
J. reine angew. Math. 618 (2008), 51—75

DOI 10.1515/CRELLE.2008.033

Journal für die reine und
angewandte Mathematik
( Walter de Gruyter

Berlin � New York 2008

Projective integral models of Shimura varieties
of Hodge type with compact factors

By Adrian Vasiu at Tucson

Abstract. Let ðG;XÞ be a Shimura pair of Hodge type such that G is the Mumford-
Tate group of some elements of X . We assume that for each simple factor G0 of Gad there
exists a simple factor of G0R which is compact. Let N f 3. We show that for many compact
open subgroups K of GðAf Þ, the Shimura variety ShðG;XÞ=K has a projective integral
model N over Z½1=N� which is a finite scheme over a certain Mumford moduli scheme
Ag;1;N . Equivalently, we show that if A is an abelian variety over a number field and if
the Mumford-Tate group of AC is G, then A has potentially good reduction everywhere.
The last result represents significant progress towards the proof of a conjecture of Morita.
If N is smooth over Z½1=N�, then it is a Néron model of its generic fibre. In this way one
gets in arbitrary mixed characteristic, the very first examples of general nature of projective
Néron models whose generic fibres are not finite schemes over abelian varieties.

§1. Introduction

Let S :¼ ResC=R GmC be the two dimensional torus over R with the property that
SðRÞ is the multiplicative group of non-zero complex numbers. Let E be a number field.
Let OE be the ring of integers of E. We fix an embedding iE : E ,! C. Let A be an abelian
variety over E. Let WA :¼ H1

�
AðCÞ;Q

�
be the first Betti homology group of the complex

manifold AðCÞ with coe‰cients in Q. Let hA : S ! GLWA nQ R be the homomorphism that
defines the Hodge Q-structure on WA. Let HA be the Mumford-Tate group of AC. We re-
call that HA is a reductive group over Q and that HA is the smallest subgroup of GLWA

with
the property that hA factors through HAR, cf. [8], Propositions 3.6 and 3.4. Let H ad

A be the
adjoint group of HA i.e., the quotient of HA through its center.

1.1. Definition. We say the abelian variety A has compact factors, if for each simple
factor H0 of H ad

A there exists a simple factor of H0R which is compact.

It is conjectured (see [20], page 437 and [26], Conjecture 3.1.3) that if the Q-rank of
H ad

A is 0 (i.e., if GmQ is not a subgroup of H ad
A ), then there exists a finite field extension E1

of E such that AE1
extends to an abelian scheme over OE1

(i.e., such that AE1
has good re-

duction with respect to all finite primes of E1). See [26] for other equivalent forms of this
conjecture. Following [26], below we will refer to this conjecture as the Morita conjecture.



We note down that if A has compact factors, then each simple factor of H ad
A has Q-rank 0

and thus H ad
A itself has Q-rank 0. The goals of this paper are: (i) to prove the Morita con-

jecture under the assumption that A has compact factors, and (ii) to reformulate and apply
this result to integral models of Shimura varieties of Hodge type.

1.2. Basic Theorem. Suppose that A has compact factors. Then there exists a finite

field extension E1 of E such that AE1
extends to an abelian scheme over OE1

.

Morita conjecture was first checked in some cases involving abelian varieties of
PEL type (see [20]; see also [14], end of §5). We recall that A is of PEL type, provided AC

has a polarization l such that the derived group of HA is also the derived group of the
intersection of GSpðWA;cÞ with the double centralizer of HA in GLWA

(here c is the non-
degenerate alternating form on WA defined by l and PEL stands for polarization, endomor-
phisms, and level structures). Some of the cases presented in [20] are not covered by the
Basic Theorem.

New cases of the validity of the Morita conjecture are provided in [24] and [26]. For
instance, Paugam proved the Morita conjecture provided there exists a prime p A N such
that the Qp-rank of H ad

AQp
is 0 (see Lemma 2.3.1). The results [26], Propositions 4.2.2, 4.2.4,

and 4.2.10 cover [24]; these results are also either covered by Lemma 2.3.1 or involve spe-
cial cases when there exists a good prime p A N for which a certain combinatorial con-
dition on the natural action of GalðQpÞ on the set of simple factors of H ad

AQp

holds (see [26],
Example 4.2.11 for such a concrete special case). Such good primes p exist only if A

has compact factors and each simple factor H0 of H ad
A is ‘‘simple enough’’ (like when H0R

has only one simple, non-compact factor). Good primes p do not exist if there exists one
simple factor H0 of H ad

A such that the following two properties hold: (i) H0C is not isotypic
of An Lie type and (ii) the group H0R either (ii.a) has more simple, non-compact factors
than simple, compact factors or (ii.b) it is a Weil restriction ResF0=Q

~HH0, where ~HH0 is an
absolutely simple, adjoint group over some ‘‘arithmetically complicated’’ totally real num-
ber field F0. Thus the results [26], Propositions 4.2.2, 4.2.4, 4.2.10, and 4.2.13 are particular
cases of the combination of the Basic Theorem and Lemma 2.3.1.

Basic Theorem, Lemma 2.3.1, and (the situations that can be reduced to) [14], end of
§5, form all (general) cases in which the Morita conjecture is presently known to hold.
Lemma 2.3.1 and [14], end of §5 pertain only to abelian varieties A over E for which, up
to a replacement of E by a finite field extension of it, there exists an abelian variety B over
E that is of PEL type and that has the property that the three adjoint groups H ad

A , H ad
B , and

H ad
A�EB are isomorphic (cf. Remark 2.3.2 and [31], Corollary 4.10).

The methods we use to prove the Basic Theorem pertain to Shimura varieties and rely
on the constructions of [7], Proposition 2.3.10 and [29], Subsections 6.5 and 6.6. To outline
the methods, in this paragraph we assume that A has compact factors. We use the men-
tioned constructions in order to show that for a given prime p A N, up to a replacement
of E by a finite field extension of it, there exists an abelian variety B over E which has the
following two properties: (a) the three adjoint groups H ad

A , H ad
B , and H ad

A�EB are isomorphic,
and (b) the monomorphism HB ,! GLWB

is ‘‘manageable enough’’ so that we can check
based on [10] and [9] that B has good reduction with respect to all primes of E that divide
p (see Section 3 and Subsection 4.1). Due to (a) and the good reduction part of (b), there
exists a finite field extension Ep of E such that AEp

has good reduction with respect to
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all primes of Ep that divide p (see [26], Proposition 4.1.2; see also Subsection 4.1). As the
field E1 mentioned in the Basic Theorem, we can take the composite field of a suitable finite
set of such fields Ep (see Subsection 4.1).

Such ‘‘extra’’ abelian varieties B, were first considered in [31] in connection to the
Mumford-Tate conjecture for A and in [26] in connection to the Morita conjecture for A.

In Section 2 we review basic properties of Shimura varieties. In Section 3 we include a
construction that is the very essence of the proof of the Basic Theorem and which in fact
proves the Basic Theorem under some additional hypotheses. In Subsection 4.1 we prove
the Basic Theorem. Example 4.2 is completely new. Basic Corollary 4.3 reformulates the
Basic Theorem in terms of integral models of Shimura varieties of Hodge type. In Subsec-
tion 4.4 we apply the Basic Corollary 4.3 to provide new examples of general nature of
Néron models in the sense of [4], page 12. In Example 4.5 and Remark 4.6 we apply the
Basic Corollary 4.3 to correct an error in [29], Remark 6.4.1.1, 2) and thus implicitly in
[29], Subsubsection 6.4.11, for the cases to which the Basic Theorem applies (i.e., for Shi-
mura pairs of preabelian type that have compact factors in a sense analogous to Definition
1.1; see Subsection 2.2 and Remark 4.6 (b) for precise definitions).

Acknowledgment. We would like to thank U of Arizona for providing us with good
conditions with which to write this work. We would also like to thank the referee for many
valuable suggestions and comments.

§2. Preliminaries

In Subsection 2.1 we gather di¤erent notations to be often used in the rest of the pa-
per. See Subsection 2.2 for generalities on Shimura pairs and varieties. See Subsection 2.3
for simple properties that pertain to polarizations of A and to the reductive group HA. See
Subsection 2.4 for the Shimura pairs naturally associated to A. See Subsection 2.5 for
smooth toroidal compactifications. See Fact 2.6 and Proposition 2.7 for two results that
pertain to an equivalent form of Theorem 1.2 to be stated explicitly in the Corollary 4.3.
Lemma 2.8 will be used in Section 3.

2.1. Notations and conventions. A reductive group H over a field k is assumed to
be connected. Let ZðHÞ, H der, and H ad denote the center, the derived group, and the
adjoint group (respectively) of H. We have H ad ¼ H=ZðHÞ. Let Z0ðHÞ be the maximal
subtorus of ZðHÞ. Let H sc be the simply connected semisimple group cover of H der. See
[4], Subsection 7.6 for the Weil restriction of scalars functor Resk1=k, where k1 is a
finite, étale k-algebra. We recall that if H1 is a reductive group over k1, then Resk1=k H1

is a reductive group over k uniquely determined up to isomorphism by the group
identities Resk1=k H1ðkÞ ¼ H1ðknk k1Þ which are functorial on commutative k-algebras
k. For a free module M of finite rank over a commutative ring with unit R, let
M � :¼ HomRðM;RÞ and let GLM be the group scheme over R of linear automorphisms
of M. If c is a perfect alternating form on M, then GSpðM;cÞ is viewed as a reductive
group scheme over R. If � or �R (resp. �þ with þ as an arbitrary index di¤erent from R)
is either an object or a morphism of the category of SpecðRÞ-schemes, let �U (resp. �þU ) be
its pull back via an a‰ne morphism SpecðUÞ ! SpecðRÞ. Let Q be the algebraic closure of
Q in C. We always use the notations of the first paragraph of Section 1.
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2.2. On Shimura pairs. A Shimura pair ðG;XÞ consists of a reductive group G over
Q and a GðRÞ-conjugacy class X of homomorphisms S ! GR that satisfy Deligne’s axioms
of [7], Subsubsection 2.1.1: the Hodge Q-structure on LieðGÞ defined by any x A X is of
type fð�1; 1Þ; ð0; 0Þ; ð1;�1Þg, Ad � xðiÞ defines a Cartan involution of LieðGad

R Þ, and no
simple factor of Gad becomes compact over R. Here Ad : GR ! GLLieðG ad

R
Þ is the adjoint

representation. These axioms imply that X has a natural structure of a hermitian symmetric
domain (see [7], Corollary 1.1.17). Similarly to Definition 1.1, we say ðG;X Þ has compact
factors, if for each simple factor G0 of Gad there exists a simple factor of G0R which is com-
pact (thus G0R has at least one simple, non-compact factor and at least one simple, compact
factor). We note down that if G is a torus (i.e., if the adjoint group Gad is trivial), then
ðG;XÞ has compact factors. For generalities on Shimura pairs and varieties and on their
types, we refer to [6], [7], [17], [18], and [29], Subsections 2.2 to 2.5. To ðG;XÞ it is naturally
associated a number field EðG;X Þ, called the reflex field of ðG;XÞ (see [6], [7], and [16]; see
also the definition of the reflex field EA in the below Subsection 2.4).

Let Af :¼ ẐZnZ Q be the ring of finite adèles of Q. For K a compact open subgroup
of GðAf Þ, let ShðG;XÞC=K :¼ GðQÞn

�
X � GðAf Þ=K

�
; it is a finite disjoint union of

quotients of a (fixed) connected component of X by arithmetic subgroups of GðQÞ. A the-
orem of Baily and Borel says that ShðG;X ÞC=K has a canonical structure of a normal,
quasi-projective C-scheme (see [1], Theorem 10.11) which is smooth if K is su‰ciently
small. Thus the projective limit ShðG;X ÞC of the normal, quasi-projective C-schemes
ShðG;XÞC=K’s, has a canonical structure of a regular C-scheme. The Shimura variety
ShðG;XÞ is identified with the canonical model over EðG;XÞ of the C-scheme ShðG;XÞC
(see [6], [7], [16], [18], and [19]). We have a natural right action of GðAf Þ on the EðG;XÞ-
scheme ShðG;X Þ which is continuous in the sense of [7], Subsubsection 2.7.1. In particular,
the quotient ShðG;X Þ=K of ShðG;XÞ through K is a normal, quasi-projective EðG;X Þ-
scheme which is ‘‘the best arithmetic’’ model of ShðG;XÞC=K.

2.3. Simple properties. The notion of good reduction of an abelian variety over the
field of fractions of a discrete valuation ring, is stable under isogenies. Up to a replacement
of E by a finite field extension of it, A is isogenous to a principally polarized abelian variety
over E (cf. [22], §23, Corollary 1). Thus, based on the last two sentences, to prove Theorem
1.2 (and for the rest of the paper) we can assume that A has a principal polarization lA.

2.3.1. Lemma. We assume that there exists a prime p A N such that the group H ad
AQp

is anisotropic i.e., its Qp-rank is 0 (e.g., this holds if HA is a torus). Then there exists a finite

field extension E1 of E such that AE1
extends to an abelian scheme over OE1

.

Proof. The group H ad
AQp

ðQpÞ is compact and thus it has no non-trivial unipotent

element (see [27], Subsection 3.4). This implies that the group HAðQpÞ has no non-trivial
unipotent element. Thus the lemma follows from [26], Theorem 1.6.1. r

2.3.2. Remark. From the classification of simple adjoint groups over p-adic fields
(see [28], Table II, pp. 55–58) and the fact that each simple factor of H ad

AC is of classical
Lie type (cf. [7], Table 2.3.8), one gets that the assumption that H ad

AQp
has simple, aniso-

tropic factors implies that H ad
AC has simple factors of An Lie type for some n A N.

2.4. Shimura pairs associated to A. We recall that from now on ðA; lAÞ denotes a
principally polarized abelian variety over a number field E. Let LA :¼ H1

�
AðCÞ;Z

�
; it is
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a Z-lattice of WA. Let cA : LA nZ LA ! Z be the perfect, alternating form on LA induced

by lA. If WA nQ C ¼ F�1;0
A lF 0;�1

A is the Hodge decomposition defined by the homo-
morphism hA : S ! GLWAnQR, let mA : GmC ! GLWAnQC be the Hodge cocharacter that
fixes F 0;�1

A and that acts via the identical character of GmC on F�1;0
A . We denote also by

hA : S ! HAR and mA : GmC ! HAC the natural factorizations of hA and mA (respectively),
cf. the very definition of HA. Let XA be the HAðRÞ-conjugacy class of hA : S ! HAR. Let
SA be the GSpðWA;cAÞðRÞ-conjugacy class of the homomorphism S ! GSpðWA;cAÞR de-
fined by hA. It is well known that the pairs ðHA;XAÞ and

�
GSpðWA;cAÞ;SA

�
are Shimura

pairs and that we have an injective map fA : ðHA;XAÞ ,!
�
GSpðWA;cAÞ;SA

�
of Shimura

pairs (see [6], [7], [16], and [18]). The Shimura variety Sh
�
GSpðWA;cAÞ;SA

�
is called a Sie-

gel modular variety. A Shimura pair that admits an injective map into a Shimura pair that
defines a Siegel modular variety, is called a Shimura pair of Hodge type; thus ðHA;XAÞ is
a Shimura pair of Hodge type. Let had

A : S ! H ad
AR be the composite of hA with the nat-

ural epimorphism HAR !! H ad
AR. Let X ad

A be the H ad
A ðRÞ-conjugacy class of had

A . The pair
ðH ad

A ;X ad
A Þ is called the adjoint Shimura pair of ðHA;XAÞ. Similarly we define the adjoint

Shimura pair ðGad;X adÞ of an arbitrary Shimura pair ðG;X Þ.

The HAðCÞ-conjugacy class ½wAC� of mA : GmC ! HAC is defined over Q and the Ga-
lois group GalðQÞ acts on the corresponding HAðQÞ-conjugacy class ½wA� of cocharacters of
H

AQ
. The reflex field EA :¼ EðHA;XAÞ is the fixed field of the stabilizer subgroup of ½wA� in

GalðQÞ. Let g :¼ dimðAÞ.

Let N f 3 be an integer. Let cA;N : LA=NLA nZ=NZ LA=NLA ! Z=NZ be the reduc-
tion modulo N of cA. Let ðC; lCÞ be a principally polarized abelian scheme of relative di-
mension g over a Z½1=N�-scheme Y . Let lC½N� : C½N� �Y C½N� ! mNY be the Weil pairing
induced by lC . By a level-N symplectic similitude structure of ðC; lCÞ we mean an isomor-
phism k : ðLA=NLAÞY !@ C½N� of finite, étale group schemes over Y , such that there exists
an element n A mNY ðY Þ with the property that for all points a; b A ðLA=NLAÞY ðY Þ we have

an identity ncA;N ðanbÞ ¼ lC½N�
�
kðaÞ; kðbÞ

�
between elements of mNY ðYÞ.

Let Ag;1;N be the Mumford moduli scheme over Z½1=N� that parameterizes princi-
pally polarized abelian schemes which are of relative dimension g and which are equipped
with a level-N symplectic similitude structure, cf. [21], Theorems 7.9 and 7.10 naturally
adapted to the case of level-N symplectic similitude structures (instead of only level-N
structures). Let ðA; lAÞ be the universal principally polarized abelian scheme over Ag;1;N .

Let KðNÞ :¼ fh A GSpðLA;cAÞðẐZÞ j h mod N is the identityg. Let

KAðNÞ :¼ KðNÞXHAðAf Þ:

As N f 3, it is well-known that we can identify Sh
�
GSpðWA;cAÞ;SA

�
=KðNÞ ¼ Ag;1;NQ

(see [6], Proposition 4.17) and that the group KðNÞ acts freely on Sh
�
GSpðWA;cAÞ;SA

�
(for

instance, see [17], Subsections 2.10 to 2.14; this also follows from Serre Lemma of [22],
Chapter IV, §21, Theorem 5). To fA corresponds a finite morphism of EA-schemes

fAðNÞ : ShðHA;XAÞ=KAðNÞ ! Sh
�
GSpðWA;cAÞ;SA

�
EA
=KðNÞ

which over C is obtained from the embedding XA � HAðAf Þ ,! SA � GSpðWA;cAÞðAf Þ be-
tween complex spaces via a natural passage to quotients, cf. [6], Corollary 5.4. As the group
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KðNÞ acts freely on Sh
�
GSpðWA;cAÞ;SA

�
, the group KAðNÞ also acts freely on ShðHA;XAÞ.

This implies that the quotient epimorphism ShðHA;XAÞ !! ShðHA;XAÞ=KAðNÞ is a pro-
étale cover and therefore ShðHA;XAÞ=KAðNÞ is a smooth EA-scheme.

Let NN :¼ NA;N be the normalization of ðAg;1;NÞOEA
½1=N� in the ring of fractions of

ShðHA;XAÞ=KAðNÞ; it is an OEA
½1=N�-scheme. Let ðB; lBÞ be the pull back of ðA; lAÞ to

NN .

2.4.1. On factors. Let mad
A : GmC ! H ad

AC be the cocharacter naturally defined by mA.
If Ht is a simple factor of H ad

A , let mt : GmQ
! H

tQ
be a cocharacter whose extension to C is

HtðCÞ-conjugate to the cocharacter of HtC naturally defined by mad
A . Let hAt : S ! HtR be

the homomorphism naturally defined by hA. Until Section 4, whenever the group H ad
A is

non-trivial we will denote by H0 a fixed simple factor of H ad
A ; therefore we will speak about

the cocharacter m0 : G
mQ

! H0Q and the homomorphism hA0 : S ! H0R.

2.4.2. On complex points. We have ShðHA;XAÞðCÞ ¼ HAðQÞn
�
XA � HAðAf Þ

�
,

cf. [7], Proposition 2.1.10 and Corollary 2.1.11. Let u :¼ ½x; h� A ShðHA;XAÞðCÞ, where
x A XA and h A HAðAf Þ. Let WA nQ C ¼ F�1;0

x lF 0;�1
x be the Hodge decomposition

defined by x : S ! HAR and let Lh be the Z-lattice of WA with the property that
hðLA nZ ẐZÞ ¼ Lh nZ ẐZ. We denote also by u A ShðHA;XAÞ=KAðNÞðCÞ the image of u

through the epimorphism ShðHA;XAÞðCÞ !! ShðHA;XAÞ=KAðNÞðCÞ of sets. The complex
torus associated to the abelian variety Bu :¼ u�ðBÞ is F 0;�1

x nðWA nQ CÞ=Lh, cf. Riemann’s
Theorem and the very construction of Siegel modular varieties (see [6], Theorem 4.7 and
Example 4.16; in connection to Lh see also [29], Subsection 4.1). The principal polarization
u�ðlBÞ of Bu is uniquely determined by the property that it induces a perfect alternating
form on Lh which is a rational multiple of cA and which is a polarization of the Hodge
Q-structure on WA defined by x, cf. [29], Subsection 4.1.

Let CA be the centralizer of HA in EndðWAÞ. Due to Riemann’s theorem we can nat-
urally view CA: (i) as a Q-algebra of Q-endomorphisms of any such pull back Bu of B, and
(ii) as EndðACÞnZ Q. We identify naturally WA ¼ H1

�
BuðCÞ;Q

�
. Such an identification is

unique up to isomorphisms WA !@ WA defined by elements of HAðQÞ and it is compatible
with the natural actions of CA.

2.4.3. Special points. We now assume that x A XA is a special point i.e., the homo-
morphism x : S ! HAR factors through the extension to R of a maximal torus Tx of
HA. The Mumford-Tate group of Bu is a reductive subgroup of Tx and thus it is a torus.
We have u A Im

�
ShðHA;XAÞðQÞ ! ShðHA;XAÞðCÞ

�
, cf. [17], Theorem 1.8 applied to the

special pair ðTx; fxgÞ of ðHA;XAÞ. The set of all points u ¼ ½x; h� A ShðHA;XAÞðCÞ with
h A HAðAf Þ, is Zariski dense in ShðHA;XAÞðCÞ (cf. [6], Proposition 5.2).

2.5. Toroidal compactifications. We consider a smooth, projective, toroidal com-
pactification Ag;1;N of Ag;1;N over Z½1=N� such that the abelian scheme A over Ag;1;N

extends to a semiabelian scheme A over Ag;1;N (cf. [10], Chapter IV, Theorem 6.7). We
have:

(i) The fibres of A over points of the complement of Ag;1;N in Ag;1;N , are semiabe-
lian varieties that are not abelian varieties.
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We consider the normalization NN :¼ NA;N of ðAg;1;NÞOEA
½1=N� in the ring of frac-

tions of ShðHA;XAÞ=KAðNÞ; it is an OEA
½1=N�-scheme. As the morphism fAðNÞ is finite,

as ShðHA;XAÞ=KAðNÞ is a normal (in fact even smooth) EA-scheme, and as Ag;1;N is an
open, Zariski dense subscheme of Ag;1;N , we have:

(ii) The OEA
½1=N�-scheme NN ¼ NN �Ag; 1;N

Ag;1;N is an open, Zariski dense sub-

scheme of NN and we have an identity NNEA
¼ ShðHA;XAÞ=KAðNÞ.

Let B be the pull back of A to NN . Thus B is a semiabelian scheme over NN whose
restriction to NN is the abelian scheme B.

2.6. Fact. The following two statements are equivalent:

(a) The OEA
½1=N�-scheme NN is projective.

(b) We have NN ¼ NN .

Moreover, if these two statements hold, then there exists a finite field extension E1 of E

such that AE1
extends to an abelian scheme over OE1

½1=N�.

Proof. As OEA
is an excellent ring (see [15], §34), the scheme NN is a finite

ðAg;1;NÞOEA
½1=N�-scheme and therefore it is a projective OEA

½1=N�-scheme. But NN is an

open, Zariski dense subscheme of NN (cf. property 2.5 (ii)) and thus (a) is equivalent to
(b).

To end the proof, it su‰ces to show that (a) implies the existence of a finite field ex-
tension E1 of E such that AE1

extends to an abelian scheme over OE1
½1=N�. Let E1 be a num-

ber subfield of C that contains iEðEÞ and EA and such that there exists a level-N symplectic
similitude structure k of ðA; lAÞE1

whose pull back to C is defined by the canonical iso-
morphism ðLA=NLAÞC !@ AC½N� ¼

�
ð1=NÞLA=LA

�
C

. Let vA : SpecðE1Þ ! ðAg;1;NÞOEA
½1=N�

be the morphism such that ðA; lAÞE1
¼ v�

A

�
ðA; lAÞOEA

½1=N�
�

and the resulting level-N

symplectic similitude structure of ðA; lAÞE1
is k. The composite of the morphism

SpecðCÞ ! SpecðE1Þ with vA, is the complex point ½hA; 1WA
� A Im

�
fAðNÞðCÞ

�
(here 1WA

is the identity element of GSpðWA;cAÞðAf Þ). Thus, up to a replacement of E1 by a
finite field extension of it, vA factors through a morphism uA : SpecðE1Þ ! NN . As (a)
holds, from the valuative criterion of properness we get that uA extends to a mor-
phism uA;N : SpecðOE1

½1=N�Þ ! NN . The abelian scheme u�
A;NðBÞ over OE1

½1=N� extends
AE1

. r

2.7. Proposition. We assume that the principally polarized abelian scheme ðA; lAÞ
over the number field E is such that the Q-rank of H ad

A is 0 (e.g., this holds if A has compact

factors).

(a) Then the EA-schemes NNEA
and NNEA

coincide (i.e., we have NNEA
¼ NNEA

).

(b) We assume that A has compact factors. We also assume that Theorem 1.2 holds

for all abelian varieties over number fields which have compact factors. Then the OEA
½1=N�-

scheme NN is projective for every integer N f 3.
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Proof. As the Q-rank of H ad
A is 0, the analytic space associated to

ShðHA;XAÞC=KAðNÞ is compact (see [3], Theorem 12.3 and Corollary 12.4). This implies
that the analytic spaces associated to NNC and NNC coincide. Thus NNC ¼ NNC. From
this we get that (a) holds.

We prove (b). It su‰ces to show that the assumption that NN 3NN leads to a con-
tradiction, cf. Fact 2.6. As NNEA

¼ NNEA
and as NN 3NN , we get that NN has points with

values in finite fields which do not belong to NN . As the morphism NN ! SpecðOEA
½1=N�Þ

is flat, it has quasi-sections in the quasi-finite, flat topology of SpecðOEA
½1=N�Þ whose im-

ages contain any a priori given point of NN with values in a finite field (cf. [12], Corollary
(17.16.2)). From the last two sentences, we get that there exists a finite field extension ~EE
of EA in C and a local ring ~OO of O ~EE of mixed characteristic such that we have a morphism
~uu : Specð ~OOÞ ! NN which does not factor through NN . Let ~AA be the generic fibre of ~uu�ðAÞ;
it is an abelian variety over ~EE. To reach a contradiction, we can assume that iEðEÞL ~EE. Let
H ~AA be the Mumford-Tate group of ~AAC.

To check that ~AA has compact factors, we can assume in this paragraph that the adjoint
group H ad

~AA
is non-trivial. Let H~tt be an arbitrary simple factor of H ad

~AA
. As the generic fibre

of ~uu factors through ShðHA;XAÞ=KAðNÞ, the group H ~AA is the Mumford-Tate group defined
by a homomorphism S ! GLWA

which is an element of XA. This implies that ~HHA is natu-
rally a subgroup of HA. Thus we have natural inclusions LieðH~ttÞLLieðH ad

~AA
ÞLLieðH ad

A Þ.
Let Ht be a simple factor of H ad

A with the property that the natural Lie homomorphism
LieðH~ttÞ ! LieðHtÞ is a monomorphism of simple Lie algebras over Q. As A has compact
factors, there exists a simple, compact factor Ct of HtR. Let C~tt be a simple factor of H~ttR

such that the simple Lie algebra LieðC~ttÞ over R is naturally a Lie subalgebra of LieðCtÞ.
The group C~tt is isogenous to a subgroup of the compact group Ct and thus it is compact.
This implies that the abelian variety ~AA has compact factors.

Let ~EE1 be a finite field extension of ~EE such that ~AA ~EE1
extends to an abelian scheme

over O ~EE1
½1=N�, cf. our last hypothesis. Let ~vv1 be a prime of ~EE1 such that its local ring ~OO1

dominates ~OO. As ~AA ~EE1
has good reduction with respect to ~vv1, the composite of the natural

morphism Specð ~OO1Þ ! Specð ~OOÞ with ~uu, factors through NN (cf. property 2.5 (i)). Thus ~uu
factors through NN . Contradiction. This proves (b). r

2.8. Lemma. Let p A N be a prime that does not divide N. Let k be an algebraic clo-

sure of the field Fp with p elements. We assume that the Q-rank of H ad
A is 0 (e.g., this holds if A

has compact factors). We also assume that there exists no morphism q : Specðk½½x��Þ ! NN

with the property that it gives birth to morphisms

qsp : SpecðkÞ ! NN and qgen : Spec
�
kððxÞÞ

�
! NN

that factor through NNnNN and NN (respectively). Then the complement NNnNN has no

points of characteristic p.

Proof. The only part of the proof of the lemma which might be less well-known,
is that NNnNN does not contain the reduced scheme of any connected component of
the special fibre in characteristic p of NN . In the next two paragraphs we first check this
property.
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We have NNEA
¼ NNEA

, cf. Proposition 2.7 (a). The projective morphism

NN ! SpecðOEA
½1=N�Þ

is the composite of a projective morphism nA;N : NN ! SpecðOEA;N
½1=N�Þ with connected

fibres and of a finite morphism SpecðOEA;N
½1=N�Þ ! SpecðOEA

½1=N�Þ, cf. Stein’s factoriza-
tion theorem (see [13], Chapter III, Theorem 11.5); here OEA;N

is the ring of integers of a
finite, étale EA-algebra EA;N . Let h be an arbitrary point of SpecðOEA;N

½1=N�Þ of character-
istic p. Let F be the fibre of the morphism nA;N over h.

Let Eh be the field that is a direct factor of EA;N and such that h is a point of the
spectrum of the direct factor OEh

½1=N� of OEA;N
½1=N�. Let E be the fibre of nA;N over

SpecðEhÞ; it is a connected component of NNEA
¼ NNEA

. From the Zariski density part
of Subsubsection 2.4.3, we get the existence of a finite field extension E1h of Eh such that
we have a morphism u : SpecðE1hÞ ! NNEA

¼ NNEA
that factors through E and such that

the Mumford-Tate group of a suitable (in fact of each) pull back of u�ðBEA
Þ to C, is a

torus. As NN is a projective OEA
½1=N�-scheme, the morphism u extends to a morphism

u : SpecðOE1h
½1=N�Þ ! NN . We can assume that the field E1h is such that the abelian vari-

ety u�ðBEA
Þ extends (cf. Lemma 2.3.1) to an abelian scheme over OE1h

½1=N� which (cf. [10],
Chapter I, Proposition 2.7) is the semiabelian scheme u�ðBÞ. Thus u factors through NN ,
cf. property 2.5 (i). As u factors through E, ImðuÞ has a non-trivial intersection with F.
From the last two sentences, we get that the intersection FXNN is non-empty.

But FXNN is an open subscheme of F, cf. property 2.5 (ii). Our last hypothesis
implies that the morphism FXNN ! F is a closed embedding. As F is connected
and has a non-empty intersection with NN , from the last two sentences we get that
F ¼ FXNN . Thus F is a closed subscheme of NN . Thus NNnNN has no points of char-
acteristic p. r

§3. A construction

In this section we assume that the abelian variety A has compact factors (equiva-
lently, that the Shimura pair ðHA;XAÞ has compact factors) and that the adjoint group
H ad

A is non-trivial. Let ðH0;X0Þ be a fixed simple factor of ðH ad
A ;X ad

A Þ; it has compact fac-
tors. The homomorphism hA0 : S ! H0R of Subsubsection 2.4.1 is an element of X0 and in
fact X0 is the H0ðRÞ-conjugacy class of hA0.

For another abelian variety B over E, let ðHB;XBÞ, hB : S ! HBR, had
B : S ! H ad

BR,
and ðH ad

B ;X ad
B Þ be the analogues of ðHA;XAÞ, hA : S ! HAR, had

A : S ! H ad
AR, and

ðH ad
A ;X ad

A Þ (respectively) introduced in Subsection 2.4 but for B instead of A.

Let p A N be a prime. In this section we will prove the following result.

3.1. Theorem. Up to a replacement of E by a finite field extension of it, there exists a

principally polarized abelian variety ðA0; lA0
Þ over E such that the following two properties

hold:

(a) We have an isomorphism ðH ad
A0
;X ad

A0
Þ !@ ðH0;X0Þ (to be viewed as an identity) with

the property that the homomorphism had
A0

: S ! H ad
A0R

¼ H0R is hA0.
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(b) There exists an integer N0 f 3 that is relatively prime to p and such that we have

NA0;N0
¼ NA0;N0

(i.e., and such that the statement 2.6 (b) holds for ðA0; lA0
;N0Þ).

3.1.1. On the proof of Theorem 3.1. The proof of Theorem 3.1 is carried out in Sub-
sections 3.2 to 3.4. The existence (up to a replacement of E by a finite field extension of it)
of a principally polarized abelian variety ðA0; lA0

Þ over E such that the property 3.1 (a)
holds, is an elementary consequence of [7], Proposition 2.3.10. The hard part is to show
that we can choose ðA0; lA0

Þ so that property 3.1 (b) holds as well. In order to achieve
that property 3.1 (b) holds, we will take A0 so that the following two properties hold:

(i) The rank of the Z-algebra EndðA0CÞ is su‰ciently big.

(ii) If A0 extends to a semiabelian scheme over a local ring of OE of mixed char-
acteristic ð0; pÞ, then the natural action of EndðA0CÞ on the group of characters of the
maximal torus of the special fibre of the semiabelian scheme extension, has some specific
properties.

Due to properties (i) and (ii), the semiabelian scheme of property (ii) will turn to be an
abelian scheme. Condition 3.1 (b) will be implied by natural moduli analogues of properties
(i) and (ii). In Subsection 3.2 we include notations that are essential for a review of the con-
structions of [7], Proposition 2.3.10 and for supplementing these constructions in order to
be able to take A0 so that the moduli analogues of properties (i) and (ii) hold. The men-
tioned review and supplementing process are the very essence of the construction of A0

and are gathered in Lemma 3.3. In Subsection 3.4 we check that the moduli analogues of
properties (i) and (ii) hold and we use this to end the proof of Theorem 3.1.

3.2. Notations. Let F0 be a totally real number subfield of QLC such that we
have

H0 ¼ ResF0=Q G0;

with G0 as an absolutely simple adjoint group over F0 (cf. [7], Subsubsection 2.3.4); the field
F0 is unique up to GalðQÞ-conjugation. Let inat : F0 ,! R be the embedding naturally de-
fined by the inclusions F0 LQLC. We identify HomðF0;RÞ ¼ HomðF0;QÞ.

Let T0 be a maximal torus of H0. Let B0 be a Borel subgroup of H0Q that contains
T0Q. Let D0 be the Dynkin diagram of LieðH0QÞ with respect to T0Q and B0. We have
H0Q ¼

Q
i AHomðF0;RÞ

G0 �F0 iQ. Thus D0 is a disjoint union
S

i AHomðF0;RÞ
Di, where Di is the

connected Dynkin diagram of LieðG0 �F0 iQÞ with respect to ðG0 �F0 iQÞXT0Q and
ðG0 �F0 iQÞXB0. Let L0 be the Lie type of a (any) simple factor of H0C. As the group
H0R ¼

Q
i AHomðF0;RÞ

G0 �F0 iR has simple, compact factors and simple, non-compact factors

(see Subsection 2.2), we have ½F0 : Q�f 2.

For a vertex a of D0, let ga be the 1 dimensional Lie subalgebra of LieðB0Þ that cor-
responds to a. The Galois group GalðQÞ acts on D0 as follows. If g A GalðQÞ, then gðaÞ is
the vertex of D0 defined by the identity ggðaÞ ¼ igg

�
gðgaÞ

�
, where igg is the inner conjugation

of LieðH0QÞ by an element gg A H0ðQÞ which normalizes T0Q and for which we have an
identity gggðB0Þg�1

g ¼ B0.
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Let m0 : G
mQ

! H0Q be as in Subsubsection 2.4.1. Let V0 be the set of vertices of
D0 such that the unique cocharacter of T0Q that acts on ga trivially if a B V0 and via the

identical character of G
mQ

if a A V0, is H0ðQÞ-conjugate to m0. Let O0 be the set of vertices
of D0 formed by the orbit of V0 under GalðQÞ. As HA is the smallest subgroup of GLWA

through which hA factors, the images of both hA0 and m0 are non-trivial. Thus the set V0 is
non-empty. The image of hA0 in a simple factor F0 of H0R is trivial if and only if the group
F0 is compact (this is so as the centralizer of Imðhad

A Þ in H ad
AR is a maximal compact sub-

group of H ad
AR, cf. [7], page 259). As H0R has at least one simple, compact factor (cf. Defi-

nition 1.1), we get that:

– there exists an element i0 A HomðF0;RÞ such that V0 contains no vertex of Di0

(equivalently, such that the simple factor G0 �F0 i0R of H0R is compact).

As the Hodge Q-structure on LieðH0Þ defined by any element x0 A X0 is of type
fð�1; 1Þ; ð0; 0Þ; ð1;�1Þg, for each i A HomðF0;RÞ the set V0 contains at most one vertex
of Di. We know that L0 is a classical Lie type, cf. [7], Table 2.3.8. Moreover, if V0 contains
a vertex of Di, then with the standard notations of [5], Plates I to VI, this vertex is (cf. [7],
Table 1.3.9): an arbitrary vertex if L0 ¼ An, vertex 1 if L0 ¼ Bn, vertex n if L0 ¼ Cn, and an
extremal vertex if L0 ¼ Dn. The reflex field EðH0;X0Þ of ðH0;X0Þ is the fixed field of the
open subgroup of GalðQÞ that stabilizes V0, cf. [7], Proposition 2.3.6.

If the Lie type L0 is An, Bn, or Cn, then ðH0;X0Þ is said to be of An, Bn, or Cn type. If
L0 ¼ Dn with nf 5, then ðH0;X0Þ is said to be:

– of DR
n type, if for each embedding i : F0 ,! R, O0 contains only the vertex 1 of Di;

– of DH
n type, if for each embedding i : F0 ,! R, O0 contains the vertices n � 1 or n of

Di but not the vertex 1 of Di.

If L0 ¼ D4, then ðH0;X0Þ is said to be of DR
4 (resp. of DH

4 ) if for each embedding
i : F0 ,! R, O0 contains only one (resp. exactly two) vertices of Di; with the notations of
[5], Plate IV, this vertex (resp. these two vertices) will be chosen in what follows to be the
vertex 1 (resp. to be the last two vertices 3 and 4).

The definition of the An, Bn, Cn, DH
n , and DR

n types conforms with [7]. From [7], Ta-
ble 2.3.8 we get that ðH0;X0Þ is of An, Bn, Cn, DH

n , or DR
n type.

Let S0 be the subset of vertices of D0 defined as follows:

– if ðH0;X0Þ is of An type, then S0 is the set of all extremal vertices;

– if ðH0;X0Þ is of Bn (resp. Cn) type, then S0 is the set of all vertices n (resp. 1);

– if ðH0;X0Þ is of DH
n (resp. DR

n ) type, then S0 is the set of all vertices 1 (resp. n � 1
and n).

The set S0 is GalðQÞ-invariant (if L0 ¼ Dn, this is implied by the very definitions of
the DH

n and DR
n types). We identify the GalðQÞ-set S0 with HomðF1;CÞ, where F1 is an

étale F0-algebra of degree at most 2. We have ½F1 : F0� ¼ 2 if and only if ðH0;X0Þ is either
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of An type with nf 2 or of DR
n type with nf 4. The F0-algebra F1 is either a field of CM

type (cf. [7], Subsubsection 2.3.4 (b) or the first paragraph of the proof of [7], Proposition
2.3.10) or a product of two fields isomorphic to F0 and thus of CM type. If ½F1 : F0� ¼ 2
and ðH0;X0Þ is of DR

n type with n even, then F1 is not necessarily a field.

3.2.1. The field K0. Let Qp be an algebraic closure of Qp. We fix an identification
between Q and the algebraic closure of Q in Qp and we use it to identify naturally the set
HomðF0;RÞ ¼ HomðF0;QÞ with HomðF0;QpÞ. We write F0 nQ Qp ¼

Q
j A J

F0j as a product

of p-adic fields. Let j0 A J be the unique element such that to the embedding i0 : F0 ,! R

corresponds (under the identification HomðF0;RÞ ¼ HomðF0;QpÞ) an embedding F0 ,! Qp

that factors through the composite embedding F0 ,! F0 nQ Qp !! F0j0 .

Let v0j0 be the prime of F0 above p such that the completion of F0 with respect to v0j0

is the factor F0j0 of F0 nQ Qp. Let K0 be a totally imaginary quadratic extension of F0

which is unramified above primes of F0 that divide p and which has only one prime w0j0

above v0j0 . We have ½K0 : Q� ¼ 2½F0 : Q�f 4. Let K0j0 be the completion of K0 with respect
to w0j0 ; we have ½K0j0 : F0j0 � ¼ 2. As F0 is a totally real number field and as K0 is a totally
imaginary quadratic extension of F0, the field K0 is of CM type.

3.3. Lemma. We recall that ðH0;X0Þ is a simple factor of ðH ad
A ;X ad

A Þ. There exists a

Shimura pair ðH1;X1Þ such that the following four properties hold:

(i) The adjoint Shimura pair of ðH1;X1Þ is ðH0;X0Þ and there exists hA0
A X1 that maps

naturally to the element hA0 A X0 introduced in Subsubsection 2.4.1.

(ii) We have an injective map f1 : ðH1;X1Þ ,!
�
GSpðW1;c1Þ;S1

�
into a Shimura pair

that defines a Siegel modular variety.

(iii) The torus T :¼ ResK0nF0
F1=Q GmK0nF0

F1
is naturally a subgroup of GLW1

that cen-

tralizes H der
1 and that makes W1 to have a natural structure of a K0-vector space.

(iv) The torus Z0ðH1Þ is the torus of GLW1
generated by ZðGLW1

Þ and by the maximal

subtorus Tc of T which over R is compact.

Proof. The existence of the Shimura pair ðH1;X1Þ such that properties (i) and (ii)
(resp. (iii) and (iv)) hold follows from the statement (resp. the proof) of [7], Proposition
2.3.10. We recall the details of the construction of ðH1;X1Þ, in the form needed in what
follows. Let Q0 be a maximal torus of G0. Its rank is equal to the rank n of L0. To ease
the notations, we can assume that we have an identity T0 ¼ ResF0=Q Q0 between tori of H0.

Let E0 be the smallest subfield of C which contains F0 and which has the property
that the torus Q0E0

is split; it is a Galois extension of F0 and the Galois group GalðE0=F0Þ
is a finite subgroup of GLX �ðQ0E0

ÞðZÞ, where the group X �ðQ0E0
Þ of characters of Q0E0

is
viewed as a free Z-module of rank n.

We will consider a representation r0 : G sc
0E0

! GLV0
, where V0 is an E0-vector space

of finite dimension. In what follows all the weights used are with respect to the maximal
torus of G sc

0E0
whose image in G0E0

is the maximal torus Q0E0
of G0E0

. Depending on the
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type of ðH0;X0Þ, we choose r0 such that (cf. the definition of the subset S0 of vertices of
D0) the following properties hold (see [5], Plates I to IV for the weights used):

(v.a) If ðH0;X0Þ is of An type with nf 2, then r0 is the direct sum of the two
faithful representations of G sc

0E0
¼ SLnþ1E0

associated to the weights $1 and $n (thus
dimE0

ðV0Þ ¼ 2n þ 2).

(v.b) If ðH0;X0Þ is of Bn type with nf 3, then r0 is the faithful spin representation of
G sc

0E0
¼ Spin2nþ1E0

associated to the weight $n (thus dimE0
ðV0Þ ¼ 2n).

(v.c) If ðH0;X0Þ is of Cn type with nf 1, then r0 is the faithful representation of
G sc

0E0
¼ Sp2nE0

of dimension 2n associated to the weight $1 (thus dimE0
ðV0Þ ¼ 2n).

(v.d1) If ðH0;X0Þ is of DH
n type with nf 4, then r0 is the representation of G sc

0E0
of

dimension 2n associated to the weight $1 (thus dimE0
ðV0Þ ¼ 2n).

(v.d2) If ðH0;X0Þ is of DR
n type with nf 4, then r0 is the spin representation of

G sc
0E0

¼ Spin2nE0
associated to the weights $n�1 and $n (thus dimE0

ðV0Þ ¼ 2n).

Let V1 be V0 but viewed as a rational vector space; we keep in mind that V1 has
also a natural structure of an E0-vector space and thus also of an F0-vector space. As
H sc

0 ¼ ResF0=Q G sc
0 is a subgroup of ResE0=Q G sc

0E0
, V1 is naturally an H sc

0 -module. Let H der
1

be the image of the natural representation H sc
0 ! GLV1

over Q; the adjoint group of H der
1 is

H0. The set of weights used in (v.a) to (v.d2) is stable under the natural action of GalðF0Þ
on the abelian group of weights and as a GalðF0Þ-set it can be identified with the GalðF0Þ-
set of vertices of Dinat

contained in S0. This implies that the center of the double centralizer
of H der

1 in GLV1
is the torus ResF1=Q GmF1

(see Subsection 3.2 for F1).

We take W1 :¼ K0 nF0
V1 and we view it as a rational vector space. As W1 has

also a natural structure of a K0 nF0
F1-module whose annihilator is trivial, the torus

T :¼ ResK0nF0
F1=Q GmK0nF0

F1
is naturally a subgroup of GLW1

. Moreover W1 has a natural
structure of a K0-vector space. We will also identify H der

1 with a semisimple subgroup of
GLW1

that commutes with T. As K0 and the simple factors of F1 are fields of CM type
(cf. Subsubsections 3.2 and 3.2.1), the maximal compact subtorus of TR is the extension
to R of a subtorus Tc of T. Let Z0ðH1Þ be the torus of GLW1

generated by Tc and
ZðGLW1

Þ. The torus Z0ðH1Þ commutes with H der
1 and therefore there exists a unique re-

ductive subgroup H1 of GLW1
such that the notations match (i.e., the derived group of H1

is H der
1 and the maximal torus of the center of H1 is Z0ðH1Þ). Thus the property (iv) holds.

As H1 commutes with T, the property (iii) also holds. Let H2 be the subgroup of GLW1

generated by H der
1 and T; it contains H1.

The existence of an injective map f1 : ðH1;X1Þ ,!
�
GSpðW1;c1Þ;S1

�
such that the

property (i) holds is part of the proof of [7], Proposition 2.3.10. We recall the part of loc.
cit. that pertains to the existence of the element hA0

A X1. We have F0 nQ R ¼
Q

i AHomðF0;RÞ
R;

for i A HomðF0;RÞ let pi be the idempotent of F0 nQ R such that piðF0 nQ RÞ is the factor
R of F0 nQ R that corresponds to i. Let VðiÞ :¼ piW1 nQ R. We have a direct sum decom-
position W1 nQ R ¼

L
i AHomðF0;RÞ

VðiÞ of H der
1R -modules. We also have a direct sum decom-

position
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W1 nQ C ¼
L

i AHomðF0;RÞ
Wði1ÞlWði2Þð1Þ

of H2C-modules (and thus also of H1C-modules), where for each i A HomðF0;RÞ the ele-
ments i1; i2 A HomðK0;CÞ extend i A HomðF0;CÞ and are listed in an a priori chosen order
and where VðiÞnR C ¼ W ði1ÞlWði2Þ is the natural decomposition into K0 nF0 iRnR C-
modules. Each homomorphism hA0

: S ! H2R normalizes VðiÞ and thus gives birth to a
homomorphism hA0; i : S ! GLVðiÞ. Moreover, each homomorphism hA0

: S ! H2R that
defines a Hodge Q-structure on W1 which has a (constant) weight, factors through H1R.

We will choose a homomorphism hA0
: S ! H2R such that the Hodge Q-structure

on W1 is of type fð�1; 0Þ; ð0;�1Þg (i.e., we have a natural Hodge decomposition

W1 nQ C ¼ F�1;0
A0

lF 0;�1
A0

defined by hA0
) and the following two additional properties

hold:

(vi.c) If i A HomðF0;RÞ is such that G0 �F0 iR is compact (for instance, if i is i0),
then hA0; i is fixed (i.e., centralized) by the image of H2R in GLVðiÞ, we have inclusions
W ði1ÞLF

�1;0
A0

and W ði2ÞLF
0;�1
A0

, and therefore Wði1Þ� is included in the Hodge filtration
F 1

A0
ðW �

1 nQ CÞ of W �
1 nQ C defined by hA0

.

(vi.n) If i A HomðF0;RÞ is such that G0 �F0 iR is non-compact, then

hA0; i : S ! GLVðiÞ

is the unique homomorphism such that the Hodge R-structure on VðiÞ is of type
fð�1; 0Þ; ð0;�1Þg and hA0; i lifts the non-trivial homomorphism S ! G0 �F0 iR naturally
defined by hA0 (here G0 �F0 iR is a simple factor of H0R ¼

Q
~ii A HomðF0;RÞ

G0 �F0 ~iiR).

See the proof of [7], Proposition 2.3.10 for the explicit construction of hA0; i of (vi.n);
below we will only use (vi.c). We denote also by hA0

: S ! H1R the factorization of hA0

through H1R (the weight of the Hodge Q-structure on W1 defined by hA0
is �1). Let X1 be

the H1ðRÞ-conjugacy class of hA0
: S ! H1R. From (vi.c) and (vi.n) we get that the prop-

erty (i) holds. The existence of an injective map as in the property (ii) is a particular case of
the argument for [7], Corollary 2.3.3. Thus property (ii) also holds. r

3.3.1. Two extra properties. In this subsubsection we will use the notations of the
proof of Lemma 3.3. From property 3.3 (vi.c) we get that:

(i) For i ¼ i0 A HomðF0;RÞ and each x1 A X1, Wði1Þ� is included in the Hodge filtra-
tion F 1

x1
ðW �

1 nQ CÞ of W �
1 nQ C defined by x1.

For each i A HomðF0;RÞ, the real vector space VðiÞ is the direct sum of all irre-
ducible subrepresentations of the representation of G sc

0 �F0 iR on W1 nQ R. The groupL
~ii AHomðF0;RÞnfig

G sc
0 �F0 ~iiR fixes both VðiÞ and c1. Based on the last two sentences, the

isomorphism d1 : W1 nQ R !@ W �
1 nQ R of H sc

1R-modules (or H der
1R -modules) naturally in-

duced by c1 has the property that for all i A HomðF0;RÞ it maps VðiÞ onto the direct sum-
mand VðiÞ� of W �

1 nQ R ¼ ðW1 nQ RÞ� (i.e., we have d1

�
VðiÞ

�
¼ VðiÞ�). Thus:
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(ii) For all i; ~ii A HomðF0;RÞ with i3 ~ii, the restriction of c1 to VðiÞ is non-degenerate
and we have c1

�
VðiÞnR Vð~iiÞ

�
¼ 0.

3.4. The proof of Theorem 3.1. Let HA0
be the smallest subgroup of H1 such that

the homomorphism hA0
: S ! H1R of the property 3.3 (i) factors through HA0R. As either

2pic1 or �2pic1 is a polarization of the Hodge Q-structure on W1 defined by hA0
(cf. prop-

erty 3.3 (ii)), the group HA0
is reductive (cf. [8], Proposition 3.6). As hA0 A X0 is the image of

hA0
A X1, we have a natural identity H ad

A0
¼ H0. Let XA0

be the HA0
ðRÞ-conjugacy class of

hA0
: S ! HA0R. Let LA0

be a Z-lattice of W1 such that c1 induces a perfect alternating
form on LA0

.

We have an injective map fA0
: ðHA0

;XA0
Þ ,!

�
GSpðW1;c1Þ;S1

�
of Shimura pairs,

cf. property 3.3 (ii). Let the 9-tuple
�
EA0

; g0;Ag0;1;N0
;N0N0

;N0N0
;B0; lB0

;B0;KA0
ðN0Þ

�
be

the analogue of the 9-tuple
�
EA; g;Ag;1;N ;NN ;NN ;B; lB;B;KAðNÞ

�
formed by entries

introduced in Subsections 2.4 and 2.5, but obtained in the context of the triple
ð fA0

;LA0
;N0Þ instead of the triple ð fA;LA;NÞ; here the integer N0 f 3 is relatively prime

to p. Thus EA0
¼ EðHA0

;XA0
Þ, 2g0 ¼ dimQðW1Þ, etc. From Subsection 2.4.2 applied in

the context of the 7-tuple
�
LA0

;Ag0;1;N0
;N0N0

;N0N0
;B0; lB0

;KA0
ðN0Þ

�
instead of the 7-

tuple
�
LA;Ag;1;N ;NN ;NN ;B; lB;KAðNÞ

�
and from the property 3.3 (iii), we get that we

can naturally view K0 as a Q-algebra of Q-endomorphisms of each pull back of the abelian
scheme B0 via a C-valued point of ShðHA0

;XA0
Þ=KA0

ðN0Þ. This implies that, up to a re-
placement of N0 by a positive integral power of it, we can view K0 as a Q-algebra of Q-
endomorphisms of the pull back of B0 to the spectrum of the ring of fractions of N0N0

and thus also (cf. [10], Chapter I, Proposition 2.7) as a Q-algebra of Q-endomorphisms of
either B0 or B0. This represents the moduli analogue of the property 3.1.1 (i).

The main point of the proof of Theorem 3.1 is to show that N0N0
nN0N0

has no points
of characteristic p (the argument relies on Lemma 2.8 and it extends until Subsubsection
3.4.5). Let k be an algebraic closure of the field Fp.

3.4.1. An assumption. We will show that the assumption that there exists a
morphism q : Specðk½½x��Þ ! N0N0

with the property that it gives birth to morphisms
qsp : SpecðkÞ ! N0N0

and qgen : Spec
�
kððxÞÞ

�
! N0N0

that factor through N0N0
nN0N0

and
N0N0

(respectively), leads to a contradiction (the argument will extend until Subsubsection
3.4.5). Let C :¼ q�ðB0Þ; it is a semiabelian scheme over k½½x��, whose generic fibre CkððxÞÞ is
an abelian variety over kððxÞÞ and whose special fibre Ck is a semiabelian variety over k

that is not an abelian variety. Moreover, lCkððxÞÞ :¼ q�
genðlB0

Þ is a principal polarization of
CkððxÞÞ. The next three subsubsections represent the moduli analogue of the property 3.1.1
(ii).

3.4.2. Notations. Let k1 :¼ kððxÞÞ. Let Bðk1Þ be the field of fractions of the Witt ring
W ðk1Þ of k1 and let s be its Frobenius automorphism. Let ðM; f;cMÞ be the principally
quasi-polarized F -isocrystal over k1 of (the principally quasi-polarized p-divisible group
of) ðCkððxÞÞ; lCkððxÞÞ Þk1

. Thus M is a Bðk1Þ-vector space of dimension 2g0 ¼ dimQðW1Þ,
f : M !@ M is a s-linear automorphism, and cM : M nBðk1Þ M ! Bðk1Þ is a non-
degenerate alternating form which has the property that for all a; b A M we have an identity
cM

�
fðaÞn fðbÞ

�
¼ ps

�
cMðan bÞ

�
. Let O be a finite discrete valuation ring extension of

W ðk1Þ such that we have a morphism qO : SpecðOÞ ! N0N0
with the property that it gives

birth to a morphism qk1
: Specðk1Þ ! N0N0

which factors through qgen, cf. [12], Corollary
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(17.16.2) applied to the flat morphism N0N0
�SpecðZÞ Spec

�
Wðk1Þ

�
! Spec

�
W ðk1Þ

�
. By en-

larging O, we can assume that the field of fractions L of O is naturally an algebra over the
Galois extension of Q generated by K0 and E; thus K0 nQ L !@ L½K0:Q� and therefore the set
HomðK0;LÞ has ½K0 : Q� elements.

Let ðD; lDÞ :¼ q�
OðB0; lB0

Þ; it is a principally polarized abelian scheme over O. We
fix an embedding iL : L ,! C that extends iE ; thus we can speak about DC. Viewing K0

as a Q-algebra of Q-endomorphisms of the pull back D of B0 (cf. Subsection 3.4), we get
that we have a natural Qp-monomorphism K0 nQ Qp ,! EndðM; fÞ. Thus M has a nat-
ural structure of a K0 nQ Bðk1Þ-module and therefore also of an F0 nQ Qp-module. As
F0 nQ Qp ¼

Q
j A J

F0j, we have a unique decomposition of F -isocrystals over k1

ðM; fÞ ¼
L
j A J

ðMj; fÞð2Þ

with the property that each Mj is an F0j-vector space.

We apply Subsection 2.4.2 in the context of

�
LA0

;Ag0;1;N0
;N0N0

;N0N0
;B0; lB0

;KA0
ðN0Þ

�

instead of
�
LA;Ag;1;N ;NN ;NN ;B; lB;KAðNÞ

�
. Thus we have an identity

H1

�
DðCÞ;Q

�
¼ W1

which is compatible with the natural K0-actions. Moreover, the non-degenerate alternating
form on H1

�
DðCÞ;Q

�
induced by lD is a non-zero rational multiple of c1.

3.4.3. Proposition. The F-isocrystal ðMj0 ; fÞ has slopes 0 and 1 with multiplicity zero.

Proof. Let M 00
j0

be the Qp-vector subspace of Mj0 formed by elements fixed by f.
Thus M 0

j0
:¼ M 00

j0
nQp

Bðk1Þ is the maximal Bðk1Þ-vector subspace of Mj0 that is normal-
ized by f and such that all slopes of ðM 0

j0
; fÞ are 0. Obviously M 00

j0
is a K0 nQ Qp-module

and thus K0j0 acts on M 00
j0

. As Mj0 is an F0j0 -vector space and as K0j0 is a field (see Subsub-
section 3.2.1), M 00

j0
is a K0j0 -vector space.

Let F 1
L be the L-vector subspace of M nBðk1Þ L that defines the Hodge filtration of

M nBðk1Þ L associated to the abelian variety DL via the functorial (in D) identification
M nBðk1Þ L ¼ H 1

dRðDL=LÞ (see [2], Theorem 1.3). As D is an abelian scheme over O, the
triple ðM; f;F 1

LÞ is an admissible filtered module over L in the sense of [11], Subsubsec-
tion 5.5.2 (cf. [11], Theorem of 6.1.4) and thus it is also a weakly-admissible filtered
module over L in the sense of [11], Definition 4.4.3 (cf. [11], Subsubsection 5.5.3). This im-
plies that the Hodge polygon pH of

�
M 0

j0
nBðk1Þ L; ðM 0

j0
nBðk1Þ LÞXF 1

L

�
is below the Newton

polygon pN of ðM 0
j0
; fÞ, cf. [11], Proposition 4.4.2. As pN has all slopes 0, we get that in fact

pH ¼ pN . Thus ðM 0
j0
nBðk1Þ LÞXF 1

L ¼ 0.

We fix an algebraic closure L of L and we identify (to be compared with Subsubsec-
tion 3.2.1) Q and Qp with their algebraic closures in L. Thus we also identify the set
HomðF0;QÞ ¼ HomðF0;RÞ with the two sets HomðF0;QpÞ and HomðF0;LÞ ¼ HomðF0;LÞ
(resp. we identify the sets HomðK0;QÞ ¼ HomðK0;CÞ and HomðK0;LÞ ¼ HomðK0;LÞ).
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Let I
ð2Þ
0;p (resp. I0;p) be the subset of HomðK0;LÞ (resp. of HomðF0;LÞ) formed by em-

beddings K0 ,! L (resp. F0 ,! L) that have the property that (under them) the local ring O

of L dominates the ring of integers of F0j0 in such a way that the resulting embedding
F0j0 ,! L is defined by an embedding F0j0 ,! Qp which, up to GalðQpÞ-conjugation, is (cf.
Subsection 3.2) the element i0 A HomðF0;RÞ. As K0j0 is a quadratic field extension of F0j0 ,
the subset I

ð2Þ
0;p of HomðK0;LÞ has ½K0j0 : Qp� elements and is GalðK0=F0Þ-invariant. More-

over the set I0;p has ½F0j0 : Qp� elements and it is naturally identified with the quotient of I
ð2Þ
0;p

under the action of GalðK0=F0Þ on it. Let

M 00
j0

nQp
L ¼ M 0

j0
nBðk1Þ L ¼

L
i0;L AHomðK0;LÞ

M
0i0;L

j0

be the natural decomposition into K0 nQ L-modules. As M 00
j0

is a K0j0 -vector space, each
M

0i0;L

j0
with i0;L A I

ð2Þ
0;p is an L-vector space which is trivial if and only if M 00

j0
¼ 0.

Formula (1) and the above two identifications M nBðk1Þ L ¼ H 1
dRðDL=LÞ and

H1

�
DðCÞ;Q

�
¼ W1 are functorial in D. We recall that K0 is naturally a subfield of

EndðDÞnZ Q (cf. Subsection 3.4) and that the principal polarization lD of D is defined
by an isomorphism D !@ D t. From the last two sentences we get that we have natural iden-
tifications of K0-vector spaces

M nBðk1Þ C ¼ H 1
dRðDC=CÞ ¼ H 1

�
DðCÞ;Q

�
nQ Cð3Þ

¼ W �
1 nQ C ¼

L
i AHomðF0;RÞ

Wði1Þ� lWði2Þ�;

under which the following three properties hold (see [8], Section 1 for those properties that
pertain to the relation between the de Rham and the Betti cohomologies of DC):

(i) F 1
L nL C gets identified with the Hodge filtration of W �

1 nQ C defined by a point
x1 A X1 that is naturally associated to DC.

(ii) Mj0 nBðk1Þ C gets identified with

� L
i A I0; p

VðiÞ�
�
nR C (see proof of Lemma 3.3 for

the VðiÞ’s).

(iii) cM gets identified with a non-zero multiple of the non-degenerate alternating
form on W �

1 nQ C naturally induced by the non-degenerate alternating form c1 on W1.

From properties (ii), (iii), and 3.3.1 (ii), we get that cM restricts to a non-degenerate
alternating form on Mj0 and thus it defines a principal quasi-polarization of ðMj0 ; fÞ. There-
fore the F -isocrystal ðMj0 ; fÞ has slopes 0 and 1 with equal multiplicities. Thus to end the
proof of the proposition, it su‰ces to show that the assumption that ðMj0 ; fÞ has slope 0
with positive multiplicity leads to a contradiction. We have dimBðk1ÞðM 0

j0
Þf 1; thus for

i0;L A I
ð2Þ
0;p we have M

0i0;L

j0
3 0.

Under the identification HomðF0;RÞ ¼ HomðF0;LÞ, to the subset I0;p of HomðF0;LÞ
corresponds a subset I0 of HomðF0;RÞ that contains the embedding i0 : F0 ,! R of Subsec-
tion 3.2. Let i1; i2 : K0 ,! C be the two embeddings that extend i :¼ i0 and that are listed in
the same order as in the proof of Lemma 3.3. As the set I

ð2Þ
0;p is GalðK0=F0Þ-invariant, there

exist elements i1;p and i2;p of I
ð2Þ
0;p that correspond to i1 and i2 (respectively) via the identifi-
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cation HomðK0;CÞ ¼ HomðK0;LÞ. From property 3.3.1 (i) we get that the identifications
of formula (3) give birth to inclusions

M
0i1; p

j0
nBðk1Þ CLW ði1Þ� LF 1

L nL C:

Thus M
0i1; p

j0
nBðk1Þ LLF 1

L . Therefore ðM 0
j0
nBðk1Þ LÞXF 1

L MM
0i1; p

j0
nBðk1Þ Ll 0. This

contradicts the identity ðM 0
j0
nBðk1Þ LÞXF 1

L ¼ 0. r

3.4.4. The study of C . We now use Proposition 3.4.3 to reach the contradiction
promised in Subsubsection 3.4.1. Let Tk be the maximal torus of the semiabelian variety
Ck. As Ck is not an abelian scheme, we have 1e dimðTkÞ. Let K0Z :¼ K0 XEndðCÞ (the
intersection being taken inside EndðCÞnZ Q); it is a Z-order of K0. As K0Z acts on C, it
also acts on Tk and thus also on the free Z-module X �ðTkÞ of characters of Tk. Let
m; l A N.

There exists a unique torus Tk; l of Ck½½x��=ðxlÞ which lifts Tk, cf. [9], Exp. IX, Theorem
3.6 bis. Loc. cit. implies that we have a canonical identification Tk; l ¼ Tk �k k½½x��=ðxlÞ
that lifts the identity automorphism of Tk. Thus Tk; l ½pm� ¼ Tk½pm�k½½x��=ðxlÞ is naturally a
closed subgroup scheme of Ck½½x��=ðxlÞ½pm�. Due to the uniqueness property of Tk; l , the torus
Tk; lþ1 lifts Tk; l . Thus by passing to the limit l ! y, we get that Tk½pm�k½½x�� is naturally
identified with a closed subgroup scheme of Ck½½x��½pm� and thus that Tk½pm�kððxÞÞ is naturally
identified with a closed subgroup scheme of CkððxÞÞ½pm�. To check that these last identifica-
tions are functorial, it su‰ces to show that for each closed, semiabelian subscheme C 0 of
C2, the unique subtorus T 0

k; l of C 0
k½½x��=ðxlÞ that lifts the maximal torus T 0

k of C 0
k, is a subtorus

of T 2
k; l . As T 0

k is a subtorus of T 2
k , from the uniqueness part of loc. cit. we get that: (i) there

exists a unique subtorus T 00
k; l of T 2

k; l that lifts T 0
k, and (ii) we have an identity T 0

k; l ¼ T 00
k; l of

subtori of C2
k½½x��=ðxlÞ. Thus T 0

k; l is a subtorus of T 2
k; l .

The closed embedding homomorphism Ym : Tk½pm�kððxÞÞ ,! CkððxÞÞ½pm� is compatible
with the natural K0Z-actions, cf. the functorial part of the previous paragraph. By tak-
ing m ! y we get that we have a monomorphism Yy : Tk½py�kððxÞÞ ,! CkððxÞÞ½py� of p-
divisible groups over kððxÞÞ which is compatible with the K0Z-actions. The F -isocrystal of
the p-divisible group Tk½py�k1

is the pair
�
X �ðTkÞnZ Bðk1Þ; 1X �ðTkÞ n ps

�
(such an identi-

fication is unique up to a scalar multiplication by a unit of Zp). To Yy corresponds an
epimorphism of F -isocrystals over k1,

yy : M !! X �ðTkÞnZ Bðk1Þ;ð4Þ

which is compatible with the K0Z-actions. As M is a K0-vector space (cf. formula (3)), K0Z

can not act trivially on a quotient of M of positive dimension. Due to this and the existence
of the epimorphism yy (see (4)), the action of K0Z on X �ðTkÞ is non-trivial i.e., it is defined
by a Z-monomorphism K0Z ,! End

�
X �ðTkÞ

�
. Due to this property, the unique decom-

position X �ðTkÞnZ Qp ¼
L
j A J

X �ðTkÞj with the property that each X �ðTkÞj is an F0j-vector

space (to be compared with formula (2)), is such that every F0j-vector space X �ðTkÞj is non-
zero. From this and the existence of the epimorphism yy (see (4)), we get that for the ele-
ment j0 A J we have an epimorphism

yy; j0 : ðMj0 ; fÞ !!
�
X �ðTkÞj0

nQp
Bðk1Þ; 1X �ðTkÞj0

n ps
�
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of F -isocrystals over k1. Thus ðMj0 ; fÞ has slope 1 with positive multiplicity. This contra-
dicts Proposition 3.4.3, i.e., the assumption of Subsubsection 3.4.1 leads to a contradiction.
In other words, a morphism q : Specðk½½x��Þ ! N0N0

as in Subsubsection 3.4.1 does not
exist. Thus the complement N0N0

nN0N0
has no points of characteristic p, cf. Lemma 2.8

(applied to ðA0; lA0
Þ) and the fact that A0 (equivalently, ðH0;X0Þ) has compact factors.

3.4.5. End of the proof of Theorem 3.1. We recall that N0N0
is a projective

OEA0
½1=N0�-scheme and that (cf. Proposition 2.7 (a) applied in the context of fA0

) we have
N0N0EA0

¼ N0N0EA0
. From this and the identity ðN0N0

nN0N0
Þred Fp

¼ j (cf. end of Subsec-

tion 3.4.4), we get that, by replacing N0 with N0c0 for some number c0 A N relatively prime
to p, we can assume that in fact we have N0N0

¼ N0N0
.

By replacing E with a finite field extension of it, we can assume (see proof of Fact 2.6)
that there exists a morphism uA : SpecðEÞ ! NN such that ðA; lAÞ ¼ u�

AðB; lBÞ and:

(i) The composite of the morphism SpecðCÞ ! SpecðEÞ defined by iE with uA is the
point of NNðCÞ ¼ ShðHA;XAÞ=KAðNÞðCÞ ¼ HAðQÞn

�
XA � HAðAf Þ=KAðNÞ

�
defined by

the equivalence class ½hA; 1WA
� (here 1WA

is the identity element of HAðAf Þ).

By replacing N and N0 with Nc and N0c0, where c and c0 are natural numbers prime
to p, we can assume that there exists a compact open subgroup K0 of H0ðAf Þ such that the
images of both KAðNÞ and KA0

ðN0Þ in H0ðAf Þ, are contained in K0. We have functorial
morphisms

ShðHA;XAÞ=KAðNÞ ! ShðH0;X0Þ=K0 and ShðHA0
;XA0

Þ=KA0
ðN0Þ ! ShðH0;X0Þ=K0;

the last one being finite. Based on this and the property (i), by replacing E with a finite field
extension of it, we can assume that there exists a morphism uA0

: SpecðEÞ ! N0N0
such

that the E-valued points of ShðH0;X0Þ=K0 naturally defined by uA and uA0
coincide and

moreover:

(ii) The composite of the morphism SpecðCÞ ! SpecðEÞ defined by iE with uA0
is

the point of N0N0
ðCÞ ¼ ShðHA0

;XA0
Þ=KA0

ðN0ÞðCÞ ¼ HA0
ðQÞn

�
XA0

� HA0
ðAf Þ=KA0

ðN0Þ
�

defined by the equivalence class ½hA0
; 1W1

� (here 1W1
is the identity element of HA0

ðAf Þ).

Let ðA0; lA0
Þ :¼ u�

A0
ðB0; lB0

Þ. We can naturally identify the triple ðW1;c1;X1Þ
with ðWA0

;cA0
;XA0

Þ and thus the notations for ðA0; lA0
Þ and for the following 9-tuple�

EA0
; g0;Ag0;1;N0

;N0N0
;N0N0

;B0; lB0
;B0;KA0

ðN0Þ
�

match. Based on property (ii) and the
definition of HA0

in the beginning of Subsection 3.4, we get that the Mumford-Tate group
of A0C is HA0

. Thus, as hA0
lifts hA0, property 3.1 (a) holds. As N0N0

¼ N0N0
, property 3.1

(b) also holds. This ends the proof of Theorem 3.1. As N0N0
¼ N0N0

, property 3.1.1 (ii)
holds trivially. As we have a natural monomorphism K0 ,! EndðA0CÞ (cf. Subsection 3.4)
and as ½K0 : Q� ¼ 2½F0 : Q�f 4, the property 3.1.1 (i) also holds. r

§4. Proof of Theorem 1.2, examples, and applications

In Subsection 4.1 we prove Theorem 1.2. Example 4.2 is completely new. Corollary
4.3 is an equivalent form of Theorem 1.2. In Subsections 4.4 to 4.6 we apply Corollary 4.3
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to Néron models and to integral models of Shimura varieties of preabelian type. We use the
notations of the first paragraph of Section 1 and of Subsection 2.4.

4.1. Proof of Theorem 1.2. In this subsection we use the embedding iE : E ,! C to
view E as a subfield of C. Accordingly, all finite field extensions of E will be viewed as sub-
fields of C that contain E and their composites will be taken inside C. To prove Theorem
1.2, we can assume that the abelian variety A has a principal polarization lA (cf. Subsection
2.3) and that the group H ad

A is non-trivial (cf. Lemma 2.3.1). Let NA A N be such that A

extends to an abelian scheme over OE ½1=NA�. Suppose that for each prime divisor p of
NA, there exists a finite field extension Ep of E such that AEp

has good reduction with re-
spect to all primes of Ep that divide p. If E1 is the composite field of E and of all the fields
Ep’s with p a prime divisor of NA, then AE1

extends to an abelian scheme over OE1
. Thus to

end the proof of Theorem 1.2, we only need to show that the finite field extension Ep of E

exists for all prime divisors p of NA.

To check this, we can replace E by any finite field extension of it. Let

ðH ad
A ;X ad

A Þ ¼
Q

t AT
ðHt;XtÞ

be the product decomposition into simple, adjoint Shimura pairs. By replacing E with a fi-
nite field extension of it, based on Theorem 3.1 we can assume that for each t A T there
exists a principally polarized abelian variety ðAt; lAt

Þ over E such that the following prop-
erties hold:

(i) We have an identity ðH ad
At
;X ad

At
Þ ¼ ðHt;XtÞ with the property that the homomor-

phism had
At

: S ! H ad
AtR

¼ HtR is the homomorphism hAt of Subsubsection 2.4.1.

(ii) There exists an integer Nt f 3 that is relatively prime to p and such that we have
NAt;Nt

¼ NAt;Nt
(i.e., and such that the statement 2.6 (b) holds for ðAt; lAt

;NtÞ).

Let Ep; t be a finite field extension of E such that AtEp; t
has good reduction with respect

to all primes of Ep; t that divide p, cf. property (ii) and the last part of Fact 2.6 applied to At.
Let ~EEp be the composite field of Ep; t’s, with t A T. Let B :¼

Q
t AT

At; it is an abelian variety

over E with the property that B ~EEp
has good reduction with respect to all primes of ~EEp that

divide p. The group H ad
A is the smallest subgroup of H ad

A ¼
Q

t AT
Ht with the property that

had
A ¼

Q
t AT

hAt factors through H ad
AR, cf. the very definition of HA. The Mumford-Tate group

HB is a subgroup of
Q

t AT
HAt

that surjects onto all groups HAt
. This implies that H ad

B is the

smallest subgroup of
Q

t AT
H ad

At
with the property that had

B ¼
Q

t AT
had

At
factors through H ad

BR.

From the last two sentences and the property (i) we get that:

(iii) We have identifications ðH ad
B ;X ad

B Þ ¼
Q

t AT
ðHt;XtÞ ¼ ðH ad

A ;X ad
A Þ with the prop-

erty that the homomorphism had
B : S ! H ad

BR ¼ H ad
AR is the homomorphism had

A of Subsec-
tion 2.4.

The reductive group HA�EB is a subgroup of HA �Q HB whose adjoint is (cf. property
(iii)) isomorphic to H ad

A ¼ H ad
B . As B ~EEp

has good reduction with respect to all primes of ~EEp

that divide p, from the property (iii) and [26], Proposition 4.1.2 we get that there exists a
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finite field extension Ep of ~EEp such that AEp
has good reduction with respect to all primes of

Ep that divide p. Thus the finite field extension Ep of E exists for each prime divisor p of
NA. This ends the proof of Theorem 1.2. r

4.2. Example. Let F be a totally real, cubic, Galois extension of Q; for instance, we
can take F to be Qðz7 þ z�1

7 Þ, where z7 is a primitive root of 1 of order 7. We assume that
H ad

A is a simple group of the form ResF=Q G for some absolutely simple, adjoint group G

over F of Bn (resp. of Dn) Dynkin type with nf 2 (resp. with nf 4). We also assume that
the product decomposition H ad

AR ¼ F1 �R F2 �R F3 into simple factors is such that F1 and
F2 are non-compact and F3 is compact. Thus A has compact factors and therefore the
Morita conjecture holds for A, cf. Theorem 1.2.

We identify LieðH der
AC Þ with LieðH ad

ACÞ ¼ LieðF1CÞlLieðF2CÞlLieðF3CÞ. We check
that the representation of LieðH ad

ACÞ on WA nQ C is free of tensor products i.e., it is a
direct sum of irreducible representations of either LieðF1CÞ or LieðF2CÞ or LieðF3CÞ.
We show that the assumption that this is not true, leads to a contradiction. This assump-
tion implies that there exists s A f2; 3g and L1; . . . ;Ls A fLieðF1CÞ;LieðF2CÞ;LieðF3CÞg
such that a suitable simple LieðH ad

ACÞ-submodule W0 of WA nQ C is a tensor product
W1 nC � � �nC Ws, where Wr is a simple Lr-module for all r A f1; . . . ; sg. As the representa-
tion of LieðH ad

ACÞ on WA nQ C is defined over Q and as F is a cubic Galois extension of
Q, we can choose W0 such that we have L1 ¼ LieðF1CÞ and L2 ¼ LieðF2CÞ. As the images
of mA in F1C and F2C are non-trivial, for s ¼ 2 (resp. for s ¼ 3) the Hodge filtration�
F aðW0Þ

�
a AZ

of W0 defined by mA is the tensor product of non-trivial Hodge filtrations
of W1 and W2 (resp. is the tensor product of non-trivial Hodge filtrations of W1 and W2

and of a trivial Hodge filtration of W3); here by a trivial filtration of Wr we mean a
filtration of Wr that does not contain any proper subspace of Wr. We easily get that
there exists a A Znf�1; 0g such that F aðW0Þ=F aþ1ðW0Þ3 0. Thus mA does not act on
F aðW0Þ=F aþ1ðW0Þ via either the trivial or the identical character of GmC. This contradicts
the very definition of mA.

As the representation of LieðH ad
ACÞ on WA nQ C is free of tensor products, from Re-

mark 2.3.2 and [26], Proposition 2.2.3 we get that the results of [26] (which pertain to per-
fectly tens-twisted representations defined in [26], Definition 2.2.2) do not imply that the
Morita conjecture holds for A. Thus our example is completely new.

Based on Proposition 2.7 (b), we have the following equivalent form of Theorem 1.2.

4.3. Basic Corollary. We assume that the principally polarized abelian scheme

ðA; lAÞ over the number field E is such that A has compact factors. Let EA, g, Ag;1;N , and

NN be as in Subsection 2.4. Then the normal OEA
½1=N�-scheme NN is projective and it is a

finite scheme over ðAg;1;NÞOEA
½1=N�.

4.4. Néron models. Let K be the field of fractions of an integral Dedekind ring D.
Let ZK be a smooth, separated K-scheme of finite type. We recall (cf. [4], page 12) that a
Néron model of ZK over D is a smooth, separated D-scheme Z of finite type that has ZK

as its generic fibre and that satisfies the following universal (Néron mapping) property:

For each smooth D-scheme Y and each K-morphism yK : YK ! ZK, there exists a

unique morphism y : Y ! Z of D-schemes that extends yK.
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A classical result of Néron says that each abelian variety over K has a Néron model
over D, cf. [23]. This result has an analogue for the case of torsors of smooth group
schemes over K of finite type, cf. [4], Subsection 6.5, Corollary 4. On [4], page 15 it is
stated that the importance of the notion of Néron models ‘‘seems to be restricted’’ to ‘‘tor-
sors under group schemes’’. It was a deep insight of Milne which implicitly pointed out that
Néron models are important in the study of Shimura varieties, cf. [17], Definitions 2.1, 2.2,
2.5, and 2.9. In this subsection we bring to a concrete fruition Milne’s insight: we will use
Corollary 4.3 and [30] to provide large classes of projective varieties over certain K’s which
have projective Néron models and which often do not admit finite maps into abelian vari-
eties over K. For the rest of the paper we will use the notations of Section 1 and Subsec-
tions 2.4 and 2.5.

4.4.1. Proposition. We assume that the principally polarized abelian scheme ðA; lAÞ
over the number field E is such that A has compact factors. We also assume that the reflex field

EA of ðHA;XAÞ is unramified at all primes not dividing N and that the OEA
½1=N�-scheme NN of

Subsection 2.4 is smooth. Then NN is the Néron model of NNEA
¼ ShðHA;XAÞ=KAðNÞ over

OEA
½1=N�.

Proof. Let Y be a smooth OEA
½1=N�-scheme. Let yEA

: YEA
! NNEA

be a morphism
of EA-schemes. Let U be an open subscheme of Y such that it contains YEA

and yEA
ex-

tends uniquely to a morphism yU : U ! NN . As the OEA
½1=N�-scheme NN is projective

(cf. Corollary 4.3), we can assume that the codimension of YnU in Y is at least 2.

Let ðBU ; lBU
Þ :¼ y�

UðB; lBÞ. The abelian scheme BU extends to an abelian scheme BY

over Y (cf. [30], Theorem 1.3) in a unique way (cf. [17], Corollary 2.12). Also lBU
extends

uniquely to a principal polarization lBY
of BY , cf. [17], Proposition 2.14. Obviously, the

level-N symplectic similitude structure of ðBU ; lBU
Þ extends uniquely to a level-N symplec-

tic similitude structure of ðBY ; lBY
Þ. Thus the composite of yU with the finite morphism

NN ! Ag;1;N extends uniquely to a morphism z : Y ! Ag;1;N . As Y is normal and as the
morphism NN ! Ag;1;N is finite, z factors uniquely through a morphism y : Y ! NN .
Obviously y extends yU and thus also yEA

. From this and the uniqueness of y and yU , we
get that NN satisfies the Néron mapping property. Thus NN is the Néron model of
NNEA

¼ ShðHA;XAÞ=KAðNÞ over OEA
½1=N�. r

4.4.2. Remark. If N has many prime divisors, then KAðNÞ is a su‰ciently small
compact open subgroup of HAðAf Þ and thus ShðHA;XAÞC=KAðNÞ is a projective, smooth
C-scheme of general type (see [16], §2, Subsection 1.2). Thus NN is not among the Néron
models studied in [4]. If the Albanese variety of each connected component C of
ShðHA;XAÞC=KAðNÞ is trivial, then ShðHA;XAÞ=KAðNÞ is not a finite scheme over an
abelian variety over EA. Example: if H ad

AR !@ SUða; bÞad
R �R SUða þ b; 0Þad

R , with
a; b A Nnf1; 2g, then we have H 1;0

�
CðCÞ;C

�
¼ 0 (cf. [25], Theorem 2, 2.8 (i)) and thus the

Albanese variety of C is trivial; therefore the connected components of the projective EA-
scheme ShðHA;XAÞ=KAðNÞ are not finite schemes over torsors of smooth groups over EA.
This remark was hinted at in [30].

4.5. Example. We assume that A has compact factors, that N A 6N, and that the
Zariski closure HA;N of HA in GLLA½1=N� is a reductive group scheme over Z½1=N�. We
also assume that if ðH ad

A ;X ad
A Þ has a simple factor of An type, then either all prime factors
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of n þ 1 divide N or the degree of the isogeny H sc
A ! H der

A divides N.1) Let p A N be
an arbitrary prime that does not divide N; thus pf 5. Let ZðpÞ be the localization of Z

with respect to p. As HA;NZð pÞ
is a reductive group scheme over ZðpÞ, the field EA is unrami-

fied over p (cf. [18], Corollary 4.7 (a)). Thus the normalization EAðpÞ of ZðpÞ in EA is a finite,
étale ZðpÞ-algebra. This implies that EA is unramified at all primes not dividing N. In the
next two paragraphs we check that NN is a smooth OEA

½1=N�-scheme.

The EA-scheme ShðHA;XAÞ=KAðNÞ is smooth and the natural quotient morphism
ShðHA;XAÞ !! ShðHA;XAÞ=KAðNÞ is a pro-étale cover, cf. Subsection 2.4. We define
M :¼ proj: lim:

~NN ANN;g:c:d:ð ~NN;pÞ¼1

Ag;1; ~NNZð pÞ
. It is well known that we can identify

MQ ¼ Sh
�
GSpðWA;cAÞ;SA

�
=GSpðLA;cAÞðZpÞ

and that M is the integral canonical model of the Shimura triple

�
GSpðWA;cAÞ;SA;GSpðLA;cAÞðZpÞ

�

as defined in [29], Subsubsections 3.2.6 and 3.2.3(6) (see [17], Theorem 2.10 and [29], Ex-
ample 3.2.9). Let NðpÞ :¼ N

ðpÞ
A be the normalization of MEAð pÞ in (the ring of fractions of)

ShðHA;XAÞ=HA;NðZpÞ; the EA-scheme N
ðpÞ

EA
¼ ShðHA;XAÞ=HA;NðZpÞ is a pro-étale cover

of NNEA
¼ ShðHA;XAÞ=KAðNÞ.

From the proof of [29], Proposition 3.4.1 we get that NðpÞ is a pro-étale cover of
NNEAð pÞ (the previous paragraph implies that conditions (i) and (ii) of loc. cit. hold in the

context of M and NðpÞ). As pf 5, from [29], Subsubsections 3.4.1, 3.2.12, and 6.4.1 we get
that NðpÞ is the integral canonical model of the Shimura triple

�
HA;XA;HA;NðZpÞ

�
. Thus

NðpÞ is a regular, formally smooth EAðpÞ-scheme. This implies that NNEAð pÞ is a smooth
EAðpÞ-scheme. As p A N was an arbitrary prime that does not divide N, we conclude that
NN is a smooth OEA

½1=N�-scheme.

Thus NN is a Néron model of NNEA
over OEA

½1=N�, cf. Proposition 4.4.1.

4.6. Remarks. (a) Either [14], §5 or [32] can be used to provide many examples sim-
ilar to the one of Example 4.5 but with N relatively prime to either 2 or 3.

(b) We refer to Example 4.5; thus the prime p is at least 5. As NN is a projective,
smooth OEA

½1=N�-scheme (cf. Corollary 4.3 and Example 4.5), NðpÞ is a pro-étale cover
of a projective, smooth EAðpÞ-scheme. This validates the erroneous [29], Remark 6.4.1.1(2)
for the case of Shimura pairs ðG;XÞ of abelian type that have compact factors. In other
words, if the group GQp

is unramified, then the scheme ShpðG;XÞ proved to exist in [29],
Theorem 6.4.1 is a pro-étale cover of a smooth, projective scheme over the normalization
of ZðpÞ in EðG;X Þ. Based on [29], Subsection 6.8 and Subsubsections 6.8.1 and 6.8.2(a),
in the last sentence one can replace ‘‘abelian type’’ by ‘‘preabelian type’’. Implicitly, this
validates [29], Subsubsection 6.4.11 for all Shimura pairs ðG;XÞ of preabelian type that

1) This condition is not truly needed. It is inserted only to avoid the error which was made in the b) part of

[29], Theorem 6.2.2 and which is eliminated in [32].

73Vasiu, Projective integral models of Shimura varieties



have compact factors. We recall that a Shimura pair ðG;X Þ is said to be of preabelian type,
if ðGad;X adÞ is isomorphic to ðH ad

A ;X ad
A Þ for some abelian variety A over a number field E

(see [17], [29], etc.). If moreover one can assume that we have central isogenies
H der

A ! Gder ! Gad !@ H ad
A , then ðG;X Þ is said to be of abelian type.
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