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ABSTRACT. Let p be a prime. Let R be a henselian regular local ring
of mixed characteristic (0, p) and dimension 2. Let k be the residue field of
R and let R̂ be the completion of R. We write R̂ = C(k)[[x, y]]/(f), where
C(k) is the Cohen ring of k and where f ∈ C(k)[[x, y]] is a regular parameter.
We prove that R is p-quasi-healthy (i.e., each Barsotti–Tate group over the
punctured spectrum of R extends to a Barsotti–Tate group over Spec(R)) if
and only if f does not belong to the ideal (p, xp, yp, xp−1yp−1) of C(k)[[x, y]].
The ‘if’ part was proved before by Vasiu–Zink. The ‘only if’ part is new
and generalizes prior counterexamples of Gabber and of Vasiu–Zink to the
work of Faltings–Chai. The paper also contains some results in the case
when the henselian assumption is weakened and a few general properties of
p-quasi-healthy regular rings of arbitrary dimension.
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1 Introduction
Let p be a prime. Let R be a regular local ring of mixed characteristic (0, p)
and dimension at least 2. Let k be the residue field of R. Let X = Spec(R)
and let U be punctured spectrum of R (i.e., the complement in X of the
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closed point Spec(k) of X). We recall from [VZ], Def. 2 that R is called p-
quasi-healthy if each Barsotti–Tate group over U extends to a Barsotti–Tate
group over X; such an extension is unique up to unique isomorphism. Let R̂
be the completion of R. For basic properties of the Cohen ring C(k) of k we
refer to [C], Sect. 6 and [M], Subsect. 29. If k is perfect, then C(k) = W (k)
is the ring of p-typical Witt vectors with coefficients in k.

In [VZ], Thm. 3 it is shown that there exist large classes of p-quasi-
healthy regular local rings of dimension 2. We prove a converse of loc. cit.
that classifies all such R which are p-quasi-healthy as well as henselian of
dimension 2.

Theorem 1 We assume that R is of dimension 2. We write

R̂ = C(k)[[x, y]]/(f),

where C(k) is the Cohen ring of k and where f ∈ C(k)[[x, y]] is a regular
parameter. Then the following three properties hold:

(a) If f does not belong to the ideal (p, xp, yp, xp−1yp−1) of C(k)[[x, y]],
then R is p-quasi-healthy.

(b) We assume that R is henselian and that

f ∈ (p, xp, yp, xp−1yp−1) ⊂ C(k)[[x, y]]

(thus the reduction f̄ of f modulo p is a non-zero element of the ideal
(xp, yp, xp−1yp−1) of k[[x, y]]). Then there exists a homomorphism γ : G →
µµµp,X of finite flat commutative group schemes annihilated by p over X with G
connected of order p2 if f /∈ (p, xp, yp) or of order p3 if f ∈ (p, xp, yp) which
is not an epimorphism but whose restriction to U is an epimorphism. More-
over the kernel of γU : GU → µµµp,U extends to a finite flat group scheme over
X which is either a form of (Z/pZ)X (if G has order p2) or is a connected
truncated Barsotti–Tate group of level 1 over X of height 2 and dimension 1
(if G has order p3).

(c) We assume that R is henselian. Then R is p-quasi-healthy if and only
if f does not belong to the ideal (p, xp, yp, xp−1yp−1) of C(k)[[x, y]].

Theorem 1 (a) is essentially proved in [VZ], Thm. 3. From [VZ], Lem.
27 applied to homomorphisms γ : G→ µµµp,X as in the Theorem 1 (b), we get
that Theorem 1 (b) implies the ‘only if’ part of Theorem 1 (c). Theorem 1
(b) is an application of the following general result.
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Proposition 1 Let R be a henselian local ring whose residue field has char-
acteristic p. We assume that there exist elements x, y of the maximal ideal
of R and elements a, b, c of R with c either 0 or a unit of R such that we
have an identity

p+ axp + byp + cxp−1yp−1 = 0.

Then there exists a homomorphism δ : G → µµµp,X of finite flat commutative
group schemes annihilated by p over X = Spec(R) with G connected of order
p2 if c is a unit of R or of order p3 if c = 0 whose restriction to Spec(R) \
Spec(R/(x, y)) is an epimorphism and which at every point of Spec(R/(x, y))
is not an epimorphism. Moreover the kernel of this restriction extends to a
finite flat group scheme over X which is a connected truncated Barsotti–Tate
group of level 1 over X of height 2 and dimension 1 if c = 0, is a form of
(Z/pZ)X if c is a unit of R, and it is (Z/pZ)X if and only if c is the (p−1)-th
power of a unit of R.

If R is strictly henselian and if Spec(R/pR) is not irreducible but all
its irreducible components have multiplicities divisible by p− 1 (e.g., if k is
separably closed, R is complete, and f = p− xp−1yp−1), then Theorem 1 (b)
is proved in [G1]. In the proof of [VZ], Thm. 28 it is shown that a variant
of the first part of Theorem 1 (b) holds provided R = R̂ is of dimension 2, k
is perfect, and one of the following three conditions hold:

(i) The element f̄ is divisible by up, where u is a non-zero element of the
maximal ideal (x, y) of k[[x, y]].

(ii) There exists a regular sequence u, v in k[[x, y]] such that up−1vp−1 di-
vides f̄ .

(iii) The element h = p − f belongs to the ideal (x, y) of W (k)[[x, y]] and
there exist ā, b̄, c̄ ∈ k[[x, y]] such that h̄ = −f̄ = (āxp+b̄yp+c̄xp−1yp−1)c̄.

If (ii) or (iii) (resp. if (i)) holds, then loc. cit. constructs a homomorphism
γ : G → H with G connected of order p2 (resp. of order p3) and with H
connected of order p which in general is not µµµp,X . If (iii) holds and c̄ is not
a unit (i.e., h = −f̄ = (ā1x

p + b̄1y
p)(ā2x+ b̄2y) with ā1, ā2, b̄1, b̄2 ∈ k[[x, y]] is

a particular type of elements one gets in Theorem 1 (b) for c = 0), then H
is not a form of µµµp,X and moreover the kernel of γU : GU → HU extends to a
connected finite flat group scheme over X of order p; thus the homomorphism
γ : G→ H is unrelated to the homomorphisms of Theorem 1 (b).

3



Section 2 is of algebraic nature and provides the necessary computations
with matrices of small (up to 3×3) sizes that are required to prove Proposition
1 in the particular case when R is regular complete and x, y is part of a
regular system of parameters of R using the language of Breuil modules
over a suitable frame associated to a ring of formal power series in as many
variables as the dimension of R with coefficients in the Cohen ring of the
residue field of R (see Subsection 3.1). Section 3 proves Proposition 1 in
three steps: the first one is the particular case mentioned, the second step
appeals to Artin’s approximation theorem in a context modeled on the first
step, and the third step introduces the universal rings whose spectra have
local rings of residue characteristic p inducing henselizations to which the
second step applies. Section 4 proves Theorem 1.

We recall that the complete local ring R̂ is henselian. Thus directly from
Theorem 1 (c) applied also to R̂ we get:

Corollary 1 We assume that R is henselian of dimension 2. Then R is
p-quasi-healthy if and only if R̂ is p-quasi-healthy.

Subsection 4.4 proves the following consequence of Theorem 1 (c).

Corollary 2 Let k be a field of characteristic 2 (thus p = 2). Then up to
isomorphisms C(k)[[x]] is the only regular complete local ring of dimension
2 and residue field k which is 2-quasi-healthy.

In Sections 6 we prove the following theorem:

Theorem 2 There exists a smallest np ∈ N∗ with the property that for
each regular local ring R of dimension 2 whose henselization Rh is not p-
quasi-healthy, there exists a local étale homomorphism R → R′ such that the
following three properties hold:

(i) the residue field of R′ is k;
(ii) we have [Frac(R′) : Frac(R)] ≤ np;
(iii) the regular local ring R′ is not p-quasi-healthy and in fact there exists

a local finite étale homomorphism R′ → R′
+ with the property that there exists

a homomorphism γ′ : GX′
+
→ µµµp,X′

+
over X ′

+ = Spec(R′
+) whose extension to

the henselization of R′
+ is a homomorphism as in Theorem 1 (b).
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Five general lemmas required to prove Theorem 2, the below Theorem
3, and Theorem 4 of Subsection 7.5 are gathered in Section 5. In Section 7
we study the universal constant np and in particular we prove the following
theorem (see Subsection 7.3):

Theorem 3 We assume that R is of dimension 2 and that there exists a
regular system of parameters x, y of R and constants a, b, c ∈ R with c a unit
of R such that p+axp+ byp+ cxp−1yp−1 = 0. If the pair (R, pR) is henselian
(in the sense of [G2], Sect. 0 or [E], Subsect. 0.1; e.g., this holds if R is
p-adically complete) or if p ∈ {2, 3}, then R is not p-quasi-healthy and in
fact there exists a homomorphism γ : G → µµµp,X of finite flat commutative
group schemes annihilated by p over X with G of order p2 and of connected
closed fiber Gk which is not an epimorphism and whose restriction to U is
an epimorphism with a kernel that extends to a form of (Z/pZ)X . Moreover,
this form of (Z/pZ)X is trivial if and only if the image of c in the residue
field k of R has a p− 1-th root in k.

For a weaker version of Theorem 3 for p ≥ 5 see Theorem 4 of Subsection
7.5. The proofs of Theorems 3 and 4 appeal to cohomology properties which
are gathered in Subsections 4.3, 7.1, 7.2, and 7.4 and which rely heavily on
a concrete case of [G2], Thm. 1.

Lemma 4 of Section 5 uses a theorem of Elkik (see [E], Thm. 5) to
prove that if the pair (R, pR) is henselian, then R is p-quasi-healthy if and
only if its p-adic completion is p-quasi-healthy. This result, Theorem 1 (c),
Corollary 1, and Lemma 2 are so far the only ‘if and only if’ statements on
p-quasi-healthy regular local rings.

Section 8 proofs two variants of Proposition 1 which are modeled on [VZ],
Thm. 28 (i) and (ii) and which provide examples in arbitrary dimension d ≥ 2
of regular local rings which are not p-quasi-healthy.

We recall that [G1], [VZ], Thm. 28, the ‘only if’ part of Theorem 1 (c),
Theorems 2 and 3, and Propositions 1 to 3 represent also counterexamples
to [FC], Thms. 6.4 and 6.4’.

2 Some matrices
Let J be an arbitrary commutative ring. Let u, v, α1, α2, α3 ∈ J . Let
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A =

 up−1 − α1v 0 α1

0 vp−1 − α2u α2

up−1vp + α3v −α3u 0

 ∈M3(J).

We have
A(u v uv)T = (up vp upvp)T . (1)

We compute

det(A) = α1(u
p−1vp + α3v)(α2u− vp−1) + α2α3u(u

p−1 − α1v)

= α2u
p(α3 + α1v

p)− α1v
p(α3 + up−1vp−1).

Let a, b ∈ J . We assume that v belongs to the Jacobson radical of J .
Thus 1 + up−1vp−1 and 1 + α1v

p are units of J . If we take α3 = 1, α1 =
−b(1 + up−1vp−1)−1, and α2 = a(1 + α1v

p)−1, then

det(A) = aup + bvp.

Let B be the adjugate matrix of A. Let A0 = BT and B0 = AT . We have

AB = BA = (aup + bvp)I3 = A0B0 = B0A0 (2)

and
det(A0) = det(B) = (aup + bvp)2. (3)

As the reduction of A modulo the ideal (u, v) of J has the first two columns
zero, the reductions of B and A0 modulo (u, v) are the zero 3 × 3 matrix.
Transposing the Equation (1), we get that (up vp upvp) = (u v uv)B0 and by
multiplying this identity with A0 from the right we get

(up vp upvp)A0 = (aup + bvp)(u v uv). (4)

We consider four matrices

C =

(
−v 0 1
0 −u 1

)
∈M2×3(J),

C [p] =

(
−vp 0 1

0 −up 1

)
∈M2×3(J),

A′ =

(
−α1v

p − 1 1
−up−1vp−1 − 1 up−1vp−1 − α2u

p + 1

)
∈M2(J),
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and

A′ =

(
−α1v

p − 1 1
−up−1vp−1 − 1− p up−1vp−1 − α2u

p + 1

)
∈M2(J).

If p > 2 or if p = 2 and J is of characteristic 2, then C [p] is the matrix
obtained from C by raising each entry to its p-th power.

Simple calculations show that the following three identities hold

A′C = C [p]A =

(
α1v

p+1 + v −u −α1v
p

up−1vp + v −upvp−1 + α2u
p+1 − u −α2u

p

)
, (5)

det(A′) = −α1u
p−1v2p−1+α1α2u

pvp−α1v
p−up−1vp−1+α2u

p−1+up−1vp−1+1

= α2u
p(1 + α1v

p)− α1v
p(1 + up−1vp−1) = aup + bvp, (6)

and
det(A′) = p+ det(A) = p+ aup + bvp. (7)

Thus, if B′ and B′ are the adjugates of A′ and A′ (respectively) and
if A′

0, B′
0, A′

0, C0, and C
[p]
0 are the transposes of B′, A′, B′, C, and C [p]

(respectively), then from the Equations (5) to (7) we get that the following
three identities hold

(aup + bvp)A0C0 = (aup + bvp)C
[p]
0 A

′
0, (8)

A′
0B

′
0 = B′

0A
′
0 = (aup + bvp)I2, (9)

and
det(A′

0) = aup + bvp and det(A′
0) = p+ aup + bvp. (10)

If aup + bvp is a non-zero-divisor of J , then from Equation (8) we get that

A0C0 = C
[p]
0 A

′
0. (11)

3 Proof of Proposition 1
We will prove Proposition 1 in three steps. The first two steps will prove
Proposition 1 in two particular cases (see Subsections 3.1 and 3.2). The
third step will complete the proof of Proposition 1 based on the first two
steps and standard (universal) pullback arguments (see Subsection 3.3).
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In Subsections 3.1 and 3.2 we will assume that the hypotheses of Propo-
sition 1 hold and moreover R is regular and (x, y) is part of a regular system
of parameters of R. Let V = X \Spec(R/(x, y)) = Spec(R)\Spec(R/(x, y)).
To ease the notation, the residue field of R will also be denoted by k.

3.1 The case when R is complete
We first consider the case when R is complete. Let d ≥ 2 be the dimension
of R. Let x, y, z1, . . . , zd−2 be a regular system of parameters of R. Let

S = C(k)[[x, y, z1, . . . , zd−2]]

and
S = k[[x, y, z1, . . . , zd−2]].

We lift the epimorphism C(k) → k to a homomorphism C(k) → R. We
extend C(k) → R to an epimorphism

S → R

which maps each t ∈ {x, y, z1, . . . , zd−2} (viewed as a variable) to the element
t of R. We consider elements of S which map to the elements a, b, c of
R (respectively) and to ease the notation we denote them also by a, b, c
(respectively). If c ∈ R is 0, then we choose c ∈ S to be 0 also. The kernel
I of the epimorphism S → R contains the regular parameter

f = p+ axp + byp + cxp−1yp−1

of S. The epimorphism S/(f) → R of regular local rings of dimension d is
an isomorphism and therefore we have I = (f). Let ⋆̄ ∈ S be the reduction
modulo p of an element ⋆ ∈ S.

Let σk be a Frobenius endomorphism of C(k). Let σ be the Frobenius
endomorphism S which is compatible with σk and which maps each t with
t ∈ {x, y, z1, . . . , zd−2} to tp. For such a t we often denote simply by t its
reduction t̄ modulo p. We denote also by σ its reduction modulo p (i.e., the
Frobenius endomorphisms of S). For a S-module N let N (σ) = S⊗σ,SN . In
what follows by a nilpotent Breuil module or window we mean a (covariant)
nilpotent Breuil module or window for the frame

(S, I,R, σ, σ̇, σ(f))
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as used in [L1], Subsects. 10.4 and 10.5 and Def. 11.1; here

σ̇ : I → S

is the σ-linear map defined by the rule σ̇(fx) = σ(x). If k is perfect, we will
also use (covariant) Breuil modules for this frame which are not nilpotent.

For r ∈ N let Mr = Sr. We naturally identify M (σ)
r = S ⊗σ,S Mr with

Mr. Let φ1 : M1 → M
(σ)
1 be the S-linear map defined by the multiplication

by f̄ .
We consider two subcases on the possible values of c.

Subcase 1: c = 0. We assume that c = 0; thus f̄ = āxp + b̄yp ∈ S. Let
A0 ∈ M3×3(S) be such that we have (cf. Equations (2) to (4) of Section 2
applied with u = x and with v = y belonging to the maximal ideal of J = S)

(xp yp xpyp)A0 = f̄(x y xy), (12)

det(A0) = (āxp + b̄yp)2 = f̄ 2, the reduction of A0 modulo (x, y) is the zero
3× 3 matrix, and there exists B0 ∈M3×3(S) such that we have

B0A0 = A0B0 = f̄ I3. (13)

Let φ3 : M3 → M
(σ)
3 be the S-linear map whose matrix representation

with respect to the standard bases ofM3 andM (σ)
3 =M3 is A0. From (13) we

get that the cokernel of φ3 is annihilated by f̄ . Thus the pair (M3, φ3) is the
nilpotent Breuil module of a connected finite flat commutative group scheme
G over X annihilated by p and of order p3, cf. [L1], Thm. 10.7. Similarly,
the pair (M1, φ1) is the nilpotent Breuil module of µµµp,X .

The Equation (12) shows that the S-linear map β0 :M3 →M1 defined by
the matrix (x y xy) has cokernel M1/(x, y)M1 = S/(x, y) and is a morphism
of nilpotent Breuil modules

β0 : (M3, φ3) → (M1, φ1).

We consider the homomorphism δ0 : G → µµµp,X associated to β0, cf. [L1],
Thm. 10.7. We recall that (cf. [L1], Lem. 8.2 and Subsect. 10, [Z], Thm. 6
and Cor. 97, and [BM], Cor. 3.2.11):

(♯) the morphism of (covariant) Dieudonné crystals D(δ0) : D(G) →
D(µµµp,X ) of the nilpotent crystalline site NCris(Spec(R/pR)/Spec(R/pR))
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(see [Be], Ch. 3, Subsect. 1.3.1 and [BBM], Ch. 3) is defined by the S-linear
map

β
(σ)
0 :M

(σ)
3 →M

(σ)
1 .

If k is perfect, then (♯) also follows from [L2], Prop. 7.1.
Let p be a prime ideal of R containing p and let κ be the perfection of its

residue field. We consider the composite homomorphism S → R → κ. As
1κ ⊗ β0 is not surjective if and only if p ⊃ (x, y), from the property (♯) we
get that D(δ0,κ) is not surjective if and only if p ⊃ (x, y). From this and the
classical Dieudonné theory (see [BBM], Thm. 4.2.14) we get that δ0 is an
epimorphism at p if and only if p ⊃ (x, y). This implies that δ0,V : GV → µµµp,V
is an epimorphism while at every point of Spec(R/(x, y)) the homomorphism
δ0 is not an epimorphism.

Let FV = Ker(δ0,V). Let F be the affine X -scheme of global sections of
FV . We check that F is a connected truncated Barsotti–Tate group of level 1
over X of height 2 and dimension 1. We consider the nilpotent Breuil module
(M2, ϕ2), where ϕ2 is the S-linear matrix whose matrix representation with
respect to the standard bases of M2 and M (σ)

2 =M2 is the matrix

A′
0 =

(
1− α2x

p + xp−1yp−1 xp−1yp−1 + 1
−1 −1− α1y

p−1

)
.

Let α1, α2 ∈ S be as in Section 2 applied with (J, u, v, a, b) = (S, x, y, a, b).
Let α1 and α2 ∈ S be the reductions modulo p of α1 and α2 (respectively);
thus α1, α2 are as in Section 2 applied with (J, u, v, a, b) = (S, x, y, ā, b̄). From
the Equation (10) we get that det(A′

0) = āxp + b̄yp = f̄ . Either from this or
from the Equation (9) we get that the cokernel of ϕ2 is annihilated by f̄ . If
A

′[p]
0 ∈ M2×2(S) is the matrix obtained from A′

0 by raising each entry to its
p-th power (i.e., is the matrix representation of ϕ(σ)

2 ), then the reductions of
A

′[p]
0 A′

0 and (A′
0)

2 modulo (x, y) are the zero 2× 2 matrix.
If ζ0 : M2 → M3 is the S-linear map whose matrix representation with

respect to the standard bases of M2 and M3 is

C0 =

 −y 0
0 −x
1 1

 ∈M3×2(S),

then from the Equation (11) we get a morphism of nilpotent Breuil modules
ζ0 : (M2, ϕ2) → (M3, φ3) associated to a morphism F ′ → G of connected
finite flat group schemes over X .
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Let M2 = S2. We identify naturally M
(σ)
2 = S ⊗σ,S M2 with M2. We

consider the S-linear map Φ2 : M2 → M
(σ)
2 whose matrix representation

with respect to the standard bases of M2 and M
(σ)
2 = M2 is

A′
0 =

(
1− α2x

p + xp−1yp−1 xp−1yp−1 + p+ 1
−1 −1− α1y

p−1

)
.

From the Equation (10) applied with (J, u, v) = (S, x, y) we get that det(A′
0) =

p + axp + byp = f and thus the cokernel of Φ2 is annihilated by f . From
this and the fact that the reduction of (M2,Φ2) modulo p is (M2, ϕ2), we
get that (M2,Φ2) is a nilpotent Breuil window associated to a connected
Barsotti–Tate group D over X whose truncated Barsotti–Tate group of level
1 over X is F ′ = D[p].

As (x y xy)C0 = 0 we have β0 ◦ ζ0 = 0 and in fact we have Im(ζ0) =
Ker(β0). Therefore F ′ → G → µµµp,X is a complex of connected finite flat
group schemes over X . An argument similar to the one above which checked
that δ0,V is an epimorphism, shows that the complex F ′

V → GV → µµµp,V is
exact. Thus F ′

V = Ker(δ0,V). From this and the fact that the codimension of
X \ V in X is 2 we get that F = F ′ = D[p].

As det(A′
0) = f , Coker(Φ2) is isomorphic to the S-module R. Thus D

has height 2 and dimension 1. This implies that D has a principal quasi-
polarization Ψ.

We consider the C(k)-module N = C(k)2. We naturally identify N (σk) =
C(k)⊗σk,C(k)N with N . The connected Barsotti–Tate group Dk over Spec(k)
is associated to the nilpotent Breuil window for the frame

(C(k), pC(k), k, σk, σ̇k, p)

with σ̇k(wp) = σk(w) for w ∈ C(k), defined by the C(k)-linear map N →
N (σk) whose matrix representation with respect to the standard bases of N
and N (σk) = N is the reduction

E =

(
1 p+ 1

−1 −1

)
∈M2×2(C(k))

modulo (x, y, z1, . . . , zd−2) of A′
0. This implies thatDk is defined over Spec(Fp)

and, as E2 = −pI2, in fact it is the pullback to Spec(k) of the Barsotti–Tate
DFp over Spec(Fp) whose covariant Dieudonné module is the pair (Z2

p, υ),
where the Zp-linear endomorphism υ : Z2

p → Z2
p is defined by the rules
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υ(e1) = pe2 and υ(e2) = −e1, where {e1, e2} is the standard basis of the
Zp-module Z2

p.
We note that DFp2

is the Barsotti–Tate group of a supersingular elliptic
curve over Spec(Fp2) as one can easily check based on [BG-JGP], Lem. 3.21.
Thus if k contains Fp2 , (D,Ψ) is the principally quasi-polarized Barsotti–Tate
group of an elliptic curve over X whose fiber over k is supersingular.

Subcase 2: c is a unit of R. We assume that c is a unit of R. We have
f̄ = āxp + b̄yp + c̄xp−1yp−1 ∈ S. Thus [VZ], Thm. 2.8 (iii) and its proof can
be easily adapted to get that Proposition 1 holds in this subcase as well. We
recall and enlarge the computations of loc. cit. Let (M2, φ2) be the nilpotent
Breuil module defined by the S-linear map φ2 : M2 → M

(σ)
2 whose matrix

representation with respect to the standard bases of M2 and M (σ)
2 =M2 is

A1 =

(
āx+ c̄yp−1 āy

b̄x b̄y + c̄xp−1

)
.

Note that A1 modulo (x, y) is the zero matrix and we have

det(A1) = c̄(āxp + b̄yp + c̄xp−1yp−1) = c̄f̄ .

As c̄ is a unit of S, we get that f̄ annihilates the cokernel of φ2.
LetM2 →M1 be the S-linear map defined by the matrix (x y). It defines

a morphism of nilpotent Breuil modules

β1 : (M2, φ2) → (M1, φ1).

As in Subcase 1, β1 is associated to a homomorphism δ1 : G → µµµp,X
between finite flat commutative group schemes annihilated by p over X with
G connected of order p2. As in Subcase 1 one gets that δ1,V : GV → µµµp,V is
an epimorphism while at every point of Spec(R/(x, y)) the homomorphism
δ1 is not an epimorphism.

Let FV = Ker(δ1,V). Let F be the affine X -scheme of global sections of
FV . If d = 2 or if F is a flat X -scheme, then F is a group scheme over
X . We check that in fact F is a group scheme that is a form of (Z/pZ)X
which is trivial if and only if there exists a (p − 1)-th root of c in R. To
check that this holds, by considering the pullback via the local flat morphism
Spec(W (k1)[[x, y, z1, . . . , zd−2]]/(f)) → X with k1 as the perfection of k (see
[GV], Fact 2 for the flatness part) we can assume that the field k is perfect.
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Let ζ1 :M1 →M2 be the S-linear map which maps the element 1 ∈M1 =
S to (y,−x) ∈M2 = S2. We have Im(ζ1) = Ker(β1) and one computes that

φ2(y,−x) = (c̄yp,−c̄xp) = c̄(1⊗ y,−1⊗ x) ∈M
(σ)
2 = S ⊗σ,S M2 =M2.

For a unit ∗ of S, if φt,∗
1 : M1 → M

(σ)
1 is the S-linear map defined by the

multiplication by ∗ (thus φt,1
1 is the Breuil dual of φ1), we get a morphism

of Breuil modules ζ1 : (M1, φ
t,c̄
1 ) → (M2, φ2) which is associated to a homo-

morphism F ′ → G over X , cf. [L2], Cor. 6.8 (the equivalent conditions of
[L2], Prop. 6.2 hold in our context, cf. [L2], Rm. 6.3 and the fact that we
have σ(x) = xp and σ(y) = yp). As in Subcase 1 we argue that we have
F = F ′. Thus F and (Z/pZ)X are isomorphic if and only if (M1, φ

t,c̄
1 ) and

(M1, φ
t,1
1 ) are isomorphic which is equivalent to the existence of a (p− 1)-th

root of c̄ in S and therefore to the existence of a (p − 1)-th root of c in
R. Such (p − 1)-th roots exist after a pullback via the local flat morphism
Spec(W (k1)[[x, y, z, . . . , zd−2]]/(f)) → X with k1 a finite separable extension
of k and therefore indeed F is a form of (Z/pZ)X .

3.2 The case when R is the henselization of a regular
local ring of a finitely generated Z(p)-algebra

We assume that R is the henselization of a regular local ring of a finitely
generated Z(p)-algebra. Let X̂ = Spec(R̂). Let

V̂ = X̂ \ Spec(R̂/(x, y)) = X̂ ×X V .

Let δX̂ : Ĝ → µµµp,X̂ be a homomorphism between connected finite flat group
schemes over X̂ with Ĝ of order p2 or p3 whose restriction to V̂ is an epi-
morphism and which at every point of X̂ \ V̂ is not an epimorphism (cf.
Subsection 3.1 applied to the complete local ring R̂).

We write
R̂ = lim indλ∈FRλ

as a filtered colimit of local rings Rλ of residue k which are localizations of
finitely generated R-algebras. Let λ0 ∈ F be such that δX̂ is the pullback to
X̂ of a homomorphism δλ0 : Gλ0 → µµµp,Xλ0

between finite flat commutative
group schemes annihilated by p over Xλ0 = Spec(Rλ0). For λ ∈ F such that
λ ≥ λ0, let Xλ = Spec(Rλ), let δλ : Gλ → µµµp,Xλ

be the pullback of δλ0 to
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Xλ, let Vλ be the largest non-empty open subscheme of Xλ with the property
that the restriction of δλ to Vλ is an epimorphism, and let Yλ = Xλ \ Vλ be
endowed with the reduced structure. Note that the schematic closure Ỹλ of
the image of Spec(R̂/(x, y)) in Xλ is a closed subscheme of Yλ.

The projective limit of the Yλ’s for λ ≥ λ0 is Spec(R̂/(x, y)) and for
each λ′ ≥ λ ≥ λ0, Yλ′ is the reduced inverse image of Yλ via the morphism
Xλ′ → Xλ. It is easy to see that these properties imply that there exists
λ1 ∈ F with λ1 ≥ λ0 such that the image of the X -morphism Yλ1 → Yλ0 is
contained in Ỹλ0 . Thus we have the following property:

(*) the closed subscheme Yλ1 is the reduced inverse image via the X -
morphism Xλ1 → Xλ0 of the closed subscheme Ỹλ0 of Xλ0 .

Let R1 = Rλ1 and X1 = Spec(R1). We know that δX̂ is the pullback of
δλ1 . As R is the henselization of a local ring of a finitely generated Z(p)-
algebra, from Artin’s approximation theorem (for instance, see [BLR], Sect.
3.6, Thm. 16) we get that the morphism X1 → X has a section. By pulling
back δλ1 via this section we get a homomorphism δ : G → µµµp,X of connected
finite flat commutative group schemes annihilated by p over X . Due to the
property (*), the reduced inverse image of Ỹλ0 via the composite X -morphism
X → X1 → Xλ0 is the reduced closed subscheme X \ V of X . Thus δV is
an epimorphism while at every point of X \ V the homomorphism δ is not
an epimorphism. Moreover the order of G is the same as the order of Ĝ and
therefore it is p2 if c is a unit of R and it is p3 if c = 0, cf. Subsection 3.1.

If c = 0, then the kernel of the restriction of δX̂ to V̂ is the restriction
to V̂ of a truncated Barsotti–Tate group of level 1 over X̂ of height 2 and
dimension 1 whose fiber over k is supersingular (cf. Subcase 1 of Subsection
3.1) and therefore we can choose λ0 such that the kernel of the restriction of
δλ0 to Vλ0 extends to a similar type of a Barsotti–Tate group of level 1 over
Xλ0 . This implies that Ker(δV) extends to a connected truncated Barsotti–
Tate group of level 1 over X of height 2 and dimension 1 (its fiber over k
is automatically supersingular). If k contains Fp2 , then we can assume that
this connected Barsotti–Tate group of level 1 over X is the one of an elliptic
curve over X .

If c is a unit of R, then as in the previous paragraph we argue that we
can assume that the kernels of the restrictions of δX̂ to V̂ and of δX to V
extend to X̂ and X (respectively). The fibers over Spec(k) of these two
extensions coincide. This implies that these extensions are forms of (Z/pZ)X̂
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and (Z/pZ)X (respectively) which are trivial if and only their fibers over k
are trivial and thus if and only if there exists a (p− 1)-th root of c in R.

3.3 End of the proof of Proposition 1
We are now ready to prove Proposition 1.

If c = 0, we consider the universal ring

Runiv,0 = Z(p)[a, b, x, y]/(p+ axp + byp)

and the homomorphism ψ0 : Runiv,0 → R which maps the elements a+ (p+
axp + byp), b+ (p+ axp + byp), x+ (p+ axp + byp), and y + (p+ axp + byp)
of Runiv,0 to the elements a, b, c, x, and y (respectively) of R.

If c is a unit of R, we consider the universal ring

Runiv,1 = Z(p)[a, b, c, c
−1, x, y]/(p+ axp + byp + cxp−1yp−1),

its finite étale extension

R′
univ,1 = Runiv,1[e]/(e

p−1−c) = Z(p)[a, b, e, e
−1, x, y]/(p+axp+byp+ep−1xp−1yp−1),

and the homomorphism ψ1 : Runiv,1 → R which maps the elements a+ (p+
axp + byp + cxp−1yp−1), b+ (p+ axp + byp + cxp−1yp−1), c+ (p+ axp + byp +
cxp−1yp−1), x+(p+axp+byp+cxp−1yp−1), and y+(p+axp+byp+cxp−1yp−1)
of Runiv,1 to the elements a, b, c, x, and y (respectively) of R.

Let ϵ ∈ {0, 1} be such that we have a homomorphism ψϵ : Runiv,ϵ → R
and let Rϵ be the henselization of the localization of Runiv,ϵ at the prime ideal
which is the inverse image via ψϵ of the maximal ideal of R.

The four rings Runiv,ϵ, Runiv,ϵ/(x), Runiv,ϵ/(y), and Runiv,ϵ/(x, y) are regu-
lar and x, y is a regular sequence in Runiv,ϵ and therefore the same properties
hold for Rϵ. Let Xϵ = Spec(Rϵ) and Vϵ = Xϵ \ Spec(Rϵ/(x, y)). As R is
henselian, we have a natural local homomorphism Rϵ → R which defines a
local morphism τϵ : X → Xϵ with the property that τ−1

ϵ (Vϵ) = V .
From Subsection 3.2 applies to Rϵ we get that there exists a homomor-

phism of finite flat commutative group schemes annihilated by p over Xϵ

whose domain is connected of order p3−ϵ, whose codomain is µµµp,Xϵ , whose
restriction to Vϵ is an epimorphism, and which at every point of Xϵ \ Vϵ is
not an epimorphism. By pulling back this homomorphism via τϵ : X → Xϵ

we obtain the searched for homomorphism δ : G → µµµp,X .
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If ϵ = 0, then (cf. end of Subsection 3.2 applied with c = 0 to R0) we can
assume that Ker(δV) extends to a connected truncated Barsotti–Tate group of
level 1 over X of height 2 and dimension 1 (its fiber over k is automatically
supersingular). If moreover k contains Fp2 , then we can assume that this
Barsotti–Tate group of level 1 is the one of an elliptic curve over X .

If ϵ = 1, then there exists a (p − 1)-th root of c in R if and only if
ψ1 : Runiv,1 → R factors through a homomorphism ψ′

1 : R
′
univ,1 → R. Based

on this and the last paragraph of Subsection 3.2 applied to the henselization
R′

1 of the localization of R′
univ,1 at the prime ideal which is the inverse image

via ψ′
1 of the maximal ideal of R, it is easy to see that we have Ker(δV) =

(Z/pZ)V if and only if there exists a (p− 1)-th root of c in R. □

3.4 Variants of Proposition 1
The finite flat group scheme G of Subcase 1 (resp. Subcase 2) of Subsection
3.1 is the quotient of a connected Barsotti–Tate group of level 1 over X of
order at most p6 (resp. at most p4), cf. the proofs of [L1], Lem. 10.8 and
Thm. 8.5. Thus we have a variant of the first part of Proposition 1 in which
G is a connected Barsotti–Tate group of level 1 over X of order p4 if c is a
unit of R or of order p6 if c = 0, without being able to say anything about
either Ker(δV) or its extensions to X .

We refer to Subcase 1 of Subsection 3.1 in one of the following three
situations which relate to [VZ], Thm. 28:

(i) The element f̄ = āxp + b̄yp ∈ S is such that there exists an element
c̄1 of the ideal (x, y) of S which divides both ā and b̄ in S.

(ii) We have a product factorization āxp + b̄yp = xp−1yp−1(ā1x + b̄1y),
with a1, b1 ∈ S.

(iii) We have a product factorization f̄ = āxp + b̄yp = wup−1vp−1 with w
a unit of S and with u, v ∈ S such that g.c.d.(u, v) = 1 (e.g., this holds with
w = 1 if p = 2 and the principal ideal (f̄) of S is not a power of a principal
prime ideal of S) and the radical of the ideal (u, v) of S is (x, y).

In this paragraph we assume that (i) holds. Writing c̄1 = sx+ty, ā = c̄1ā
′,

b̄ = c̄1b̄
′, with s, t, ā′, b̄′ ∈ S, we have

f̄ = c̄1(ā1x
p + b̄1y

p + c̄1x
p−1yp−1),

where ā1 = ā′ − syp−1 and b̄1 = b̄′ − txp−1. In this situation we have a
variant of Subcase 1 of Subsection 4.1 which is similar to [VZ], Thm. 28 (iii)

16



and which is modeled on Subcase 2 of Subsection 4.1 but working with the
triple (ā1, b̄1, c̄1) ∈ S3 instead of the triple (ā, b̄, c̄) ∈ S3. We end up with a
homomorphism G → H between connected finite flat group schemes over X ,
where H is associated to the nilpotent Breuil module defined by the S-linear
map M1 → M

(σ)
1 which is the multiplication by the factor ā1xp + b̄1y

p +
c̄1x

p−1yp−1 of f̄ and thus is of order p but is different from µµµp,X , where G is of
order p2, and where Ker(δV) extends to a connected finite flat group scheme
over X associated to the nilpotent Breuil module defined by the S-linear map
M1 →M

(σ)
1 which is the multiplication by c̄1.

In this paragraph we assume that (ii) holds. In this situation we have a
variant of Subcase 1 of Subsection 4.1 which is similar to [VZ], Thm. 28 (ii):
we get a morphism of nilpotent Breuil modules β2 : (M2, φ2,1) → (M1, φ1),
where φ2,1 : M2 → M

(σ)
2 is the S-linear map whose matrix representation

with respect to standard bases is the matrix

(ā1x+ b̄1y)

(
yp−1 0

0 xp−1

)
.

We end up with a homomorphism G → µµµp,X between connected finite flat
group schemes over X with G of order p2 and with Ker(δV) extending to a
connected finite flat group scheme over X associated to the nilpotent Breuil
module defined by the S-linear map M1 →M

(σ)
1 which is the multiplication

by ā1x+ b̄1y.
In this paragraph we assume that (iii) holds. In this situation we have

a variant of Subcase 1 of Subsection 4.1 which is similar to [VZ], Thm. 28
(ii) as in the previous paragraph: we get a morphism of nilpotent Breuil
modules β3 : (M2, φ2,2 → (M1, φ1), where β3 and φ2,2 : M2 → M

(σ)
2 are the

S-linear maps whose matrix representations with respect to standard bases
are respectively (u v) and

w

(
vp−1 0

0 up−1

)
.

We end up with a homomorphism G → µµµp,X between connected finite flat
group schemes over X with G of order p2 and with Ker(δV) extending to an
étale finite flat group scheme over X which is (Z/pZ)X if w = 1.
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4 Proof of Theorem 1
We first prove Theorem 1 (a) and thus also the ‘if’ part of Theorem 1 (c).
By replacing f with a multiple of it by a unit of C(k) or (in the case when
p is a regular parameter of R) with its image under an automorphism of
C(k)[[x, y]], we can assume that f is normalized as in [VZ], i.e., h = p − f
belongs to the ideal (x, y) of C(k)[[x, y]].

If l is an algebraic closure of k, then the composite homomorphism

R → R̂ = C(k)[[x, y]]/(f) → W (l)[[x, y]]/(f)

is faithfully flat (see [GV], Fact 2). Thus the fact that R is p-quasi-healthy
follows from [VZ], Thm. 3.

4.1 The proof of Theorem 1 (b)
We now show that Theorem 1 (b) follows from Proposition 1. Let

ρ : C(k)[[x, y]] → R̂

be an epimorphism of rings whose kernel Ker(ρ) is generated by an element
f ∈ (p, xp, yp, xp−1yp−1). Let u, v ∈ R generate the maximal ideal of R. We
consider a C(k)-epimorphism ρ′ : C(k)[[u, v]] → R̂ which maps the variables
u and v to the elements u and v of R̂. Let g ∈ C(k)[[u, v]] be such that it
generates the kernel of ρ′. Let

ω : C(k)[[u, v]] → C(k)[[x, y]]

be a C(k)-homomorphism such that ρ′ = ρ ◦ ω. The cotangent spaces of the
local rings R/pR and R̂/pR̂ = k[[x, y]]/(f̄) are k-vector space of dimension 2
having as bases the images of u and v and the images of x and y (respectively).
This implies that the cotangent map of ω is an isomorphism. Therefore ω is
an isomorphism such that we have ω−1(f) = (g).

The ideal (xp, yp, xp−1yp−1) of k[[x, y]] does not depend on the regular
system x, y of parameters of the maximal ideal m of k[[x, y]] as it is equal
to m[p] +m2p−2, where m[p] is the ideal generated by p-th powers of elements
of m. Thus (as ω is an isomorphism) the ideals (p, xp, yp, xp−1yp−1) and
(p, ω(u)p, ω(v)p, ω(u)p−1ω(v)p−1) of C(k)[[x, y]] coincide.

Thus (f) ⊂ (p, xp, yp, xp−1yp−1) = (p, ω(u)p, ω(v)p, ω(u)p−1ω(v)p−1) if and
only if (g) = ω−1(f) ⊂ (p, up, vp, up−1vp−1). As the 1-dimensional k-vector
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spaces generated by the images of g and p in the cotangent space of the
local ring C(k)[[u, v]] are equal, the inclusion (g) ⊂ (p, up, vp, up−1vp−1) is
equivalent to inclusions pC(k)[[x, y]] ⊂ (up, vp, up−1vp−1, g) ⊂ C(k)[[x, y]]

and thus also to inclusions pR̂ ⊂ (up, vp, up−1vp−1) ⊂ R̂ and therefore also
to inclusions pR ⊂ (up, vp, up−1vp−1) ⊂ R. Similarly we argue that the
inclusions (f) ⊂ (p, xp, yp) ⊂ R̂ are equivalent to inclusions pR ⊂ (up, vp) ⊂
R.

As we are assuming that (f) ⊂ (p, xp, yp, xp−1yp−1), we can write

p+ aup + bvp + cup−1vp−1 = 0 (14)

with a, b, c ∈ R. Note that c is not a unit of R, i.e., we can write

c = c1u+ c2v ∈ m

with c1, c2 ∈ R if and only if we have

p+ ãup + b̃vp = 0

with (ã, b̃) = (a+ c1v
p−1, b+ c2u

p−1). From this and the previous paragraph
we get that either f ∈ (p, xp, yp) and the Equation (14) holds with c = 0 or
f /∈ (p, xp, yp) and the Equation (14) holds with c a unit of R.

As hypotheses of Proposition 1 hold in the context of R, elements u, v ∈
m, and elements a, b, c ∈ R, Theorem 1 (b) follows from Proposition 1.

If c = 0 and k contains Fp2 , then from the proof of Proposition 1 we get
that Ker(γU) extends to a Barsotti–Tate group of level 1 over X which is the
one associated to an elliptic curve over X.

If c is a unit of R, from the proof of Proposition 1 we get that Ker(γU) is
isomorphic to (Z/pZ)U if and only if there exists a (p− 1)-th root of c in R.

4.2 End of the proof of Theorem 1 (c)
We are left to show that the ‘only if’ part of Theorem 1 (c) follows from The-
orem 1 (b). Using the contrapositive it suffices to show that the assumption
that f ∈ (p, xp, yp, xp−1yp−1) implies that R is not p-quasi-healthy. We con-
sider a homomorphism γ : G → µµµp,X of connected finite flat group schemes
annihilated by p over X which is not an epimorphism and which extends an
epimorphism γU : GU → µµµp,U over U , cf. Theorem 1 (b). Using it, from [VZ],
Lem. 27 we get that R is not p-quasi-healthy. Thus Theorem 1 holds. □
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4.3 Cohomology classes
The homomorphism Ext1fppf(µµµp,X , (Z/pZ)X) → Ext1fppf(µµµp,U , (Z/pZ)U) is in-
jective regardless of what R is and thus we can define the quotient group

AU = Ext1fppf (µµµp,U , (Z/pZ)U)/Ext1fppf (µµµp,X , (Z/pZ)X).

We now refer to Theorem 1 (b) and assume that f = p+axp+byp+cxp−1yp−1

with c a unit of C(k)[[x, y]]. The short exact sequence

0 → Ker(γU) → GU → µµµp,U → 0 (15)

defined by γU does not extend to a short exact sequence over X (as otherwise
γ would be an epimorphism).

If there exists no (p− 1)-th root in k of the image of c in k (equivalently,
Ker(γU) is not isomorphic to (Z/pZ)U) and if we can write axp + byp +
cxp−1yp−1 = chp−1 with h ∈ R such that (h) is a product of distinct prime
ideals of R (e.g., this holds if a = b = 0), then it can be checked that
Ext1fppf(µµµp,U , (Z/pZ)U) = 0.

If there exists a (p − 1)-th root of c in R, then (15) is a short exact
sequence

0 → (Z/pZ)U → GU → µµµp,U → 0 (16)
(cf. end of Subsection 4.1). Thus (16) defines a non-zero class of AU ; such
short exact sequences (16) first show up in [G1].

4.4 Proof of Corollary 2
We assume that p = 2 and that R is complete of dimension 2 and is 2-
quasi-healthy. Writing R = C(k)[[x, y]]/(f), from Theorem 1 (c) we get that
the reduction f̄ of f modulo 2 is an element of the maximal ideal (x, y) of
k[[x, y]] which does not belong to the ideal (x2, y2, xy). Thus f̄ is a regular
parameter of k[[x, y]] and by interchanging the roles of x and y if needed,
we can assume that k[[x, y]] = k[[x, f̄ ]]. Therefore C(k)[[x, y]] = C(k)[[x, f ]].
Thus R = W [[x, f ]]/(f) = C(k)[[x]]. □

5 Five general lemmas
We first include three general lemmas required to prove Theorem 2 in Section
6 and then we include two extra general lemmas needed to prove Theorems
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3 and 4 in Section 7. The following (first) lemma is a particular case of [GV],
Lem. 3.

Lemma 1 Let R′ be a regular local ring of the same dimension as R that is
a faithfully flat R-algebra. If R′ is p-quasi-healthy, then R is p-quasi-healthy.

Lemma 2 Let R′ be a regular local ring which is an ind-finite ind-étale
R-algebra. We assume that one of the following two conditions holds:

(i) The homomorphism R → R′ is in fact finite;
(ii) We have dim(R) = 2.
Then R′ is p-quasi-healthy if and only if R is p-quasi-healthy.

Proof: The ‘only if’ parts follow from Lemma 1. It suffices to show that
if R is p-quasi-healthy, then R′ is p-quasi-healthy. We will follow the ideas
of [V1], Rm. 3.2.2 4) and thus will rely on properties of Weil restriction of
scalars as in [BLR], Sect. 7.6 and [V2], Subsect. 2.3. Let X ′ = Spec(R′);
so U ′ = X ′ ×X U is the punctured spectrum of R′. Let R1 be a regular
local ring which is an ind-finite ind-étale R′-algebra such that the composite
homomorphism R → R1 is Galois of Galois group Θ. If the condition (i)
holds, then we can assume that Θ is finite. If R1 is p-quasi-healthy, then
R′ is p-quasi-healthy (cf. Lemma 1). Thus by replacing R′ with R1 we can
assume that the homomorphism R → R′ is Galois of Galois group Θ.

To end the proof it suffices to show that each Barsotti–Tate group D′
U ′

over U ′ extends to a Barsotti–Tate group D′ over X ′.
We first prove that D′ exists when the condition (i) holds. Thus Θ is

finite. The Weil restriction of scalars DU = ResU ′/UD
′
U ′ is a Barsotti–Tate

group over U which extends to a Barsotti–Tate group D over X (as R is
p-quasi-healthy). We have DU ′ =

∏
h∈Θ U

′ ×U ′,h D
′
U ′ , cf. [V2], Prop. 2.3.1

applied in the context of Barsotti–Tate groups of finite levels over affine open
subschemes of U and their pullbacks to U ′. Thus there exists a projector of
DU ′ whose image is D′

U ′ . It extends to a projector of DX′ whose image is a
Barsotti–Tate group over X ′ that extends D′

U ′ .
We now prove that D′ exists when the condition (ii) holds. Thus R has

dimension 2. Let m,n ∈ N∗. The short exact sequence

0 → D′
U ′ [pm] → D′

U ′ [pn+m] → D′
U ′ [pn] → 0 (17)

over U ′ is defined over Um,n = Xm,n \ Spec(km,n), where Rm,n ⊂ R′ is a finite
étale R-algebra of residue field km,n and where Xm,n = Spec(Rm,n). Let Sm,n
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be a short exact sequence over Um,n whose pullback to U ′ is (17). As R
has dimension 2, the Weil restriction ResUm,n/USm,n extends to a complex
0 → Dm → Dm+n → Dn → 0 of commutative finite flat group schemes of
p-th power order over X (cf. [GV], Fact 1 (b) for such extensions) whose
restriction to U is a short exact sequence; this complex depends not only on
m and n but also on the choice of Rm,n. If the homomorphism Dm+n → Dn

is not an epimorphism, then from [VZ], Lem. 27 we get that R is not p-quasi-
healthy and this is a contradiction. Thus the homomorphism Dm+n → Dn

is an epimorphism and this implies that 0 → Dm → Dm+n → Dn → 0 is a
short exact sequence whose pullback to Xm,n will be denoted as Dm,n. As in
the previous paragraph, based on [V2], Prop. 2.3.1 we get that Sm,n is the
image of a projector of Dm,n,Um,n which extends to a projector of Dm,n whose
image is a short exact sequence over Xm,n which is the complex that extends
Sm,n and therefore its pullback to X ′ is a short exact sequence 0 → D′

m →
D′
m+n → D′

n → 0 which is the complex that extends (17) and which depends
only on m and n (and not on the choice of Rm,n). Thus the inductive limit
D′ = limn→∞D′

n is the Barsotti–Tate group over X ′ which extends D′
U ′ . □

LetQ be a local ring which is an integral domain. LetQh be the henseliza-
tion of Q. We assume that its strict henselization Qsh is also an integral
domain (e.g., this holds if Q is normal). For a Q-algebra Q1 which is an
integral domain and generically étale, let [Q1 : Q] = [Frac(Q1) : Frac(Q)].

Lemma 3 Let m ∈ N∗. Then there exits χ(m) ∈ N∗ such that for each Q
as above and for every Q-subalgebra Q1 of Qsh which is local and an étale
Q-algebra with [Q1 : Q] ≤ m, there exists a commutative diagram of local
étale Q-homomorphisms

Q //

��

Q1

��
Q2

// Q3,

where Q2 is a Q-subalgebra of Qh satisfying [Q2 : Q] ≤ χ(m) and where the
homomorphism Q2 → Q3 is finite.

If Q is a regular ring of dimension at least 2 and mixed characteristic
(0, p) and if Q1 is not p-quasi-healthy, then Q2 is also not p-quasi-healthy.

Proof: The first part is a standard (direct) application of the fact that the
ind-étale homomorphism Qh → Qsh is ind-Galois and thus its proof with
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χ(m) = m(m!) is left to the reader. We check the second part. As Q1 is not
p-quasi-healthy, from Lemma 1 we get that Q3 is not p-quasi-healthy. From
this and Lemma 2 we get that Q2 is not p-quasi-healthy. □

Lemma 4 Let R be a flat Z(p)-algebra such that the pair (R, pR) is henselian
(e.g., this holds if R is local and henselian). Let R∧ be the p-adic completion
of R and let X ∧ = Spec(R∧). Let Y be a closed subscheme of Spec(R/pR) =
Spec(R∧/pR∧) and let Z = X \ Y and Z∧ = X ∧ \ Y = X ∧ ×X Z. Then the
following two properties hold:

(a) The pullback via the morphism Z∧ → Z defines an equivalence of
categories between the category of finite flat commutative group schemes over
Z and the category of finite flat commutative group schemes over Z∧.

(b) The regular local ring R is p-quasi-healthy if and only if R∧ is p-
quasi-healthy.

Proof: As the pair (R, pR) is henselian, the tensor product functor which
takes a finite R-algebra ♢ to R∧ ⊗R ♢ induces an equivalence of categories
between the category of finite R-algebras S with the property that S[1

p
] is

an étale R[1
p
]-algebra and the category of finite R∧-algebras S∧ with the

property that S∧[1
p
] is an étale R∧[1

p
]-algebra (cf. [E], Thm. 5).

Let E∧ be a finite flat commutative group scheme over Z∧. Let S∧ be
the R∧-algebra of global sections of E∧. We consider a finite R∧-subalgebra
T∧ of S∧ such that Z∧ ×X∧ Spec(T∧) = E∧. From the previous paragraph
we get that there exists a finite R-algebra T such that T∧ = R∧ ⊗R T . Let
E = Z ×X Spec(T ); we have an identity E∧ = Z∧ ×Z E of Z∧-schemes.
A similar argument applied to homomorphisms coming from the multiplica-
tion, the inverse automorphism, and the identity section of E∧ shows that
E has a natural structure of a finite flat commutative group scheme over Z
and that E∧ = Z∧ ×Z E is in fact an identity between group schemes over
Z∧. This proves that the faithful pullback functor of (a) is surjective on
objects. A similar argument for homomorphisms shows that this functor is
also surjective on morphisms. Thus (a) holds.

We take R = R; thus X = X . Let U and U∧ be the punctured spectra of
R and R∧ (respectively). By taking Y ∈ {Spec(k), ∅} in (a), we get that the
pullback functors define equivalences of categories between the categories of
truncated Barsotti–Tate groups over X and X∧ and between the categories
of truncated Barsotti–Tate groups over U and U∧. Part (b) follows from
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this and the fact that R (or R∧) is p-quasi-healthy if and only if the pull-
back functor defines an equivalence of categories between the categories of
Barsotti–Tate groups over X and U (or over X∧ and U∧). □

Let O∇ denote the structure ring sheaf of a scheme ∇.

Lemma 5 Let R be a commutative unitary ring such that there exists θ ∈
Rad(R) with the property that R[1

θ
] is a noetherian ring of dimension at

most 1. We consider the henselization (Rθh, θRθh) of the pair (R, θR). Let
Yθh = Spec(Rθh[1

θ
]) and Y = Spec(R[1

θ
]). We consider a finite étale morphism

Πθh : Zθh → Yθh of degree 2. Let Lθh be a line bundle over Zθh. We assume
that both vector bundles Πθh

∗ (OZθh) and Πθh
∗ (Lθh) descent to vector bundles

M and L (respectively) over Y. Then the following two properties hold:
(a) The pullback homomorphism Pic(Y) → Pic(Yθh) is a monomorphism.

Moreover, M and L are up to isomorphisms the unique vector bundles over
Y whose pullbacks to vector bundles over Yθh are isomorphic to Πθh

∗ (OZθh)
and Πθh

∗ (Lθh) (respectively).
(b) The pair (Πθh,Lθh) over Yθh descends to Y in a way compatible with

M and L, i.e., there exists a finite étale morphism Z → Y of degree 2 such
that the following two properties hold:

(b.i) the OY-module OZ is isomorphic to M and L gets the structure of
a line bundle over Z;

(b.ii) there exists an isomorphism Zθh → Yθh ×Y Z of Yθh-schemes with
the property that the pullback of L to Zθh under the composite morphism
Zθh → Yθh ×Y Z → Z is isomorphic to Lθh.

Proof: To prove the first part of (a), let N be a finitely generated torsion free
R-module such that Rθh[1

θ
]⊗RN is a free R[1

θ
]-module of rank 1. We deduce

the existence of a section sθh ∈ Rθh ⊗R N such that (Rθh ⊗R N/(Rθhsθh)
is annihilated by θu for some u ∈ N. The same property holds if sθh is
replaced by a multiple of it by an element of 1 + θu+1Rθh and therefore,
as R/pR = Rθh/pRθh, we can assume that we have sθh = 1 ⊗ s for some
element s ∈ N . This implies that N/Rs is annihilated by θu and thus the
R[1

θ
]-module N [1

θ
] is free of rank 1. This implies that t is injective.

We prove the second part of (a) only for L as the argument for M is the
same. From Serre’s theorem we get the existence of a line bundle F over
Y such that we have an isomorphism M = OY ⊕ F (cf. [S], Thm. 1 or
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[Ba], Thm. 8.2). Moreover, F is uniquely determined up to isomorphisms
as it the determinant of L. From the first part of (a) we get that F is up
to isomorphisms the unique line bundle over Y whose pullback to Yθh is
isomorphic to the determinant of Πθh

∗ (Lθh). This implies that the second
part of (a) holds for L.

To prove (b) we consider the Azumaya OY-algebra A = End(L).
To the isomorphism Lθh → Yθh ⊗OY L, as Lθh is a OZθh-module, corre-

sponds a OYθh-monomorphism

OZθh = OYθh ⊕OYθh ⊗OY F → OYθh ⊗OY A (18)

which is a maximal étale OYθh-subalgebra of OYθh ⊗OY A. We consider the
moduli vector group scheme V = Spec(Sym(Hom(F ,A)∗)) over Y which
parameterizes OY-linear homomorphisms from F to A: for a Y-scheme W
we have

V(W) = HomOW (OW ⊗OY F ,OW ⊗OY A) = H0(W ,OW ⊗OY (F−1 ⊗OY A)),

equivalently, we have V(W) = H0(W ,OW ⊗OY Hom(F ,A)). Let W be
the open subscheme of V such that W(W) consists of all OW-linear maps
l : OW ⊗OY F → OW ⊗OY A with the property that:

(♮) the sum [OW ⊗OY OY ] + Im(l) is direct and a maximal étale OW-
subalgebra of OW ⊗OY A (thus l is a monomorphism into a direct summand
of OW ⊗OY A).
The fact that (♮) is an open condition follows from the fact that (♮) is equiv-
alent to the fact that the OW-linear map

Trred : (W ⊗OY F)⊗2 → OW

defined by the (reduced) discriminant rule (reduced trace)2 − 4 det is an iso-
morphism (i.e., locally in the Zariski topology ofW , a generator of OW⊗OYF
maps to an endomorphism of OW ⊗OY L which has distinct eigenvalues at
each point of W).

Let Rθ∧ be the completion of R (or of Rθh) in the (θ)-adic topology.
Let Yθ∧ = Spec(Rθ∧[1

θ
]). We consider the (θ, θ)-adic topology of W(Yθh),

W(Yθ∧), V(Yθh), and V(Yθ∧) defined in [GR], Subsects. 5.4.15 to 5.4.19; the
inclusion W(Yθh) ⊂ W(Yθ∧) is continuous and has a dense image.

Let Γ be the finitely generated projective R[1
θ
]-module of global sections

of the OY-module F−1 ⊗OY A. As Γ is a direct summand of R[1
θ
]v for some
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v ∈ N, V(Y) = Γ is dense in V(Yθ∧) = Rθ∧[1
θ
]⊗R[ 1

θ
]Γ and by considering the

open subscheme W of V we get that W(Y) is dense in W(Yθ∧).
To the OYθh-monomorphism of (18) corresponds a point lθh ∈ W(Yθh).

From the last two paragraphs we get the existence of a point l0 ∈ W(Y)
closed to lθh in the (θ, θ)-adic topology of W(Yθh).

Let S = OY + Im(l0) be the maximal étale subalgebra of A defined by l0.
The OY-module S is isomorphic to OY ⊕F , cf. property (♮). Let Z → Y be
the finite étale morphism of degree 2 defined by the coherent OY-algebra S.
We have OZ = S ⊂ A = End(L) and therefore we can view naturally L as
a line bundle over either S or Z. Thus the property (b.i) holds.

The affine smooth group scheme Aut(A) of automorphisms of A acts via
conjugation on W and the affine morphism ιθh : Aut(A)Yθh → WYθh defined
by the conjugation of lθh is smooth. From this and [GR], Prop. 5.4.29 we
get that the morphism

ιθh(Yθh) : Aut(A)Yθh(Yθh) → WYθh(Yθh)

is open and thus we can choose l0 such that there exists an element g ∈
Aut(A)Yθh(Yθh) = Aut(A)(Yθh) such that glθhg−1 = l0 ∈ WYθh(Yθh). This
implies that we have a Yθh-isomorphism Zθh → Yθh ×Y Z induced by the
conjugation by g isomorphism between maximal étale Yθh-subalgebras of
Yθh ⊗OY A to be viewed as an identification (the notation matches). Under
this identification the pullback of L to Zθh gets identified with Lθh. Thus
the property (b.ii) holds as well.1 □

Example 1 We assume that there exists a finite étale homomorphism R[1
θ
] →

S such that Sθh = Rθh[1
θ
] ⊗R[ 1

θ
] S (i.e., the notation matches) and that

the norm NZθh/Yθh(Lθh) of Lθh to a line bundle on Yθh is trivial. Let
Π : Z = Spec(S) → Y. Then as M we can take Π∗(OZ). We recall a
simple argument for the following formula

det(Πθh
∗ (Lθh)) = det(Πθh

∗ (OZθh))⊗OYθh NZθh/Yθh(Lθh) (19)

which is a particular case of a general identity on determinants. Let ϱθh :
OZθh → OZθh be the involution of OYθh-algebras with the property that the
coherent OYθh-subalgebra of OZθh fixed by it is exactly OYθh. We view Lθh as
a fractional ideal of Zθh. Thus both sides of the Equation 19 are fractional

1The property (b.i) also follows from (a) and the property (b.ii).

26



ideals of Yθh. Therefore to prove that Equation 19 it suffices to show that
Equation 19 holds after the pullback via (Πθh)∗. Thus locally in the Zariski
topology of Yθh we can assume that Lθh = jOZθh for some element j of the
ring of fractions of Sθh and we have to prove that we have an identity

det(jOZθh ⊕ ϱθh(j)OZθh) = det(OZθh ⊕OZθh)jϱθh(j)

of fractional ideals of Zθh, which is obvious. As NZθh/Yθh(Lθh) is the trivial
line bundle over Yθh, we get that det(Πθh

∗ (Lθh)) = det(Πθh
∗ (OZθh)). From this

and Serre’s theorem we get that both vector bundles Πθh
∗ (Lθh) and Πθh

∗ (OZθh)
over Yθh are isomorphic to OZθh ⊕ det(Πθh

∗ (OZθh)) and therefore we can take
L = M. Thus the hypotheses of Lemma 5 are satisfied.

6 Proof of Theorem 2
To prove Theorem 2, we assume that R is of dimension 2 and its henselization
is not p-quasi-healthy. Let Xh = Rh and Uh = Xh ×X U = Xh \ Spec(k).

From Corollary 1 we get that R̂ is not p-quasi-healthy. From this and
Theorem 1 (c) we get that the hypotheses of Theorem 1 (b) hold for Rh.
Let γh : Gh → µµµp,Xh be a homomorphism of connected finite flat group
schemes over Xh which is not an epimorphism and whose restriction to Uh is
an epimorphism. Such a homomorphism is defined over some X ′ = Spec(R′),
where R′ is a local subring of Rh which is an étale R-algebra of residue field
k. Let γ′ : G′ → µµµp,X′ be a homomorphism over X ′ whose pullback to
Xh is γh. Its restriction to U ′ = X ′ \ Spec(k) is an epimorphism but γ′ is
not an epimorphism. From this and [VZ], Lem. 27 we get that R′ is not
p-quasi-healthy.

To check that we can bound [R′ : R] independently of p, let u, v be a
regular system of parameters of R. From Subsection 4.1 applied to Rh we
get that p ∈ (up, vp, up−1vp−1) ⊂ Rh and thus also p ∈ (up, vp, up−1vp−1) ⊂ R.
Thus the Equation (14) holds for R, i.e., as in Subsection 4.1 we argue that we
can write p+aup+bvp+cup−1vp−1 = 0, where a, b, c ∈ R are such that either
c = 0 or c is a unit of R. Therefore we get the existence of a homomorphism
ψϵ : Runiv,ϵ → R, where ϵ ∈ {0, 1} and Runiv,ϵ are as in Subsection 3.3, which
maps the images of x, y, a, and b in Runiv,ϵ to u, v, a, and b (respectively).

Let Sϵ be the localization of Runiv,ϵ at its prime ideal pϵ which is the
inverse image via ψϵ of the maximal ideal of R. The prime ideal pϵ contains
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p, x, and y and thus it can be viewed as a point of Spec(Puniv,ϵ), where
Puniv,ϵ = Runiv,ϵ/(p, x, y). We have

Puniv,0 = Fp[a, b] and Puniv,1 = Fp[a, b, c, c−1].

As γh we can take the pullback of a similar homomorphism γpϵ over the
spectrum of the henselization Rϵ = Sh

ϵ of Sϵ, cf. Subsection 3.3. As γpϵ can
be defined over a local étale Sϵ-algebra S ′

ϵ which is an Sϵ-subalgebra of Rϵ,
we can take R′ to be a localization of S ′

ϵ ⊗Sϵ R and therefore we have an
inequality [R′ : R] ≤ [S ′

ϵ : Sϵ]. Unfortunately, it is not easy to find directly
an upper bound of [S ′

ϵ : Sϵ] that works for all points of Spec(Puniv,ϵ) as we are
working with henselizations and not strict henselizations and the requirement
that S ′

ϵ has the same residue field as Sϵ is not preserved under localizations.
To go around this difficulty we will use Lemma 3.

As Spec(Puniv,ϵ) is quasi-compact, there exist an étale morphism

Spec(R+
univ,ϵ) → Spec(Runiv,ϵ)

whose image contains Spec(Puniv,ϵ) and a homomorphism

γ+univ,ϵ : G
+ → µµµp,Spec(R+

univ,ϵ)

between finite flat group schemes over Spec(R+
univ,ϵ) whose restriction to

Spec(R+
univ,ϵ)×Spec(Runiv,ϵ) [Spec(Runiv,ϵ) \ Spec(Puniv,ϵ)]

is an epimorphism and which at every point of Spec(R+
univ,ϵ) which maps

to Spec(Puniv,ϵ) is not an epimorphism. The homomorphism γ+univ,ϵ is ob-
tained by extending different homomorphisms γpϵ with pϵ a closed point of
Spec(Puniv,ϵ). Let mp(ϵ) ∈ N∗ be the smallest integer such that we can
choose Spec(R+

univ,ϵ) with the property that each connected component of
Spec(R+

univ,ϵ) is generically a finite cover of Spec(Runiv,ϵ) of degree at most
mp(ϵ).

Let R1 be a local ring of R+
univ,ϵ⊗Runiv,ϵ,ψϵ R which dominates R. We have

[R1 : R] ≤ mp(ϵ) and the pullback of γ+univ,ϵ to X1 = Spec(R1) is not an
epimorphism but its restriction to U1 = X1 ×X U is an epimorphism. From
[VZ], Lem. 27 we get that R1 is not p-quasi-healthy. From this and Lemma
3 we get the existence of a smallest constant

np(ϵ) ∈ N∗
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such that for each regular local ring of dimension 2 equipped with a homo-
morphism ψϵ : Runiv,ϵ → R as above, there exists a local étale homomor-
phism R → R2 with the properties that [R2 : R] ≤ np(ϵ) and that R2 has
residue field k and is not p-quasi-healthy and in fact there exists a local fi-
nite étale homomorphism R2 → R3 for which there exists a homomorphism
γ′ : GX3 → µµµp,X3 over X3 = Spec(R3) whose extension to the spectrum of
the henselization of R3 is a homomorphism which is a pullback of γ+univ,ϵ and
is as in Theorem 1 (b). We have np(ϵ) ≤ χ(mp(ϵ)), where χ(mp(ϵ)) is as in
Lemma 3.

The theorem follows from this by taking

np = max{np(0), np(1)}

and by choosing R′ to be R2. □

7 On np(1)

In this section we study np(1) and thus extensions of µµµp by forms of Z/pZ.
Let R be of dimension 2. We consider semilocal flat noetherian R-algebras

R⋄ of dimension 2 such that all maximal ideals of R⋄ intersect R in the
maximal ideal of R. Let X⋄ = Spec(R⋄). By the punctured spectrum U⋄
of R⋄ we mean X⋄ ×X U (i.e., is the complement in X⋄ of the finite set
of all closed points of X⋄). Let Rph

⋄ be the R-algebra such that the pair
(Rph

⋄ , pR
ph
⋄ ) is the henselization of the pair (R⋄, pR⋄). If R⋄ is local, then Rph

⋄
is an R⋄-subalgebra of the henselization Rh

⋄ of R⋄. Let Y⋄ = Spec(R⋄[
1
p
]).

In Subsection 7.1 and 7.2 we recall how forms of (Z/pZ)X⋄ and suitable
extensions of µµµp,U⋄ by forms of (Z/pZ)U⋄ (respectively) descend to spectra
and punctured spectra (respectively) of suitable semilocal R-subalgebras of
R⋄. In Subsection 7.3 we prove Theorem 3. In Subsection 7.5 we prove a
weaker form of Theorem 3 for p ≥ 5 which relies on Lemma 5 (b) and on
Lemma 7 of Subsection 7.4 which pertains to descending line bundles.

Let X∧
⋄ be the spectrum of the p-adic completion R∧

⋄ of R⋄. Let U∧
⋄ be

the punctured spectra of R∧
⋄ . If p = 2, let Π(p) = {1} and if p > 2, let Π(p)

be the set of primes dividing p−1. Let q(p) = p−1∏
l∈Π(p) l

. If p−1 =
∏

l∈Π(p) l
ml

with each ml ∈ N∗, then q(p) =
∏

l∈Π(p) l
ml−1.

The group of units of a ring ⋆ will be denoted by ⋆∗.

29



7.1 Descending forms of Z/pZ
For l ∈ Π(p) let Rl be the finite étale R-subalgebra of Rh generated by R
and by all roots of unity of order lml . Let R′

l be the largest finite étale
R-subalgebra of Rl such that [R′

l : R] divides lml−1. Let R′
0 be the finite

R-subalgebra of Rh generated by all R′
l’s. We have Rl/pRl = (R/pR)[Rl:R]

and R′
0/pR

′
0 = (R/pR)[R

′
0:R].

We consider the localizations R′
l,+ and R′

+ of R′
l and R′

0 (respectively) at
the maximal ideal of R′

l and R′
0 (respectively) contained in the maximal ideal

of Rh. We have R′
+/pR

′
+ = R/pR and therefore R′

+ is an R-subalgebra of
Rph. Moreover, [R′

+ : R]|q(p) and the R[1
p
]-algebra R′

+[
1
p
] is the localization

of the finite étale R[1
p
]-algebra R′

0[
1
p
]. Let X ′

+ = Spec(R′
+), X ′

l,+ = Spec(R′
l,+)

and Xl,+ = Spec(Rl,+), where Rl,+ = R′
l,+ ⊗R′

l
Rl.

Fact 1 Let Eh
p be a form of (Z/pZ)Xh. Then there exists a form E ′

p,+ of
(Z/pZ)X′

+
whose pullback to Xh is Eh

p .

Proof: The form Eh
p is defined by a class

ηh =
∏
l∈Π(p)

ηh
l ∈ H1

ét(X
h,F∗

p) = H1
ét(X

h,µµµp−1,Xh) = k∗/(k∗)p−1 =
∏
l∈Π(p)

k∗/(k∗)l
ml .

It suffices to show that for each l ∈ Π(p) there exists a class η′l,+ ∈ H1
ét(X

′
l,+,F∗

p)

which maps to ηh
l . Let sl ∈ {0, . . . ,ml} be such that the order of ηh

l is lsl .
As Rl contains all roots of unity of order lml , the natural homomorphism
H1

ét(Xl,+,µµµlml ,Xl,+
) → H1

ét(X
h,µµµlml ,Xh) = k∗/(k∗)l

ml is surjective and there
exists a class ηl,+ ∈ H1

ét(Xl,+,µµµlml ,Xl,+
) of order lsl which maps to ηh

l and
which is defined by El,+ = Spec(Rl,+[z]/(z

lml − al
ml−sl

l )) for some unit al of
R′
l,+. The composite Galois homomorphism R′

l,+ → Rl,+ → Rl,+[z]/(z
lsl −al)

is abelian of order lsldl with dl dividing l−1 (one can easily check this modulo
p). Thus E ′

l,+ = Spec(R′
l,+[z]/(z

lsl −al)) → X ′
l,+ is the only Galois morphism

dominated by Spec(Rl,+[z]/(z
lsl
l − al)) which has a Galois group of order lsl ;

it defines a class η′l,+ ∈ H1
ét(X

′
l,+,F∗

p) of order lsl which maps to ηl,+ and thus
also to ηh

l . □

7.2 Descending cohomology classes
Let Ep be a form of (Z/pZ)X . Let J = Homét(µµµp,X , Ep) and we denote by
J△ its pullback to the étale site of the X-scheme △. Over a separably closed
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field K, each extension of µµµp,Spec(K) by Ep,Spec(K) splits. Thus extensions of
the sheaf of the fppf site of the X-scheme ♭ defined by µµµp,X and the sheaf of
the fppf site of ♭ defined by Ep split locally in the étale topology of ♭.

Each localization of R⋄ at a maximal ideal of it is a faithfully flat R-
algebra and thus its depth is at least 2. From this we easily get that the
pullback homomorphism H1

ét(X⋄,JX⋄) → H1
ét(U⋄,JU⋄) is injective and there-

fore we can define

BU⋄ = H1
ét(U⋄,JU⋄)/H

1
ét(X⋄,JX⋄) = Ext1fppf (µµµp,U⋄ , Ep,U⋄/Ext1fppf (µµµp,X⋄ , Ep,X⋄).

If Ep = (Z/pZ)X , then we denote BU⋄ by AU⋄ (cf. Subsection 4.3).
If R⋄ is local of residue field k⋄ and if R′

⋄ is a local ind-étale R⋄-algebra
of residue field k⋄, then we have a commutative diagram of étale cohomology
groups

BU⋄
//

��

H2
Spec(k⋄)(X⋄,JX⋄)

nat
��

BU ′
⋄

// H2
Spec(k⋄)(X

′
⋄,JX′

⋄)

with injective horizontal arrows and an excision isomorphism nat.

Lemma 6 The following four properties hold:
(a) If R′

⋄ is a semilocal flat noetherian R-subalgebra of R⋄ of dimension
2 such that the homomorphism R′

⋄ → R⋄ is faithfully flat, then the pullback
homomorphism bU ′

⋄/U⋄ : BU ′
⋄ → BU⋄ is injective (and thus in what follows it

will be viewed as an inclusion).
(b) We assume that R⋄ is local of residue field k⋄. If the monomor-

phism BU⋄ → H2
Spec(k⋄)(X⋄,JX⋄) is an isomorphism (i.e., if the homomor-

phism H2
ét(X⋄,JX⋄) → H2

ét(U⋄,JU⋄) is injective), then all arrows of the
above commutative diagram are isomorphisms and in particular we have
BU⋄ = BU ′

⋄ = BUph
⋄

= BUh
⋄
.

(c) We consider a semilocal R⋄-algebra R⋄,+ which is a Galois extension
of R⋄ of Galois group Λ of order prime to p. Then inside BUph

⋄,+
we have

identities BU⋄ = BΛ
U⋄,+

= BU⋄,+ ∩ BUph
⋄

.
(d) We assume that R⋄ is semilocal and we consider a finite semilocal

R⋄-algebra R⋄,+ which has the same number of maximal ideals as R⋄ and
for which the homomorphism R⋄[

1
p
] → R⋄,+[

1
p
] is Galois of a Galois group Λ

which leaves R⋄,+ invariant. Then we have BU⋄ = b−1

Uph
⋄ /Uph

⋄,+
(BU⋄,+) ∩ BUph

⋄
.
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Proof: Part (a) follows from faithfully flat descent: a short exact sequence
of finite flat group schemes over U⋄ extends to a complex of finite flat group
schemes over X⋄ if and only its pullback to a short exact sequence of finite
flat group schemes over U ′

⋄ extends to a complex over X ′
⋄ and a complex of

finite flat group schemes over X⋄ is exact if and only if its pullback to X ′
⋄ is

exact. Part (b) follows from the above commutative diagram.
To prove (c) we consider the short exact sequence of Λ-modules

0 → H1
ét(X⋄,+,JX⋄,+) → H1

ét(U⋄,+,JU⋄,+) → BU⋄,+ → 0.

As the order of Λ is relatively prime to the exponent p of J we have
H1(Λ, H1

ét(X⋄,+,JX⋄,+)) = 0. This implies that we have a short exact

0 → H1
ét(X⋄,+,JX⋄,+)

Λ → H1
ét(U⋄,+,JU⋄,+)

Λ → BΛ
U⋄,+ → 0

which (cf. faithfully flat descent) is identified with the short exact sequence

0 → H1
ét(X⋄,JX⋄) → H1

ét(U⋄,JU⋄) → BU⋄ → 0.

From this part (c) follows.
To prove (d), we first remark that the inclusion BU⋄ ⊂ b−1

Uph
⋄ /Uph

⋄,+
(BU⋄,+) ∩

BUph
⋄

follows from (a). To prove the other inclusion, we first consider the
case when R⋄ is local; thus R⋄,+ is also local. We remark that the group
H1

ét(X
h
⋄ ,JXh

⋄
) is trivial and thus BUh

⋄
= H1

ét(U
h
⋄ ,JUh

⋄
). Therefore to prove

that BU⋄ ⊃ b−1

Uph
⋄ /Uph

⋄,+
(BU⋄,+)∩BUph

⋄
= b−1

Uh
⋄ /U

h
⋄,+

(BU⋄,+)∩BUh
⋄
it suffices to show

that the commutative diagram

H1
ét(U⋄,JU⋄) //

��

H1
ét(U

h
⋄ ,JUh

⋄
)

��
H1

ét(U⋄,+,JU⋄,+)
Λ // H1

ét(U
h
⋄,+,JUh

⋄,+
)Λ

is cartesian. But this is a direct consequence of the facts that we have the
following identities H1

ét(Y⋄,+,JY⋄,+)Λ = H1
ét(Y⋄,JY⋄) and R⋄ ⊂ RΛ

⋄,+ ∩ Rh
⋄ ⊂

R⋄[
1
p
] ∩ Rh

⋄ (cf. Galois descent) and R⋄[
1
p
] ∩ Rh

⋄ = R⋄ (as the R⋄-algebra Rh
⋄

is faithfully flat) and thus R⋄ = RΛ
⋄,+ ∩Rh

⋄ = R⋄[
1
p
] ∩Rh

⋄ .
The general case when R⋄ is just semilocal follows from the local case by

standard gluing arguments of short exact sequences. □
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Corollary 3 We assume that R⋄ is local of residue field k⋄. If the pair
(R⋄, pR⋄) is henselian, i.e., we have R⋄ = Rph

⋄ (e.g., this holds if R⋄ is p-
adically complete), then the monomorphism BU⋄ → H2

Spec(k⋄)(X⋄,JX⋄) is an
isomorphism and we have BU⋄ = BU ′

⋄ = BUh
⋄

.

Proof: As JSpec(R⋄/pR⋄) = 0 and as the pair (R⋄, pR⋄) is henselian, from
[G2], Thm. 1 we get that H2

ét(X⋄,JX⋄) = 0. From this and Lemma 6 (b)
we get that the monomorphism BU⋄ → H2

Spec(k⋄)(X⋄,JX⋄) is an isomorphism
and moreover we have BU⋄ = BU ′

⋄ = BUh
⋄
. □

7.3 Proof of Theorem 3
We assume that R is of dimension 2 and that there exists a regular system
of parameters x, y of R and constants a, b, c ∈ R with c a unit of R such that
p+ axp + byp + cxp−1yp−1 = 0. We know that Rh is not p-quasi-healthy and
in fact there exists a form Eh

p of (Z/pZ)Xh with the property that there exists
a complex 0 → Eh

p → Gh → µµµp,Xh → 0 with Gh connected of order p2 and
annihilated by p which is not a short exact sequence but whose restriction
to Uh is a short exact sequence, cf. Theorem 1 (b). Moreover, we have
Eh
p = (Z/pZ)Xh if and only if there exists a (p− 1)-th root of c in Rh.
We have q(2) = q(3) = 1 and thus we have R′

+ = R, cf. Subsection 7.1.
Thus, as either X = Xph or p ∈ {2, 3}, from Fact 1 we get that Eh

p is the
pullback of a form Ep of (Z/pZ)X and therefore we can speak about the BU⋄

groups. From the previous paragraph we know that B(Uh) ̸= 0. If there
exists a (p− 1)-th root of c in Rh (e.g., this holds if p = 2), then we choose
Ep = (Z/pZ)X . If p = 3 and Ep ̸= (Z/pZ)X , let k1 be the quadratic extension
of k obtained by adjoining a square root of the image of c in k and let R1 be
a local finite étale R-algebra of residue field k1.

If BU = BUh , then as BUh ̸= 0 we get that there exists a complex 0 → Ep →
G → µµµp,X → 0 which is not a short exact sequence and whose restriction to
U is a short exact sequence and from [VZ], Lem. 27 we get that R is not
p-quasi-healthy. Thus if BU = BUh , then Theorem 3 holds.

If (R, pR) is a henselian pair, from Corollary 3 we get that BU = BUh .
We assume that p ∈ {2, 3}. If p = 3 and Ep ̸= (Z/pZ)X , the equality

BU = BUh is equivalent to the equality BU1 = BUh
1
(cf. Lemma 6 (c)); thus by

replacing R with R1 we can assume that Ep = (Z/pZ)X . As Ep = (Z/pZ)X ,
below we will use AU⋄ instead of BU⋄ .
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We have AUh = AUph , cf. Corollary 3. Based on Lemma 4 (a) we can
identify H1

ét(U
ph,JUph) = H1

ét(U
∧,JU∧) and H1

ét(X
ph,JXph) = H1

ét(X
∧,JX∧)

and thus also AUph = AU∧ . Thus to prove that the subgroup AU of AUh =
AUph = AU∧ isAUh itself, it suffices to show that the pullback homomorphism
ηU : H1

ét(U,JU) → H1
ét(U

∧,JU∧) is surjective.
As p ∈ {2, 3} we have J = j!(µµµp,W ), whereW = Spec(R[1

p
]) and j : W →

U is the open embedding. We consider the short exact sequence

0 → JU → µµµp,U → µµµp,Υ → 0,

where Υ = U ∩ Spec(R/pR) is the finite affine scheme of generic points of
the closed subscheme Spec(R/pR) of X. Associated to it and its analog over
U∧ we get a commutative digram with exact rows

H0
ét(Υ,µµµp,Υ) // H1

ét(U,JU) //

ηU
��

H1
ét(U,µµµp,U) //

ξU
��

H1
ét(Υ,µµµp,Υ)

H0
ét(Υ,µµµp,Υ) // H1

ét(U
∧,JU∧) // H1

ét(U
∧,µµµp,U∧) // H1

ét(Υ,µµµp,Υ).

Thus to prove that ηU is surjective it suffices to show that the pullback homo-
morphism ξU : H1

ét(U,µµµp,U) → H1
ét(U

∧,µµµp,U∧) is surjective. By considering
the standard short exact sequence 0 → µµµp → Gm → Gm → 0 over U and U∧

and using the fact that the Picard groups of U , X, Uph and X∧ are trivial,
the fact that ξU is an epimorphism follows from the well-known fact that the
functorial homomorphism ξU : R∗/(R∗)p → (R∧)∗/((R∧)∗)p is surjective.

Thus, if p ∈ {2, 3} we have AU = AUh , and therefore in all cases we have
BU = BUh . Thus Theorem 3 holds. □

Corollary 4 We have n2(1) = n3(1) = 1.

7.4 Descending line bundles
Lemma 7 For each semilocal flat noetherian R-algebras R⋄ of dimension 2
such that all maximal ideals of R⋄ intersect R in the maximal ideal of R we
have a functorial commutative diagram

0 // Pic(U⋄)
r⋄ //

��

Pic(Uph
⋄ ) //

��

Pic(Uph
⋄ )/Pic(U⋄) //

� _

q⋄
��

0

0 // Pic(Y⋄)
t⋄ // Pic(Y ph

⋄ ) // Pic(Y ph
⋄ )/Pic(Y⋄) // 0.
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whose arrows are pullbacks or passages to quotients, whose rows are short
exact sequences and whose homomorphism q⋄ is injective.

Proof: The fact that t⋄ is injective is a particular case of Lemma 5 (a)
applied to (R⋄, p) instead of (R, θ). The closed subschemes of U⋄ and Uph

⋄
defined by the equation p = 0 coincide. Based on this, the fact that q⋄ and
rq⋄ are injective follows from [FR], Prop. 4.2 applied to affine localizations
of the faithfully flat morphism U⋄ → Uph

⋄ and from the injectivity of t⋄. □

7.5 A variant of Theorem 3 for p ≥ 5

Theorem 4 We assume that p ≥ 5. Then the inequality np(1) ≤ q(p)2
p−1
2

holds. More precisely, for any regular local ring R of dimension 2 for which
there exists a regular system of parameters x, y of R and elements a, b, c ∈ R
with c a unit of R such that p+axp+ byp+ cxp−1yp−1 = 0, there exists a local
étale homomorphism R → R′ such that the following three properties hold:

(i) we have R′/pR′ = R/pR (thus R′ has residue field k);
(ii) the étale R[1

p
]-algebra R′[1

p
] is the localization of a finite étale R[1

p
]-

algebra and we have [R′ : R] ≤ q(p)2
p−1
2 ;

(iii) the local regular ring R′ is not p-quasi-healthy and in fact there exists
a homomorphism γ′ : GX′ → µµµp,X′ over X ′ = Spec(R′) whose extension to
the henselization of R (or R′) is a homomorphism as in Theorem 1 (b).

Proof: Let R and 0 → Eh
p → Gh → µµµp,Xh → 0 be as in the first paragraph

of Subsection 7.3 with p ≥ 5. From Subsection 7.1 we get that there exists
a local étale morphism X ′

+ = Spec(R′
+) → X such that R′

+/pR
′
+ = R/pR,

the étale R[1
p
]-algebra R′

+[
1
p
] is the localization of a finite étale R[1

p
]-algebra,

we have [R′
+ : R] ≤ q(p) and Eh

p is the pullback of a form of (Z/pZ)X′
+
.

Thus by replacing R with R′
+ we can assume that Eh

p is the pullback of
a form Ep of (Z/pZ)X and we have to show that there exists a local étale
homomorphism R → R′ which has all the required properties and in fact we
have [R′ : R] ≤ 2

p−1
2 .

We recall that Y = Spec(R[1
p
]). We consider the étale sheaf C = (µµµ−2

p,X⊗Z/pZ

⊗Ep)Y which is a form of the étale sheaf (Z/pZ)Y . Let Y1 be a connected com-
ponent of the affine Y -scheme Isom((Z/pZ)Y , C) which is a torsor under the
étale finite group scheme (Fp)∗Y of automorphisms of (Z/pZ)Y . Let Y2 be the
connected component of the quotient of Isom((Z/pZ)Y , C) by the subgroup
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{−1, 1}Y of (Fp)∗Y which is dominated by Y1. Let R1 and R2 be the nor-
malizations of R in Y1 and Y2 (respectively); we have Y1 = Spec(R1[

1
p
]) and

Y2 = Spec(R2[
1
p
]) and two isomorphisms (Z/pZ)Y1 → CY1 and JY1 → µµµp,Y1 ,

to be viewed as identifications. As Ep splits over the strict henselization of
X and as {−1, 1} acts trivially on µµµ−2

p,X , the finite homomorphism R2 → R1

is étale.
Let ε ∈ BUph = BUh be the non-zero class defined by 0 → Eh

p → Gh →
µµµp,Xh → 0, cf. Corollary 3 for the equality part. We have BUph ⩽ BUph

2
⩽

BUph
1
, cf. Lemma 6 (a). The class ε ∈ BUh

2
is the image of a class ηph

2 ∈
H1

ét(U
ph
2 ,JUph

2
). Let ηph

1 ∈ H1
ét(U

ph
1 ,JUph

1
) be the image of ηph

2 . By considering
the standard short exact sequence 0 → µµµp → Gm → Gm → 0 over U1 and
U∧
1 we get a morphism of short exact sequences

0 // R∗
1/(R

∗
1)
p //

��

H1
ét(U1,µµµp,U1) //

��

Pic(U1)[p] //

��

0

0 // (Rph
1 )∗/((Rph

1 )∗)p // H1
ét(U

ph
1 ,µµµp,Uph

1
) // Pic(Uph

1 )[p] // 0.

Let LUph
1

be a line bundle over Uph
1 of order p such that [LUph

1
] ∈ Pic(Uph

1 )[p]

is the image of ηph
1 . Let LY ph

1
be its pullback to Y ph

1 .
We consider three cases as follows:
Case 1: R1 = R2.
Case 2: [R1 : R2] = 2 and Spec(Rph

1 ) has twice as many connected
components as Spec(Rph

2 ) (i.e., and R1/pR1 = (R2/pR2)
2 or Rph

1 = (Rph
2 )2).

Case 3: [R1 : R2] = 2 and Spec(Rph
1 ) and Spec(Rph

2 ) have the same
number of connected components.

In Case 1 (so R1 = R2), let R5 = R2⊕R2 and we consider the line bundle
LUph

5
= LUph

1
⊕(LUph

1
)−1 over Uph

5 = Uph
2 ×Uph

2 = Uph
1 ×Uph

1 and its restriction
LY ph

5
to Y ph

5 . From Lemma 5 (b) and Example 1 applied with (R, θ,S,Lθh) =

(R2, p, R5[
1
p
],LY ph

5
) we get that there exists a finite étale R2-subalgebra R4

of Rph
5 such that Rph

4 = (Rph
2 )2 = Rph

5 (thus R4/pR4 = (R2/pR2)
2), and

there exists a line bundle LY4 over Y4 whose pullback to Y ph
5 is LY ph

5
. Let

X3 = Spec(R3) be the affine open subscheme of X4 = Spec(R4) such that
Y3 = Y4 (i.e., we have R3[

1
p
] = R3[

1
p
]) and R3/pR3 = R2/pR2 is the first factor

of R4/pR4 = (R2/pR2)⊕ (R2/pR2). Let LY3 = LY4 . We have Rph
3 = Rph

2 .
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In Case 2, let R5 = R1 and we consider the line bundle LUph
5

= LUph
2

⊕
(LUph

2
)−1 over Uph

5 = Uph
2 × Uph

2 = Uph
1 , where LUph

2
is the line bundle over

Uph
2 such that we have a natural identification LUph

1
= LUph

2
⊕ (LUph

2
)−1. Let

R4, R3 and LY3 be obtained as in Case 1. We have Rph
3 = Rph

2 .
In Case 3, each connected component of Xph

1 is an étale cover of degree 2
of a connected component of Xph

2 and the norm of LY ph
1

to a line bundle over
Y ph
2 is trivial (as ηph

1 comes from ηph
2 ). Thus from Lemma 5 (b) and Example

1 applied with (R, θ,S,Lθh) = (R2, p, R1[
1
p
],LY ph

1
) we get that there exists a

finite étale R2-subalgebra R3 = R4 of Rph
1 such that we have an identification

Rph
3 = Rph

1 (thus R3/pR3 = R1/pR1) and there exists a line bundle LY3 over
Y3 whose pullback to Y ph

3 = Y ph
1 is LY ph

1
.

In all three Cases, the norm of LY3 to a line bundle over Y2 is trivial.
From Lemma 7 applied with R⋄ = R3, we get that there exists a unique line
bundle LU3 over U3 which extends LY3 and whose pullback to Uph

3 is LUph
1

in
Cases 1 and 3 and is LUph

2
in Case 2. As the order of LUph

1
is p, based on

Lemma 7 we easily get that the order of LU3 is also p.
As the homomorphism R∗

3/(R
∗
3)
p → (Rph

3 )∗/((Rph
3 )∗)p is surjective, from

the analog of the above diagram for U3 and Uph
3 and from the existence

of LU3 we get that there exists a class ξ3 ∈ H1
ét(U3,µµµp,U3) which maps to

the image ξph
1 ∈ H1

ét(U
ph
1 ,µµµp,Uph

1
) of ηph

1 in Cases 1 and 3 and to the image
ξph
2 ∈ H1

ét(U
ph
2 ,µµµp,Uph

2
) of ηph

2 in Case 2.
If R4 contains R1 (i.e., if in Cases 2 and 3 we have by chance R4 = R1),

then JY4 = µµµp,Y4 and by using a commutative digram as in Subsection 7.3
but for U3 and Uph

3 = Uph
3 instead of U and Uph we get that ξ3 is the image of

a class η3 ∈ H1
ét(U3,JU3) that defines a class in BU3 which maps to ε ∈ BUph

1
.

As BU3 ⩽ BUph
3

(cf. Lemma 6 (a)), we conclude that ε ∈ BU3 ∩ BUph .
If we are in Case 2 with R4 ̸= R1, then let X+

3 = X1 ×X2 X3 and an
argument similar to the one of the previous paragraph shows that we have
ε ∈ BU+

3
∩ BUph .

The finite morphism π : X2 → X is flat. Let π∗(X3) be the relative Weil
restriction X-scheme such that for a X-scheme † we have

π∗(X3)(†) = HomX(†, π∗(X3)) = HomX2(X2 ×X †, X3).

The X-scheme π∗(X3) is affine (cf. [CGP], Prop. A.5.2 (2)) and quasi-affine.
For x ∈ X, if the fiber of X2 → X at x has s geometric points, then the
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fiber of π∗(X3) → X at x has 2s geometric points if either R1 ̸= R2 or
x ∈ Y and it has s geometric points otherwise. In particular, the morphism
π∗(Y3) = Y ×X π∗(X3) → Y is finite étale of degree 2[R2:R] and thus of
degree at most 2

p−1
2 . Let Tr : X2 ×X π∗(X3) → X3 be the trace morphism

corresponding to the identity morphism 1π∗(X3) ∈ HomX(π∗(X3), π∗(X3)).
In this paragraph we assume that we are in Cases 1 and 2. To the com-

posite morphism X2 ×X Xph = Xph
2 = Xph

3 → X3 corresponds a morphism
ζ : Xph → π∗(X3). Let X ′ = Spec(R′) be the affine open subscheme of
π∗(X3) such that R′/pR′ = R/pR, we have Y ′ = π∗(Y3) (so [R′ : R] ≤ 2

p−1
2 ),

and moreover ζ factors as a morphism ζ ′ : Xph → X ′. If we are in Case 1 or
in Case 2 with R4 = R1, then the class ε ∈ BU3 pulls back via the morphism
U2 ×U U

′ → U3 induced by Tr to a class in BU2×UU ′ whose correstriction is a
class in BU ′ whose pullback via ζU ′ : Uph → U ′ is the class [R2 : R]ε ∈ BUph .
Thus by replacing ε with its multiple by the natural number [R2 : R] prime
to p, we can assume that ε ∈ BUph is the pullback via ζU ′ of a class in BU ′

and therefore R′ has all the desired properties. If we are in Case 2 with
R4 ̸= R1, then by pulling back the Trace morphism Tr to a morphism of
X1-schemes we get a morphism TrX1 : X1 ×X π∗(X3) → X1 ×X2 X3 = X+

3 .
The class ε ∈ BU+

3
pulls back via the morphism U1 ×U U

′ → U+
3 induced by

TrX1 to a class in BU1×UU ′ whose correstriction is a class in BU ′ and as above
we conclude that R′ has all the desired properties.

In this paragraph we assume that we are in Case 3. Thus the morphism
X3 → X is finite, and based on this, we will show that in fact we can take
R′ = R. It suffices to show that inside Bph

U we have ε ∈ BU . Let R → R0 be
a finite Galois extension of order dividing p− 1 such that Ep,X0 is isomorphic
to (Z/pZ)X0 and the residue field k0 of R0 is a Galois extension of k of degree
[R0 : R], cf. Subsection 7.1. Based on Lemma 6 (c) it suffices to show
that inside BUph

0
we have ε ∈ BU0 . Let R20 be the Galois extension of R2

generated by R0; the R2-algebra R1 is a subalgebra of R20 and thus we have
JY20 = µµµp,Y20 . Let R30 be the Galois extension of R20 generated by R20 and
R3; we have [R30 : R20] ≤ 2. As above (for the case when R4 contains R1)
we argue that the image ξ30 ∈ H1

ét(U3,µµµp,U30) of the class ξ3 ∈ H1
ét(U3,µµµp,U3)

is the image of a class η30 ∈ H1
ét(U3,JU30) that defines a class in BU30 whose

image in BUph
30

is the same as the image of ε ∈ BUph . From Lemma 6 (c)
applied in the context of the finite Galois extension R20 → R30 we get that
inside BUph

30
we have ε ∈ BU20 . Let R00 be the maximal finite R0-subalgebra

of R20 which is étale over R0. The finite homomorphism R00 → R20 induces
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a bijection at the level of sets of maximal ideals and by inverting p we get an
abelian extension R00[

1
p
] → R20[

1
p
] whose Galois group leaves R20 invariant.

By applying Lemma 6 (d) to it we get that inside BUph
20

we have ε ∈ BU00 . From
Lemma 6 (c) applied in the context of the finite Galois extension R0 → R00

we get that inside BU00 we have ε ∈ BU0 . □

8 A complement to [VZ]
In this section we prove two variants of Proposition 1 which are modeled on
[VZ], Thm. 28 (i) and (ii).

Proposition 2 Let R1 be a henselian local ring whose residue field has char-
acteristic p. We assume that there exist an element x of the maximal ideal
of R1 and an element a of R1 such that we have an identity

p+ axp = 0.

Let s ∈ N∗. Let t1, . . . , ts be elements of the maximal ideal of R1. Then there
exists a homomorphism δ1 : G1 → I1 of connected finite flat commutative
group schemes annihilated by p over Spec(R1) with G1 of order p3s and with
I1 of order p whose restriction to Spec(R1) \ Spec(R1/(x, t1, . . . , ts)) is an
epimorphism and which at every point of Spec(R1/(x, t1, . . . , ts)) is not an
epimorphism. In particular, if R1 is regular of mixed characteristic (0, p) and
dimension d ≥ 2, then R1 is not p-quasi-healthy (thus formal power series
rings in d−1 ≥ 1 variables over a complete discrete valuation ring of absolute
ramification index at least p are not p-quasi-healthy).

Proof: The proof of the first part of the proposition is similar to the one of
Proposition 1 with the new universal ring being

Z(p)[a, x, t1, . . . , ts]/(p+ axp).

The only difference is in the case when R1 is regular complete and moreover
x, t1, . . . , ts, z1, . . . , zd−s−1 is a regular system of parameters of R1. We take

S = C(k)[[x, t1, . . . , ts, z1, . . . , zd−s−1]],

S = k[[x, t1, . . . , ts, z1, . . . , zd−s−1]],
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R1 = S/(p + axp) for some a ∈ S, and a Frobenius lift σ of S which is
compatible with σk and which maps each t ∈ {x, t1, . . . , ts, z1, . . . , zd−s−1} to
tp. LetM3s = S3s and let φ4 :M3s →M

(σ)
3s be the S-linear map whose matrix

representation with the standard S-bases ofM3s andM (σ)
3s is a diagonal block

matrix Γ = (Γi)1≤i≤s ∈M3s×3s(S), where for i ∈ {1, . . . , s} we have

Γi = Γ(ti) =

 0 0 xp

ti − tpix
p−1 x (x− tp−1

i )(ti − tpix
p−1)

xp−1 0 xp−1(x− tp−1
i )

 .

Let M1 = S and φ1,1 : M1 → M
(σ)
1 be the S-linear map defined by the

multiplication with xp. Let β4 : (M3s, φ4) → (M1, φ1,1) be the S-linear map
defined by the matrix

(t1, x, t1x, t2, x, t2u, . . . , ts, x, tsx).

If

∆i = ∆(ti) =

 tp−1
i − x 0 x

0 xp−1 −ti + tpix
p−1

1 0 0

 ∈M3×3(S),

then we have
Γi∆i = ∆iΓi = xpI3

(cf. [VZ], proof of Thm 28 (i)). Note that the adjugate of Γi is −xp∆i. If
∆ = (∆i)1≤i≤s ∈M3s×3s(S) is the diagonal block matrix, then we have

Γ∆ = ∆Γ = xpI3s.

The identity

(tp1 x
p tp1x

p tp2 x
p tp2x

p . . . tps x
p tpsx

p)Γ = xp(t1 x t1x t2 x t2u . . . ts x tsx)

implies that β4 is a morphism of nilpotent Breuil modules. The search for
homomorphism δ1 : G1 → I1 is the one associated to β4.

The last part of the proposition follows from [VZ], Lem. 27 applied
to δ1 with t1, . . . , ts chosen such that the quotient ring R1/(x, t1, . . . , ts) is
artinian. □
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Proposition 3 Let R2 be a henselian local ring whose residue field has char-
acteristic p. We assume that there exist s ∈ N∗, elements x1, . . . , xs of the
maximal ideal of R2 and an element a of R2 such that we have an identity

p+ a
s∏
i=1

xp−ii = 0.

Then there exists a homomorphism δ2 : G2 → I2 of connected finite flat
commutative group schemes annihilated by p over Spec(R2) with G2 of order
ps and with I2 of order p whose restriction to Spec(R2)\Spec(R2/(x1, . . . , xs))
is an epimorphism and which at every point of Spec(R2/(x1, . . . , xs)) is not
an epimorphism. In particular, if R2 is regular of mixed characteristic (0, p)
and dimension d ≥ 2, then R2 is not p-quasi-healthy.

Proof: The proof of this proposition is entirely similar to the one of Propo-
sition 2 with the new universal ring being

Z(p)[a, x1, . . . , xs]/(p+ a
s∏
i=1

xp−ii ).

The only difference is in the construction of a morphism β5 : (Ms, φ5) →
(M1, φ1,2) of nilpotent Breuil modules. We take φ5 : Ms → M

(σ)
s to be the

S-linear map whose matrix representation with respect to the standard S-
bases of Ms = Ss and M (σ)

s is the diagonal s × s matrix whose entry in the
jj position with j ∈ {1, . . . , s} is

∏
1≤i≤s,i ̸=j x

p−1
i . We take φ1,2 :M1 →M

(σ)
1

to be the multiplication by
∏s

i=1 x
p−i
i . We take β5 : Ms → M1 such that its

matrix representation is (x1 . . . xs). □
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