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Projective integral models of Shimura varieties
of Hodge type with compact factors

By Adrian Vasiu at Tucson

Abstract. Let (G, X) be a Shimura pair of Hodge type such that G is the Mumford-
Tate group of some elements of X. We assume that for each simple factor Gy of G* there
exists a simple factor of Gyor which is compact. Let N = 3. We show that for many compact
open subgroups K of G(Ay), the Shimura variety Sh(G, X)/K has a projective integral
model A" over Z[1/N] which is a finite scheme over a certain Mumford moduli scheme
4,1 n. Equivalently, we show that if 4 is an abelian variety over a number field and if
the Mumford-Tate group of Ac is G, then A has potentially good reduction everywhere.
The last result represents significant progress towards the proof of a conjecture of Morita.
If 4" is smooth over Z[1/N], then it is a Néron model of its generic fibre. In this way one
gets in arbitrary mixed characteristic, the very first examples of general nature of projective
Néron models whose generic fibres are not finite schemes over abelian varieties.

§1. Introduction

Let S := Resc/p Gyuc be the two dimensional torus over R with the property that
S(R) is the multiplicative group of non-zero complex numbers. Let £ be a number field.
Let Og be the ring of integers of E. We fix an embedding i : £ — C. Let 4 be an abelian
variety over E. Let W, := H, (A((C), @) be the first Betti homology group of the complex
manifold 4(C) with coefficients in Q. Let /4 : S — GLyy, g, r be the homomorphism that
defines the Hodge Q-structure on W,. Let H,4 be the Mumford-Tate group of Ac. We re-
call that H 4 is a reductive group over Q and that H, is the smallest subgroup of GLjy, with
the property that /14 factors through H g, cf. [8], Propositions 3.6 and 3.4. Let H3¢ be the
adjoint group of H, i.e., the quotient of H 4 through its center.

1.1. Definition. We say the abelian variety A has compact factors, if for each simple
factor Hy of de there exists a simple factor of Hyr which is compact.

It is conjectured (see [20], page 437 and [26], Conjecture 3.1.3) that if the Q-rank of
de is 0 (i.e., if G, is not a subgroup of H jd), then there exists a finite field extension E;
of E such that Az, extends to an abelian scheme over Op, (i.e., such that Ag has good re-
duction with respect to all finite primes of E;). See [26] for other equivalent forms of this
conjecture. Following [26], below we will refer to this conjecture as the Morita conjecture.
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We note down that if 4 has compact factors, then each simple factor of H3¢ has Q-rank 0
and thus H3 itself has Q-rank 0. The goals of this paper are: (i) to prove the Morita con-
jecture under the assumption that 4 has compact factors, and (ii) to reformulate and apply
this result to integral models of Shimura varieties of Hodge type.

1.2. Basic Theorem. Suppose that A has compact factors. Then there exists a finite
field extension Ey of E such that Ag, extends to an abelian scheme over O, .

Morita conjecture was first checked in some cases involving abelian varieties of
PEL type (see [20]; see also [14], end of §5). We recall that 4 is of PEL type, provided A¢
has a polarization 4 such that the derived group of H, is also the derived group of the
intersection of GSp( W), ) with the double centralizer of H, in GLyy, (here ¥ is the non-
degenerate alternating form on W, defined by 4 and PEL stands for polarization, endomor-
phisms, and level structures). Some of the cases presented in [20] are not covered by the
Basic Theorem.

New cases of the validity of the Morita conjecture are provided in [24] and [26]. For
instance, Paugam proved the Morita conjecture provided there exists a prime p € N such
that the Q,-rank of H j@ is 0 (see Lemma 2.3.1). The results [26], Propositions 4.2.2, 4.2.4,
and 4.2. 10 cover [24]; these results are also cither covered by Lemma 2.3.1 or involve spe-
cial cases when there exists a good prime p € N for which a certain combinatorial con-
dition on the natural action of Gal(@Q,) on the set of simple factors of H d?;D holds (see [26],
Example 4.2.11 for such a concrete special case). Such good primes p'exist only if 4
has compact factors and each simple factor Hy of H39 is “‘simple enough” (like when Hog
has only one simple, non-compact factor). Good primes p do not exist if there exists one
simple factor Hy of Hjl‘d such that the following two properties hold: (i) Hoc is not isotypic
of A4, Lie type and (ii) the group Hog either (ii.a) has more simple, non-compact factors
than simple, compact factors or (ii.b) it is a Weil restriction Resg, /g H,, where H, is an
absolutely simple, adjoint group over some “arithmetically complicated” totally real num-
ber field Fy. Thus the results [26], Propositions 4.2.2, 4.2.4, 4.2.10, and 4.2.13 are particular
cases of the combination of the Basic Theorem and Lemma 2.3.1.

Basic Theorem, Lemma 2.3.1, and (the situations that can be reduced to) [14], end of
§5, form all (general) cases in which the Morita conjecture is presently known to hold.
Lemma 2.3.1 and [14], end of §5 pertain only to abelian varieties 4 over E for which, up
to a replacement of E by a finite field extension of it, there exists an abelian variety B over
E that is of PEL type and that has the property that the three adjoint groups H3%, H34, and
HiS g are isomorphic (cf. Remark 2.3.2 and [31], Corollary 4.10).

The methods we use to prove the Basic Theorem pertain to Shimura varieties and rely
on the constructions of [7], Proposition 2.3.10 and [29], Subsections 6.5 and 6.6. To outline
the methods, in this paragraph we assume that 4 has compact factors. We use the men-
tioned constructions in order to show that for a given prime p € N, up to a replacement
of E by a finite field extension of it, there exists an abelian variety B over E which has the
following two properties: (a) the three adjoint groups H3d {3 and H3 % 5 are isomorphic,
and (b) the monomorphism Hp — GLy, is “manageable enough” so that we can check
based on [10] and [9] that B has good reduction with respect to all primes of E that divide
p (see Section 3 and Subsection 4.1). Due to (a) and the good reduction part of (b), there
exists a finite field extension E, of E such that A, has good reduction with respect to
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all primes of E, that divide p (see [26], Proposition 4.1.2; see also Subsection 4.1). As the
field E| mentioned in the Basic Theorem, we can take the composite field of a suitable finite
set of such fields E, (see Subsection 4.1).

Such “extra” abelian varieties B, were first considered in [31] in connection to the
Mumford-Tate conjecture for 4 and in [26] in connection to the Morita conjecture for A.

In Section 2 we review basic properties of Shimura varieties. In Section 3 we include a
construction that is the very essence of the proof of the Basic Theorem and which in fact
proves the Basic Theorem under some additional hypotheses. In Subsection 4.1 we prove
the Basic Theorem. Example 4.2 is completely new. Basic Corollary 4.3 reformulates the
Basic Theorem in terms of integral models of Shimura varieties of Hodge type. In Subsec-
tion 4.4 we apply the Basic Corollary 4.3 to provide new examples of general nature of
Néron models in the sense of [4], page 12. In Example 4.5 and Remark 4.6 we apply the
Basic Corollary 4.3 to correct an error in [29], Remark 6.4.1.1, 2) and thus implicitly in
[29], Subsubsection 6.4.11, for the cases to which the Basic Theorem applies (i.e., for Shi-
mura pairs of preabelian type that have compact factors in a sense analogous to Definition
1.1; see Subsection 2.2 and Remark 4.6 (b) for precise definitions).

Acknowledgment. We would like to thank U of Arizona for providing us with good
conditions with which to write this work. We would also like to thank the referee for many
valuable suggestions and comments.

§2. Preliminaries

In Subsection 2.1 we gather different notations to be often used in the rest of the pa-
per. See Subsection 2.2 for generalities on Shimura pairs and varieties. See Subsection 2.3
for simple properties that pertain to polarizations of 4 and to the reductive group H 4. See
Subsection 2.4 for the Shimura pairs naturally associated to 4. See Subsection 2.5 for
smooth toroidal compactifications. See Fact 2.6 and Proposition 2.7 for two results that
pertain to an equivalent form of Theorem 1.2 to be stated explicitly in the Corollary 4.3.
Lemma 2.8 will be used in Section 3.

2.1. Notations and conventions. A reductive group H over a field k is assumed to
be connected. Let Z(H), H%', and H?! denote the center, the derived group, and the
adjoint group (respectively) of H. We have H* = H/Z(H). Let Z°(H) be the maximal
subtorus of Z(H). Let H* be the simply connected semisimple group cover of H9". See
[4], Subsection 7.6 for the Weil restriction of scalars functor Resy ., where ki is a
finite, étale k-algebra. We recall that if H, is a reductive group over ki, then Res;, ;x H)
is a reductive group over k uniquely determined up to isomorphism by the group
identities Resy, /x H1 () = H1([J ®y k1) which are functorial on commutative k-algebras
(1. For a free module M of finite rank over a commutative ring with unit R, let
M* := Homg(M, R) and let GL,, be the group scheme over R of linear automorphisms
of M. If  is a perfect alternating form on M, then GSp(M, ) is viewed as a reductive
group scheme over R. If % or g (resp. *; with + as an arbitrary index different from R)
is either an object or a morphism of the category of Spec(R)-schemes, let x (resp. *,y) be
its pull back via an affine morphism Spec(U) — Spec(R). Let @ be the algebraic closure of
Q in C. We always use the notations of the first paragraph of Section 1.
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2.2. On Shimura pairs. A Shimura pair (G, X') consists of a reductive group G over
@ and a G(R)-conjugacy class X of homomorphisms S — Gg that satisfy Deligne’s axioms
of [7], Subsubsection 2.1.1: the Hodge Q-structure on Lie(G) defined by any x € X is of
type {(—1,1),(0,0),(1,—1)}, Ad o x(i) defines a Cartan involution of Lle(G 4), and no
simple factor of G&d becomes compact over R. Here Ad : G — GLy(Gu) is the adjoint
representation. These axioms imply that X has a natural structure of a hermltlan symmetric
domain (see [7], Corollary 1.1.17). Similarly to Definition 1.1, we say (G, X') has compact
factors, if for each simple factor Gy of G*! there exists a simple factor of Gor which is com-
pact (thus Gy has at least one simple, non-compact factor and at least one simple, compact
factor). We note down that if G is a torus (i.e., if the adjoint group G¢ is trivial), then
(G, X) has compact factors. For generalities on Shimura pairs and varieties and on their
types, we refer to [6], [7], [17], [18], and [29], Subsections 2.2 to 2.5. To (G, X) it is naturally
associated a number field E(G, X), called the reflex field of (G, X) (see [6], [7], and [16]; see
also the definition of the reflex field E4 in the below Subsection 2.4).

Let Ay := 7 ®; Q be the ring of finite adéles of Q. For K a compact open subgroup
of G(Ay), let Sh(G,X)c/K := G(Q)\(X x G(As)/K); it is a finite disjoint union of
quotients of a (fixed) connected component of X by arithmetic subgroups of G(Q). A the-
orem of Baily and Borel says that Sh(G, X)./K has a canonical structure of a normal,
quasi-projective C-scheme (see [1], Theorem 10.11) which is smooth if K is sufficiently
small. Thus the projective limit Sh(G, X). of the normal, quasi-projective C-schemes
Sh(G, X)¢/K’s, has a canonical structure of a regular C-scheme. The Shimura variety
Sh(G, X) is identified with the canonical model over E(G, X) of the C-scheme Sh(G, X))
(see [6], [7], [16], [18], and [19]). We have a natural right action of G(Ay) on the E(G, X)-
scheme Sh(G, X)) which is continuous in the sense of [7], Subsubsection 2.7.1. In particular,
the quotient Sh(G, X)/K of Sh(G, X) through K is a normal, quasi-projective E(G, X)-
scheme which is “the best arithmetic” model of Sh(G, X)./K.

2.3. Simple properties. The notion of good reduction of an abelian variety over the
field of fractions of a discrete valuation ring, is stable under isogenies. Up to a replacement
of E by a finite field extension of it, 4 is isogenous to a principally polarized abelian variety
over E (cf. [22], §23, Corollary 1). Thus, based on the last two sentences, to prove Theorem
1.2 (and for the rest of the paper) we can assume that 4 has a principal polarization A4.

2.3.1. Lemma. We assume that there exists a prime p € N such that the group H jﬁéﬂ
is anisotropic i.e., its Q,-rank is 0 (e.g., this holds if H 4 is a torus). Then there exists a ﬁmte
field extension E1 of E such that Ag, extends to an abelian scheme over Op, .

Proof. The group H j%p(@l,) is compact and thus it has no non-trivial unipotent
element (see [27], Subsection 3.4). This implies that the group H,4(Q,) has no non-trivial
unipotent element. Thus the lemma follows from [26], Theorem 1.6.1. [

2.3.2. Remark. From the classification of simple adjoint groups over p-adic fields
(see [28], Table II, pp. 55-58) and the fact that each simple factor of H3 is of classical
Lie type (cf. [7], Table 2.3.8), one gets that the assumption that Hj}% has simple, aniso-
tropic factors implies that H ;}% has simple factors of 4,, Lie type for some n € N.

2.4. Shimura pairs associated to 4. We recall that from now on (4, 14) denotes a
principally polarized abelian variety over a number field £. Let L, := H,; (A((D), Z); it is
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a Z-lattice of Wy. Let , : Ly ®7 L4 — Z be the perfect, alternating form on L, induced
by i4. If Wy ®@qC=F, bo DF, %=1 is the Hodge decomposition defined by the homo-
morphlsrn hy:S — GLWA%R, let py : Gue — GLy,@,c be the Hodge cocharacter that
fixes F ~! and that acts via the identical character of G,,c on F . We denote also by
hg:S — Hyr and u, : G,c — H,c the natural factorizations of h 4 and pu, (respectively),
cf. the very definition of H,4. Let X4 be the H4(R)-conjugacy class of iy : S — H4r. Let
S, be the GSp(Wy, ) (R)-conjugacy class of the homomorphism S — GSp(Wy, Y, ), de-
fined by h,. It is well known that the pairs (H4, X4) and (GSp(Wx, ), S4) are Shimura
pairs and that we have an injective map fy : (Hy, X4) — (GSp(WA, vy, SA) of Shimura
pairs (see [6], [7], [16], and [18]). The Shimura variety Sh(GSp(Wj, ), S4) is called a Sie-
gel modular variety. A Shimura pair that admits an injective map into a Shimura pair that
defines a Siegel modular variety, is called a Shimura pair of Hodge type; thus (H,, X,4) is
a Shimura pair of Hodge type. Let h3 : S — H3d be the composite of /4 with the nat-
ural epimorphism H,r — H3%. Let X3 be the H39(R)-conjugacy class of h3d. The pair
(H3d, X39) is called the adjoint Shimura pair of (H4, X,). Similarly we define the adjoint
Shimura pair (G*4, X24) of an arbitrary Shimura pair (G, X).

The H 4(C)-conjugacy class [y c] of iy : Gec — Hyc is defined over Q and the Ga-
lois group Gal(Q) acts on the corresponding H (Q)-conjugacy class [y ,] of cocharacters of
H ;5. The reflex field E4 := E(H 4, X,) is the fixed field of the stabilizer subgroup of [y ] in
Gal(Q). Let g := dim(4).

Let N = 3 be an integer. Let Y y : La4/NLy ®z/nz L4/NLy — Z/NZ be the reduc-
tion modulo N of . Let (C, A¢) be a principally polarized abelian scheme of relative di-
mension g over a Z[1/N]-scheme Y. Let Acpy) : C[N] xy C[N] — uyy be the Weil pairing
induced by A¢. By a level-N symplectic similitude structure of (C, A¢) we mean an isomor-
phism x : (L4/NL4), — C|N] of finite, étale group schemes over Y, such that there exists
an element v € uyy( Y) with the property that for all points a,b € (L4/NL4),(Y) we have
an identity v/4.v@®) = ] oy (i(a), k(b)) between elements of uyy (Y).

Let .o/, 1 v be the Mumford moduli scheme over Z[1/N] that parameterizes princi-
pally polarized abelian schemes which are of relative dimension g and which are equipped
with a level-N symplectic similitude structure, cf. [21], Theorems 7.9 and 7.10 naturally
adapted to the case of level-N symplectic similitude structures (instead of only level-N
structures). Let (., 4.,) be the universal principally polarized abelian scheme over .o | x.

Let K(N) := {h € GSp(L4,y,)(Z)| h mod N is the identity}. Let
K4(N) := K(N) " Hy(Ay).

As N 2 3, it is well-known that we can identify Sh(GSp(Wy, i), S4)/K(N) = 4,1 ng
(see [6], Proposition 4.17) and that the group K(N) acts freely on Sh(GSp(Wj, i), S4) (for
instance, see [17], Subsections 2.10 to 2.14; this also follows from Serre Lemma of [22],
Chapter 1V, §21, Theorem 5). To f,4 corresponds a finite morphism of E 4-schemes

J4(N) : Sh(H 4, X4)/K4(N) — Sh(GSp(WA,l//A)>SA)EA/K(N)

which over C is obtained from the embedding Xy x H4(A;) — Sy x GSp(Wy4,y,)(Ay) be-
tween complex spaces via a natural passage to quotients, cf. [6], Corollary 5.4. As the group
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K(N) acts freely on Sh(GSp(Wx, ), S4), the group K, (N) also acts freely on Sh(H 4, X4).
This implies that the quotient epimorphism Sh(H 4, X4) — Sh(H,4, X4)/K4(N) is a pro-
¢tale cover and therefore Sh(H 4, X4)/K4(N) is a smooth E -scheme.

Let Ay := A4 n be the normalization of (.7, 1 n) 0z, [1/N] in the ring of fractions of

Sh(H4,X4)/K4(N); it is an Og,[1/N]-scheme. Let (4, /1%) be the pull back of (7, 1.,) to
Ny

2.4.1. On factors. Let u3%: G,,c — H3 be the cocharacter naturally defined by .
If H, is a simple factor of H34, let 4, : G,,q — H,z be a cocharacter whose extension to C is
H,(C)-conjugate to the cocharacter of H,c naturally defined by u2d. Let iy, : S — Hig be
the homomorphism naturally defined by /4. Until Section 4, whenever the group H3d is
non-trivial we will denote by Hy a fixed simple factor of H39; therefore we will speak about
the cocharacter 4 : G, 5 — H5 and the homomorphism /140 : S — Hog.

2.4.2. On complex points. We have Sh(H,, X4)(C) = H(Q)\(X4 x Hi(Ay)),
cf. [7], Proposition 2.1.10 and Corollary 2.1.11. Let u := [x, /4] € Sh(H4, X4)(C), where
xeXy and he Hy(As). Let Wy®qC=F 1"0@® F>! be the Hodge decomposition
defined by x:S— Hyrp and let L, be the Z-lattice of W, with the property that

WLy ®;7Z)=L,®;Z We denote also by ue Sh(Hy, X,)/K4(N)(C) the image of u
through the epimorphism Sh(H 4, X4)(C) — Sh(H4, X4)/K4(N)(C) of sets. The complex
torus associated to the abelian variety B, := u*(%) is F* '\ (W, ®¢g C)/Ly, cf. Riemann’s
Theorem and the very construction of Siegel modular varieties (see [6], Theorem 4.7 and
Example 4.16; in connection to L, see also [29], Subsection 4.1). The principal polarization
u*(14) of B, is uniquely determined by the property that it induces a perfect alternating
form on L, which is a rational multiple of iy, and which is a polarization of the Hodge
Q-structure on Wy defined by x, cf. [29], Subsection 4.1.

Let Cy4 be the centralizer of H4 in End(W,). Due to Riemann’s theorem we can nat-
urally view Cy: (i) as a Q-algebra of Q-endomorphisms of any such pull back B, of %4, and
(ii) as End(4¢) ®7 Q. We identify naturally W, = H,(B,(C), Q). Such an identification is
unique up to isomorphisms W, = W, defined by elements of H4(Q) and it is compatible
with the natural actions of Cy.

2.4.3. Special points. We now assume that x € X4 is a special point i.e., the homo-
morphism x: S — H,r factors through the extension to R of a maximal torus T, of
H 4. The Mumford-Tate group of B, is a reductive subgroup of 7, and thus it is a torus.
We have u € Im(Sh(H.4, X4)(Q) — Sh(H4, X4)(C)), cf. [17], Theorem 1.8 applied to the
special pair (7, {x}) of (H4, X4). The set of all points u = [x, /] € Sh(H4, X4)(C) with
he H,(Ay), is Zariski dense in Sh(H 4, X4)(C) (cf. [6], Proposition 5.2).

2.5. Toroidal compactifications. We consider a smooth, projective, toroidal com-
pactification .« ; y of .o/, | y over Z[1/N] such that the abelian scheme .«/ over ./, | x
extends to a semiabelian scheme <7 over </, 1.n (cf. [10], Chapter IV, Theorem 6.7). We
have:

(i) The fibres of </ over points of the complement of oy 1N In &Z,l ~, are semiabe-
lian varieties that are not abelian varieties.
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We consider the normalization Ny := Ay n of (y,1,x5)0, 117y in the ring of frac-
tions of Sh(H 4, X4)/K4(N); it is an Og,[1/N]-scheme. As the morphism f,(N) is finite,
as Sh(H4, X4)/K4(N) is a normal (in fact even smooth) E -scheme, and as .o, | y is an
open, Zariski dense subscheme of &f;l ~, We have:

(ii) The Og,[1/N]-scheme Ny = Ny X o1y o, 1.n 1s an open, Zariski dense sub-
scheme of ./ and we have an identity A yz, = Sh(H4, X4)/K4(N).

Let 4 be the pull back of . to ./y. Thus 4 is a semiabelian scheme over .4y whose
restriction to .4y is the abelian scheme 4.

2.6. Fact. The following two statements are equivalent:
(@) The Og,[1/N]-scheme Ny is projective.
(b) We have Ny = N

Moreover, if these two statements hold, then there exists a finite field extension E\ of E
such that Ag, extends to an abelian scheme over Og,[1/N].

_ Proof. As Og, is an excellent ring (see [15], §34), the scheme Ny is a finite
(%y,1,8) 0, (1/n-scheme and therefore it is a projective O, [1/N]-scheme. But Ay is an
: A

open, Zariski dense subscheme of .1y (cf. property 2.5 (ii)) and thus (a) is equivalent to

(b).

To end the proof, it suffices to show that (a) implies the existence of a finite field ex-
tension E) of E such that A, extends to an abelian scheme over Og, [1/N]. Let E; be a num-
ber subfield of C that contains ig(E) and E,4 and such that there exists a level-N symplectic
similitude structure x of (4, 44); whose pull back to C is defined by the canonical iso-
morphism (L4/NLy)e — A¢[N] = ((1/N)L4/Ly4).. Let v, : Spec(Ey) — (‘Q{MN)OEA[I/N]
be the morphism such that (4,44) = v} ((M,XM)OEA[I /N]) and the resulting level-N
symplectic similitude structure of (4,44)g is x. The composite of the morphism
Spec(C) — Spec(E;) with vy, is the complex point [hy, 1y,] € Im(f4(N)(C)) (here 1y,
is the identity element of GSp(Wj,y,)(Ar)). Thus, up to a replacement of E; by a
finite field extension of it, vy factors through a morphism w4 : Spec(E;) — Ay. As (a)
holds, from the valuative criterion of properness we get that u, extends to a mor-
phism w4 v : Spec(Op,[1/N]) — Ay. The abelian scheme u} (%) over Op,[1/N] extends
Ag. O

2.7. Proposition. We assume that the principally polarized abelian scheme (A,2,)
over the number field E is such that the Q-rank of de is 0 (e.g., this holds if A has compact
factors).

(@) Then the E4-schemes N yg, and N yg, coincide (i.e., we have N yg, = NE,).
(b) We assume that A has compact factors. We also assume that Theorem 1.2 holds

for all abelian varieties over number fields which have compact factors. Then the Og,[1/N]-
scheme Ny is projective for every integer N = 3.
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Proof. As the Q-rank of H3 is 0, the analytic space associated to
Sh(H4, X4)c/K4(N) is compact (see [3], Theorem 12.3 and Corollary 12.4). This implies
that the analytic spaces associated to .Ayc and ./y¢ coincide. Thus Ayc = Ayc. From
this we get that (a) holds.

We prove (b). It suffices to show that the assumption that ./ = ./ leads to a con-
tradiction, cf. Fact 2.6. As N yg, = Ak, and as Ny + Ay, we get that ./ has points with
values in finite fields which do not belong to ./#y. As the morphism .#y — Spec(Og,[1/N])
is flat, it has quasi-sections in the quasi-finite, flat topology of Spec(Og,[1/N]) whose im-
ages contain any a priori given point of .4y with values in a finite field (cf. [12], Corollary
(17.16.2)). From the last two sentences, we get that there exists a finite field extension E
of E4 in C and a local ring O of Oy of mixed characteristic such that we have a morphism
it : Spec(0) — .y which does not factor through /. Let A4 be the generic fibre of i (ot /);
it is an abelian variety over E. Toreach a contradiction, we can assume that ip(F) = E. Let
H ; be the Mumford-Tate group of Ac.

To check that 4 has compact factors, we can assume in this paragraph that the adjoint
group H}d is non-trivial. Let H; be an arbitrary simple factor of H jd. As the generic fibre
of u factors through Sh(H 4, X)/K4(N), the group H ; is the Mumford-Tate group defined
by a homomorphism S — GLy, which is an element of X;. This implies that H 4 is natu-
rally a subgroup of H,. Thus we have natural inclusions Lie(H;) = Lie(H ady < Lie(H3Y).
Let H, be a simple factor of H3® with the property that the natural Lie homomorph1sm
Lie(H;) — Lie(H,) is a monomorphlsm of simple Lie algebras over Q. As 4 has compact
factors, there exists a simple, compact factor C; of H,z. Let C; be a simple factor of Hjy
such that the simple Lie algebra Lie(C;) over R is naturally a Lie subalgebra of Lie(C;).
The group Cj is isogenous to a subgroup of the compact group C, and thus it is compact.
This implies that the abelian variety 4 has compact factors.

Let E| be a finite field extension of E such that 4 £, extends to an abelian scheme
over Og [1/N], cf. our last hypothesis. Let ¢ be a prime of E | such that its local ring O,
domlnates 0. As A . has good reduction with respect to 9;, the composite of the natural
morphism Spec(Ol) — Spec(0) with i, factors through Ay (cf. property 2.5 (i)). Thus i
factors through .//y. Contradiction. This proves (b). []

2.8. Lemma. Let p e N be a prime that does not divide N. Let k be an algebraic clo-
sure of the field [, with p elements. We assume that the Q-rank of H ad 50 (e.g., this holds if A
has compact factors). We also assume that there exists no morphism q : Spec(k[[x]]) — Ny
with the property that it gives birth to morphisms

gsp : Spec(k) — Ny and Ggen : Spec(k((x))) — N

that factor through N y\Ny and Ny (respectively). Then the complement N y\Ny has no
points of characteristic p.

Proof. The only part of the proof of the lemma which might be less well-known,
is that A/y\./y does not contain the Eeduced scheme of any connected component of
the special fibre in characteristic p of Ay. In the next two paragraphs we first check this

property.
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We have N yg, = A yE,, cf. Proposition 2.7 (a). The projective morphism
Ny — Spec(Og,[1/N])

is the composite of a projective morphism n, y : Ay — Spec(Og, ,[1/N]) with connected
fibres and of a finite morphism Spec(Og, ,[1/N]) — Spec(Og,[1/N]), cf. Stein’s factoriza-
tion theorem (see [13], Chapter III, Theorem 11.5); here Og, , is the ring of integers of a
finite, étale E4-algebra E4 y. Let n be an arbitrary point of Spec(Og, ,[1/N]) of character-
istic p. Let # be the fibre of the morphism n, y over 7.

Let E, be the field that is a direct factor of E4 y and such that # is a point of the
spectrum of the direct factor Og,[1/N] of O, ,[1/N]. Let & be the fibre of ny y over
Spec(E),); it is a connected component of A yg, = Ayg,. From the Zariski density part
of Subsubsection 2.4.3, we get the existence of a finite field extension Ej, of E, such that
we have a morphism u : Spec(Ey,;) — Nyg, = NNE -, that factors through & and such that
the Mumford-Tate group of a suitable (in fact of each) pull back of u*(%g,) to C, is a
torus. As /y is a projective Og,[1/N]-scheme, the morphism u extends to a morphism
it : Spec(Og, [1/N]) — Ay. We can assume that the field £}, is such that the abelian vari-
ety u* (%, ) extends (cf. Lemma 2.3.1) to an abelian scheme over O, [1/N] which (cf. [10],
Chapter I, Proposition 2.7) is the semiabelian scheme #*(#4). Thus @ factors through Ay,
cf. property 2.5 (i). As u factors through &, Im(#) has a non-trivial intersection with % .
From the last two sentences, we get that the intersection & N .4y is non-empty.

But & n Vy is an open subscheme of %, cf. property 2.5 (ii). Our last hypothesis
implies that the morphism & N Ay — % is a closed embedding. As % is connected
and has a non-empty intersection with ./, from the last two sentences we get that
F =F n Ny. Thus Z is a closed subscheme of .Ay. Thus A v\ has no points of char-
acteristic p. []

§3. A construction

In this section we assume that the abelian variety 4 has compact factors (equiva-
lently, that the Shimura pair (H4, X4) has compact factors) and that the adjoint group
H34 is non-trivial. Let (Hy, Xo) be a fixed simple factor of (H3¢, X3d); it has compact fac-
tors. The homomorphism /4y : S — Hygr of Subsubsection 2.4.1 is an element of X; and in
fact Xj is the Hy(R)-conjugacy class of /4.

For another abelian variety B over E, let (Hp, Xp), hg: S — Hpg, hid:S — H3,
and (H3, X39) be the analogues of (Hy4, X4), ha:S — Hyp, h3%:S — H3%, and
(H3d, X39) (respectively) introduced in Subsection 2.4 but for B instead of A.

Let p € N be a prime. In this section we will prove the following result.

3.1. Theorem. Up to a replacement of E by a finite field extension of it, there exists a
principally polarized abelian variety (Ay, L4,) over E such that the following two properties
hold:

(a) We have an isomorphism (ij, Xjf) = (Ho, Xo) (to be viewed as an identity) with
the property that the homomorphism h;‘l‘é 'S — ngR = Hog is h40.
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(b) There exists an integer No = 3 that is relatively prime to p and such that we have
Nao,Ng = Nay N, (€., and such that the statement 2.6 (b) holds for (Ao, A4,, No)).

3.1.1. On the proof of Theorem 3.1. The proof of Theorem 3.1 is carried out in Sub-
sections 3.2 to 3.4. The existence (up to a replacement of E by a finite field extension of it)
of a principally polarized abelian variety (4g, A4,) over E such that the property 3.1 (a)
holds, is an elementary consequence of [7], Proposition 2.3.10. The hard part is to show
that we can choose (Ao, 44,) so that property 3.1 (b) holds as well. In order to achieve
that property 3.1 (b) holds, we will take A so that the following two properties hold:

(i) The rank of the Z-algebra End(A4c) is sufficiently big.

(ii) If 4y extends to a semiabelian scheme over a local ring of Of of mixed char-
acteristic (0, p), then the natural action of End(A4yc) on the group of characters of the
maximal torus of the special fibre of the semiabelian scheme extension, has some specific
properties.

Due to properties (i) and (ii), the semiabelian scheme of property (ii) will turn to be an
abelian scheme. Condition 3.1 (b) will be implied by natural moduli analogues of properties
(1) and (ii). In Subsection 3.2 we include notations that are essential for a review of the con-
structions of [7], Proposition 2.3.10 and for supplementing these constructions in order to
be able to take A, so that the moduli analogues of properties (i) and (ii) hold. The men-
tioned review and supplementing process are the very essence of the construction of A
and are gathered in Lemma 3.3. In Subsection 3.4 we check that the moduli analogues of
properties (i) and (ii) hold and we use this to end the proof of Theorem 3.1.

3.2. Notations. Let Fy be a totally real number subfield of @ < C such that we
have

Ho = RCSFO/@ G()7

with Gy as an absolutely simple adjoint group over Fj (cf. [7], Subsubsection 2.3.4); the field
Fy is unique up to Gal(@)-cgnjugation. Let ina : Fo — R be the embedding naturally de-

fined by the inclusions Fy < Q < C. We identify Hom(Fy, R) = Hom(Fp, Q).

Let T be a maximal torus of Hy. Let By be a Borel subgroup of Hg that contains
Ty5- Let Do be the Dynkin diagram of Lie(H5) with respect to 7,5 and By. We have

Hyg = 11 Go xp, Q. Thus Dy is a disjoint union U D;, where D; is the
ie Hom(Fp, R) _ ie Hom(Fp, R)
connected Dynkin diagram of Lie(Go xr, ;Q) with respect to (Go xg, Q) N Ty5 and

(Go xF, {Q) N By. Let £y be the Lie type of a (any) simple factor of Hyc. As the group
Hopr = I Gy X F, ;R has simple, compact factors and simple, non-compact factors

ie Hom(Fy,R)
(see Subsection 2.2), we have [F) : Q] = 2.

For a vertex o of Dy, let g, be the 1 dimensional Lie subalgebra of Lie(By) that cor-
responds to «. The Galois group Gal(Q) acts on Dy as follows. If y € Gal(Q), then y(«) is
the vertex of Dy defined by the identity g,,) = i, (y(gx)), where i, is the inner conjugation
of Lie(H,5) by an element g, € Hyo(Q) which normalizes 75 and for which we have an
identity g},y(Bo)g;1 = By.
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Let 4y : G,,5 — Hyg be as in Subsubsection 2.4.1. Let B, be the set of vertices of
Do such that the unique cocharacter of T 5 that acts on g, trivially if « ¢ By and via the
identical character of G, if o € By, 1s Ho(@)-conjugate to u,- Let Op be the set of vertices
of Dy formed by the orbit of B, under Gal(Q). As H, is the smallest subgroup of GLyy,
through which 4, factors, the images of both /4 and g, are non-trivial. Thus the set By is
non-empty. The image of /14 in a simple factor %, of Hyp is trivial if and only if the group
Fy is compact (this is so as the centralizer of Im(h3) in H3$ is a maximal compact sub-
group of H34, cf. [7], page 259). As Hog has at least one simple, compact factor (cf. Defi-

nition 1.1), we get that:

— there exists an element iy € Hom(Fp, R) such that B, contains no vertex of D;,
(equivalently, such that the simple factor Gy X, ;, R of Hog is compact).

As the Hodge Q-structure on Lie(Hy) defined by any element xy € Xy is of type
{(-1,1),(0,0),(1,—1)}, for each i € Hom(Fp, R) the set B, contains at most one vertex
of ©;. We know that £y is a classical Lie type, cf. [7], Table 2.3.8. Moreover, if B, contains
a vertex of D;, then with the standard notations of [5], Plates I to VI, this vertex is (cf. [7],
Table 1.3.9): an arbitrary vertex if £y = 4,,, vertex 1 if &y = B,, vertex n if £y = C,, and an
extremal vertex if £y = D,. The reflex field E(Hy, Xy) of (Ho, Xo) is the fixed field of the
open subgroup of Gal(Q) that stabilizes By, cf. [7], Proposition 2.3.6.

If the Lie type Ly is 4,, B,, or C,, then (Hy, X)) is said to be of 4, B,, or C, type. If
£y = D, with n = 5, then (Hy, Xp) is said to be:

— of Df type, if for each embedding i : Fy — R, Oy contains only the vertex 1 of D;;

— of D type, if for each embedding i : Fy — R, Oy contains the vertices n — 1 or n of
D; but not the vertex 1 of D;.

If € = Dy, then (Hp, Xo) is said to be of D (resp. of D}') if for each embedding
i: Fy — R, Oy contains only one (resp. exactly two) vertices of D;; with the notations of
[5], Plate IV, this vertex (resp. these two vertices) will be chosen in what follows to be the
vertex 1 (resp. to be the last two vertices 3 and 4).

The definition of the 4, B,, C,, D}, and DF types conforms with [7]. From [7], Ta-
ble 2.3.8 we get that (Hy, X) is of A,, By, C,, DI, or DF type.

Let S, be the subset of vertices of D defined as follows:
— if (Ho, Xo) is of A4, type, then S is the set of all extremal vertices;
— if (Ho, Xo) is of B, (resp. C,) type, then S is the set of all vertices n (resp. 1);

— if (Hp, Xo) is of DI (resp. DF) type, then S is the set of all vertices 1 (resp. n — 1
and n).

The set S is Gal(Q)-invariant (if £y = D,, this is implied by the very definitions of
the D! and DF types). We identify the Gal(Q)-set S, with Hom(Fj, C), where F; is an
¢tale Fy-algebra of degree at most 2. We have [F) : Fy| = 2 if and only if (Hy, Xp) is either
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of A, type with n = 2 or of D} type with n = 4. The Fy-algebra Fj is either a field of CM
type (cf. [7], Subsubsection 2.3.4 (b) or the first paragraph of the proof of [7], Proposition
2.3.10) or a product of two fields isomorphic to Fy and thus of CM type. If [F; : Fy] =2
and (Ho, Xo) is of DY} type with n even, then F is not necessarily a field.

3.2.1. The field Ky. Let @, be an algebraic closure of @,. We fix an identification
between Q and the algebraic closure of Q in @, and we use it to identify naturally the set
Hom(Fy, R) = Hom(Fy, @) with Hom(Fy, @,). We write Fy ®q Q) = H Fy; as a product

of p-adic fields. Let j, € J be the unique element such that to the embeddmg ih: Fp — R
corresponds (under the identification Hom(Fy, R) = Hom(Fy, Q,)) an embedding Fy — Q,
that factors through the composite embedding Fy — Fy ®q Q, — Fyj,.

Let vgj, be the prime of Fy above p such that the completion of Fy with respect to v,
is the factor Fy;, of Fy ®g Q,. Let Ky be a totally imaginary quadratic extension of Fy
which is unramified above primes of Fy that divide p and which has only one prime wy;,
above vgj,. We have [Kj : Q] = 2[F) : Q] = 4. Let K, be the completion of K, with respect
to woj,; we have [Koj, : Fyj,] = 2. As Fj is a totally real number field and as Kj is a totally
imaginary quadratic extension of Fj, the field K is of CM type.

3.3. Lemma. We recall that (Hy, Xo) is a simple factor of (H3, X 39). There exists a
Shimura pair (Hy, X1) such that the following four properties hold:

() The adjoint Shimura pair of (Hy, X1) is (Ho, Xo) and there exists hy, € X\ that maps
naturally to the element hyy € Xy introduced in Subsubsection 2.4.1.

(ii) We have an injective map fi : (Hy,X1) — (GSp(W1,y),S1) into a Shimura pair
that defines a Siegel modular variety.

(iii) The torus 7 := Resk,@, F,/a Gmk,@y F s naturally a subgroup of GLy, that cen-
tralizes H" and that makes 74! t0 have a natural structure of a Ky-vector space.

(iv) The torus Z°(H,) is the torus of GLy, generated by Z(GLy,) and by the maximal
subtorus I, of 7 which over R is compact.

Proof. The existence of the Shimura pair (H;, X;) such that properties (i) and (ii)
(resp. (iii) and (iv)) hold follows from the statement (resp. the proof) of [7], Proposition
2.3.10. We recall the details of the construction of (Hj, X}), in the form needed in what
follows. Let Qp be a maximal torus of Gy. Its rank is equal to the rank n of £y. To ease
the notations, we can assume that we have an identity 7o = Resg ;o Qo between tori of Hy.

Let Ey be the smallest subfield of C which contains Fy and which has the property
that the torus Qyg, is split; it is a Galois extension of Fy and the Galois group Gal(Ey/Fp)
is a finite subgroup of GLX*(QOEO)(Z)a where the group X *(Qog,) of characters of Qog, is
viewed as a free Z-module of rank 7.

We will consider a representation p, : Gg%o — GLy,, where V) is an Ej-vector space
of finite dimension. In what follows all the weights used are with respect to the maximal
torus of GS%O whose image in Gyg, is the maximal torus Qog, of Gog,. Depending on the
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type of (Hy, Xy), we choose p, such that (cf. the definition of the subset S, of vertices of
D)) the following properties hold (see [5], Plates I to IV for the weights used):

(v.a) If (Ho, Xo) is of A4, type with n =2, then p, is the direct sum of the two
faithful representations of GSCEU = SL, 11, associated to the weights w; and w, (thus
dil’l’lEO(V()) =2n+ 2)

(v.b) If (Ho, Xo) is of B, type with n = 3, then p, is the faithful spin representation of
Go, = Spiny,, g, associated to the weight @, (thus dimg, (Vo) = 2").

(v.c) If (Hy, Xp) is of C, type with n = 1, then p, is the faithful representation of
G5, = SPaur, of dimension 2n associated to the weight @ (thus dimg, (Vo) = 2n).

(v.dl) If (Ho, Xo) is of D' type with n = 4, then p, is the representation of Gy, of
dimension 2n associated to the weight <o (thus dimg, (Vy) = 2n).

(v.d2) If (Ho, Xo) is of D type with n =4, then p, is the spin representation of
Gig, = Spiny,, associated to the weights @, and @, (thus dimg, (Vo) = 2").

Let V] be Vy but viewed as a rational vector space; we keep in mind that V] has
also a natural structure of an Ej-vector space and thus also of an Fy-vector space. As
H¢ = Resg, /g Gg° is a subgroup of Resg, /g Ggg,, V1 is naturally an Hy°-module. Let H| der
be the image of the natural representation Hj® — GLy; over Q; the adjornt group of H{ der is
H,. The set of weights used in (v.a) to (v. d2) is stable under the natural action of Gal(Fo)
on the abelian group of weights and as a Gal(Fj)-set it can be identified with the Gal(Fp)-
set of vertices of ©; contained in Sy. This implies that the center of the double centralizer

Inat

of H lder in GLy; is the torus Resg, /g G,ur, (see Subsection 3.2 for F).

We take W) := Ky ®p, V1 and we view it as a rational vector space. As W) has
also a natural structure of a Ky ®p, Fi-module whose annihilator is trivial, the torus

ResK()@F F/Q GmKO@}? £, 1s naturally a subgroup of GLy,. Moreover W) has a natural
structure of a Ko-vector space. We will also identify H{ der with a semisimple subgroup of
GLyy, that commutes with 7. As Kj and the simple factors of F; are fields of CM type
(cf. Subsubsections 3.2 and 3.2.1), the maximal compact subtorus of J is the extension
to R of a subtorus .7, of 7. Let Z°(H,) be the torus of GLy;, generated by 7. and
Z(GLy,). The torus Z°(H;) commutes with H " and therefore there exists a unique re-
ductive subgroup H; of GLjy, such that the notations match (i.e., the derived group of H,
is H" and the maximal torus of the center of H; is Z°(H;)). Thus the property (iv) holds.
As H; commutes with 7, the property (iii) also holds. Let H, be the subgroup of GLyy,
generated by H" and 7; it contains Hj.

The existence of an injective map f; : (Hy, X1) — (GSp(Wi,¥,),S1) such that the
property (i) holds is part of the proof of [7], Proposition 2.3.10. We recall the part of loc.
cit. that pertains to the existence of the element /14, € X;. We have Fy ®g R = I1 R;

ieHom(Fy, R
for i € Hom(Fy, R) let 7; be the idempotent of Fy ®q R such that 7;(Fy ®q R) is thé: (t‘agtor
R of Fy ®g R that corresponds to i. Let V(i) := n;W; ®g R. We have a direct sum decom-
position W; ®qR= @ V(i) of H-modules. We also have a direct sum decom-
position ieHom(Fy, R)
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(1) M®eC= @ W)@ W)

ie Hom(Fy, R)

of Hyc-modules (and thus also of Hjc-modules), where for each i € Hom(Fy, R) the ele-
ments 71, i, € Hom(Kj, C) extend i € Hom(Fy, C) and are listed in an a priori chosen order
and where V(i) ®g C = W (i;) @ W (i) is the natural decomposition into Ky ®, iR ®g C-
modules. Each homomorphism /4, : S — Hog normalizes V(i) and thus gives birth to a
homomorphism /4, ; : S — GLy ;. Moreover, each homomorphism /4, : S — Hsr that
defines a Hodge Q-structure on W) which has a (constant) weight, factors through H .

We will choose a homomorphism /4, : S — Har such that the Hodge Q-structure
on Wi is of type {(—1,0),(0,—1)} (i.e., we have a natural Hodge decomposition
Wi ®gC = F;ﬂl’o @Fj{’;l defined by /,4,) and the following two additional properties
hold:

(vi.c) If i e Hom(Fy, R) is such that Gy xf, ;R is compact (for instance, if i is i),
then Ay, ; 1s ﬁxed (ie., centrahzed) by the image of Hr in GLy;, we have inclusions
W( = F 0 and W(zz) c F , and therefore W (i;)" is included in the Hodge filtration

(W1 ®@ ) of W ®qgC deﬁned by hy,.

(vin) If i e Hom(Fp, R) is such that Gy x, ;R is non-compact, then
hA(),i . S — GLV(,')

is the unique homomorphism such that the Hodge R-structure on V(i) is of type
{(-1,0),(0,—1)} and hy, ; lifts the non-trivial homomorphism S — Gy xf, ;R naturally
defined by /40 (here Gy xf, ;R is a simple factor of Hyg = II Go xf, iR).

i e Hom(Fp, R)

See the proof of [7], Proposition 2.3.10 for the explicit construction of /4, ; of (vi.n);
below we will only use (vi.c). We denote also by /., : S — H)r the factorization of /4,
through H;r (the weight of the Hodge Q-structure on W, defined by /4, is —1). Let X be
the H;(R)-conjugacy class of /14, : S — Hg. From (vi.c) and (vi.n) we get that the prop-
erty (i) holds. The existence of an injective map as in the property (ii) is a particular case of
the argument for [7], Corollary 2.3.3. Thus property (ii) also holds. []

3.3.1. Two extra properties. In this subsubsection we will use the notations of the
proof of Lemma 3.3. From property 3.3 (vi.c) we get that:

(i) Fori =iy e Hom(Fy, R) and each x; € X, W(i;)" is included in the Hodge filtra-
tion F (W} ®q C) of W} ®q C defined by x;.

For each i e Hom(Fp, R), the real vector space V(i) is the direct sum of all irre-
ducible subrepresentations of the representation of Gi° xp, ;R on W; ®g R. The group
Ph G¢ xf, ;R fixes both V(i) and ;. Based on the last two sentences, the

ieHom(Fy, R)\ {7}
isomorphism 6; : W) ®g R = Wi ®qg R of H-modules (or HX-modules) naturally in-

duced by ¥, has the property that for all i € Hom(F, R) it maps V(i) onto the direct sum-
mand V(i)" of W ®q R = (W) ®q R)" (i.e., we have 6, (V' (i)) = V(i)"). Thus:
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(i) Foralli,ie Hom(Fy, R) with 7 i, the restriction of v to V(i) is non-degenerate
and we have y, (V (i) ®g V(i) = 0.

3.4. The proof of Theorem 3.1. Let H,, be the smallest subgroup of H; such that
the homomorphism /4, : S — Hgr of the property 3.3 (i) factors through H, k. As either
2niy, or —2ziy, is a polarization of the Hodge Q-structure on W defined by /4, (cf. prop-
erty 3.3 (ii)), the group H, is reductive (cf. [8], Proposition 3.6). As /14 € Xp is the image of
h4, € X1, we have a natural identity H aod = H,. Let X4, be the H4,(R)-conjugacy class of
hg, S — Hyr. Let Ly, be a Z-lattice of W) such that i, induces a perfect alternating
form on Ly,.

We have an injective map fy, : (Hay, X4,) — (GSp(W1,¥),S1) of Shimura pairs,
cf. property 3.3 (ii). Let the 9-tuple (E.,, go, 1, No> N 0Ngs N ongs Bo, 2y Bo, Kay(No)) be
the analogue of the 9-tuple (E, g, 1,n, NN, NVn, B, 3, B,K4(N)) formed by entries
introduced in Subsections 2.4 and 2.5, but obtained in the context of the triple
(f4y, La,, No) instead of the triple (f4, L4, N); here the integer Ny = 3 is relatively prime
to p. Thus E4, = E(Hy,, X4,), 290 = dimg (W), etc. From Subsection 2.4.2 applied in
the context of the 7-tuple (L., - 1,5y, N oNg> N onys Bo, A2y, Kay(No)) instead of the 7-
tuple (LA, Ay A N NN NNy By dgy Ky (N)) and from the property 3.3 (iii), we get that we
can naturally view K as a (D-algebra of Q-endomorphisms of each pull back of the abelian
scheme %, via a C-valued point of Sh(H,, X4,)/K4,(No). This implies that, up to a re-
placement of Ny by a positive integral power of it, we can view K, as a Q-algebra of Q-
endomorphisms of the pull back of %, to the spectrum of the ring of fractions of Ay,
and thus also (cf. [10], Chapter I, Proposition 2.7) as a @-algebra of Q@-endomorphisms of
either %, or %y. This represents the moduli analogue of the property 3.1.1 (i).

The main point of the proof of Theorem 3.1 is to show that .4/ on, \-/on, has no points
of characteristic p (the argument relies on Lemma 2.8 and it extends until Subsubsection
3.4.5). Let k be an algebraic closure of the field [,.

3.4.1. An assumption. We will show that the assumption that there exists a
morphism ¢ : Spec(k|[[x]]) — Aoy, with the property that it gives birth to morphisms
qsp : Spec(k) — Non, and geen : Spec(k((x))) — Ao, that factor through Aoy, \ A on, and
Non, (respectively), leads to a contradiction (the argument will extend until Subsubsection
3.4.5). Let C := ¢*(%,); it is a semiabelian scheme over k[[x]], whose generic fibre Cy ) is
an abelian variety over k((x)) and whose special fibre Cj is a semiabelian variety over k
that is not an abelian variety. Moreover, Ac,,, = qgen(4,) is @ principal polarization of
Ci(x)- The next three subsubsections represent the moduli analogue of the property 3.1.1
(ii).

3.4.2. Notations. Let k; := k((x)). Let B(k;) be the field of fractions of the Witt ring
W (k) of ki and let ¢ be its Frobenius automorphism. Let (M, ¢,,,) be the principally
quasi-polarized F-isocrystal over k; of (the principally quasi-polarized p-divisible group
of) (Ci(x), Ay )i,- Thus M is a B(kj)-vector space of dimension 2gy = dimg(W1),
¢: M= M is a o-linear automorphism, and ,, : M ®p) M — B(k1) is a non-
degenerate alternating form which has the property that for all a, b € M we have an identity
Yy (B(a) ® ¢(b)) = po(¥y(a®b)). Let O be a finite discrete valuation ring extension of
W (k) such that we have a morphism ¢ : Spec(O) — Ay, with the property that it gives
birth to a morphism ¢, : Spec(ki) — Aon, Which factors through ggen, cf. [12], Corollary
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(17.16.2) applied to the flat morphism Ay, Xspec(z) Spec(W (k1)) — Spec(W (k1)). By en-
larging O, we can assume that the field of fractions L of O is naturally an algebra over the
Galois extension of Q generated by K, and E; thus Ky ®¢g L — L%o:Ql apnd therefore the set
Hom(Kj, L) has [Kj : Q] elements.

Let (D, Ap) := q5 (%o, A#,); it 1s a principally polarized abelian scheme over O. We
fix an embedding i; : L — C that extends ig; thus we can speak about D¢. Viewing K
as a Q-algebra of Q@-endomorphisms of the pull back D of %, (cf. Subsection 3.4), we get
that we have a natural Q,-monomorphism Ky ®q Q, — End(M,¢). Thus M has a nat-
ural structure of a Ky ®q B(k1)-module and therefore also of an Fy ®g @,-module. As
Fy ®q Q, = [] Fy, we have a unique decomposition of F-isocrystals over k;

jeJ
(2) (M, ¢) = D(M;, ¢)

jel
with the property that each M, is an Fy;-vector space.

We apply Subsection 2.4.2 in the context of
(Lags gy, 1, N9 N oNgs N 0Ng> Bos 2y s Ky (N0))
instead of (L, 1, n, NN, NN, B, 45, K4(N)). Thus we have an identity
H(D(C),Q) = W

which is compatible with the natural Ky-actions. Moreover, the non-degenerate alternating
form on H,(D(C), Q) induced by Ap is a non-zero rational multiple of ;.

3.4.3. Proposition. The F-isocrystal (Mj,, $) has slopes 0 and 1 with multiplicity zero.

Proof.  Let Mjgo be the Q,-vector subspace of M, formed by elements fixed by ¢.
Thus M} := M* ®q, B(ki) is the maximal B(k;)-vector subspace of Mj, that is normal-
ized by ¢ and such that all slopes of (]\4].2, ¢) are 0. Obviously Mjgo is a Ko ®g Q,-module
and thus K, acts on Mj%q As M, is an F;,-vector space and as Ky, is a field (see Subsub-
section 3.2.1), M is a Ky;,-vector space.

Let F} be the L-vector subspace of M ®p(k,) L that defines the Hodge filtration of
M ®p 1) L associated to the abelian variety Dy via the functorial (in D) identification
M ®p) L = Hgp (D/L) (see [2], Theorem 1.3). As D is an abelian scheme over O, the
triple (M, ¢, F}) is an admissible filtered module over L in the sense of [11], Subsubsec-
tion 5.5.2 (cf. [11], Theorem of 6.1.4) and thus it is also a weakly-admissible filtered
module over L in the sense of [11], Definition 4.4.3 (cf. [11], Subsubsection 5.5.3). This im-
plies that the Hodge polygon p of (Mjg ®p(k,) Ls (Z\/[J(g ®py L) N F Ll) is below the Newton
polygon py of (M]g, $), cf. [11], Proposition 4.4.2. As py, has all slopes 0, we get that in fact
Py = py- Thus (M) ®py,) L) F} = 0.

We fix an algebraic closure L of L and we identify (to be compared with Subsubsec-

tion 3.2.1) @ and Q, with their algebraic closures in L. Thus we also identify the set

Hom(F), Q) = Hom(F), R) with the two sets Hom(Fy, Q,) and Hom(Fp, L) = Hom(Fy, L)

(resp. we identify the sets Hom(Ky, @) = Hom(Ky, C) and Hom(Kj, L) = Hom(Kj, L)).
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Let I 13 (resp. Iy, ) be the subset of Hom(Kjy, L) (resp. of Hom(Fp, L)) formed by em-
beddings Ko — L (resp. Fy — L) that have the property that (under them) the local ring O
of L dominates the ring of integers of Fy;, in such a way that the resulting embedding
Fyj, — L is defined by an embedding Fy;, — Q, which, up to Gal(Q,)-conjugation, is (cf.
Subsection 3 2) the element iy € Hom(F, R). As Ky, is a quadratic field extension of Fy;,,
the subset I o ) of Hom(Kj, L) has [Ky;, : Q,] elements and is Gal(K,/Fp)-invariant. More—
over the set Iy , has [Fy;, : Q,] elements and it is naturally identified with the quotient of I(g
under the action of Gal(Ky/Fy) on it. Let

00 Oio, .
jujo ®@p L Jo ®B(k1) L= @ ]ujo "
io, . e Hom(Ky, L)
be the natural decomposmon into Ky ®g L-modules. As M (go is a Kjj,-vector space, each
]\4]2"’ “with iy 1 € Ié )'is an L-vector space which is trivial if and only if M 00—,

Formula (1) and the above two identifications M ®p,) L = Hiz(Dr/L) and
H;(D(C),Q) = W, are functorial in D. We recall that K, is naturally a subfield of
End(D) ®7 Q (cf. Subsection 3.4) and that the principal polarization Ap of D is defined
by an isomorphism D = D'. From the last two sentences we get that we have natural iden-
tifications of Kj-vector spaces

(3) M ®p,) C = Hig (Dc/C) = H'(D(C),Q) ®, C
=W ®,C= @ Wi)eWhm),
ie Hom(Fp, R)

under which the following three properties hold (see [8], Section 1 for those properties that
pertain to the relation between the de Rham and the Betti cohomologies of D¢):

i) F! ®; C gets identified with the Hodge filtration of W;* ®¢ C defined by a point
(i) F,®.Cg g I ®q yap
X1 € X1 that is naturally associated to D¢.

(i) M, ®p,) C gets identified with ( &b V(i)*) ®p C (see proof of Lemma 3.3 for
the V' (i)’s). ieh.p

(iii) ,, gets identified with a non-zero multiple of the non-degenerate alternating
form on W} ®¢q C naturally induced by the non-degenerate alternating form y; on Wj.

From properties (ii), (iii), and 3.3.1 (ii), we get that ,, restricts to a non-degenerate
alternating form on Mj, and thus it defines a principal quasi-polarization of (Mj,, ¢). There-
fore the F-isocrystal (M;,, ¢) has slopes 0 and 1 with equal multiplicities. Thus to end the
proof of the proposition, it suffices to show that the assumption that (M, iy ¢) has slope 0
with positive mult1phc1ty leads to a contradiction. We have dimp,)(M 0) = 1; thus for
oL € 1(2) we have M/ Ot 10,

Under the identification Hom(Fy, R) = Hom(F, L), to the subset I , of Hom(F, L)
corresponds a subset /) of Hom(Fy, R) that contains the embedding iy : Fy — R of Subsec-
tion 3.2. Let iy, i, : Ky — C be the two embeddings that extend i := iy and that are listed in
the same order as in the proof of Lemma 3.3. As the set /; @ 0.0 is Gal(Ky/ Fy)-invariant, there
exist elements i} , and iy , of I that correspond to 7 and ir (respectively) via the identifi-
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cation Hom(Ky, C) = Hom(Ky, L). From property 3.3.1 (i) we get that the identifications
of formula (3) give birth to inclusions

O”p®Bk1 CCW(II)*gFLI@DLC
Thus MOI1 " ®p() L  F}. Therefore (M) ®p,) L) N F} 2 MOI”’ ®sp(k,) L 2 0. This
contradicts the identity (M;; ) ®pu) L) N F] = —0.

3.4.4. The study of C. We now use Proposition 3.4.3 to reach the contradiction
promised in Subsubsection 3.4.1. Let T} be the maximal torus of the semiabelian variety
Ck. As Cy is not an abelian scheme, we have 1 < dim(7}%). Let Ko7 := Ky n End(C) (the
intersection being taken inside End(C) ®7 Q); it is a Z-order of Kj. As Kyz acts on C, it
also acts on T} and thus also on the free Z-module X*(7}) of characters of Tj. Let
m,l e N.

There exists a unique torus Ty ; of Cyqyyj/(xr) Which lifts Ty, cf. [9], Exp. IX, Theorem
3.6 bis. Loc. cit. implies that we have a canonical identification Ty ; = T} xx k[[x]]/(x")
that lifts the identity automorphism of 7. Thus Tj [p™] = Ti[p™]x(x1) is naturally a
closed subgroup scheme of Ck[ /ey [P™]. Due to the uniqueness property of Ty 1, the torus
Tk 141 lifts Ty ;. Thus by passing to the limit / — oo, we get that Ty[p” ]k[[x” is naturally
identified with a closed subgroup scheme of Ciy[p™] and thus that T [p™]y ) is naturally
identified with a closed subgroup scheme of Cy)[p”]. To check that these last identifica-
tions are functorial, it suffices to show that for each closed, semiabelian subscheme C’ of
C?, the unique subtorus 7 , of C; 1[1x)/() that lifts the maximal torus 77 of Cy, is a subtorus
of T ,(2 AsTlisa subtorus of T, 2, from the uniqueness part of loc. cit. we get that: (i) there
exists a unique subtorus 7', of T}, that lifts 7, and (i) we have an identity 7} , = T}, of
subtori of Cy /(). Thus T, is a subtorus of 77,

The closed embedding homomorphism ©,, : Ti[p"|(v) = C(x)[p™] is compatible
with the natural Kjyz-actions, cf. the functorial part of the previous paragraph. By tak-
ing m — oo we get that we have a monomorphism @, : Tk[poo]k«x» — Ci(x)lp™] of p-
divisible groups over k((x)) which is compatible with the Kjz-actions. The F-isocrystal of
the p-divisible group Ty[p™];, is the pair (X*(T;) ®7 B(k1), lx+(1,) ® po) (such an identi-
fication is unique up to a scalar multiplication by a unit of Z,). To ®, corresponds an
epimorphism of F-isocrystals over ki,

(4) Op: M — X*(Ty) ®z B(k1),

which is compatible with the Kjz-actions. As M is a Ky-vector space (cf. formula (3)), Koz

can not act trivially on a quotient of M of positive dimension. Due to this and the existence

of the epimorphism 0., (see (4)), the action of Koz on X *(T}) is non-trivial i.e., it is defined

by a Z-monomorphism Kyz — End(X *(Tk)). Due to this property, the unique decom-

position X*(7y) ®z @, = @ X *(T); with the property that each X*(7%); is an Fy;-vector
jeJ

J
space (to be compared with formula (2)), is such that every Fy;-vector space X *(7%); is non-
zero. From this and the existence of the epimorphism 6., (see (4)), we get that for the ele-
ment j, € J we have an epimorphism

O iy (Mjy, ) — (X "(Tk);, ®a, B(ki), Lz, ®P0')
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of F-isocrystals over ki. Thus (M;,, #) has slope 1 with positive multiplicity. This contra-
dicts Proposition 3.4.3, i.e., the assumption of Subsubsection 3.4.1 leads to a contradiction.
In other words, a morphism ¢ : Spec(k[[x]]) — .4on, as in Subsubsection 3.4.1 does not
exist. Thus the complement ./ on, \-/on, has no points of characteristic p, cf. Lemma 2.8
(applied to (Ao, A4,)) and the fact that 4y (equivalently, (Ho, Xy)) has compact factors.

3.45. End of the proof of Theorem 3.1. We recall that .1} oN, 1S a projective
Ok, [1/No]-scheme and that (cf. Proposition 2.7 (a) applied in the context of f4,) we have
NoweEs, = NNy, From this and the identity (/on,\ /0N )rear, = O (cf. end of Subsec-
tion 3.4.4), we get that, by replacing Ny with Nycy for some number ¢, € N relatively prime
to p, we can assume that in fact we have Ay, = JVONO.

By replacing E with a finite field extension of it, we can assume (see proof of Fact 2.6)
that there exists a morphism u, : Spec(E) — Ay such that (4, 14) = u’y(%, 1%) and:

(i) The composite of the morphism Spec(C) — Spec(E) defined by ig with uy is the
point of Ay(C) = Sh(H4, X4)/K4(N)(C) = H (Q)\ (X4 x Hs(As)/K4(N)) defined by
the equivalence class [/4, 1y,] (here 1y, is the identity element of H,(Ay)).

By replacing N and Ny with Nc and Nyco, where ¢ and ¢y are natural numbers prime
to p, we can assume that there exists a compact open subgroup Ky of Hy(Ay) such that the
images of both K4(N) and Ky, (Ny) in Hyo(Ay), are contained in K,. We have functorial
morphisms

Sh(HA,XA)/KA(N) — Sh(Ho,Xo)/KO and Sh(HAmXAO)/KAO(NO) — Sh(H(),X())/Ko,

the last one being finite. Based on this and the property (i), by replacing E with a finite field
extension of it, we can assume that there exists a morphism uy, : Spec(E) — Ay, such
that the E-valued points of Sh(Hy, Xy)/Ko naturally defined by u4 and u,, coincide and
moreover:

(i) The composite of the morphism Spec(C) — Spec(E) defined by ip with uy, is
the point of JVONO(C) = Sh(HAO, XAO)/KAO (N())(C) = HAO(@)\(XAO X HAO(AJ")/KAO (N()))
defined by the equivalence class [/14,, 1] (here 1y, is the identity element of H 4, (Ay)).

Let (Ao, A4,) := uj;o(ﬂo, J#,). We can naturally identify the triple (W,y;, X))
with (W4, ,,, X4,) and thus the notations for (Ao, 44,) and for the following 9-tuple
(Eay, 90: gy 1, 80> N oNg> N ongs Bo, Ay, Bo, Kay(No)) match. Based on property (i) and the
definition of H,, in the beginning of Subsection 3.4, we get that the Mumford-Tate group
of Aoc is Hy,. Thus, as hy, lifts /40, property 3.1 (a) holds. As Aoy, = Aon,, property 3.1
(b) also holds. This ends the proof of Theorem 3.1. As Ay, = Aon,, property 3.1.1 (ii)
holds trivially. As we have a natural monomorphism K, — End(Aoc) (cf. Subsection 3.4)
and as [Kj : Q] = 2[F : Q] = 4, the property 3.1.1 (i) also holds. [

§4. Proof of Theorem 1.2, examples, and applications

In Subsection 4.1 we prove Theorem 1.2. Example 4.2 is completely new. Corollary
4.3 is an equivalent form of Theorem 1.2. In Subsections 4.4 to 4.6 we apply Corollary 4.3
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to Néron models and to integral models of Shimura varieties of preabelian type. We use the
notations of the first paragraph of Section 1 and of Subsection 2.4.

4.1. Proof of Theorem 1.2. In this subsection we use the embedding ig : £ — C to
view E as a subfield of C. Accordingly, all finite field extensions of E will be viewed as sub-
fields of C that contain £ and their composites will be taken inside C. To prove Theorem
1.2, we can assume that the abelian variety 4 has a principal polarization 44 (cf. Subsection
2.3) and that the group H39 is non-trivial (cf. Lemma 2.3.1). Let N4 e N be such that 4
extends to an abelian scheme over Og[l1/N4]. Suppose that for each prime divisor p of
N4, there exists a finite field extension E, of E such that 4g, has good reduction with re-
spect to all primes of E, that divide p. If E; is the composite field of £ and of all the fields
E,’s with p a prime divisor of N4, then Ag, extends to an abelian scheme over Op,. Thus to
end the proof of Theorem 1.2, we only need to show that the finite field extension E, of E
exists for all prime divisors p of N4.

To check this, we can replace E by any finite field extension of it. Let

(Hi%, X3 = 11 (H,, X))
te¥
be the product decomposition into simple, adjoint Shimura pairs. By replacing E with a fi-
nite field extension of it, based on Theorem 3.1 we can assume that for each ¢ € T there
exists a principally polarized abelian variety (A4,, 14,) over E such that the following prop-
erties hold:

We have an identity (H34, xad H,, X;) with the property that the homomor-
A,
phism had S — H ir=Hmr is the homomorphlsm h4; of Subsubsection 2.4.1.

(ii) There exists an integer N, = 3 that is relatively prime to p and such that we have
Na, N, = N4, n, (ie., and such that the statement 2.6 (b) holds for (A4,,44,, N;)).

Let E, , be a finite field extension of E such that 4,g, , has good reduction with respect
to all primes of E,, , that divide p, cf. property (ii) and the last part of Fact 2.6 applied to 4,.
Let E, be the composite field of E, ;’s, with t € T. Let B := [] A,; it is an abelian variety
te¥
over E with the property that B; has good reduction with respect to all primes of E that
divide p. The group H3d is the smallest subgroup of H34 = [] H, with the property that
teT
h3d = [T hu, factors through H34, cf. the very definition of H,. The Mumford-Tate group
teT
Hp is a subgroup of [ H,, that surjects onto all groups H,4,. This implies that H3¢ is the
1ex
smallest subgroup of [] H5® with the property that 3’ = ] 44" factors through Hjf.
te¥ teT
From the last two sentences and the property (i) we get that:

(iii) We have identifications (H39, X39) = H (H,, X;) = (H3, X39) with the prop-

erty that the homomorphism 433 : S — H3d = H jR is the homomorphism 43 of Subsec-
tion 2.4.

The reductive group H.,.p is a subgroup of H4 xq Hp whose adjoint is (cf. property
(iii)) isomorphic to H34 = H3d. As B; has good reduction with respect to all primes of E
that divide p, from the property (iii) and [26], Proposition 4.1.2 we get that there exists a
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finite field extension E, of E » such that 4g, has good reduction with respect to all primes of
E, that divide p. Thus the finite field extension E, of E exists for each prime divisor p of
N,4. This ends the proof of Theorem 1.2. []

4.2. Example. Let F be a totally real, cubic, Galois extension of Q; for instance, we
can take F to be Q({; + {5 1), where (7 is a primitive root of 1 of order 7. We assume that
H3d is a simple group of the form Resp/g G for some absolutely simple, adjoint group G
over F of B, (resp. of D,) Dynkin type with n = 2 (resp. with n = 4). We also assume that
the product decomposition H jﬁé = F1 Xr % Xr 3 into simple factors is such that 7 and
F are non-compact and %3 is compact. Thus 4 has compact factors and therefore the
Morita conjecture holds for A, cf. Theorem 1.2.

We identify Lie(H ) with Lie(H3) = Lie(#1c) @ Lie(Fac) @ Lie(F3c). We check
that the representation of Lie(H3l) on W, ®q C is free of tensor products i.e., it is a
direct sum of irreducible representations of either Lie(Z#)c) or Lie(F,c) or Lie(F3c).
We show that the assumption that this is not true, leads to a contradiction. This assump-
tion implies that there exists s € {2,3} and ¥4,..., % € {Lie(#¢c), Lie(Z2c), Lie(F3c) }
such that a suitable simple Lie(Hj%)-submodule Wo of Wys®gC is a tensor product
W1 Qc -+ ®c s, where # is a simple Z,-module for all r € {1,...,s}. As the representa-
tion of Lie(H3l) on Wy ®q C is defined over Q and as F is a cubic Galois extension of
@, we can choose # such that we have ¥ = Lie(Z)¢c) and % = Lie(Z¢). As the images
of yy in ¢ and Fc are non-trivial, for s =2 (resp. for s = 3) the Hodge filtration
(F “(W()))ae , of Wy defined by x, is the tensor product of non-trivial Hodge filtrations
of #7 and #5 (resp. is the tensor product of non-trivial Hodge filtrations of #7 and %,
and of a trivial Hodge filtration of #73); here by a trivial filtration of W, we mean a
filtration of W, that does not contain any proper subspace of W,. We easily get that
there exists a € Z\{—1,0} such that F¢(#3)/F*'(#3) +0. Thus u, does not act on
Fa(94)/Fe(#4) via either the trivial or the identical character of G,,¢c. This contradicts
the very definition of z 4.

As the representation of Lie(H3%) on W, ®q C is free of tensor products, from Re-
mark 2.3.2 and [26], Proposition 2.2.3 we get that the results of [26] (which pertain to per-
fectly tens-twisted representations defined in [26], Definition 2.2.2) do not imply that the
Morita conjecture holds for 4. Thus our example is completely new.

Based on Proposition 2.7 (b), we have the following equivalent form of Theorem 1.2.

4.3. Basic Corollary. We assume that the principally polarized abelian scheme
(A4, A4) over the number field E is such that A has compact factors. Let Ey4, g, ;1 n, and
Ny be as in Subsection 2.4. Then the normal Og,[1/N|-scheme Ny is projective and it is a
finite scheme over (., LN) oy, [1/N)-

4.4. Néron models. Let 7" be the field of fractions of an integral Dedekind ring &.
Let Z4 be a smooth, separated #"-scheme of finite type. We recall (cf. [4], page 12) that a
Néron model of Z over Z is a smooth, separated Z-scheme Z of finite type that has Z
as its generic fibre and that satisfies the following universal (Néron mapping) property:

For each smooth Z-scheme Y and each A -morphism yy : Yy — Z, there exists a
unique morphism y : Y — Z of &-schemes that extends y .y .
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A classical result of Néron says that each abelian variety over #" has a Néron model
over &, cf. [23]. This result has an analogue for the case of torsors of smooth group
schemes over ¢ of finite type, cf. [4], Subsection 6.5, Corollary 4. On [4], page 15 it is
stated that the importance of the notion of Néron models “seems to be restricted” to ““tor-
sors under group schemes”. It was a deep insight of Milne which implicitly pointed out that
Néron models are important in the study of Shimura varieties, cf. [17], Definitions 2.1, 2.2,
2.5, and 2.9. In this subsection we bring to a concrete fruition Milne’s insight: we will use
Corollary 4.3 and [30] to provide large classes of projective varieties over certain #"’s which
have projective Néron models and which often do not admit finite maps into abelian vari-
eties over .#". For the rest of the paper we will use the notations of Section 1 and Subsec-
tions 2.4 and 2.5.

4.4.1. Proposition. We assume that the principally polarized abelian scheme (A, 2.4)
over the number field E is such that A has compact factors. We also assume that the reflex field
E 4 of (H4, X.4) is unramified at all primes not dividing N and that the Og,[1/N]-scheme Ny of
Subsection 2.4 is smooth. Then Ny is the Néron model of N g, = Sh(H 4, X4)/K4(N) over
Og,[1/N].

Proof. Let Y be a smooth Og,[1/N]-scheme. Let yg, : Y, — Ayg, be a morphism
of E -schemes. Let U be an open subscheme of Y such that it contains Yg, and yg, ex-
tends uniquely to a morphism yy : U — Ay. As the Og,[1/N]-scheme ./ is projective
(cf. Corollary 4.3), we can assume that the codimension of Y\U in Y is at least 2.

Let (By, As,) = y{,(#, A3). The abelian scheme By extends to an abelian scheme By
over Y (cf. [30], Theorem 1.3) in a unique way (cf. [17], Corollary 2.12). Also Ap, extends
uniquely to a principal polarization Ag, of By, cf. [17], Proposition 2.14. Obviously, the
level-N symplectic similitude structure of (By, Ap,) extends uniquely to a level-N symplec-
tic similitude structure of (By, 4p,). Thus the composite of y; with the finite morphism
NN — 4,1, § extends uniquely to a morphism z : ¥ — .o | y. As Y is normal and as the
morphism Ay — .o, 1 y is finite, z factors uniquely through a morphism y: Y — Ay.
Obviously y extends yy and thus also yg,. From this and the uniqueness of y and yy, we
get that .4y satisfies the Néron mapping property. Thus ./ is the Néron model of
(/VNEAZSh(HA,XA)/KA(N) over OEA[I/N] O

4.4.2. Remark. If N has many prime divisors, then K,(N) is a sufficiently small
compact open subgroup of H,(Ay) and thus Sh(H 4, X4)/K4(N) is a projective, smooth
C-scheme of general type (see [16], §2, Subsection 1.2). Thus ./} is not among the Néron
models studied in [4]. If the Albanese variety of each connected component % of
Sh(H4,X4)o/K4(N) is trivial, then Sh(Hy4, X4)/K4(N) is not a finite scheme over an
abelian variety over E,. Example: if H?® = SU(a,b)2 xg SU(a+b,0)2, with
a,b e N\{1,2}, then we have H':*(%(C), C) = 0 (cf. [25], Theorem 2, 2.8 (i)) and thus the
Albanese variety of € is trivial; therefore the connected components of the projective E 4-
scheme Sh(H 4, X4)/K4(N) are not finite schemes over torsors of smooth groups over E.
This remark was hinted at in [30].

4.5. Example. We assume that 4 has compact factors, that N € 6N, and that the
Zariski closure Hy y of Hy in GL i y is a reductive group scheme over Z[1/N]. We
also assume that if (H34, X34) has a simple factor of 4, type, then either all prime factors
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of n+1 divide N or the degree of the isogeny H — HY divides N." Let p e N be
an arbitrary prime that does not divide N; thus p = > S. Let Z(,) be the localization of Z
with respect to p. As H, Nz, is a reductive group scheme over Z )» the field E 4 is unrami-
fied over p (cf. [18], Corollary 4.7 (a)). Thus the normalization E 4, of Z(,) in E4 is a finite,
¢tale Z(,)-algebra. This implies that E 4 is unramified at all primes not dividing N. In the
next two paragraphs we check that ./ is a smooth Og,[1/N]-scheme.

The E,4-scheme Sh(H,, X4)/K4(N) is smooth and the natural quotient morphism
Sh(H4,X4) — Sh(H4,X4)/K4(N) is a pro-étale cover, cf. Subsection 2.4. We define

M= proj.lim. o g . Itis well known that we can identify
NeNN,gc.d.(N,p)=1 )

Mo = Sh(GSp(Wa, W), S4)/GSP(La, Vi) (Z,)

and that ./ is the integral canonical model of the Shimura triple

(GSP(Wit, ), S, GSP(La, Y14)(Z,)

as defined in [29], Subsubsectlons 3.2.6 and 3.2.3(6) (see [17], Theorem 2.10 and [29], Ex-
ample 3.2.9). Let A7) := 47" () be the normahzatlon of /g, in (the ring of fractions of)
Sh(Hy,X4)/Han(Zp); the E 4-scheme A7, (r) — Sh(HA,XA)/HA ~(Zp) is a pro-étale cover
OfJVNEA = Sh(HA,XA)/KA( )

From the proof of [29], Proposition 3.4.1 we get that .#"(?) is a pro-étale cover of
NNE,,, (the prev10us paragraph implies that conditions (i) and (ii) of loc. cit. hold in the
ontext of .4 and A" (P)). As p > 5, from [29], Subsubsections 3.4.1, 3.2.12, and 6.4.1 we get
that .#"(?) is the integral canonical model of the Shimura triple (H 4, X4, Han(Z,)). Thus
() is a regular, formally smooth E A(p)-scheme. This implies that Ayg, , is a smooth
E 4(p)-scheme. As p e N was an arbitrary prime that does not divide N, we conclude that
Ny 1s a smooth Og,[1/N]-scheme.

Thus ./ is a Néron model of A yg, over Og,[1/N], cf. Proposition 4.4.1.

4.6. Remarks. (a) Either [14], §5 or [32] can be used to provide many examples sim-
ilar to the one of Example 4.5 but with N relatively prime to either 2 or 3.

(b) We refer to Example 4.5; thus the prime p is at least 5. As ./ is a projective,
smooth Og,[1/N]-scheme (cf. Corollary 4.3 and Example 4.5), .#"(?) is a pro-étale cover
of a projective, smooth E 4, -scheme. This validates the erroneous [29], Remark 6.4.1.1(2)
for the case of Shimura pairs (G, X) of abelian type that have compact factors. In other
words, if the group Gg, is unramified, then the scheme Sh,(G, X') proved to exist in [29],
Theorem 6.4.1 is a pro-€tale cover of a smooth, projective scheme over the normalization
of Z, in E(G,X). Based on [29], Subsection 6.8 and Subsubsections 6.8.1 and 6.8.2(a),
in the last sentence one can replace “abelian type” by “preabelian type”. Implicitly, this
validates [29], Subsubsection 6.4.11 for all Shimura pairs (G, X) of preabelian type that

1) This condition is not truly needed. It is inserted only to avoid the error which was made in the b) part of
[29], Theorem 6.2.2 and which is eliminated in [32].
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have compact factors. We recall that a Shimura pair (G, X) is said to be of preabelian type,
if (G*4, X4) is isomorphic to (H34, X 29) for some abelian variety 4 over a number field £
(see [17], [29], etc.). If moreover one can assume that we have central isogenies
HI — G4 — G4 5 H3 then (G, X) is said to be of abelian type.
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