (k)) such that there
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exist elements xl(t)’s in W (k) that satisfy the identity

g̃tg̃t−1 · · · g̃jgϕg̃−1
j · · · g̃−1

t−1g̃
−1
t ϕ−1 = 1M +

∑
l∈S(1,v1)

ptxl(t)el.(20a)

If t = j let g̃t := 1M . The passage from t to t + 1 goes as follows. For l ∈ S(1, v1) let
ql :=−min{0, nl}; we recall that nl ∈Z is such that ϕ(el) = pnleπ1(l) (cf. 3.3(ii.b)).

We first consider the case p � 3. Let

g̃t+1 :=
∏

l∈S(1,v)

exp
(
pt+ql x̃l(t + 1)el

)
∈G

(
W (k)

)
,(20b)

where all x̃l(t + 1)’s belong to W (k). As π1 normalizes S(1, v), we have

ϕg̃−1
t+1ϕ

−1 =
∏

l∈S(1,v)

exp
(
−pt+ql+nlσ

(
x̃l(t + 1)

)
eπ1(l)

)
∈ G

(
W (k)

)
(20c)

(to be compared with (14)). As E1E1 ⊆ E1 and p � 3, for any e ∈ E1 the element exp(pte) =
1M +

∑∞
i=1

pti

i! ei belongs to 1M + ptE1. From this and the inequalities ql � 0 and ql + nl � 0,
we get that any exponential element of either (20b) or (20c) belongs to 1M + ptE1. Thus, as
1M + ptE1 is a semigroup contained in End(M), we get that g̃t+1 ∈ 1M + ptE1 and that (cf.
also (20a)) we can write

g̃t+1

(
g̃t · · · g̃jgϕg̃−1

j · · · g̃−1
t ϕ−1

)
ϕg̃−1

t+1ϕ
−1 = 1M +

∑
l∈S(1,v1)

ptx′
l(t + 1)el,(20d)

where all x′
l(t + 1)’s belong to W (k). If i > v, then x′

l(t + 1) ∈ pW (k) (cf. 3.3(ii.d)).
Based on 2.6(a), from (20b), (20c), and (20d) we get that for any l ∈ S(1, v) the Witt vector

x′
l(t + 1) ∈W (k) is congruent mod p to the sum (to be compared with (15))

pql x̃l(t + 1) + xl(t)− p
n

π
−1
1

(l)
+q

π
−1
1

(l)σ
(
x̃π−1

1 (l)(t + 1)
)
.

As in the part of the proof of 3.1.1 that pertains to (+) and (−), we argue that we can choose the
x̃l(t + 1)’s with l ∈ S(1, v) such that we have x′

l(t + 1) ∈ pW (k) for all l ∈ S(1, v). Thus for all
l ∈ S(1, v1) we can write ptx′

l(t + 1) = pt+1xl(t + 1), where xl(t + 1) ∈ W (k). This ends the
induction for p � 3.

Let now p = 2. For t � 2, we have 2t− 1 � t + 1. So the above passage from t to t + 1 has to
be modified only if t = j = 1, cf. 2.6(b). As E1E1 ⊆ E1, for any e ∈E1 the element 1M +pe has
an inverse in 1M + pE1 and thus (cf. 3.3.1) it is an element of G2(W (k)) = G1(W (k)). Thus,
if t = j = 1 and G = G1, we can take

g̃2 := 1M +
∑

l∈S(1,v)

p1+ql x̃l(2)el ∈G2

(
W (k)

)
= G1

(
W (k)

)
= G

(
W (k)

)
(20e)

and we can proceed as above. This ends the induction.
The infinite product g̃ := · · · g̃j+2g̃j+1g̃j ∈G(W (k))∩ (1M +pjE1) is well defined (as W (k)

is p-adically complete). Passing to limit t→∞ in (20a), we get g̃gϕg̃−1ϕ−1 = 1M . Thus g̃ is an
isomorphism between (M,gϕ,G) and (M,ϕ,G). So (a) holds.
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We prove (b). For g ∈ G(W (k)) � G1(W (k)), we have g − 1M ∈ E2 (cf. 3.3.1). If g is
congruent mod pm1+1 to 1M , then g − 1M ∈ pm1+1E2 ⊆ pE1. Thus g ∈ G(W (k)) ∩ (1M +
pE1). So there exists an isomorphism between (M,gϕ,G) and (M,ϕ,G) which is an element
of G(W (k)), cf. (a) applied with j = 1. So (b) follows from Definition 3.1.4. �
3.3.3. Variant

Suppose G = G1 and E1E1 = 0. Then 3.3.2(a) holds even if j = 0, i.e. even if we only have
g ∈G(W (k))∩ (1M + E). This is so as we have exp(x) = 1 + x for any x ∈E = E1. Thus the
proof of 3.3.2(a) holds even if j = 0 and so the proof of 3.3.2(b) can be adapted to get that the
i-number of (M,ϕ,G) is at most m1.

3.3.4. COROLLARY. – Let m1 be as in 3.3.2. We assume that G = G1 and that all slopes of
(Lie(GB(k)),ϕ) are 0. Then the i-number of (M,ϕ,G) is at most m1.

Proof. – Let EZp := {x ∈ Lie(GB(k))∩End(M) | ϕ(x) = x}. We can assume E = E1 is the
W (k)-span of EZp . We have EZpEZp ⊆ EZp , cf. 3.3(ii.a). Let gm1 ∈ G(W (k)) be congruent
mod pm1 to 1M . We write gm1 = 1M +e, with e ∈E (to be compared with the proof of 3.3.2(b)).
Based on 3.3.2(a), to prove the corollary it suffices to check that there exists g̃ ∈ G(W (k)) such
that g̃gm1ϕg̃−1ϕ−1 ∈G(W (k))∩ (1M + pE).

The element 1 + e = gm1 ∈ G(W (k)) normalizes E2. Thus (1M + e)E ⊆ E ⊆ E2 =
(1M + e)E2. So by reasons of length of artinian modules we get that (1M + e)E = E. Let
e′ ∈ E be such that (1M + e)e′ = −e. Thus (1M + e)(1M + e′) = 1M + e − e = 1M . So
(1M + e)−1 = 1M + e′ ∈ 1M + E = 1M + EZp ⊗Zp W (k).

Let H be the group scheme over Spec(Zp) defined by the rule: if A is a commutative
Zp-algebra, then H(A) is the group of invertible elements of the semigroup with identity
1M⊗W (k)A + EZp ⊗Zp A contained in End(M) ⊗W (k) A. The automorphism σ of W (k) acts
naturally on H(W (k)). If u ∈ H(W (k)), then u ∈ G(W (k)) (cf. 3.3.1) and σ(u) = σuσ−1 is
ϕuϕ−1 ∈H(W (k)). Moreover we have gm1 ∈H(W (k)), cf. previous paragraph.

Let ḡm1 be the image of gm1 in H(k). The scheme H is an open subscheme of the affine
space over Spec(Zp) that is of relative dimension v and that is defined naturally by EZp . Thus
the group scheme H over Spec(Zp) has connected fibres and is smooth. Moreover, the special
fibre HFp is a quasi-affine group and thus also an affine group over Spec(Fp) (cf. [6, vol. I,
Exp. VIB , 11.11]). Let ¯̃g ∈ H(k) be such that ¯̃gḡm1σ(¯̃g)−1 is the identity element of H(k), cf.
Lang theorem (see [1, Ch. V, 16.4]). Let g̃ ∈ H(W (k)) be an element that lifts ¯̃g. The element
g̃gm1ϕg̃−1ϕ−1 = g̃gm1σ(g̃−1) ∈ H(W (k)) � G(W (k)) has a trivial image in H(k) and thus it
belongs to 1M + pE. �

3.3.5. Example. – Let c ∈ N be such that g.c.d.(c, rM − c) = 1. We assume (M,ϕ) is the
Dieudonné module of a p-divisible group D over Spec(k) of height r := rM , dimension d :=
r− c = rM − c, and (unique) slope d

r . Let m := T(End(M),ϕ). Let E be the W (k)-subalgebra
of End(M) generated by elements of End(M) fixed by ϕ. As all slopes of (End(M [ 1p ]),ϕ)
are 0, any W (k)-submodule O of End(M) with the property that (O,ϕ) is a Dieudonné–
Fontaine p-divisible object over k, is W (k)-generated by elements fixed by ϕ and so is contained
in E. Thus m ∈N∪ {0} is the smallest number such that pm End(M) ⊆ E. As c ∈N, we have
E �= End(M) and so m � 1. The i-number n of (M,ϕ) is at most m, cf. 3.3.4. But D is uniquely
determined up to isomorphism by D[pn] (cf. 3.2.3) and thus also by D[pm]. Using direct sums
of t ∈ N copies of (M,ϕ), a similar argument shows that Dt is uniquely determined up to
isomorphism by Dt[pm].

3.3.6. Example. – The case m = 1 of 3.3.5 also solves positively the isoclinic case of [35,
Conjecture 5.7] as one can easily check this starting from [10, 5.3 and 5.4]. For the reader’s
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convenience here is the version of the last sentence in the spirit of this paper. In this section, we
use the notations of 3.3.5 and we moreover assume that D is such that there exists a W (k)-basis
{e0, e1, . . . , er−1} of M with the property that ϕ(ei) is ei+d if i ∈ S(0, c − 1) and is pei+d if
i ∈ S(c, r − 1). Here and below, all the lower right indices of the form i and i,j are mod r. For
i, j ∈ S(0, r − 1) let ei,j ∈ End(M) be such that it annihilates ej′ if j′ �= j and takes ej into ei.
We have ϕ(ei,j) = pni,j ei+d,j+d, where the integer ni,j is defined by the rule:

(∗) it is 0 if (i, j) ∈ S(0, c − 1)2 ∪ S(c, r − 1)2, it is 1 if (i, j) ∈ S(c, r − 1) × S(0, c − 1),
and it is −1 if (i, j) ∈ S(0, c− 1)× S(c, r − 1).

We check that m = 1. Replacing D by Dt if necessary, we can assume c > d = r − c;
so c > r

2 . Based on (2) and the inequality m � 1, to show that m = 1 it is enough to
show that for all pairs (i, j) ∈ S(0, r − 1)2 we have an equality Sτi,j = 1, where τi,j :=
(ni,j , ni+d,j+d, ni+2d,j+2d, . . . , ni+(r−1)d,j+(r−1)d).

So it suffices to show that none of the τi,j ’s is of the form (−1,0,0, . . . ,0,−1, . . .), cf.
Definitions 2.2.4(b) and (c). Thus it suffices to show that for any pair (i0, j0) ∈ S(0, c − 1) ×
S(c, r−1), the first non-zero number of the sequence ni0+d,j0+d, . . . , ni0+rd,j0+rd is 1. We write
j0 = c + d0, with d0 ∈ S(0, d − 1). As d0 ∈ S(0, c − 1), we can assume ni0+d,j0+d = ni0+d,d0

is 0. Thus (i1, j1) := (i0 + d, d0) ∈ S(0, c− 1)2 and we have i1 � j1.
We have to show that the first non-zero number of the sequence ni1,j1 , ni1+d,j1+d, . . . ,

ni1+(r−1)d,j1+(r−1)d is 1. We can assume ni1+d,j1+d �= 1. As i1 � j1 we have ni1+d,j1+d �= −1.
Thus ni1+d,j1+d = 0. If i1 + d � c − 1, let (i2, j2) := (i1 + d, j1 + d) ∈ S(0, c − 1)2; if
i1 + d � c, then from (∗) and the equality ni1+d,j1+d = 0 we get j1 + d � c and thus we have
(i2, j2) := (i1 + 2d − r, j1 + 2d − r) ∈ S(0, c − 1)2. We conclude that (i2, j2) ∈ S(0, c − 1)2

and i2 � j2. We have ni2,j2 = 0. We have to show that the first non-zero number of the
sequence ni2,j2 , . . . , ni2+(r−1)d,j2+(r−1)d is 1. As in this way we cannot construct indefinitely
pairs (iu, ju) ∈ S(0, c− 1)2 with iu � ju (here u ∈N), we get that the first non-zero number of
the sequence ni2,j2 , . . . , ni2+(r−1)d,j2+(r−1)d is 1.

So Sτi,j = 1 and m = 1. Thus for t ∈ N, Dt is uniquely determined up to isomorphism
by Dt[p] (cf. end of 3.3.5). This was predicted by [35, Conjecture 5.7].

3.3.7. Example. – We assume that all slopes of (End(M),ϕ) are 0 and that G1 = GLM . Thus
3.3(i) holds. Let E1Zp be the Zp-subalgebra of End(M) formed by elements fixed by ϕ. Let
E1 := E1Zp ⊗Zp W (k) ⊆ End(M); we have v1 = r2

M and E2 = End(M). We also assume that
p � 3 and that G = Sp(M,λM ) (respectively and that G = SO(M,λM )), where λM is a perfect
alternating (respectively perfect symmetric) bilinear form on M which is a principal (respectively
a principal bilinear) quasi-polarization of (M,ϕ). As p � 3, we have a direct sum decomposition
End(M) = Lie(G) ⊕ Lie(G)⊥, where Lie(G)⊥ is the perpendicular of Lie(G) with respect to
the trace form on End(M). As ϕ normalizes Lie(G)[ 1p ], it also normalizes Lie(G)⊥[ 1p ]. Thus
E1 has a W (k)-basis B1 = {e1, . . . , ev1} that is the disjoint union of a Zp-basis {e1, . . . , ev} of
E1Zp ∩ Lie(G) and of a Zp-basis {ev+1, . . . , ev1} of E1Zp ∩ Lie(G)⊥. Let π1 := 1S(1,v1).

Properties 3.3(ii.a) to (ii.c) hold, cf. constructions. We check that 3.3(ii.d) holds. Let g ∈
G(W (k)) be of the form 1M +

∑
l∈S(1,v1)

ptxlel, where all xl’s belong to W (k). The involution

of End(M) defined by λM fixes Lie(G)⊥ and acts as −1 on Lie(G). Thus the product
(1M −

∑v
l=1 ptxlel +

∑v1
l=v+1 ptxlel)(1M +

∑
l∈S(1,v1)

ptxlel) is 1M (as g ∈ G(W (k))) and
belongs to 1M + 2(

∑v1
l=v+1 ptxlel) + pt+1E1. As p � 3, for l ∈ S(v + 1, v1) we have xl ∈

pW (k). So 3.3(ii.d) holds. Thus 3.3(ii) holds. So 3.3.2 applies. In particular, the i-number of
(M,ϕ,G) is at most m1 + 1, where m1 ∈ N ∪ {0} is the smallest number such that we have
pm1 End(M) ⊆ E1 = E1Zp ⊗Zp W (k) (cf. 3.3.2(b)).
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4. Four examples

In this section we include four examples that pertain to Sections 3.1 to 3.3. Let εp ∈ {1,2} be
as before 3.1. Let (M,ϕ,G) be a p-divisible object with a group over k. Let n ∈N∪ {0} be the
i-number of (M,ϕ,G), cf. 3.1.4. In this section we will assume that k = k̄ and that G
is a reductive group scheme over Spec(W (k)). Thus the group scheme G is smooth over
Spec(W (k)) and its fibres are connected and have trivial unipotent radicals. As G is smooth over
Spec(W (k)), with the notations of 2.7 we have G = G′ and n(G) = 0. Let M =

⊕b
i=a F̃ i(M),

(F i(M))i∈S(a,b), and μ :Gm → G be as in 2.2.1(d). Let bL ∈ S(0, b−a) be the smallest number
such that we have a direct sum decomposition

Lie(G) :=
bL⊕

i=−bL

F̃ i
(
Lie(G)

)

with the property that β ∈Gm(W (k)) acts on F̃ i(Lie(G)) through μ as the multiplication with
β−i. As the group scheme G is reductive, both W (k)-modules F̃ bL(Lie(G)) and F̃−bL(Lie(G))
are non-zero. As in 2.5, we have a σ-linear automorphism σ0 := ϕμ(p) of M . As ϕ = σ0μ(p−1),
the s-number of (Lie(G),ϕ) is bL. If bL � 1, we say (M,ϕ,G) is a Shimura p-divisible object
over k. Let f−1 ∈N∪ {0} be the rank of F̃−1(Lie(G)).

In Sections 4.1–4.5 we will consider four unrelated situations.

4.1. Example 1

In this section we assume that bL = 1 and that all slopes of (Lie(G),ϕ) are 0. Let f ∈ N be
the smallest number such that there exists a filtration

0 = E0 ⊆ E1 ⊆ · · · ⊆ Ef := Lie(G)

by W (k)-submodules that are direct summands, with the property that for any number i ∈
S(1, f), the quotient W (k)-module Ei/Ei−1 is a maximal direct summand of Lie(G)/Ei−1

normalized by ϕ. For i ∈ S(2, f) we choose xi ∈ Ei \ (Ei−1 + pEi) such that we have
pϕ(xi)− pxi ∈ Ei−1 \ pEi−1 and the images of x1, . . . , xi−1, and xi in

Lie(G)/
(
F̃ 0

(
Lie(G)

)
+ F̃ 1

(
Lie(G)

)
+ pLie(G)

) ∼−→ F̃−1
(
Lie(G)

)
/pF̃−1

(
Lie(G)

)
are k-linearly independent. The possibility of making such choices is implied by the maximal
property of Ei/Ei−1. By reasons of ranks we get f −1 � f−1. By induction on j ∈ S(1, f) we get
ϕ normalizes E1 + pE2 + · · ·+ pj−1Ej . Taking j = f , we get that E := E1 + pE2 + · · ·+ pf−1Ef

has a W (k)-basis formed by elements fixed by ϕ. Thus (E,ϕ) is a Dieudonné p-divisible object
over k. As pf−1 annihilates Lie(G)/E we get T(Lie(G),ϕ) � f − 1. Thus (cf. 3.1.5 for the first
inequality)

n � 2T
(
Lie(G),ϕ

)
+ εp � 2(f − 1) + εp � 2f−1 + εp.

Often 3.3.4 provides (respectively 3.3.2(b) and 3.3.7 applied with G1 = GLM provide) better
upper bounds of n. For instance, if G = GLM (respectively if p � 3 and G = Sp(M,λM ) with
λM as a principal quasi-polarization of (M,ϕ)) we get n � T(Lie(G),ϕ) � f−1 (respectively
n � T(Lie(G),ϕ) + 1 � f−1 + 1). If (M,ϕ) is the Dieudonné module of a supersingular
p-divisible group over Spec(k) of height 2d and if G = GLM (respectively and if p � 3 and
G = Sp(M,λM )), then f−1 is d2 (respectively is d2+d

2 ). Thus we have the following concrete
application of 3.2.3 (respectively of 3.2.5):
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4.1.1. PROPOSITION. – Let d ∈ N. If p � 2 (respectively if p � 3), then any (respectively
any principally quasi-polarized) supersingular p-divisible group of height r = 2d over Spec(k)
is uniquely determined up to isomorphism by its truncated (respectively its principally quasi-
polarized truncated) Barsotti–Tate group of level d2 (respectively of level d2+d

2 + 1).

4.2. Root decompositions

The image of μ is either trivial or a closed Gm subgroup of G and thus its centralizer in G is a
reductive group scheme which has a maximal torus (cf. [6, vol. III, Exp. XIX, 2.8 and 6.1]). Thus
there exists a maximal torus T of G through which μ factors. We have Lie(T ) ⊆ F̃ 0(Lie(G)). It
is easy to check that there exists g ∈ G(W (k)) such that gϕ normalizes Lie(T ). Accordingly, for
the next three examples (i.e. until Section 5) we will assume that we have ϕ(Lie(T )) = Lie(T ).
Let

Lie(G) = Lie(T )
⊕
γ∈Φ

gγ

be the root decomposition relative to T . So Φ is a root system of characters of T and each gγ is
a free W (k)-module of rank 1 on which T acts via the character γ.

Let Δ be a basis of Φ such that
⊕

γ∈Δ gγ ⊆
⊕bL

i=0 F̃ i(Lie(G)). Let Φ+ and Φ− be
the sets of positive and negative (respectively) roots of Φ with respect to Δ. Let C be the
unique Borel subgroup scheme of G which contains T and for which we have Lie(C) =
Lie(T )

⊕
γ∈Φ+ gγ , cf. [6, vol. III, Exp. XXII, 5.5.1]. As Lie(C)[ 1p ] is generated by the B(k)-

vector subspace
⊕

γ∈Δ gγ [ 1p ] of the Lie algebra
⊕bL

i=0 F̃ i(Lie(G))[ 1p ], we have an inclusion

Lie(C)⊆
⊕bL

i=0 F̃ i(Lie(G)).
As μ factors through T , for any root γ ∈ Φ there exists an integer n(γ) ∈ S(−bL, bL) such

that we have gγ ⊆ F̃n(γ)(Lie(G)). As ϕ = σ0μ(p−1) and σ0(Lie(T )) = ϕ(Lie(T )) = Lie(T ),
there exists a permutation Π of Φ such that we have

σ0(gγ) = gΠ(γ) and ϕ(gγ) = pn(γ)gΠ(γ), ∀γ ∈Φ.(21)

If γ ∈ Φ+ (respectively if γ ∈ Φ−), then n(γ) ∈ S(0, bL) (respectively then n(γ) ∈ S(−bL,0));
this is a consequence of the inclusion Lie(C)⊆

⊕bL

i=0 F̃ i(Lie(G)).
As Lie(T ) is normalized by ϕ, it has a W (k)-basis formed by elements fixed by ϕ. Let

Π0 := (γ1, . . . , γl) be a cycle of Π. For j ∈ S(1, l) let yγj ∈ gγj \ {0} be such that (cf. (21))
we have ϕ(yγj ) = pm(γj)yγj+1 (with γl+1 := γ1), where m(γ1), . . . ,m(γl) are integers that are
either all positive or all negative. Let B0 := {yγ1 , . . . , yγl

}.
Let E be a W (k)-submodule of Lie(G) that contains Lie(T ), that satisfies the identity

E[ 1p ] = Lie(G)[ 1p ], and that is maximal subject to the property that it has a W (k)-basis B which
is the union of a Zp-basis of {x ∈ Lie(T ) | ϕ(x) = x} and of subsets B0 that are associated as
above to some cycle Π0 of Π. Let π be the permutation of B which fixes B ∩ Lie(T ) and which
for γ ∈ Φ takes the element of gγ ∩B into the element of gΠ(γ) ∩B.

4.3. Example 2

It is not difficult to check that there exists an element g ∈ G(W (k)) which normalizes T
and which has the property that gϕ takes Lie(C) into Lie(C). Accordingly, in this section
we assume that there exists a Borel subgroup C̃ of G which contains T and which has the
property that ϕ(Lie(C̃)) ⊆ Lie(C̃). So if we have gγ ⊆ Lie(C̃), then n(γ) � 0. Thus we have
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Lie(C̃)⊆
⊕bL

i=0 F̃ i(Lie(G)). Thus, not to introduce extra notations, we can assume that C = C̃;
so ϕ(Lie(C))⊆ Lie(C).

The last inclusion implies that Π normalizes both Φ+ and Φ−. As we have n(γ) � 0 if γ ∈Φ+

and n(γ) � 0 if γ ∈Φ−, for any cycle Π0 = (γ1, . . . , γl) of Π we can choose the above elements
yγj ∈ gγj to be generators of gγj . Thus, due to the maximal property of E, we have E = Lie(G)
(i.e. for any γ ∈ Φ the intersection B ∩ gγ is a W (k)-basis of gγ ). Thus T(Lie(G),ϕ) = 0, i.e.
(Lie(G),ϕ) = (E,ϕ) is a Dieudonné–Fontaine p-divisible object over k. We have n � εp, cf.
3.1.5. Thus n � 1 if p � 3 and n � 2 if p = 2.

4.3.1. PROPOSITION. – We recall that G is a reductive group scheme, that T is a maximal
torus of G through which μ :Gm → G factors and whose Lie algebra is normalized by ϕ, and
that we have ϕ(Lie(C)) ⊆ Lie(C) for some Borel subgroup scheme C of G that contains T .
Then the i-number n of (M,ϕ,G) is at most 1.

Proof. – We know that n � 1 if p � 3. Thus we can assume p = 2 (but as the below arguments
work for all primes, we will keep the notation p instead of 2). Let Φ(0) := Φ ∪ {0}, n(0) := 0,
and G(0) := T . For γ ∈ Φ let G(γ) be the unique Ga subgroup scheme of G that is normalized
by T and such that Lie(G(γ)) = gγ , cf. [6, vol. III, Exp. XXII, 1.1]. If x ∈ gγ is such that xp �= 0,
then the torus T acts on 〈xp〉 via the p-th power of the character γ. The reduction x̄p mod p of xp

belongs to gγ mod p, cf. [1, Ch. II, 3.1, 3.5, Lemma 3 of 3.19]. From the last two sentences we
get that x̄p = 0. This implies that for each γ ∈ Φ we have a bijection expγ :gγ

∼−→ G(γ)(W (k))
which maps x ∈ gγ into expγ(x) =

∑∞
i=0

xi

i! (we emphasize that gγ is not included in the domain
of the exponential map of 2.6 defined for O = M ).

Let g1 ∈ G(W (k)) be congruent mod p to 1M . Let l1 ∈ Lie(G) be such that g1 is congruent
mod p2 to 1M + pl1. We show that there exists g ∈ G(W (k)) congruent mod p to 1M and such
that gg1ϕg−1ϕ−1 ∈G(W (k)) is congruent mod p2 to 1M .

We take g to be a product
∏

γ∈Φ(0) gγ
1 (taken in any order), where gγ

1 ∈ G(γ)(W (k))
is congruent mod p1+max{0,−n(γ)} to 1M . Let l01 ∈ Lie(T ) be such that g0

1 ∈ G(0)(W (k))
is congruent mod p2 to 1M + pl01 . The element ϕg0

1ϕ−1 = σ0g
0
1σ−1

0 ∈ G(0)(B(k)) ∩
GLM (W (k)) = G(0)(W (k)) is congruent mod p2 to 1M + pσ0(l01). For γ ∈ Φ let xγ

1 ∈
p1+max{0,−n(γ)}gγ and lγ1 ∈ gγ be such that gγ

1 = expγ(xγ
1) is congruent mod p2+max{0,−n(γ)}

to 1M + p1+max{0,−n(γ)}lγ1 , cf. 2.6.1 and 2.6.2. Based on (21) we have

ϕgγ
1 ϕ−1 = expΠ(γ)

(
p1+max{0,n(γ)}σ0

(
xγ

1

))
∈G

(
Π(γ)

)(
W (k)

)
.

So if n(γ) > 0 (respectively if n(γ) � 0), then from 2.6(b) (respectively from the very definition
of lγ1 ) we get that ϕgγ

1 ϕ−1 = expΠ(γ)(p1+max{0,n(γ)}σ0(x
γ
1)) is congruent mod p2 to 1M

(respectively to 1M + pσ0(l
γ
1 )). Thus by replacing g1 with the following product

gg1ϕg−1ϕ−1 =
( ∏

γ∈Φ(0)

gγ
1

)
g1

( ∏
γ∈Φ(0)

ϕgγ
1 ϕ−1

)−1

∈G
(
W (k)

)

of elements congruent mod p to 1M , the role of l1 gets replaced by the one of

l̃1 := l1 +
∑

γ∈Φ,n(γ)>0

lγ1 +
∑

γ∈Φ(0),n(γ)=0

[
lγ1 − σ0

(
lγ1

)]
+

∑
γ∈Φ,n(γ)<0

−σ0

(
lγ1

)
.

By writing all elements defining l̃1 as linear combinations of elements of the W (k)-basis B of
E = Lie(G), as in the part of 3.1.1 that involves (+) and (−) we argue that we can choose the
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lγ1 ’s and so also the gγ
1 ’s, such that we have l̃1 ∈ pLie(G); here γ ∈ Φ(0). Thus gg1ϕg−1ϕ−1

is congruent mod p2 to 1M . So if n = 2, then the i-number of (M,ϕ,G) is at most 1 and this
contradicts the definition of n. As n � 2, we get n � 1. �

4.3.2. PROPOSITION. – We continue to work under the hypotheses of 4.3.1. Let E0 :=
{e ∈ Lie(G) | ϕ(e) = e}. We have:

(a) The cocharacter μ :Gm → G is the unique Hodge cocharacter of (M,ϕ,G) that
centralizes E0.

(b) The lift (F i(M))i∈S(a,b) is the unique lift of (M,ϕ,G) such that for any e ∈ E0 and every
i ∈ S(a, b) we have e(F i(M)) ⊆ F i(M).

Proof. – As ϕ = σ0μ(p−1), we have n(γ) = 0 if and only if gγ ⊆ F̃ 0(Lie(G)). So as Π
normalizes Φ+ and Φ− and as n(γ) � 0 (respectively n(γ) � 0) if γ ∈ Φ+ (respectively if
γ ∈ Φ−), we easily get that E0 ⊆ F̃ 0(Lie(G)). Thus μ centralizes E0 and for e ∈ E0 we have
e(F̃ i(M)) ⊆ F̃ i(M) for all i ∈ S(a, b); thus e(F i(M)) ⊆ F i(M) for all i ∈ S(a, b).

Let μ1 be another Hodge cocharacter of (M,ϕ,G) that centralizes E0. As ϕ(Lie(T )) =
Lie(T ), Lie(T ) is W (k)-generated by elements of E0 ∩ Lie(T ). Thus μ1 centralizes Lie(T )
and therefore it factors through T . So μ and μ1 commute. So to show that μ = μ1 it is enough
to show that μk = μ1k . As ϕ−1(M) = (σ0μ(p−1))−1(M) =

⊕b
i=a p−iF̃ i(M), for i ∈ S(a, b)

we have ((p−iϕ)−1(M)) ∩ M =
∑i−a

t=0 ptF i−t(M). This identity implies that the filtration
(F i(M)/pF i(M))i∈S(a,b) of M/pM is uniquely determined by (M,ϕ). Thus both cocharacters

μk and μ1k act on F i(M)/F i+1(M) + pF i(M) ∼−→ F̃ i(M)/pF̃ i(M) via the −i-th power of
the identity character of Gm. So as μk and μ1k commute, by decreasing induction on i ∈ S(a, b)
we get that F̃ i(M)/pF̃ i(M) is the maximal k-vector subspace of M/pM on which both μk

and μ1k act via the −i-th power of the identity character of Gm. This implies μk = μ1k . Thus
μ = μ1. So (a) holds.

Let (F i
1(M))i∈S(a,b) be another lift of (M,ϕ,G) such that for any e ∈ E0 and i ∈

S(a, b), we have e(F i
1(M)) ⊆ F i

1(M). The inverse of the canonical split cocharacter of
(M, (F i

1(M))i∈S(a,b),ϕ) fixes all elements of E0 (cf. the functorial aspects of [42, p. 513]),
factors through G (cf. 2.5), and thus it is μ (cf. (a)). Thus for i ∈ S(a, b) we have F i(M) =⊕b

j=i F̃
j(M) = F i

1(M). So (b) holds. �
If g ∈ G(W (k)), then the Newton polygon of (M,gϕ) is above the Newton polygon of

(M,ϕ) (cf. [37, Thm. 4.2]). Thus Proposition 4.3.1 generalizes the well known fact that an
ordinary p-divisible group D over Spec(k) is uniquely determined up to isomorphism by D[p].
Proposition 4.3.2 generalizes the well known fact that the canonical lift of D is the unique lift
of D to Spec(W (k)) with the property that any endomorphism of D lifts to it. The last two
sentences motivate the next definition.

4.3.3. DEFINITION. – We refer to (M,ϕ,G) of 4.3.1 as an ordinary p-divisible object with
a reductive group over k and to either (F i(M))i∈S(a,b) or (M, (F i(M))i∈S(a,b),ϕ,G) as the
canonical lift of (M,ϕ,G).

4.4. Example 3

Let c ∈ N. We assume that bL = 1 and that there exists a direct sum decomposition M =⊕c
i=1 Mi in W (k)-modules of rank 2 such that G =

∏c
i=1 GLMi and we have ϕ(Mi[ 1p ]) =

Mi+1[ 1p ] for i ∈ S(1, c), where Mc+1 := M1. We have rM = 2c. As bL = 1 and G ∼−→ GLc
2,

we have f−1 ∈ S(1, c). For i ∈ S(1, c) we have ϕ(End(Mi)[ 1p ]) = End(Mi+1)[ 1p ]. Thus the
permutation π of B has at most two cycles formed by elements of B \ Lie(T ) (equivalently the
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permutation Π of Φ has at most two cycles). If we have one such cycle, then its length is 2c. If
we have two such cycles, then their length is c.

Let ε ∈ {1,2}. Let l = εc be such that we have a cycle (y1, . . . , yl) of π formed by elements
of B \ Lie(T ). For i ∈ S(1, l) let si ∈ N ∪ {0} be such that ei := p−siyi generates gγi for
some γi ∈ Φ. Let (n1, . . . , nl) := (n(γ1), . . . , n(γl)) ∈ Zl; we have ϕ(ei) = pniei+1 (cf. (21)).
As bL = 1, for i ∈ S(1, l) we have ni ∈ {−1,0,1}. The number n+ (respectively n−) of those
i ∈ S(1, l) such that ni = 1 (respectively ni = −1), is at most f−1. Moreover n+ +n− = εf−1 �
εc = l. Thus n0 := min{n+, n−} � ε

2f−1.
We have T(〈e1, . . . , el〉,ϕ) � n0 and there exist numbers ai ∈ S(0, n0) such that (〈pa1e1, . . . ,

palel〉,ϕ) is a Dieudonné–Fontaine p-divisible object over k, cf. (3) and the proof of (2). Based
on the maximal property of E, we can assume 〈pa1e1, . . . , p

alel〉 ⊆ 〈y1, . . . , yl〉 (i.e. si � ai for
all i ∈ S(1, l)). If l = c, then the set {n+, n−} (and so also n0) does not depend on the choice
of the cycle (y1, . . . , yl). Thus we can choose E such that pn0 Lie(G) ⊆ E. So any element of
G(W (k)) congruent mod pn0+1 to 1M belongs to 1M + pE. As Lie(T ) ⊆ E, E is a W (k)-
subalgebra of

∏c
i=1 End(Mi) and so also of End(M). Thus (cf. 3.3.2(b) applied with G = G1

and with m1 ∈ S(0, n0)) we have

n � n0 + 1 = min{n+, n−}+ 1 � ε

2
f−1 + 1 � c + 1.

4.5. Example 4

Let d ∈N \ {1,2}. Let D be a p-divisible group over Spec(k) of height r = 2d, dimension d,
and slopes 1

d and d−1
d . Let (M,ϕ0) be the Dieudonné module of D; we have rM = r. It is easy

to see that we have a short exact sequence

0 → D2 → D →D1 → 0

of p-divisible groups over Spec(k), where the slopes of D1 and D2 are d−1
d and 1

d (respectively).
This short exact sequence is different from the classical slope filtration of D (see [41, §3])
which is a short exact sequence 0 → D1 → D → D2 → 0. As D1 and D2 are uniquely
determined up to isomorphisms (see [5, Ch. IV, §8]), there exist a W (k)-basis {e1, . . . , er}
of M and elements x1, . . . , xd ∈ 〈e1, . . . , ed〉 such that ϕ0 takes the r-tuple (e1, . . . , er) into
(e2, pe3, . . . , ped, pe1, ed+2 + x2, . . . , er + xd, ped+1 + px1). Let

M1 := 〈e1, . . . , ed〉 and M2 := 〈ed+1, . . . , er〉.

The pairs (M1,ϕ0) and (M/M1,ϕ0) are the Dieudonné modules of D1 and D2 (respectively).
Let ϕ be the σ-linear endomorphism of M that takes (e1, . . . , er) into (e2, pe3, . . . , ped, pe1, ed+2,
. . . , er, ped+1). Let G := GLM .

Let P1 and P2 be the maximal parabolic subgroup schemes of G that normalize M1 and
M2 (respectively). Let U1 and U2 be the unipotent radicals of P1 and P2 (respectively). Let
u0 ∈ U1(W (k)) be the unique element such that ϕ0 = u0ϕ. As T we take the maximal torus of G
that normalizes 〈ei〉 for all i ∈ S(1, r). Let L1 = GLM1 ×Spec(W (k)) GLM2 be the unique Levi
subgroup scheme of either P1 or P2 such that T � L1, cf. [6, vol. III, Exp. XXVI, 1.12(ii)]. We
have natural identifications Lie(L1) = End(M1) ⊕ End(M2), Lie(U1) = Hom(M2,M1), and
Lie(U2) = Hom(M1,M2). The triples (M,ϕ0, P1) and (M,ϕ0,U1) are latticed F -isocrystals
with a group over k.

As U1 is commutative we have (Lie(U1),ϕ) = (Lie(U1),ϕ0). We easily get that Lie(U1)
has a W (k)-basis {e(j)

i | 1 � i, j � d} such that ϕ0(e
(j)
i ) = pn

(j)
i e

(j)
i+1, where each d-tuple
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(n(j)
1 , n

(j)
2 , . . . , n

(j)
d ) is either (1,1, . . . ,1,1,−1) or some d-tuple of the form (1,1, . . . ,1,0,1, . . . ,

1,0). As S(1,1, . . . ,1,−1) = 1 and S(1,1, . . . ,1,0,1, . . . ,1,0) = 0, from (2) applied to all pairs
(〈e(j)

1 , . . . , e
(j)
d 〉,ϕ) we get T(Lie(U1),ϕ0) � 1. As Lie(U1) is a W (k)-submodule of End(M)

whose product with itself is the zero W (k)-submodule, the i-numbers of (M,ϕ0,U1) and
(M,ϕ,U1) are at most 1 (cf. 3.3.3). A similar argument shows that both T(Lie(U2),ϕ) and
the i-number of (M,ϕ,U2) are at most 1.

4.5.1. PROPOSITION. – The p-divisible group D is uniquely determined up to isomorphism
by D[p3].

Proof. – Let t ∈N \ {1}. Let gt ∈ G be congruent mod pt to 1M . We will show that if t � 3,
then there exists g ∈ G(W (k)) such that ggtϕ0g

−1ϕ−1
0 ∈ G(W (k)) is congruent mod pt+1

to 1M . The product morphism U2 ×Spec(W (k)) L1 ×Spec(W (k)) U1 → G is an open embedding
around the identity section, cf. [6, vol. III, Exp. XXII, 4.1.2]. Thus we can write gt = u2l1u1,
where the elements u1 ∈ U1(W (k)), l1 ∈ L1(W (k)), and u2 ∈ U2(W (k)) are all congruent
mod pt to 1M . As the i-number of (M,ϕ0,U1) is at most 1, to show the existence of g we
can replace u0 by any other element of U1(W (k)) that is congruent mod p to u0. Thus we can
assume u1 = 1M .

For i ∈ {1,2} let Ei be the W (k)-span of the Zp-algebra of endomorphisms of (Mi,ϕ).
Let E := E1 ⊕ E2. We have pLie(L1) ⊆ E (cf. 3.3.6 applied to both D1 and D2) and thus
l1 ∈ L1(W (k)) ∩ (1M + pt−1E). There exists l̃1 ∈ L1(W (k)) congruent mod pt−1 to 1M and
such that l̃1l1ϕl̃−1

1 = ϕ, cf. 3.3.2(a) applied with j = t − 1 to (M,ϕ,L1) and E. So, as L1

normalizes both U1 and U2, by replacing gtϕ0 with l̃1gtϕ0 l̃
−1
1 , u2 with l̃1u2 l̃

−1
1 , and u0 with the

element l̃1l1u0l
−1
1 l̃−1

1 ∈ U1(W (k)) congruent mod pt−1 to u0, we can assume l1 is congruent
mod pt+1 to 1M . This implies that gt and u2 are congruent mod pt+1.

As T(Lie(U2),ϕ) � 1, from 3.3.2(a) applied in a way similar to the one of the previous
paragraph we deduce the existence of ũ2 ∈ U2(W (k)) congruent mod pt−1 to 1M and such
that ũ2u2ϕũ−1

2 = ϕ. As gt and u2 are congruent mod pt+1, the element

g′t := ũ2gtϕ0ũ
−1
2 ϕ−1

0 = ũ2gtu0ϕũ−1
2 ϕ−1u−1

0 = ũ2gtu0u
−1
2 ũ−1

2 u−1
0 ∈G

(
W (k)

)
is congruent mod pt+1 to the commutator of ũ2u2 and u0. A simple matrix computation
of this commutator shows that for t � 3 we can write g′t = u′

2l
′
2u

′
1, where u′

1 ∈ U1(W (k))
and l′1 ∈ L1(W (k)) are congruent mod pt−1 to 1M and where u′

2 ∈ U2(W (k)) is congruent
mod p2t−2 and so also mod pt+1 to 1M (here is the only place where we need t �= 2).

Repeating twice the above part that allowed us to assume that u1 and l1 are congruent
mod pt+1 to 1M , we get that for t � 3 we can assume g′t is congruent mod pt+1 to u′

2 and
thus also to 1M . This ends the argument for the existence of g.

Thus for t � 3 we have t + 1 �= n; so n � 3. So the proposition follows from 3.2.3. �
4.5.2. Notations for d = 3

Let d be 3. For α ∈ W (k) let ϕα be the σ-linear endomorphism of M that takes (e1, . . . , e6)
into (e2, pe3, pe1, e5, e6 + αe1, pe4). The slopes of (M,ϕα) are 1

3 and 2
3 . For (i, j) ∈ {1,2,3}×

{4,5,6} let Uij be the unique Ga subgroup scheme of U1 that is normalized by T , that fixes
ej′ for j′ ∈ {4,5,6} \ {j}, and that takes ej into ej + 〈ei〉. Let nα ∈ U16(W (k)) be the unique
element such that ϕα = nαϕ.

4.5.3. PROPOSITION. – Suppose d = 3. Let α1, α2 ∈W (k) \ {0} be such that the Fp3 -vector
subspace of k generated by α1 mod p is different from the Fp3 -vector subspace of k generated
by α2 mod p. Then (M,ϕα1) and (M,ϕα2) are not isomorphic.
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Proof. – We show that the assumption that there exists g1 ∈ G(W (k)) which is an isomor-
phism between (M,ϕα1) and (M,ϕα2) leads to a contradiction. As Lie(P1)[ 1p ] is the maximal

direct summand of End(M [ 1p ]) normalized by ϕα and such that all slopes of (Lie(P1)[ 1p ],ϕα)
are non-negative, the element g1 ∈ G(W (k)) normalizes Lie(P1) and so also P1. Thus
g1 ∈ P1(W (k)). We write g1 = u1l1, where u1 ∈ U1(W (k)) and l1 ∈ L1(W (k)). We have
u1l1nα1 l

−1
1 l1ϕ = nα2ϕu1ϕ

−1ϕl1. As u1l1nα1 l
−1
1 and nα2ϕu1ϕ

−1 belong to U1(W (k)), the
actions of l1ϕ and ϕl1 on both M1 and M/M1 are equal. So as l1ϕ and ϕl1 both normalize the
direct supplement M2[ 1p ] of M1[ 1p ] in M [ 1p ], we get l1ϕ = ϕl1; so we also have u1l1nα1 l

−1
1 =

nα2ϕu1ϕ
−1. As l1ϕ = ϕl1, a simple computation shows that l1 takes e1 (respectively e6) into

a1e1 +b1e2 +c1e3 (respectively pa6e4 +pb6e5 +c6e6), where a1, b1, c1 ∈W (Fp3) (respectively
a6, b6 ∈ W (Fp3) and c6 ∈ Gm(W (Fp3))). As U1 =

∏3
i=1

∏6
j=4 Uij , there exist unique ele-

ments uij ∈ Uij(W (k)) such that we have u1 =
∏3

i=1

∏6
j=4 uij . We call uij as the component

of u1 in Uij(W (k)). Both g1 mod p and l1 mod p normalize the kernel of ϕα’s mod p, i.e. they
normalize 〈e2, e3, e6〉 mod p. So u1 mod p also normalizes 〈e2, e3, e6〉 mod p. If (i, j) �= (1,6),
then uij mod p normalizes 〈e2, e3, e6〉mod p. Thus u16 mod p normalizes 〈e2, e3, e6〉mod p
and therefore it is 1M/pM . As U35 fixes both 〈e2, e3, e6〉 and M/〈e2, e3, e6〉, ϕ(u35) mod p is
1M/pM . Thus the component of nα2ϕu1ϕ

−1 in U16(W (k)) is congruent mod p to nα2 . The
component of l1nα1 l

−1
1 in U16(W (k)) is nα3 , where α3 := a1α1c

−1
6 ∈ W (k). So α3 mod p

belongs to the Fp3 -vector subspace of k generated by α1 mod p. The component of u1l1nα1 l
−1
1

in U16(W (k)) is congruent mod p to nα3 . As u1l1nα1 l
−1
1 = nα2ϕu1ϕ

−1, we get that nα2 and
nα3 are congruent mod p. So α2 mod p belongs to the Fp3 -vector subspace of k generated by
α1 mod p. This contradicts our hypothesis. Thus g1 does not exist. �

4.5.4. Remark. – The set of isomorphism classes of p-divisible groups over Spec(k) of
height 6 and dimension 3 has the same cardinality as k, cf. 4.5.3, 1.3, and the classical Dieudonné
theory. But the set of isomorphism classes of p-torsion subgroup schemes of such p-divisible
groups over Spec(k) is finite (see [26]; to be compared with [34, §1]). Based on this, 4.5.1, and
3.2.3, we get that the set of those elements α ∈Gm(W (k)) for which the i-number of (M,ϕα)
is either 2 or 3, has the same cardinality as k. Let λM be the perfect alternating form on M
defined by the rule: if 1 � i < j � 6, then λM (ei, ej) ∈ {0,1} and we have λM (ei, ej) = 1 if
and only if (i, j) ∈ {(1,6), (3,5), (2,4)}. The form λM is a principal quasi-polarization of any
(M,ϕα).

From 4.1.1 and 4.5.1 we easily get that T (6,3) � 9.

5. Four direct applications

In this section we continue to assume that k = k̄.

5.1. The homomorphism form of 1.2

Let (M1,ϕ1) and (M2,ϕ2) be two F -crystals over k. Let (M,ϕ) := (M1,ϕ1) ⊕ (M2,ϕ2).
For i ∈ {1,2}, let hi be the h-number of (Mi,ϕi). Let h12 := max{h1, h2}, let m12 :=
T(End(M),ϕ), let v12 := m12 + h12, let εp ∈ {1,2} be as before 3.1, and let n12 := m12 + εp.
The h-number of (M,ϕ) is h12.

5.1.1. THEOREM. – We endow (N∪ {0})2 with the lexicographic order. We have:
(a) For all t ∈ N ∪ {0}, the images defined via restrictions of the two groups

Hom((M1,ϕ1), (M2,ϕ2)) and Hom((M1/pn12+v12+tM1,ϕ1), (M2/pn12+v12+tM2,ϕ2))
in the group Hom((M1/pn12+tM1,ϕ1), (M2/pn12+tM2,ϕ2)), coincide.
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(b) We fix a quadruple (r1, r2, c1, c2) ∈ (N∪ {0})4. There exists a smallest pair

(v,n) :=
(
v(r1, r2, c1, c2), n(r1, r2, c1, c2)

)
∈

(
N∪ {0}

)2

with the properties that n ∈ S(0, v + εp −max{c1, c2}) and that for any t ∈N∪{0} and
for every two F -crystals (M1,ϕ1) and (M2,ϕ2) over k which satisfy (rM1 , rM2 , h1, h2) =
(r1, r2, c1, c2), the images defined via restrictions of the two groups
Hom((M1,ϕ1), (M2,ϕ2)) and Hom((M1/pn+v+tM1,ϕ1), (M2/pn+v+tM2,ϕ2)) in the
group Hom((M1/pn+tM1,ϕ1), (M2/pn+tM2,ϕ2)), coincide. The number v (and so
also n) has upper bounds that depend only on r1, r2, and max{c1, c2}.

(c) Let r1, r2 ∈N. There exists a smallest pair

(v,n) :=
(
v(r1, r2), n(r1, r2)

)
∈

(
N∪ {0}

)2

with the properties that n ∈ S(0, v + εp − 1) and that for any t ∈N ∪ {0} and for every
two p-divisible groups D1 and D2 over Spec(k) of heights r1 and r2, a homomorphism
D1[pn+t] → D2[pn+t] lifts to a homomorphism D1 → D2 if and only if it lifts to a
homomorphism D1[pn+v+t] → D2[pn+v+t]. The number v (and so also n) has upper
bounds that depend only on r1 and r2.

Proof. – Let e12 ∈ Hom((M1/pn12+v12+tM1,ϕ1), (M2/pn12+v12+tM2,ϕ2)). Let
g ∈ Aut(M/pn12+v12+tM,ϕ) be such that it takes x2 ∈ M2/pn12+v12+tM2 into x2 and it takes
x1 ∈ M1/pn12+v12+tM1 into x1 + e12(x1). Let g̃ ∈ Aut(M,ϕ) be such that it lifts the reduction
mod pn12+t of g, cf. 3.2.8(b). Let ẽ12 :M1 → M2 be the W (k)-linear map such that we have
g̃(x1) − ẽ12(x1) ∈ M1 for all x1 ∈ M1. We have ẽ12 ∈ Hom((M1,ϕ1), (M2,ϕ2)) and more-
over e12 and ẽ12 have the same image in Hom((M1/pn12+tM1,ϕ1), (M2/pn12+tM2,ϕ2)). This
proves (a).

We know that m12 has an upper bound b12 ∈ N which is effectively computable in terms of
2h12 = 2max{c1, c2} and r2

M = (rM1 + rM2)
2 = (r1 + r2)2 (cf. 2.4.1 and end of 2.2.1(e)) and

that we have v � m12 + h12 (cf. (a)). From this (b) follows.
To prove (c), for i ∈ {1,2} we take (Mi,ϕi) to be the Dieudonné module of Di. We have

h12 ∈ {0,1}. If h12 = 0, then h1 = h2 = 0 and so both D1 and D2 are étale p-divisible groups;
in such a case any homomorphism D1[pn+t] → D2[pn+t] lifts to a homomorphism D1 → D2.
Thus we can assume that h12 = 1. Based on 3.2.3, the proofs of (a) and (b) can be adapted to the
context of p-divisible groups; thus (c) follows from the particular case of (b) when max{c1, c2}
is h12 = 1. �

5.1.2. Remark. – If v1, n1 ∈ N are such that v1 � v and n1 � n, then the homomorphisms
parts of 5.1.1(b) and (c) continue to hold if we replace (v,n) with (v1, n1).

5.2. Transcendental degrees of definition

For simplicity, in this section we work in a context without principal bilinear quasi-
polarizations (but we emphasize that all of 5.2 can be adapted to the context of 2.2.1(c)).
Let (M,ϕ,G, (tα)α∈J ) be a latticed F -isocrystal with a group and an emphasized family of
tensors over k such that the W -condition holds for (M,ϕ,G). Let (F i(M))i∈S(a,b) be a lift of
(M,ϕ,G).

Let μ := μcan :Gm → G be the inverse of the canonical split cocharacter of
(M, (F i(M))i∈S(a,b),ϕ) (see 2.5). Let (MZp ,GZp) be the Zp structure of (M,G) that is de-
fined as in 2.5 by the σ-linear automorphism σ0 := ϕμ(p) :M ∼−→ M ; thus σ0 fixes MZp and
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normalizes G(W (k)) and moreover we have tα ∈ T (MZp) for all α ∈ J . Let n ∈ N ∪ {0} be
the i-number of (M,ϕ,G).

5.2.1. FACT. – Let k1 be the smallest subfield of k with the property that μWn(k) is the
pullback of a cocharacter μ1Wn(k1) :Gm → GZp ×Spec(Zp) Spec(Wn(k1)). Then the field k1

is finitely generated and its transcendental degree t(k1) is at most nr2
M . Thus if t(k1) = 0, then

k1 is a finite field.

Proof. – Let B be a W (k)-basis of M such that μ normalizes the W (k)-spans of elements of B.
Let B1 be a Zp-basis of MZp ; we also view it as a W (k)-basis of M . Let B ∈MrM×rM

(W (k))
be the change of coordinates matrix that changes B1-coordinates into B-coordinates. Let R1

be the Fp-subalgebra of k generated by the coordinates of the Witt vectors of length n with
coefficients in k that are entries of B mod pn. Obviously k1 is a subfield of the field of
fractions of R1. As R1 is generated by nr2

M elements, k1 is finitely generated and we have
dim(Spec(R1)) � nr2

M . Thus t(k1) � nr2
M . �

Until 5.3 we take G to be smooth over Spec(W (k)). Thus for any l ∈ N there exists a
cocharacter μ1,n+l of GZp ×Spec(Zp) Spec(Wn+l(k

perf
1 )) that lifts the pullback μ1Wn(kperf

1 ) to

Spec(Wn(kperf
1 )) of μ1Wn(k1), cf. [6, vol. II, Exp. IX, 3.6]. We can assume that μ1,n+l+1 lifts

μ1,n+l, cf. loc. cit. From [6, vol. II, Exp. IX, 7.1] we get that there exists a unique cocharacter
μ1 :Gm → GZp ×Spec(Zp) Spec(W (kperf

1 )) that lifts all μ1,n+l’s.
The cocharacter μ1W (k) :Gm → G is of the form gnμg−1

n for some gn ∈ G(W (k)) con-
gruent mod pn to 1M , cf. [6, vol. II, Exp. IX, 3.6] and the fact that we have G(W (k)) =
proj liml∈N G(Wn+l(k)). Let g̃n := g−1

n σ0gnσ−1
0 ∈ G(W (k)); it is congruent mod pn to 1M .

The element g−1
n ∈ G(W (k)) defines an isomorphism between (M,σ0μ1W (k)( 1

p ),G, (tα)α∈J )
and (M, g̃nϕ,G, (tα)α∈J ). Moreover (M,ϕ,G, (tα)α∈J ) and (M, g̃nϕ,G, (tα)α∈J ) are iso-
morphic under an isomorphism defined by an element of G(W (k)), cf. the very definition of n.
We conclude that:

(∗) the quadruple (M,ϕ,G, (tα)α∈J ) is isomorphic to (M,σ0μ1W (k)( 1
p ),G, (tα)α∈J );

thus (M,ϕ,G, (tα)α∈J ) is definable over kperf
1 and moreover its isomorphism class is

uniquely determined by the triple (MZp , (tα)α∈J , μ1Wn(k1)).
This motivates the following definitions.

5.2.2. DEFINITIONS. –
(a) We say k1 (respectively t(k1)) is the field (respectively the transcendental degree) of

definition of (M,ϕ,G) or of (M,ϕ,G, (tα)α∈J ) with respect to the lift (F i(M))i∈S(a,b)

of (M,ϕ,G). By the transcendental degree of definition td ∈ N ∪ {0} of (M,ϕ,G) or of
(M,ϕ,G, (tα)α∈J ) we mean the smallest number we get by considering transcendental degrees
of definition of (M,ϕ,G) with respect to (arbitrary) lifts of it.

(b) If td = 0, then by the field of definition of (M,ϕ,G) or of (M,ϕ,G, (tα)α∈J ) we mean the
finite field that has the smallest number of elements and that is the field of definition of (M,ϕ,G)
with respect to some lift of it.

If td = 0 we do not stop to study when the field of definition of (M,ϕ,G) is contained in all
fields of definition of (M,ϕ,G) with respect to (arbitrary) lifts of (M,ϕ,G).

5.2.3. THEOREM (Atlas Principle). – We recall that k = k̄, that G is smooth over Spec(W (k)),
and that the W -condition holds for (M,ϕ,G). Let q ∈ N. Let I(q) ∈ N ∪ {0,∞} be the num-
ber of isomorphism classes of latticed F -isocrystals with a group and an emphasized family of
tensors over k that have the form (M,gϕ,G, (tα)α∈J ) for some g ∈ G(W (k)), that have tran-
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scendental degrees of definition 0, and that have Fpq as their fields of definition. Then we have
I(q) ∈N∪ {0}.

Proof. – We check that the number Ntor ∈ N ∪ {∞} of isomorphism classes of pairs of the
form (MZp , (tα)α∈J ) that are obtained by replacing ϕ with some gϕ and by considering some
lift of (M,gϕ,G), is finite. The “difference” between two such pairs is measured by a torsor Θ
of GZp in the flat topology of Spec(Zp). So Θ is smooth over Spec(Zp). Thus Θ is a trivial
torsor if and only if ΘFp is a trivial torsor. As the set H1(Fp,GFp) is finite (cf. [38, Ch. III, §4,
4.2 and 4.3]), the number of isomorphism classes of torsors of GFp is finite. From the last two
sentences we get that Ntor ∈N.

Let m ∈ N. We check that the number N(μ,m, q,GZp) ∈ N ∪ {0,∞} of cocharacters of
GZp ×Spec(Zp) Spec(Wm(Fpq )) that over Spec(Wm(k)) are G(Wm(k))-conjugate to μWm(k),
is also finite. Based on the infinitesimal liftings of [6, vol. II, Exp. IX, 3.6] and on the fact that
the group GZp(Wm(Fpq )) is finite, it is enough to prove that the number N(μ,1, q,GZp) is
finite. It suffices to prove that N(μ,1, q,GLMZp

) ∈ N. The number of maximal split tori of
GLMZp⊗ZpFpq is finite and each such torus has precisely (b − a + 1)rM cocharacters that act
on MZp ⊗Zp Fpq via those −i-th powers of the identity character of Gm that satisfy i ∈ S(a, b).
Thus N(μ,1, q,GLMZp

) ∈N.
Let nfam be as in 3.1.5; we have nfam � n. Based on 5.2 (∗), we get that I(q) is bounded

from above by a sum of Ntor numbers of the form N(μ,nfam, q,GZp) and in particular that
I(q) � NtorN(μ,nfam, q,GLMZp

). Thus I(q) ∈N∪ {0}. �
5.3. Groupoids and stratifications

Main Theorem A has many reformulations in terms of (stacks of) groupoids. Not to increase
the length of the paper, we postpone to future work the introduction of Shimura (stacks of)
groupoids that parametrize isomorphism classes of Shimura p-divisible objects we defined in
the beginning of Section 4. Presently, this Shimura context is the most general context to which
we can extend the classical deformation theories of p-divisible groups (see [30, Chs. 4 and 5],
[21, Chs. 3 and 4], [11, 7.1], [8, Main Thm. of Introd.], [9, Main Thm. 1], and [12, §7]). Here,
as an anticipation of the numerous possibilities offered by 1.2, we work only with (principally
quasi-polarized) p-divisible groups. However, we point out that based on 3.2.2, by using [40, 5.4]
as a substitute for the deformation theory of [21, 4.8], the below proof of 5.3.1 can be adapted
to contexts that involve arbitrary Shimura varieties of Hodge type and thus involve (principally
quasi-polarized) Dieudonné modules equipped with smooth groups as in 3.2 (like the context of
[40, §5]).

Let S be a reduced Spec(Fp)-scheme. Let D be a p-divisible group over S of height r and
relative dimension d. For i ∈ {1,2} let Di be the pullback of D to S12 := S ×Spec(Fp) S via
the i-th projection pi :S12 → S. For l ∈ N, let Il be the affine S12-scheme that parametrizes
isomorphisms between D1[pl] and D2[pl]; it is of finite presentation. The morphism il : Il → S12

of S-schemes is a Spec(Fp)-groupoid that acts on S in the sense of [6, vol. I, Exp. V] and [31,
Appendix A].

5.3.1. BASIC THEOREM. –
(a) There exists a number l ∈ N effectively bounded from above only in terms of r and such

that for any algebraically closed field K of characteristic p, the pullbacks of D through
two K-valued points y1 and y2 of S are isomorphic if and only if the K-valued point of
S12 defined by the pair (y1, y2) factors through il : Il → S12.

(b) Suppose S is smooth over Spec(Fp) of dimension d(r− d) and D is a versal deformation
at each maximal point of S. Then there exists a stratification S(D) of S in reduced,
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locally closed subschemes such that two points y1 and y2 as in (a) factor through the
same stratum if and only if y∗

1(D) is isomorphic to y∗
2(D). The strata of S(D) are regular

and equidimensional.
(c) The stratification S(D) of (b) satisfies the purity property.
(d) Let q ∈N and let K be as in (a). Then for any stratum S0 of the stratification S(D) of (b)

that is a subscheme of SK , there exists a regular scheme S0[q] that is finite, flat over S0

and such that the pullback of D[pq] to S0[q] is constant, i.e. is the pullback to S0[q] of a
truncated Barsotti–Tate group of level q over Spec(K).

Proof. – Part (a) follows from 1.3: as l we can take any integer greater that T (r, d). For the rest
of the proof we will assume that S is smooth over Spec(Fp) of dimension d(r − d) and that D
is a versal deformation at each maximal point of S. We first construct the strata of S(D) that are
subschemes of SK . Let y1 ∈ S(K) = SK(K). Let

S(y1)top := (p2 ◦ il)K

(
(p1 ◦ il)−1

K (y1)
)
⊆ Stop

K .

As Il is a Spec(Fp)-scheme of finite type, S(y1)top is a constructible subset of Stop
K (cf. [18,

Ch. IV, (1.8.4) and (1.8.5)]). Let S(y1) be the Zariski closure of S(y1)top in SK ; it is a reduced,
closed subscheme of SK . We identify a maximal point of S(y1)top with a K-valued point
of SK . We say S(y1)top is regular at a maximal point of it, if there exists a regular, open
subscheme of S(y1) which contains this point and whose topological space is contained in
S(y1)top. As S(y1)top is a dense, constructible subset of S(y1)top, there exists a regular, open,
dense subscheme W (y1) of S(y1) such that W (y1)top ⊆ S(y1)top.

A point y3 ∈ S(K) = SK(K) belongs to S(y1)top if and only if y∗
1(D) and y∗

3(D) are
isomorphic. Let now y2 ∈ S(K) = SK(K) be a maximal point of S(y1)top. Let i12 :y∗

2(D) →
y∗
1(D) be an isomorphism, cf. (a). We have S(y2)top = S(y1)top. For i ∈ {1,2} let Iyi be the

spectrum of the completion of the local ring of SK at yi. We denote also by yi the factorization
of yi through Iyi . Let Iyi ×SK

S(y1)top be the pullback of S(y1)top to a constructible subset of
Itop
yi

. Due to the versal property of D and the fact that S is smooth over Spec(Fp) of dimension
d(r − d), the local schemes Iy1 and Iy2 have dimension d(r − d) and moreover there exists a
unique isomorphism

I12 : Iy1
∼−→ Iy2

such that the following two things hold (cf. [21, 4.8]; see [9, 2.4.4] for the equivalence of the
categories of p-divisible groups over Ii and over the formal completion of Ii along yi):

(i) we have I12 ◦ y1 = y2 : Spec(K)→ Iy2 ;
(ii) there exists an isomorphism I∗12(DIy2

) ∼−→DIy1
that lifts i12.

Due to (ii) the local geometries of S(y1)top at y1 and y2 are the same. In other words, I12

induces via restriction an isomorphism J top
12 : Iy1 ×SK

S(y1)top ∼−→ Iy2 ×SK
S(y1)top between

constructible subsets. Any commutative Fp-algebra of finite type is excellent, cf. [29, (34.A) and
(34.B)]. So the morphism Iyi → SK is regular. From the last two sentences we get (cf. [29, (33)]
for the regular part of (iv)) that:

(iii) the dimensions of S(y1)top at y1 and y2 are the same;
(iv) if S(y1)top is regular at y2, then S(y1)top is also regular at y1.
By taking y2 to be a maximal point of W (y1)top and y1 to be an arbitrary maximal point of

S(y1)top, from (iii) we get that S(y1)top is equidimensional and from (iv) we get that S(y1)top is
regular at all its maximal points. So S(y1) is also equidimensional. As S(y1)top is a constructible
subset of S(y1)top, from the last two sentences we get that S(y1)top is the underlying topological
space of an equidimensional, regular, open subscheme S(y1) of S(y1). Thus S(y1) is a reduced,
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locally closed subscheme of SK . Let

J12 : Iy1 ×SK
S(y1) ∼−→ Iy2 ×SK

S(y1)

be the isomorphism of reduced schemes defined by I12 (or J top
12 ).

Let SK(D) be the set of reduced, locally closed subschemes of SK that are of the form S(y1)
for some y1 ∈ S(K) = SK(K). Standard Galois descent shows that there exists a set SFp(D) of
reduced, locally closed subschemes of S whose pullbacks to SFp

are the elements of SFp
(D).

If L is an algebraically closed field that contains K and if yL
1 is the L-valued point of S defined

by y1, then by the very definitions S(yL
1 ) = S(y1)L. So we have natural pullback injective maps

SK(D) ↪→SL(D) and SFp(D) ↪→SL(D). So SFp(D) and SK(D)’s define a stratification S(D)
of S in the sense of 2.1.1. So as each S(y1) is a regular and equidimensional Spec(K)-scheme,
(b) holds.

Let v, n ∈N be as in 5.1.1(c) for r1 = r2 := r. Let ñ := max{q, l, n}. For m ∈ {ñ, ñ + v} let
Im(y1) be the S(y1)-scheme that parametrizes isomorphisms between DS(y1)

and the pullback

of y∗
1(D) through the natural morphism S(y1) → Spec(K). We consider the natural truncation

morphism Tñ,v : Iñ+v(y1) → Iñ(y1) of S(y1)-schemes.
Let Iñ,v(y1) be the minimal reduced, closed subscheme of Iñ(y1)red through which the

reduced morphism defined by Tñ,v factors. As ñ � l, from (a) we get that Iñ,v(y1) is in fact
an S(y1)-scheme. The resulting morphism

mñ,v(y1) : Iñ,v(y1) → S(y1)

is surjective, cf. the definition of S(y1). To prove (c) and (d), it suffices to show that S(y1) is an
affine S(y1)-scheme and that Iñ,v(y1) is a regular scheme that is finite, flat over S(y1). It suffices
to check this under the extra assumption that S is affine. So the schemes SK , S(y1), Iñ(y1), and
Iñ,v(y1) are also affine.

We check that the surjective morphism mñ,v(y1) : Iñ,v(y1) → S(y1) is quasi-finite above any
point ygen of S(y1) of codimension 0. Let Fgen and Igen be the fibres over ygen of Iñ,v(y1) and
Iñ+v(y1) (respectively). We show that the assumption that Fgen is not of dimension 0 leads to
a contradiction. This assumption implies that the image of Igen in Fgen contains an open, dense
subscheme of Fgen of positive dimension. We get the existence of an algebraically closed field L
that contains the residue field of ygen and such that the number of automorphisms of y∗

1(D)L[pñ]
that lift to automorphisms of y∗

1(D)L[pñ+v] is infinite. From this and 5.1.1(c) we get that the
image of Aut(y∗

1(D)L) = Aut(y∗
1(D)) in Aut(y∗

1(D)L[pñ]) is infinite. But Aut(y∗
1(D)) is a

Zp-algebra of finite rank and so this image is finite. Contradiction.
So Fgen has dimension 0. Thus there exists an open, dense subscheme U(y1) of S(y1) such

that the reduced Spec(K)-scheme of finite type Iñ,v(y1)×S(y1)
U(y1) is regular as well as (cf.

[18, Ch. IV, (9.6.1) and (11.1.1)] and the surjectivity of mñ,v) finite, flat over U(y1). From (ii)
and constructions we get the existence of an isomorphism of SK -schemes

K12 : Iy1 ×SK
Iñ,v(y1) ∼−→ Iy2 ×SK

Iñ,v(y1)

such that we have (1Iy2
×SK

mñ,v(y1)) ◦K12 = J12 ×S(y1) mñ,v(y1). In particular, we get:
(v) the morphism mñ,v(y1) is finite and flat above an open subscheme of S(y1) that contains

y1 if and only if it is so above an open subscheme of S(y1) that contains y2.
As in the above part that pertains to local geometries, the existence of such isomorphisms K12

of SK -schemes implies that Iñ,v(y1) is regular and equidimensional. From (v) and the existence
of U(y1) we get that Iñ,v(y1) is a finite, flat S(y1)-scheme. From this and the fact that Iñ,v(y1)
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is a regular subscheme of Iñ(y1), we get that (d) holds for ñ (and so also for q � ñ) and that
Iñ,v(y1) is the normalization of S(y1) in the ring of fractions of Iñ,v(y1). As Iñ,v(y1) is affine
and mñ,v(y1) is a finite, surjective morphism, from the Chevalley theorem of [16, Ch. II, (6.7.1)]
we get that S(y1) is affine. So (c) holds. �
5.3.2. Ultimate stratifications

Let N � 3 and Ad,1,N be as in 1.5. Let (A, λA) be the universal principally polarized abelian
scheme over Ad,1,N . We have:

(a) There exists a stratification Sd,N of Ad,1,N defined by the following property: two
geometric points y1 and y2 of Ad,1,N with values in the same algebraically closed field
K , factor through the same stratum of Sd,N if and only if the principally quasi-polarized
p-divisible groups of y∗

1(A, λA) and y∗
2(A, λA), are isomorphic.

(b) The stratification Sd,N of Ad,1,N satisfies the purity property and its strata are regular
and equidimensional.

(c) Let q ∈ N. Let K be as in (i). Then for any stratum S0 of the stratification Sd,N that is
a subscheme of Ad,1,N K , there exists a regular scheme S0[q] that is finite, flat over S0

and such that the pullback to S0[q] of the principally quasi-polarized truncated Barsotti–
Tate group of level q of (A, λA) is constant, i.e. it is the pullback to S0[q] of a principally
quasi-polarized truncated Barsotti–Tate group of level q over Spec(K).

The proofs of (a) to (c) are the same as those of 5.3.1(b) to (d), cf. 3.2.5. We only have to
add that the use of [21, 4.8] in the proof of 5.3.1(b) has to be substituted by the well known fact
that the formal deformation spaces of a principally polarized abelian variety over Spec(K) and
of its principally quasi-polarized p-divisible group, are naturally identified (cf. the Serre–Tate
deformation theory of [23, Ch. 1]).

Let SchFp

red be the category of reduced Spec(Fp)-schemes endowed with the étale topology.

Let Ad,1 be the moduli stack over SchFp

red of principally polarized abelian schemes of relative
dimension d (see [13, Ch. I, §4, p. 17 and 4.3]). The stratification Sd,N descends to a stratification
Sd of Ad,1. As we did not formalize stratifications of stacks, we describe Sd directly as follows.

We fix a principally quasi-polarized p-divisible group T := (D,λD) over Spec(k) of height
r = 2d. The objects of Ad,1 are principally polarized abelian schemes over reduced Spec(Fp)-
schemes. The substack Ad,1(T ) of Ad,1 associated to T is the full subcategory of Ad,1

whose objects are principally polarized abelian schemes over reduced Spec(Fp)-schemes with
the property that all principally quasi-polarized p-divisible groups obtained from them via
pullbacks through points with values in the same algebraically closed field K that contains k,
are isomorphic to T ×Spec(k) Spec(K).

We refer to Sd (respectively to Sd,N ) as the ultimate stratification of Ad,1 (respectively of
Ad,1,N ).

Let Ad,1(T )k := Ad,1(T )×
Sch

Fp
red

Schk
red and Ad,1k := Ad,1 ×Sch

Fp
red

Schk
red, where Schk

red is

the full subcategory of SchFp

red formed by reduced Spec(k)-schemes. The pullback of Ad,1(T )k

via the 1-morphism Ad,1,N k →Ad,1k is the stratum of Sd,N that is a subscheme of Ad,1,N k and
that corresponds naturally to T . Using this it can be easily checked that Ad,1(T )k is a separated,
algebraic stack over Schk

red in the similar sense as of [13, Ch. I, §4, 4.6 and 4.8] but worked out
using only reduced Spec(k)-schemes.

The following proposition, to which we refer as the integral Manin problem for Siegel modular
varieties (see [28, p. 76] and [39, p. 98] for the original Manin problem), implies that Ad,1(T ) is
a non-empty category.
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5.3.3. PROPOSITION. – Let Spec(C) be a local, complete scheme whose residue field is k = k̄.
Then any principally quasi-polarized p-divisible group T ′

C over Spec(C) that lifts T , is the one
of a principally polarized abelian scheme over Spec(C).

Proof. – We first show that T is associated to a principally polarized abelian variety (A,λA)
over Spec(k). Let (M,ϕ,λM ) be the principally quasi-polarized Dieudonné module of T . Let
Ã be an abelian variety Ã over Spec(k) whose F -isocrystal is (M [ 1p ],ϕ), cf. [39, p. 98]. Based

on [32, §23, Cor. 1], up to an isogeny, we can choose Ã such that it has a principal polarization
λ

Ã
. The principally quasi-polarized Dieudonné module of (Ã, λ

Ã
) is of the form (M̃,ϕ,λ

M̃
),

where M̃ is a certain W (k)-lattice of M [ 1p ].

5.3.3.1. LEMMA. – If λ1 and λ2 are two principal quasi-polarizations of (M [ 1p ],ϕ), then the

triples (M [ 1p ],ϕ,λ1) and (M [ 1p ],ϕ,λ2) are isomorphic.

Proof. – It suffices to prove the lemma under the assumption that there exists α ∈ [0, 1
2 ] ∩ Q

such that all slopes of (M [ 1p ],ϕ) are α and 1−α, cf. Dieudonné’s classification of F -isocrystals
over k (see [28, §2]) and [39, p. 98]. Let i ∈ {1,2}.

We first consider the case when α �= 1
2 ; so α �= 1 − α. Let M [ 1p ] = Mα ⊕ M1−α be the

direct sum decomposition that is normalized by ϕ and such that for β ∈ {α,1− α} all slopes of
(Mβ ,ϕ) are β. We have λi(Mβ ,Mβ) = 0 and the bilinear form λi,β :Mβ ⊗B(k) M1−β → B(k)
induced naturally by λi, is non-degenerate. But λi,1−α is determined by λi,α. Thus λi is
uniquely determined by the isomorphism ji : (Mα,ϕ) ∼−→ (M∗

1−α, p1M∗
1−α

ϕ) defined naturally
by λi,α via the rule ji(x)(y) = λi(x, y) = λi,α(x, y), where x ∈ Mα and y ∈ M1−α. Let
f12 := j−1

1 j2 : (Mα,ϕ) ∼−→ (Mα,ϕ). The automorphism e12 := f12 ⊕ 1M1−α of (M [ 1p ],ϕ) =
(Mα,ϕ) ⊕ (M1−α,ϕ) takes λ2 into λ1, i.e. for x, y ∈ M [ 1p ] we have an identity λ2(x, y) =
λ1(e12(x), e12(y)).

Let now α be 1
2 . As α = 1

2 , the F -isocrystal (M [ 1p ],ϕ) over k is a direct sum of simple
F -isocrystals over k of rank 2. Using the standard argument that shows that any two non-
degenerate, symmetric, bilinear forms on an even dimensional complex vector space are
isomorphic, we get that both (M [ 1p ],ϕ,λ1) and (M [ 1p ],ϕ,λ2) are direct sums of principally
quasi-polarized F -isocrystals over k of rank 2. Thus we can assume rM = 2 (i.e. d = 1). But in
this case the lemma is trivial (for instance, cf. [27, pp. 35–36]). �

Based on the lemma, it suffices to prove the proposition under the extra hypothesis that
λM = λ

M̃
. From the classical Dieudonné theory we get directly the next property.

5.3.3.2. THE ISOGENY PROPERTY. – There exists a unique principally polarized abelian
variety (A,λA) over Spec(k) that is Z[ 1p ]-isogenous to (Ã, λ

Ã
) and whose principally quasi-

polarized Dieudonné module is identifiable under this Z[ 1p ]-isogeny with (M,ϕ,λM ).

So T is the principally quasi-polarized p-divisible group of (A,λA). From the Serre–Tate
deformation theory (see [23, Ch. 1]) and the Grothendieck algebraization theorem (see [17,
Ch. III, Thm. (5.4.5)]), we easily get the existence of a principally polarized abelian scheme
over Spec(C) whose principally quasi-polarized p-divisible group is T ′

C . �
5.3.4. Remarks. – (a) If d � 2, then the stratification Sd,N has a class which is not a set (for

d � 3 this follows from 4.5.4).
(b) Let q ∈ N. Let Sd,N,q be the stratification of Ad,1,N defined by the rule: two geometric

points y1 and y2 of Ad,1,N with values in the same algebraically closed field, factor through
the same stratum of Sd,N,q if and only if the principally quasi-polarized truncated Barsotti–Tate
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groups of level q of y∗
1(A, λA) and y∗

2(A, λA), are isomorphic. The strata of Sd,N,q are regular
and equidimensional (one argues this in a way similar to the proof of 5.3.1; instead of [21,
4.8] one has to use a principal quasi-polarized version of [21, 4.7 and 4.8] and the Serre–Tate
deformation theory). For q � T (d) we have Sd,N,q = Sd,N , cf. 3.2.5. The case q = 1 was first
studied by Ekedahl and Oort, cf. [34, §1]. The strata of Sd,N,1 are quasi-affine, cf. [34, 1.2]. As
each stratum of Sd,N,q is a locally closed subscheme of a stratum of Sd,N,1, the strata of Sd,N,q

are also quasi-affine. For 1 � q < T (d), we do not know when the stratification Sd,N,q satisfies
the purity property.

(c) The existence of the ultimate stratifications Sd and Sd,N , though of foundation, is only a
first step toward the solution of the below Main Problem. Due to the importance of Main Problem,
we will state a general form of it, even if in this paper we do not formalize specializations of
latticed F -isocrystals with a group (such specializations are standard for p-divisible groups; see
also 3.2.7). To be short, we state Main Problem only in a context that involves tensors but no
principal bilinear quasi-polarizations.

MAIN PROBLEM. – Let (M,ϕ,G, (tα)α∈J ) be a latticed F -isocrystal with a group and
an emphasized family of tensors over k such that the W -condition holds for (M,ϕ,G) (see
2.2.1(b) and (d)). List using families all isomorphism classes of (M,gϕ,G, (tα)α∈J )’s (where
g ∈G(W (k))) and decide which such classes specialize to which other.

5.4. On the specialization theorem

Let S be an integral Spec(Fp)-scheme. We take k to be an algebraic closure of the field of
fractions kS of S. Let C be an F -crystal over S. Let hC ∈N∪ {0} be as in 2.1; the h-number of
any pullback of C via a geometric point of S is at most hC. Let N be the Newton polygon of Ck .
Let

U top :=
{
x ∈ Stop | x∗(C) has Newton polygon N

}
.

We recall that Grothendieck proved that for any geometric point y of S the Newton polygon of
y∗(C) is above N (see [19, Appendice]) and that Katz added that moreover there exists an open
subscheme U of S such that the notations match, i.e. U top is the topological space underlying U
(see [22, 2.3.1 and 2.3.2]).

We give another proof of the existence of U using Grothendieck’s result. This result implies
that if x ∈ U top, then all points of the spectrum of the local ring of x in S belong to U top. To
show the existence of U , it is enough to show that there exists a non-empty open subscheme U ′

of S such that U ′top ⊆ U top. The argument for this goes as follows. The existence of such open
subschemes U ′ implies that U top is an ind-constructible subset of Stop, cf. [18, Ch. IV, (9.2.1)
and (9.2.3)]. Based on this and the above part that pertains to x ∈ U top, from [18, Ch. IV, Thm.
(1.10.1)] we get that each point of U top is an interior point of U top. Thus U top is an open subset
of Stop and therefore U exists.

Let C0 be a Dieudonné–Fontaine p-divisible object over Fp of Newton polygon N . Let h0

be the h-number of C0 and let r0 be the rank of C0. Let i :C0k → Ck be an isogeny. Let
l ∈ N be such that pl annihilates Coker(i). Let v := max{v(r0, r0, h0, b) | b ∈ S(0, hC)} and
n := max{1, n(r0, r0, h0, b) | b ∈ S(0, hC)} be defined using the numbers of 5.1.1(b).

Let i(n + v + l) be the reduction of i mod pn+v+l; it is a morphism of M(Wn+v+l(k))
whose cokernel is annihilated by pl. From 2.8.3 (see 2.8.3(a) applied with (V1, V, q) =
(k, kS , n+ v + l)), we get that there exists a finite field extension k

S̃
of kS such that i(n+ v + l)

is the pullback of a morphism i(n+ v + l)kS̃
of M(Wn+v+l(kS̃

)) whose cokernel is annihilated

by pl. Let S̃ be the normalization of S in k (the notations match, i.e. k is the field of fractions

S̃ S̃
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of S̃). The continuous map S̃top → Stop is proper, cf. the going-up theorem of [29, (5.E)]. So
if there exists an open, dense subscheme Ũ ′ of S̃ with the property that Ũ ′top maps into U top,
then we can take U ′ to be the complement in S of the image of S̃top \ Ũ ′top in Stop. Thus it
suffices to consider the case when k

S̃
= kS . Let U ′ be an open subscheme of S such that we have

a morphism

iU ′(n + v + l) :E
(
C0;Wn+v+l(U ′)

)
→E

(
C;Wn+v+l(U ′)

)
of M(Wn+v+l(U ′)) that extends i(n + v + l)kS

and that has a cokernel annihilated by pl, cf.
2.8.3(b). For an arbitrary geometric point z : Spec(K) → U ′, the reduction mod pn+l of the
pullback morphism z∗(iU ′(n+v+ l)) lifts to a morphism iz :C0K → z∗(C) of F -crystals over K
(cf. 5.1.1(b), 5.1.2, and the definitions of v and n). As the cokernel of the reduction mod pn+l of
iz is annihilated by pl and as n � 1 (by reasons of ranks) the morphism iz is injective and thus
an isogeny. Thus z∗(C) has Newton polygon N . So U ′top ⊆ U top. This ends the argument for
the existence of U ′ and so also of U .

6. Proof of Main Theorem B

Let S be a reduced Spec(Fp)-scheme. Let C be an F -crystal over S. Let S(C) be the Newton
polygon stratification of S defined by C, cf. [22, 2.3.1 and 2.3.2]. The stratification S(C) is of
finite type and locally in the Zariski topology of S has a finite number of strata. The main goal of
this Section is to prove Main Theorem B stated in 1.6, i.e. to prove that S(C) satisfies the purity
property (see 6.2). In 6.1 we capture the very essence of Main Theorem B for the case when S is
an integral, locally noetherian scheme. In 6.3 we include two remarks on the connection between
6.1 and a result of de Jong and Oort and on Newton polygon stratifications defined by certain
reductions modulo powers of p of F -crystals. We will use the notations of 2.8.2.

6.1. THEOREM. – Suppose S is integral and locally noetherian. Let U be the maximal open
subscheme of S with the property that the Newton polygons of pullbacks of C through geometric
points of U are all equal (see 5.4). Then U is an affine S-scheme.

Proof. – It suffices to prove this under the extra assumptions that S = Spec(R) is affine and
that the underlying R-module of E(C;W1(S)) is free. Let RU be the R-algebra of global
functions of U . We have to show that U is affine, i.e. the natural and functorial morphism
fU :U → Spec(RU ) is an isomorphism. This statement is local in the faithfully flat topology of
S and thus we can assume that S is local. Let R̂ be the completion of R and let Ŝ := Spec(R̂).
As Ŝ is a faithfully flat S-scheme, to show that U is affine (i.e. fU is an isomorphism)
it suffices to show that U ×S Ŝ is affine (i.e. fU ×S Ŝ = f

U×S Ŝ
is an isomorphism). Let

Ŝ1 = Spec(R̂1), . . . , Ŝj = Spec(R̂j) be the irreducible components of the reduced scheme of Ŝ
(here j ∈ N); they are spectra of local, complete, integral, noetherian Fp-algebras. The scheme
U ×S Ŝ is affine if and only if the irreducible components U ×S Ŝ1, . . . ,U ×S Ŝj of the reduced
scheme of U ×S Ŝ are all affine (cf. [16, Ch. II, Cor. (6.7.3)]). So to prove the theorem we can
assume R = R̂ = R̂1. As R is a local, complete ring, it is also excellent (cf. [29, (34.B)]). Thus
the normalization Sn of S is a finite S-scheme. So Sn is a semilocal, complete, integral, normal
scheme. This implies that Sn is local. But U is affine if and only if U ×S Sn is affine, cf. 2.9.2.
Thus to prove the Theorem, we can also assume S is normal; so S = Sn.

We emphasize that for the rest of the proof we will only use the fact that S is an integral,
normal, excellent, affine scheme (but not necessarily local and thus not necessarily complete).
We group the main steps into distinct (and numbered) sections.
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6.1.1. Notations and two operations
Let kS , k, hC, N , C0, h0, r0, v, and n be as in 5.4. So N is the Newton polygon of pullbacks

of CU via geometric points of U , C0 is a Dieudonné–Fontaine p-divisible object over Fp that has
Newton polygon N , r0 is the rank of C0, etc. Let q0 := r0!. Below all pullbacks to Spec(k) of
F -crystals are via the natural dominant morphisms Spec(k) → Spec(Fp) and Spec(k) → S.

We consider the following two replacement operations (R1) and (R2) of the triple (S,U,C)
by a new triple (S̃, Ũ , C̃). For both operations S̃ is an integral, normal, affine S-scheme of finite
type, C̃ is C

S̃
, and

(R1) either (S̃, Ũ) is the normalization of (S,U) in a finite field extension of kS

(R2) or U is an open subscheme of S̃ and Ũ := U is U ×S S̃.
The scheme S̃ is also excellent, cf. [29, (34.B)]. Moreover, U is affine if and only if Ũ is affine

(in connection with (R1), cf. 2.9.2). So in what follows we will often perform one of these two
operations in order to simplify the setting and to eventually end up with a situation where in fact
we have U = S. By performing (R1), we can assume that R is an Fpq0 -algebra (i.e. Fpq0 ↪→ R).

Let V be a local ring of U that is a discrete valuation ring. Let V2 be a complete
discrete valuation ring that is a faithfully flat V -algebra, and that has an algebraically closed
residue field k2. Let V1 := V perf

2 . We fix an isomorphism V2
∼−→ k2[[w]] and we view it

as an identification under which V2 and V1 become k2-algebras. Let Φ2 be the Frobenius
endomorphism of W (k2)[[w]] that takes w into wp and is compatible with σk2 .

6.1.2. KEY LEMMA. – There exists a number l ∈N that is greater than max{h0r
2
0, hC}, that

depends only on C0 and hC but not on V , and such that there exists an isogeny iV1 :C0V1 → CV1

of F -crystals over Spec(V1) whose cokernel is annihilated by pl.

Proof. – We first show by induction on r0 ∈N that there exists a number l̃C ∈N that does not
depend on V but only on C0 and hC and such that we have an isogeny i1 :CCV1 → CV1 whose
cokernel is annihilated by pl̃C , where CC is an F -crystal over Spec(k2) and where the role of CV1

is that of the pullback to Spec(V1) of an arbitrary F -crystal over Spec(V2) of constant Newton
polygon which depends only on N .

Let α1 be the smallest slope of N . Let l̃1 := −[−α1(r0 − 1)]. Theorem [22, 2.6.1] says
that there exists an isogeny i′1 :C′ → CV2 , where C′ is an α1-divisible F -crystal over Spec(V2).
The α1-divisibility means that if (M ′,ϕ′,∇′) is the evaluation of C′ at the thickening defined
by the closed embedding Spec(V2) ↪→ Spec(W (k2)[[w]]), then for all u ∈ N the Φu

2 -linear
endomorphism (ϕ′)u of M ′ is divisible by p[uα1]. We can choose C′ and i′1 such that Coker(i′1)is
annihilated by pl̃1 , cf. [22, p. 153]. If α1 is the only slope of N , then C′ is the pullback of an
F -crystal over Spec(k2) (cf. [22, proof of 2.7.1]); so we can take l̃C to be l̃1 and i1 to be i′1. In
particular, l̃C exists if r0 = 1.

We now consider the case when N has at least two slopes. From [22, proof of 2.6.2] we get
that we have a unique short exact sequence

0 → C′
1 → C′ → C′

2 → 0

of F -crystals over Spec(V2) with the property that the Newton polygons of the pullbacks of C′
1

(respectively of C′
2) via geometric points of Spec(V2) have all slopes equal to α1 (respectively

have all slopes greater than α1). As V1 is perfect, loc. cit. also proves that this short exact
sequence has a unique splitting after we pull it back to Spec(V1). Thus we have a unique direct
sum decomposition C′

V1
= C′

1V1
⊕ C′

2V1
of F -crystals over Spec(V1). Using this decomposition

and the fact that both F -crystals C′
1 and C′

2 over Spec(V2) have ranks smaller than r0, by
induction we get the existence of l̃C . This ends the induction.
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Let l̃f := max{d(r0,0, c) | c ∈ S(0, hC + l̃C)} with d(r0,0, c)’s as in 2.4.1. The h-number of
CC is at most hC + l̃C . So from 2.4.1 (applied over k2) we get that there exists a Dieudonné–
Fontaine p-divisible object C′

0 over Fp for which we have an isogeny i2 :C′
0V1

→ CCV1 whose

cokernel is annihilated by pl̃f . As the number of isomorphism classes of Dieudonné–Fontaine
p-divisible objects over Fp that have N as their Newton polygons is finite, there exists a number

l̃N ∈N such that we have an isogeny i3 :C0V1 → C′
0V1

whose cokernel is annihilated by pl̃N .
As iV1 we can take the composite isogeny i1 ◦ i2 ◦ i3. Thus as l we can take any integer greater

than max{h0r
2
0, hC, l̃C + l̃f + l̃N }. �

6.1.3. The open subscheme U0

With l as in 6.1.2, let m := 8l + n + v + 1. We continue the proof of Theorem 6.1 by
considering (see 2.8.2) the evaluation morphism

E
(
iV1 ;Wm+2v(V1)

)
:E

(
C0;Wm+2v(V1)

)
→E

(
C;Wm+2v(V1)

)
of M(Wm+2v(V1)). We apply 2.8.3(c) (with q = m + 2v) to this morphism. We get that there
exist a finite field extension kS,V of kS and an open, affine subscheme U

Ṽ
of the normalization

of U in kS,V , such that U
Ṽ

has a local ring Ṽ which is a discrete valuation ring and which
dominates V and moreover we have a morphism

iUṼ
(m + 2v) :E

(
C0;Wm+2v(UṼ

)
)
→E

(
C;Wm+2v(UṼ

)
)

of M(Wm+2v(UṼ
)) whose cokernel is annihilated by pl. See 2.1 for iUṼ

(m + v).
Let m̃ ∈ {m,m + v}. Let Im̃ be the set of morphisms C0k/pm̃C0k → Ck/pm̃Ck that are

reductions mod pm̃ of morphisms C0k/pm̃+vC0k → Ck/pm̃+vCk . Any morphism in Im̃ lifts
to a morphism C0k → Ck , cf. 5.1.1(b), 5.1.2, and the definitions of v and n < m; thus Im̃

is a finite set. Let Jm̃ := {i ∈ Im̃ | pl Coker(i) = 0}. Based on the case 2.8.3(a) of 2.8.3, by
performing (R1) we can assume that Jm̃ is the set of pullbacks of a set of morphisms Lm̃ of
M(Wm̃(kS)) whose cokernels are annihilated by pl. The pullback of iUṼ

(m+v) to a morphism

of M(Wm+v(kS,V )) is also the pullback of a morphism in Lm+v . As V = Ṽ ∩ kS , inside
Wm+v(kS,V ) we have Wm+v(V ) = Wm+v(Ṽ ) ∩ Wm+v(kS). This implies that the pullback
of iUṼ

(m + v) to a morphism of M(Wm+v(Ṽ )) is in fact the pullback of a morphism of
M(Wm+v(V )) whose cokernel is generically annihilated by pl (in the sense of 2.8.1). From
the case 2.8.3(b) of 2.8.3 (applied with (V1, V ) replaced by (V,R)), we get the existence of an
open subscheme UV of U that has V as a local ring and such that we have a morphism

iUV
(m + v) :E

(
C0;Wm+v(UV )

)
→E

(
C;Wm+v(UV )

)
of M(Wm+v(UV )) whose cokernel is generically annihilated by pl.

For i ∈ Jm let V(i) be the set of all those discrete valuation rings V of U such that the pullback
of iUV

(m) to a morphism of M(Wm(k)) is i. Let Ui :=
⋃

V ∈V(i) UV . Let

iUi(m) :E
(
C0;Wm(Ui)

)
→E

(
C;Wm(Ui)

)
be the morphism of M(Wm(Ui)) which is obtained by gluing together the morphisms iUV

(m)’s
with V ∈ V(i). We have:

(a) if U0 :=
⋃

i∈Jm
Ui, then U top \U top

0 has codimension at least 2 in U top;
(b) for any i ∈ Jm, the cokernel of iUi(m) is generically annihilated by pl.
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6.1.4. Gluing morphisms
We now modify the morphisms iUi(m)’s (i ∈ Jm) so that they glue together to define a

morphism

iU0(m) :E
(
C0;Wm(U0)

)
→E

(
C;Wm(U0)

)
of M(Wm(U0)) whose cokernel is generically annihilated by p3l. If there exists i ∈ Jm such
that Ui = U0, then iU0(m) = iUi(m) has a cokernel generically annihilated by pl.

We now assume that for all i ∈ Jm we have U0 �= Ui. The pullback of iUi(m) to a morphism of
M(Wm(k)) is i ∈ Jm. Let fi :C0k → Ck be a morphism such that its reduction mod pm is i, cf.
5.1.1(b), 5.1.2, and the fact that Jm ⊆ Im. As m > l and i ∈ Jm, the cokernel of fi is annihilated
by pl and so fi is an isogeny.

Let f0 ∈ {plfi | i ∈ Jm}. We have:
(a) the image of f0 lies inside the intersection of the images of all fi’s (i ∈ Jm);
(b) the cokernel of f0 is annihilated by p2l.
Let si :C0k → C0k be the isogeny such that we have f0 = fi ◦ si, cf. (a). So Coker(si) is

annihilated by p2l, cf. (b). We know that si is the pullback of an isogeny C0Fpq0 → C0Fpq0 , cf.
2.2.3(b) applied to C0. So as Fpq0 ↪→ R, we get that the reduction mod pm of si is the pullback
of a (constant) morphism

sUi(m) :E
(
C0;Wm(Ui)

)
→E

(
C0;Wm(Ui)

)
of M(Wm(Ui)) whose cokernel is annihilated by p2l. If i1, i2 ∈ Jm, then the pullbacks of
iUi1

(m) ◦ sUi1
(m) and iUi2

(m) ◦ sUi2
(m) to morphisms of M(Wm(k)) are the reduction of

f0 mod pm and thus they coincide. This implies that the pullbacks of iUi1
(m) ◦ sUi1

(m) and
iUi2

(m)◦sUi2
(m) to morphisms of M(Wm(Ui1 ∩Ui2)) coincide. Thus the morphisms iUi(m)◦

sUi(m) indexed by i ∈ Jm glue together to define a morphism iU0(m) :E(C0;Wm(U0)) →
E(C;Wm(U0)) of M(Wm(U0)) whose cokernel is generically annihilated by p3l = plp2l, cf.
6.1.3(b) and the fact that p2l annihilates Coker(sUi(m)).

It is easy to see that by performing (R1) we can assume p3l annihilates Coker(iU0(m)) but
this will not be used in what follows.

6.1.5. LEMMA. – By performing (R2), we can assume that iU0(m) extends to a morphism
iS(m) :E(C0;Wm(S)) →E(C;Wm(S)) of M(Wm(S)).

Proof. – Let S′ be the affine S-scheme of finite type that parametrizes morphisms between
the two objects E(C0;Wm(S)) and E(C;Wm(S)) of M(Wm(S)), cf. 2.8.4.1. Let U0 ↪→ S′

be the open embedding of S-schemes that defines iU0(m). Let U ′ be the normalization of the
Zariski closure of U0 in S′. As S is an excellent scheme, the S-scheme U ′ is integral, normal,
affine, and of finite type. As U0 is an open subscheme of both U and U ′ and due to 6.1.3(a), the
affine morphism U ′ ×S U → U between integral, normal, noetherian schemes is birational and
has the property that any discrete valuation ring of U is also a local ring of U ′ ×S U . Thus the
morphism U ′ ×S U → U is an isomorphism, cf. 2.9.1. So U is an open subscheme of U ′. So by
performing (R2) (with S̃ = U ′), we can assume U ′ = S. Thus we can speak about the morphism
iS(m) :E(C0;Wm(S)) →E(C;Wm(S)) of M(Wm(S)) that extends iU0(m). �
6.1.6. Duals

Let C(l) be the Tate twist of C by (l), i.e. C tensored with the pullback to S of the F -crystal
(Zp, p

l1Zp) over Fp. As for modules, let C∗ be the dual of C (one could call it a latticed
F -isocrystal over S). We also define the Tate twist C∗(l) of C∗ by (l); it is an F -crystal over
S (as l > hC). In a similar way we define C∗

0(l). As l > h0, C∗
0(l) is a Dieudonné–Fontaine

p-divisible object over Fp with non-negative slopes.
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We repeat the constructions we performed for C0 and C (like the ones through which we got
l, U0, iS(m), etc.) in the context of C∗

0(l) and C∗(l). So by enlarging l and by performing (R1)
and (R2), we can assume there exists a morphism

i∗S(m) :E
(
C∗

0(l);Wm(S)
)
→E

(
C∗(l);Wm(S)

)
of M(Wm(S)) whose cokernel is generically annihilated by p3l and which is the analogue of
iS(m). As l > hC, we think of E(C∗(l);Wm(S)) to be a “twisted dual” of E(C;Wm(S)) in the
sense that there exists a morphism

jS(m− l) :E
(
C;Wm−l(S)

)
→E

(
C0;Wm−l(S)

)
which at the level of OWm−l(S)-modules is the dual of i∗S(m− l). Thus the pullback of jS(m− l)
to an object of M(Wm−l(k)) has a cokernel annihilated by p3l. By performing (R1) we can
assume Coker(jS(m− l)) is generically annihilated by p3l, cf. 2.8.3(a).

6.1.7. End of the proof of Theorem 6.1
We will use the existence of the morphisms iS(m) and i∗S(m) to show that the assumption

U �= S leads to a contradiction. Let y : Spec(k1) → S be a geometric point that does not factor
through U . Let

cS(m− l) := jS(m− l) ◦ iS(m− l) :E
(
C0;Wm−l(S)

)
→E

(
C0;Wm−l(S)

)
.

We check that Coker(cS(m− l)) is annihilated by p7l. Let cS(m− l)gen and cS(m−2l)gen be
the morphisms of M(Wm−l(k)) and M(Wm−2l(k)) (respectively) that are the natural pullbacks
of cS(m− l) and cS(m−2l) (respectively). As cS(m−2l)gen is the composite of two morphisms
of M(Wm−2l(k)) whose cokernels are annihilated by p3l, Coker(cS(m− 2l)gen) is annihilated
by p6l. As cS(m − 2l)gen lifts to cS(m − l)gen and as l > h0r

2
0 , cS(m − 2l)gen is the pullback

of a morphism of M(Wm−2l(Fpq0 )) (cf. 2.2.3(a) applied with (K,k) replaced by (k,Fp)). So
as Fpq0 ↪→ R, we get that Coker(cS(m − 2l)) itself is annihilated by p6l. Thus p7l annihilates
Coker(cS(m− l)).

As the endomorphism y∗(cS(m − l)) = y∗(jS(m − l)) ◦ y∗(iS(m − l)) of M(Wm−l(k))
has a cokernel annihilated by p7l, we get that p7l annihilates Coker(y∗(iS(m − l))). Let
fy :C0k1 → y∗(C) be a morphism that lifts y∗(iS(m − l − v)), cf. 5.1.1(b) and 5.1.2. As
m − v − l = 7l + n + 1 � 7l + 1 (cf. the definition of m in 6.1.3) and as p7l annihilates
Coker(y∗(iS(m− l− v))) (by reasons of ranks) the morphism fy is injective and so an isogeny.
So y∗(C) has Newton polygon N . So y factors through U . This contradicts the choice of y. Thus
the existence of the morphisms iS(m) and i∗S(m) implies that U = S. As U = S, U is affine.
This ends the proof of Theorem 6.1. �
6.2. Proof of Main Theorem B

We prove 1.6. Let U be a reduced, locally closed subscheme of S that is a stratum of S(C). We
have to show that U is an affine S-scheme. It suffices to check this under the extra assumptions
that S = Spec(R) is affine, that U is an open, dense subscheme of S, and that the underlying
R-module of E(C;W1(S)) is free. We will show that U is an affine scheme. It suffices to check
this under the extra assumption that R is normal and perfect, cf. 2.9.2 applied with X and X ′

replaced by S and by the normalization of Spec(Rperf) (respectively).
Let N be the Newton polygon of pullbacks of CU via geometric points of U . Let C0, h0, r0, v,

and n be associated to N and hC as in 5.4 (this makes sense even if R is not an integral domain;
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see 2.1 for hC). So C0 = (M0,ϕ0) is a Dieudonné–Fontaine p-divisible object over Fp that has
rank r0, has h-number h0, and has Newton polygon N .

Let ñ be the maximum between 2 + hC + 2max{d(r2
0, s, c) | s ∈ S(0, hC), c ∈ S(0,2hC)}

and n. If (M,ϕ) is an F -crystal over an algebraically closed field K of characteristic p of rank
r0 and h-number at most hC, then (End(M),ϕ) is a latticed F -isocrystal over K whose rank
is r2

0 , whose s-number is at most hC, and whose h-number is at most 2hC (see end of 2.2.1(e)).
Thus from 3.2.8(a) (applied with G = GLM ) and 2.4.1 we get:

(i) any F -crystal over K whose rank is r0 and whose h-number is at most hC, is uniquely
determined up to isomorphism by its reduction mod pñ.

We consider quadruples of the form (k̃, Φ̃, M̃ , ϕ̃), where:
• k̃ is an algebraically closed field of characteristic p,
• Φ̃ is the Frobenius endomorphism of W (k̃)[[w]] that is compatible with σk̃ and that takes

w into wp,
• M̃ is a free W (k̃)[[w]]-module of rank r0 equipped with a Φ̃-linear endomorphism ϕ̃,

which have the property that the Newton polygons and the h-numbers of extensions of
(M̃, ϕ̃) via W (k̃)-homomorphisms W (k̃)[[w]]→ W (K) that are compatible with the Frobenius
endomorphisms and that involve algebraically closed fields K of characteristic p, are N and
respectively are at most hC.

We consider the unique W (k̃)-monomorphism W (k̃)[[w]] ↪→ W (k̃[[w]]perf) that lifts the
natural inclusion k̃[[w]] ↪→ k̃[[w]]perf and that is compatible with the Frobenius endomorphisms
Φ̃ and Φk̃[[w]]perf , cf. [22, p. 145]; it maps w into (w,0,0, . . .) ∈ W (k̃[[w]]perf).

The results [22, 2.6.1, 2.6.2, 2.7.1, and 2.7.4] hold as well in the context of pairs of the form
(M̃, ϕ̃) that are not endowed with connections (one only has to disregard all details of loc. cit.
that pertain to connections). So as in the proof of 6.1.2 we argue that there exists a number l ∈N
which has the properties that l � max{h0r

2
0, hC} and that for any quadruple (k̃, Φ̃, M̃ , ϕ̃) as

above, there exists a monomorphism

(
M0 ⊗Zp W

(
k̃[[w]]perf

)
,ϕ0 ⊗Φk̃[[w]]perf

)
↪→

(
M̃ ⊗W (k̃)[[w]] W

(
k̃[[w]]perf

)
, ϕ̃⊗Φk̃[[w]]perf

)
whose cokernel is annihilated by pl. Let m := 8l + ñ + v + 1 and m̃ := m + 2v.

Let (O,ϕO) := proj limt∈N E(C;Wt(S)). As the underlying R-module of the object
E(C;W1(S)) is free, O is a free W (R)-module of rank r0. Moreover ϕO is a ΦR-linear
endomorphism of O. As R is perfect, the Wt(R)-module of differentials ΩWt(R) is trivial.
So the connection on O induced by C is trivial. From this and [22, p. 145] we get that
the pair (O,ϕO) determines C up to isomorphism. Let B = {e1, . . . , er0} be a W (R)-basis
of O. Let B ∈ Mr0×r0(W (R)) be the matrix representation of ϕO with respect to B. Let
Bm̃ ∈ Mr0×r0(Wm̃(R)) be B mod pm̃. Let R0 be a finitely generated Fp-subalgebra of R
which contains the components of the Witt vectors of length m̃ with coefficients in R that are
entries of Bm̃; so Bm̃ ∈Mr0×r0(Wm̃(R0)). Let S0 := Spec(R0).

Let ϕ′
O be a ΦR-linear endomorphism of O whose matrix representation with respect to B

is a matrix B′ ∈ Mr0×r0(W (R0)) ⊆ Mr0×r0(W (R)) that lifts Bm̃. Let C′
S be the F -crystal

over S that corresponds to the pair (O,ϕ′
O), cf. the above part that refers to [22, p. 145]. As

B′ ∈Mr0×r0(W (R0)), loc. cit. also implies that C′
S is the pullback to S of an F -crystal C′ over

Spec(R0perf). As B and B′ are congruent mod pm̃, we can identify C/pm̃C with C′
S/pm̃C′

S .
It is easy to see that due to this identification and to (i), the two Newton polygon stratifications
S(C) and S(C′

S) of S coincide. Thus to prove that U is affine we can assume that B = B′,
R = R0perf , and C = C′. As R = R0perf , there exists a unique open subscheme U0 of S0 such
that we have U = U0 ×S0 S.
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To prove that U is affine, it suffices to show that U0 is affine. The scheme U0 is affine if
and only if its intersection with any irreducible component C0 of S0 is affine, cf. [16, Ch. II,
Cor. (6.7.3)]. Thus by replacing (S0, S) with (C0,C0perf), we can assume that both S0 and S
are integral schemes. By replacing S0 and S with their normalizations (cf. 2.9.2), we can also
assume that S0 is a normal Spec(Fp)-scheme of finite type.

As Bm̃ ∈ Mr0×r0(Wm̃(R0)), for any j ∈ S(1, m̃) and for every S0-scheme S1 we can
speak about the object E(C;Wj(S1)) of M(Wj(S1)) whose underlying OWj(S1)-module is
the free OWj(S1)-module that has B as an OWj(S1)-basis and whose underlying Frobenius
endomorphism has a matrix representation with respect to B which is the natural image of
Bm̃ in Mr0×r0(OWj(S1)). If S1 is an S-scheme, then E(C;Wj(S1)) is precisely the object of
M(Wj(S1)) defined in 2.8.2.

Let V 0 be an arbitrary local ring of U0 that is a discrete valuation ring. Let w0 be a uniformizer
of it. Let V 0

3 be a V 0-algebra that is a complete discrete valuation ring, that has w0 as a
uniformizer, and that has an algebraically closed residue field k3. So V 0

3 is isomorphic to

k3[[w0]], with w0 viewed as a variable. We identify wp−m̃

0 with a uniformizer of V 0
2 := V

0(pm̃)
3 .

So k2 := k
(pm̃)
3 is the residue field of V 0

2 . Let V 0
1 := k2[[w

p−m̃

0 ]]perf = V 0perf
2 . For j ∈ S(1, m̃)

let W 0
j := W (k2)[[w

p−j

0 ]] be endowed with the Frobenius endomorphism ΦW 0
j

that is compatible

with σk2 and that takes wp−j

0 into wp−j+1

0 . Let f0
j : W 0

j ↪→ W (k2[[w
p−j

0 ]]) be the W (k2)-

monomorphism that lifts the canonical identification k2[[w
p−j

0 ]] = W1(k2[[w
p−j

0 ]]) and that takes

wp−j

0 into the Witt vector (wp−j

0 ,0,0, . . .) ∈W (k2[[w
p−j

0 ]]). The following two properties hold:
(ii) each f0

j is compatible with Frobenius endomorphisms, and
(iii) if j < m̃, the restriction of f0

j+1 to the W (k0)-subalgebra W 0
j of W 0

j+1 is f0
j .

We recall that if x = (x0, x1, . . . , xm̃) is a Witt vector of length m̃, then px =
(0, xp

0, x
p
1, . . . , x

p
m̃−1). Based on this and (ii) and (iii), by induction on j ∈ S(1, m̃) we get

that the image (via the natural monomorphism R0 ↪→ k2[[w
p−j

0 ]]) of the matrix B = B′ ∈
Mr0×r0(W (R0)) in Mr0×r0(Wj(k2[[w

p−j

0 ]])), belongs to Mr0×r0(W
0
j /pjW 0

j ). Thus the image

of B = B′ in Mr0×r0(Wm̃(k2[[w
p−m̃

0 ]])), belongs to Mr0×r0(W
0
m̃/pm̃W 0

m̃) and so it lifts to a
matrix B̃ ∈ Mr0×r0(W

0
m̃).

Let M̃ :=
⊕r0

i=1 W 0
m̃ei. Let ϕ̃ be the ΦW 0

m̃
-linear endomorphism of M̃ whose matrix

representation with respect to B is B̃. The extension of (M̃, ϕ̃) via a W (k2)-homomorphism
W 0

m̃ → W (K) compatible with Frobenius endomorphisms, has the h-number at most hC (as
m̃ > hC) and has Newton polygon N (cf. (i) and the fact that V 0 is a local ring of U0). So there
exists a monomorphism

(
M0 ⊗Zp W

(
V 0

1

)
,ϕ0 ⊗ΦV 0

1

)
↪→

(
M̃ ⊗W 0

m̃
W

(
V 0

1

)
, ϕ̃⊗ΦV 0

1

)
whose cokernel is annihilated by pl, cf. the choice of l (applied with k2[[w

p−m̃

0 ]] instead of
k̃[[w]]). Thus there exists a morphism E(C0;Wm̃(V 0

1 )) → E(C;Wm̃(V 0
1 )) of M(Wm̃(V 0

1 ))
whose cokernel is annihilated by pl.

As in Sections 6.1.3 to 6.1.7 we only used evaluation functors E and pullbacks of F -crystals
over S via geometric points of S and as for any algebraically closed field K the map S(K) →
S0(K) is bijective, the rest of the proof that U0 is affine is the same as in Sections 6.1.3 to 6.1.7
(but with the role of (n,m) being replaced with the one of (ñ, m̃)). We will only add two extra
sentences.

From 2.8.3(c) (applied with q replaced by m̃) we get that there exist:
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(iv) an open subscheme U0

Ṽ 0
of the normalization of U0 in a finite field extension kS0,V 0

of the field of fractions kS0 of S0, a local ring Ṽ 0 of U0

Ṽ 0
which dominates V 0, and

a morphism iU0
Ṽ 0

(m̃) :E(C0;Wm̃(U0

Ṽ 0
)) → E(C;Wm̃(U0

Ṽ 0
)) of M(Wm̃(U0

Ṽ 0
)) whose

cokernel is annihilated by pl.
In connection with the last two paragraphs of 6.1.3 and with Sections 6.1.4 to 6.1.7, we only

have to add an upper right index 0 to all schemes that (modulo the two operations of 6.1.1) are
about to be introduced; thus we get open subschemes U0

V 0 , U0
i , and U0

0 of U0, etc. This ends the
proof of 1.6.

6.3. Remarks. – (a) Let S be an integral, locally noetherian scheme. Let C and S(C) be as in
the beginning of Section 6. Let U be the unique stratum of S(C) which is an open subscheme
of S. The open embedding U ↪→ S is an affine morphism, cf. 6.1. This implies that either U = S

or Stop \ U top is of pure codimension 1 in Stop. It suffices to check this statement under the
extra assumptions that (to be compared with the first paragraph of the proof of 6.1) S is also
local, complete, and normal and that Stop \U top has pure codimension c ∈N in Stop. If c > 1,
then by applying 2.9.1 to the affine, birational open embedding U ↪→ S we get that U = S. Thus
c must be 1.

Thus 6.1 implies the following result of de Jong and Oort (see [10, 4.1]): if S is a local,
integral, noetherian ring and if U contains the complement in S of the closed point of S, then
either the dimension of S is at most 1 or S = U . The converse of this implication holds, provided
our scheme S is locally factorial. But in general the result of de Jong and Oort does not imply 6.1.
This is so as there exist integral, normal, noetherian, affine schemes S = Spec(R) that have a
prime Weil divisor C such that the open subscheme S \C of S is not an affine scheme. Here is
one classical example.

Let R := k[x1, x2, x3, x4]/(x1x4−x2x3). Let C := Spec(k[x1, x3]) be the irreducible divisor
of S defined by the equations x4 = x2 = 0. The open subscheme S \ C of S is the union of
Spec(R[ 1

x2
]) and Spec(R[ 1

x4
]) and thus its R-algebra of global functions is R[ 1

x2
] ∩ R[ 1

x4
].

But W := Spec(R[ 1
x2

] ∩ R[ 1
x4

]) is an affine S-scheme whose fibre over the point of S defined
by x1 = x2 = x3 = x4 = 0 is non-empty. Thus the natural morphism S \ C → W is not an
isomorphism and so the scheme S \C is not affine.

(b) Let (M,ϕ) be an F -crystal over a perfect field k of characteristic p. It is easy to see that
[22, 1.4 and 1.5] implies the existence of a number n0 ∈N such that for any g ∈GLM (W (k))
the Newton polygon of (M,gϕ) depends only on g mod pn0 . For instance, if k = k̄ we can take
n0 to be the number nfam of 3.1.5 for G = GLM . One can use this (in a way similar to the first
part of 6.2) to define Newton polygon stratifications for reductions modulo adequate powers of
p of F -crystals over reduced Spec(Fp)-schemes.

For instance, it can be easily checked starting from 1.3 and [21, 4.4(e)] that any truncated
Barsotti–Tate group GS of level T (r, d) over a reduced Spec(Fp)-scheme S which has height r

and relative dimension d, defines a stratification S(GS) of S as follows. The association GS →
S(GS) is uniquely determined by the following two properties:

(i) it is functorial with respect to pullbacks, and
(ii) if there exists a p-divisible group DS over S such that DS [pT (r,d)] is isomorphic to GS ,

then S(GS) is the Newton polygon stratification of S defined by the F -crystal over S that
is associated naturally to DS .
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