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1 Introduction

Let p be a prime. Let R be a regular local ring of mixed characteristic (0, p)
and dimension at least 2. Let & be the residue field of R. Let X = Spec(R)
and let U be punctured spectrum of R (i.e., the complement in X of the



closed point Spec(k) of X). We recall from [VZ], Def. 2 that R is called p-
quasi-healthy if each Barsotti-Tate group over U extends to a Barsotti-Tate
group over X; such an extension is unique up to unique isomorphism. Let R
be the completion of R. For basic properties of the Cohen ring C'(k) of k we
refer to [C], Sect. 6 and [M], Subsect. 29. If k is perfect, then C'(k) = W (k)
is the ring of p-typical Witt vectors with coefficients in k.

In [VZ], Thm. 3 it is shown that there exist large classes of p-quasi-
healthy regular local rings of dimension 2. We prove a converse of loc. cit.
that classifies all such R which are p-quasi-healthy as well as henselian of
dimension 2.

Theorem 1 We assume that R is of dimension 2. We write

R = Ck)[[lx.9))/ (),

where C(k) is the Cohen ring of k and where f € C(k)[[z,y]] is a regular
parameter. Then the following three properties hold:

(a) If f does not belong to the ideal (p, 2, y?, xP~yP~1) of C'(k)[[x,y]],
then R is p-quasi-healthy.

(b) We assume that R is henselian and that

f € pa? P 2"yt C Ck)[[z, y]]

(thus the reduction f of f modulo p is a non-zero element of the ideal
(xP, yP, 2P~ yP~Y) of k[[z,y]]). Then there exists a homomorphism v : G —
Lp x of finite flat commutative group schemes annihilated by p over X with G
connected of order p* if f & (p,aP,y") or of order p* if f € (p,aP,y") which
is mot an epimorphism but whose restriction to U is an epimorphism. More-
over the kernel of vy : Gy — ppu extends to a finite flat group scheme over
X which is either a form of (Z/pZ)x (if G has order p*) or is a connected
truncated Barsotti—Tate group of level 1 over X of height 2 and dimension 1
(if G has order p*).

(c) We assume that R is henselian. Then R is p-quasi-healthy if and only
if f does not belong to the ideal (p, 27, y?, 2P~ yP~1) of C(k)[[z,y]]-

Theorem 1 (a) is essentially proved in [VZ], Thm. 3. From [VZ], Lem.
27 applied to homomorphisms v : G — pp x as in the Theorem 1 (b), we get
that Theorem 1 (b) implies the ‘only if’ part of Theorem 1 (c¢). Theorem 1
(b) is an application of the following general result.
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Proposition 1 Let R be a henselian local ring whose residue field has char-
acteristic p. We assume that there exist elements x,y of the mazimal ideal
of R and elements a,b,c of R with c either 0 or a unit of R such that we
have an identity

p 4 ax? + byP + caPlyP = 0.

Then there exists a homomorphism 6 : G — pp x of finite flat commutative
group schemes annihilated by p over X = Spec(R) with G connected of order
p? if ¢ is a unit of R or of order p® if ¢ = 0 whose restriction to Spec(R) \
Spec(R/(x,y)) is an epimorphism and which at every point of Spec(R/(x,y))
is not an epimorphism. Moreover the kernel of this restriction extends to a
finite flat group scheme over X which is a connected truncated Barsotti—Tate
group of level 1 over X of height 2 and dimension 1 if ¢ = 0, is a form of
(Z/pZ)x if c is a unit of R, and it is (Z/pZ)x if and only if ¢ is the (p—1)-th
power of a unit of R.

If R is strictly henselian and if Spec(R/pR) is not irreducible but all
its irreducible components have multiplicities divisible by p — 1 (e.g., if k is
separably closed, R is complete, and f = p — 2P~ !yP~!), then Theorem 1 (b)
is proved in [G1]. In the proof of [VZ], Thm. 28 it is shown that a variant
of the first part of Theorem 1 (b) holds provided R = R is of dimension 2, k
is perfect, and one of the following three conditions hold:

(i) The element f is divisible by u?, where u is a non-zero element of the
maximal ideal (z,y) of k[[z,y]].

(ii) There exists a regular sequence u,v in k[[x,y]] such that u?~'vP~" di-
vides f.

(iii) The element i = p — f belongs to the ideal (z,y) of W(k)[[z,y]] and
there exist a, b, ¢ € k[[z, y]] such that h = — f = (azP+byP+caP~'yP~1)e.

If (ii) or (iii) (resp. if (i)) holds, then loc. cit. constructs a homomorphism
v : G — H with G connected of order p* (resp. of order p?) and with H
connected of order p which in general is not py, x. If (iii) holds and ¢ is not
a unit (i.e., h = —f = (@y2% + byy?) (Gex + byy) with @y, @y, by, by € k[[x,7]] is
a particular type of elements one gets in Theorem 1 (b) for ¢ = 0), then H
is not a form of u, x and moreover the kernel of vy : Gy — Hy extends to a
connected finite flat group scheme over X of order p; thus the homomorphism
v : G — H is unrelated to the homomorphisms of Theorem 1 (b).
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Section 2 is of algebraic nature and provides the necessary computations
with matrices of small (up to 3x3) sizes that are required to prove Proposition
1 in the particular case when R is regular complete and x,y is part of a
regular system of parameters of R using the language of Breuil modules
over a suitable frame associated to a ring of formal power series in as many
variables as the dimension of R with coefficients in the Cohen ring of the
residue field of R (see Subsection 3.1). Section 3 proves Proposition 1 in
three steps: the first one is the particular case mentioned, the second step
appeals to Artin’s approximation theorem in a context modeled on the first
step, and the third step introduces the universal rings whose spectra have
local rings of residue characteristic p inducing henselizations to which the
second step applies. Section 4 proves Theorem 1.

We recall that the complete local ring R is henselian. Thus directly from
Theorem 1 (c) applied also to R we get:

Corollary 1 We assume that R is henselian of dimension 2. Then R is
p-quasi-healthy if and only if R is p-quasi-healthy.

Subsection 4.4 proves the following consequence of Theorem 1 (c).

Corollary 2 Let k be a field of characteristic 2 (thus p = 2). Then up to
isomorphisms C(k)[[z]] is the only reqular complete local ring of dimension
2 and residue field k which is 2-quasi-healthy.

In Sections 6 we prove the following theorem:

Theorem 2 There exists a smallest n, € N* with the property that for
each reqular local Ting R of dimension 2 whose henselization R" is not p-
quasi-healthy, there exists a local étale homomorphism R — R’ such that the
following three properties hold:

(i) the residue field of R is k;

(ii) we have [Frac(R') : Frac(R)] < ny;

(iii) the regular local ring R’ is not p-quasi-healthy and in fact there exists
a local finite étale homomorphism R' — R!_ with the property that there exists

a homomorphism ' : Gx, — py x1, over X/, = Spec(R.,) whose extension to
the henselization of R!, is a homomorphism as in Theorem 1 (b).



Five general lemmas required to prove Theorem 2, the below Theorem
3, and Theorem 4 of Subsection 7.5 are gathered in Section 5. In Section 7
we study the universal constant n, and in particular we prove the following
theorem (see Subsection 7.3):

Theorem 3 We assume that R is of dimension 2 and that there exists a
reqular system of parameters x,y of R and constants a,b,c € R with ¢ a unit
of R such that p+ ax? +by? + caP~1yP~ = 0. If the pair (R, pR) is henselian
(in the sense of [G2], Sect. 0 or [E], Subsect. 0.1; e.qg., this holds if R is
p-adically complete) or if p € {2,3}, then R is not p-quasi-healthy and in
fact there exists a homomorphism v : G — pp x of finite flat commutative
group schemes annihilated by p over X with G of order p* and of connected
closed fiber Gy which is not an epimorphism and whose restriction to U is
an epimorphism with a kernel that extends to a form of (Z/pZ)x. Moreover,
this form of (Z/pZ)x s trivial if and only if the image of ¢ in the residue
field k of R has a p — 1-th root in k.

For a weaker version of Theorem 3 for p > 5 see Theorem 4 of Subsection
7.5. The proofs of Theorems 3 and 4 appeal to cohomology properties which
are gathered in Subsections 4.3, 7.1, 7.2, and 7.4 and which rely heavily on
a concrete case of [G2], Thm. 1.

Lemma 4 of Section 5 uses a theorem of Elkik (see [E], Thm. 5) to
prove that if the pair (R,pR) is henselian, then R is p-quasi-healthy if and
only if its p-adic completion is p-quasi-healthy. This result, Theorem 1 (c),
Corollary 1, and Lemma 2 are so far the only ‘if and only if’ statements on
p-quasi-healthy regular local rings.

Section 8 proofs two variants of Proposition 1 which are modeled on [VZ],
Thm. 28 (i) and (ii) and which provide examples in arbitrary dimension d > 2
of regular local rings which are not p-quasi-healthy.

We recall that [G1], [VZ], Thm. 28, the ‘only if’ part of Theorem 1 (c),
Theorems 2 and 3, and Propositions 1 to 3 represent also counterexamples
to [FC], Thms. 6.4 and 6.4’

2 Some matrices

Let J be an arbitrary commutative ring. Let u, v, aq, s, a3 € J. Let



uP~t — aqv 0 oy

A= 0 PP —au ay | € M3(J).
uP~ 1P + asv —asu 0
We have
Auw v w)’ = (uf vP uPoP)T, (1)

We compute
det(A) = aq (v’ 0P + asv)(agu — P71 + asasu(uPt — aqv)

= apuf (a3 + a1vP) — aqvP(a + uP 1P,

Let a,b € J. We assume that v belongs to the Jacobson radical of J.
Thus 1 4+ wP~'vP~! and 1 + ooP are units of J. If we take az = 1, oy =
—b(1 +uwP~ P~ )71 and ay = a(1 + agvP) ™1, then

det(A) = au® + boP.
Let B be the adjugate matrix of A. Let Ay = BT and By = AT. We have
AB = BA = (CLUP + bUp)Ig = AoBO = B()A[) (2)

and

det(Ag) = det(B) = (au? + bvP)2. (3)

As the reduction of A modulo the ideal (u,v) of J has the first two columns
zero, the reductions of B and Ay modulo (u,v) are the zero 3 x 3 matrix.
Transposing the Equation (1), we get that (u? v? uPvP) = (u v uv)By and by
multiplying this identity with Ay from the right we get

(u? vP uPvP) Ay = (au® + bvP)(u v uv). (4)

We consider four matrices

C = ( _g 01 ) € ngg(J),

—u 1

— P 0 1
ol — ( w0l > € Myys(J),

— P —
A — ( ovP —1 1 ) € My(J),

—uP~ Pt — 1 PPl — apuP + 1
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and

; —ogvP — 1 1
A = < PPl 1~ uP Pl — g + 1 ) € My(J).
If p>2orif p=2and J is of characteristic 2, then C"! is the matrix
obtained from C' by raising each entry to its p-th power.

Simple calculations show that the following three identities hold

1 U —aP
R S R S s U —aqu
AC =074 ( uPP + v —uPoP T+ apuPtt —u —apul )7 (5)
det(A") = —ayu?’ "0+ agaouPv? —oagvP —uP P g — T4uP P 4 1
= apt?(1 + ayv?) — ayv? (1 + u? P 1) = au? + P, (6)
and
det(A") = p+det(A) = p + au? + boP. (7)

Thus, if B’ and B’ are the adjugates of A’ and A’ (respectively) and
it Ay, BY, A, Co, and C’([]p] are the transposes of B', A’, %', C, and CP!
(respectively), then from the Equations (5) to (7) we get that the following
three identities hold

(au®? 4+ bv?) AgCo = (auP + bv”)C’([)p]Ag, (8)
A\ By = BLA| = (auP + boP) Iy, 9)

and
det(Ap) = au? +bv?  and  det(2A;) = p + au? + boP. (10)

If au? + bu? is a non-zero-divisor of J, then from Equation (8) we get that

AyCo = CPAL. (11)

3 Proof of Proposition 1

We will prove Proposition 1 in three steps. The first two steps will prove
Proposition 1 in two particular cases (see Subsections 3.1 and 3.2). The
third step will complete the proof of Proposition 1 based on the first two
steps and standard (universal) pullback arguments (see Subsection 3.3).
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In Subsections 3.1 and 3.2 we will assume that the hypotheses of Propo-
sition 1 hold and moreover R is regular and (z,y) is part of a regular system
of parameters of R. Let V = X'\ Spec(R/(z,y)) = Spec(R)\ Spec(R/(z,y)).
To ease the notation, the residue field of R will also be denoted by k.

3.1 The case when R is complete

We first consider the case when R is complete. Let d > 2 be the dimension
of R. Let x,y, 21, ..., 242 be a regular system of parameters of R. Let

S = C’(k)[[m, Y, 21y - ,Zd_g]]

and
S =kllx,y,z1,...,24-2]]

We lift the epimorphism C(k) — k to a homomorphism C(k) — R. We
extend C'(k) — R to an epimorphism

G—->R

which maps each t € {z,y, 21, ..., 242} (viewed as a variable) to the element
t of R. We consider elements of & which map to the elements a,b, ¢ of
R (respectively) and to ease the notation we denote them also by a,b,c
(respectively). If ¢ € R is 0, then we choose ¢ € & to be 0 also. The kernel
I of the epimorphism & — R contains the regular parameter

f=p+axP + byP + caP LyP!

of &. The epimorphism &/(f) — R of regular local rings of dimension d is
an isomorphism and therefore we have I = (f). Let * € S be the reduction
modulo p of an element x € &.

Let ox be a Frobenius endomorphism of C(k). Let o be the Frobenius
endomorphism & which is compatible with ¢, and which maps each ¢ with
t € {x,y,21,...,2q4-2} to t?. For such a t we often denote simply by ¢ its
reduction ¢ modulo p. We denote also by o its reduction modulo p (i.e., the
Frobenius endomorphisms of S). For a &-module N let N©) = & ®eeN. In
what follows by a nilpotent Breuil module or window we mean a (covariant)
nilpotent Breuil module or window for the frame

(67 [7 R? 0_7 0‘-7 O_(f))
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as used in [L1], Subsects. 10.4 and 10.5 and Def. 11.1; here
c: 1 -6

is the o-linear map defined by the rule ¢(fx) = o(z). If k is perfect, we will
also use (covariant) Breuil modules for this frame which are not nilpotent.
For r € N let M, = S”. We naturally identify Mﬁa) = S ®,5 M, with
M,. Let o1 : M; — Ml(a) be the S-linear map defined by the multiplication
by f.
We consider two subcases on the possible values of c.
Subcase 1: ¢ = 0. We assume that ¢ = 0; thus f = ax? + by? € S. Let
Ay € M;y3(S) be such that we have (cf. Equations (2) to (4) of Section 2
applied with u = x and with v = y belonging to the maximal ideal of J = S)

(2 y" 2Py") Ao = f(x y 2y), (12)

det(Ag) = (az? + by?)? = f2, the reduction of Ay modulo (z,y) is the zero
3 x 3 matrix, and there exists By € Mj3y3(S) such that we have

BOAO - AOBO == f[g (13)

Let @3 @ M3 — M?EU) be the S-linear map whose matrix representation
with respect to the standard bases of M3 and Méa) = Mjis Ap. From (13) we
get that the cokernel of 3 is annihilated by f. Thus the pair (Ms, 3) is the
nilpotent Breuil module of a connected finite flat commutative group scheme
G over X annihilated by p and of order p?, cf. [L1], Thm. 10.7. Similarly,
the pair (M, 1) is the nilpotent Breuil module of pp, .

The Equation (12) shows that the S-linear map g : M3 — M; defined by
the matrix (z y zy) has cokernel M, /(z,y)M; = S/(z,y) and is a morphism
of nilpotent Breuil modules

Bo 1 (M3, p3) — (M, ¢1).

We consider the homomorphism dy : G — pp 1 associated to fy, cf. [L1],
Thm. 10.7. We recall that (cf. [L1], Lem. 8.2 and Subsect. 10, [Z], Thm. 6
and Cor. 97, and [BM], Cor. 3.2.11):

(8) the morphism of (covariant) Dieudonné crystals D(dy) : D(G) —
D(pp.x) of the nilpotent crystalline site NCris(Spec(R/pR)/Spec(R/pR))



(see [Be], Ch. 3, Subsect. 1.3.1 and [BBM], Ch. 3) is defined by the S-linear
map
5 M S MO,

If k is perfect, then (f) also follows from [L2], Prop. 7.1.

Let p be a prime ideal of R containing p and let x be the perfection of its
residue field. We consider the composite homomorphism & — R — k. As
1, ® By is not surjective if and only if p D (x,y), from the property (f) we
get that D(dg ) is not surjective if and only if p D (z,y). From this and the
classical Dieudonné theory (see [BBM|, Thm. 4.2.14) we get that § is an
epimorphism at p if and only if p D (z,y). This implies that doy : Gy — ppy
is an epimorphism while at every point of Spec(R/(x,y)) the homomorphism
0o is not an epimorphism.

Let 7y, = Ker(dgp). Let F be the affine X'-scheme of global sections of
Fy. We check that F is a connected truncated Barsotti—Tate group of level 1
over X of height 2 and dimension 1. We consider the nilpotent Breuil module
(Ms, ¢a), where ¢ is the S-linear matrix whose matrix representation with
respect to the standard bases of M, and MQ(U) = My is the matrix

A 1 — oz + P lyp=t pp=lyp=l 4
o -1 —1—ap ! )’

Let ay, a0 € & be as in Section 2 applied with (J,u,v,a,b) = (&, x,y,a,b).
Let @7 and @3 € S be the reductions modulo p of a; and ay (respectively);
thus @y, @z are as in Section 2 applied with (J, u, v, a,b) = (S,z,y, a,b). From
the Equation (10) we get that det(Aj) = @z + by? = f. Either from this or
from the Equation (9) we get that the cokernel of ¢, is annihilated by f. If
APV € My,5(S) is the matrix obtained from A} by raising each entry to its
p-th power (i.e., is the matrix representation of ¢§U)), then the reductions of
APIAL and (A})? modulo (z,y) are the zero 2 x 2 matrix.

If (o : My — Mj is the S-linear map whose matrix representation with
respect to the standard bases of My and Mj is

CO = 0 —=z € M3><2<S),
1 1

then from the Equation (11) we get a morphism of nilpotent Breuil modules
Co @ (Ma, ¢a) — (M3, p3) associated to a morphism F' — G of connected
finite flat group schemes over X.
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Let M, = G2. We identify naturally MY = & @, M, with M,. We
consider the G-linear map 5 : My — fmgf) whose matrix representation
with respect to the standard bases of 9y and smg“) =M, is

g — [ 1o+ P lypmt pprlypml 4 41
0 —~1 —1—ayPt )

From the Equation (10) applied with (J, u,v) = (&, x, y) we get that det(}) =
p + az? 4+ by? = f and thus the cokernel of ®, is annihilated by f. From
this and the fact that the reduction of (9, P2) modulo p is (Ms, ¢o), we
get that (9My, Po) is a nilpotent Breuil window associated to a connected
Barsotti-Tate group D over X whose truncated Barsotti-Tate group of level
1 over X is F' = D|p].

As (z y zy)Cy = 0 we have 3y o (s = 0 and in fact we have Im((y) =
Ker(fy). Therefore 7/ — G — pp x is a complex of connected finite flat
group schemes over X. An argument similar to the one above which checked
that dopy is an epimorphism, shows that the complex F|, — Gy — ppy is
exact. Thus Fj, = Ker(dp). From this and the fact that the codimension of
X\ Vin X is 2 we get that F = F' = DIp|.

As det(2Ay) = f, Coker(®P,) is isomorphic to the &-module R. Thus D
has height 2 and dimension 1. This implies that D has a principal quasi-
polarization W.

We consider the C'(k)-module N = C(k)2. We naturally identify N+ =
C(k)®g,,cty N with N. The connected Barsotti-Tate group Dy, over Spec(k)
is associated to the nilpotent Breuil window for the frame

(C(k),pC(k), k, ok, Ok, D)

with o (wp) = op(w) for w € C(k), defined by the C(k)-linear map N —
N(x) whose matrix representation with respect to the standard bases of N
and N(%) = N is the reduction

E-= ( _1 pj ) € Mayxa(C(k))

modulo (z,y, 21, . .., 24—2) of 2. This implies that Dy, is defined over Spec(F,)
and, as E? = —pls, in fact it is the pullback to Spec(k) of the Barsotti-Tate
Dy, over Spec(F,) whose covariant Dieudonné module is the pair (Zg,v),
where the Z,-linear endomorphism v : ZTQJ — ZTQJ is defined by the rules
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v(e1) = pey and v(es) = —ep, where {eg,es} is the standard basis of the
Zy,-module ZZ.

We note that DFPQ is the Barsotti-Tate group of a supersingular elliptic
curve over Spec(F,2) as one can easily check based on [BG-JGPJ, Lem. 3.21.
Thus if k contains [F2, (D, ¥) is the principally quasi-polarized Barsotti-Tate
group of an elliptic curve over X whose fiber over k is supersingular.

Subcase 2: c¢ is a unit of R. We assume that ¢ is a unit of R. We have
f = ax? +by? + exP~lyp~t € S. Thus [VZ], Thm. 2.8 (iii) and its proof can
be easily adapted to get that Proposition 1 holds in this subcase as well. We
recall and enlarge the computations of loc. cit. Let (M, ¢2) be the nilpotent
Breuil module defined by the S-linear map ¢y : My — MQ(U) whose matrix
representation with respect to the standard bases of My and Mz(a) = M, is

A — ar +eytt ay
L br by +cxP~t )

Note that A; modulo (z,y) is the zero matrix and we have
det(A;) = e(az® + by? + ex?'yP~ 1) = &f.

As @ is a unit of S, we get that f annihilates the cokernel of ;.
Let My — M be the S-linear map defined by the matrix (z y). It defines
a morphism of nilpotent Breuil modules

B1 1 (Mz, p2) — (M, p1).

As in Subcase 1, 3, is associated to a homomorphism ¢, : G — ppx
between finite flat commutative group schemes annihilated by p over X with
G connected of order p*. As in Subcase 1 one gets that d1y : Gy — ppy is
an epimorphism while at every point of Spec(R/(x,y)) the homomorphism
01 is not an epimorphism.

Let 7y, = Ker(dy,y). Let F be the affine X'-scheme of global sections of
Fy. It d = 2 or if F is a flat X-scheme, then F is a group scheme over
X. We check that in fact F is a group scheme that is a form of (Z/pZ)x
which is trivial if and only if there exists a (p — 1)-th root of ¢ in R. To
check that this holds, by considering the pullback via the local flat morphism
Spec(W (k1)[[z,y, 1, - - -, za—2]]/(f)) = X with ki as the perfection of k (see
[GV], Fact 2 for the flatness part) we can assume that the field & is perfect.

12



Let ¢; : My — M, be the S-linear map which maps the element 1 € M; =
S to (y,—x) € My = S?. We have Im(¢;) = Ker(f;) and one computes that

paly, —1) = (e, —ea?) = (1 @y, —1 @ x) € MY = 5§ ®,.6 My = M.

For a unit * of S, if " : M; — Ml(a) is the S-linear map defined by the
multiplication by * (thus ¢}" is the Breuil dual of 1), we get a morphism
of Breuil modules ¢; : (My, o)) — (M, ¢2) which is associated to a homo-
morphism F' — G over X, cf. [L2], Cor. 6.8 (the equivalent conditions of
[L2], Prop. 6.2 hold in our context, cf. [L2], Rm. 6.3 and the fact that we
have o(z) = 2? and o(y) = y?). As in Subcase 1 we argue that we have
F = F'. Thus F and (Z/pZ)x are isomorphic if and only if (M, ¢}¢) and
(M, ") are isomorphic which is equivalent to the existence of a (p — 1)-th
root of ¢ in S and therefore to the existence of a (p — 1)-th root of ¢ in
R. Such (p — 1)-th roots exist after a pullback via the local flat morphism
Spec(W (k1)[[z,y, 2, - .., za—2]]/(f)) — X with k; a finite separable extension
of k and therefore indeed F is a form of (Z/pZ)x.

3.2 The case when R is the henselization of a regular
local ring of a finitely generated Z,-algebra

We assume that R is the henselization of a regular local ring of a finitely
generated Z-algebra. Let X = Spec(R). Let

V =X\ Spec(R/(x,y)) = X xx V.

Let 5 : G — K,z be a homomorphism between connected finite flat group

schemes over X with G of order p? or piwhg\se restriction to V is an epi-
morphism and which at every point of X \ V is not an epimorphism (cf.
Subsection 3.1 applied to the complete local ring 7%)
We write R
R = lim il’ld>\6_7:R/\

as a filtered colimit of local rings R, of residue k£ which are localizations of

finitely generated R-algebras. Let Ao € F be such that ¢ 3 is the pullback to

X of a homomorphism 4y, : Gy, — pp, x,, between finite flat commutative
group schemes annihilated by p over X, = Spec(R,,). For A € F such that
A > Ao, let X = Spec(R)), let dy : Gx — pp x, be the pullback of dy, to
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X, let V) be the largest non-empty open subscheme of X with the property
that the restriction of 0, to V) is an epimorphism, and let Y\ = X, \ V) be
endowed with the reduced structure. Note that the schematic closure }7,\ of
the image of Spec(R/(z,y)) in X, is a closed subscheme of Yj.

The projective limit of the Yy’s for A > X is Spec(R/(z,y)) and for
each N > X\ > )\, Yy is the reduced inverse image of Y) via the morphism
Xy — X,. It is easy to see that these properties imply that there exists
A1 € F with Ay > )¢ such that the image of the X-morphism Y,, = V), is
contained in }7,\0. Thus we have the following property:

(*) the closed subscheme Y,, is the reduced inverse image via the X-
morphism X, — X, of the closed subscheme Y, of X},.

Let Ry = Ry, and X; = Spec(R;). We know that é5 is the pullback of
dx,- As R is the henselization of a local ring of a finitely generated Z)-
algebra, from Artin’s approximation theorem (for instance, see [BLR], Sect.
3.6, Thm. 16) we get that the morphism X; — X has a section. By pulling
back dy, via this section we get a homomorphism d : G — pp x of connected
finite flat commutative group schemes annihilated by p over X'. Due to the
property (*), the reduced inverse image of Y, via the composite X-morphism
X — X7 — X, is the reduced closed subscheme X \ V of X. Thus Jy is
an epimorphism while at every point of X \ V the homomorphism § is not
an epimorphism. Moreover the order of G is the same as the order of QA and
therefore it is p? if ¢ is a unit of R and it is p? if ¢ = 0, cf. Subsection 3.1.

If ¢ = 0, then the kernel of the restriction of 63 to V is the restriction
to V of a truncated Barsotti- Tate group of level 1 over X of height 2 and
dimension 1 whose fiber over k is supersingular (cf. Subcase 1 of Subsection
3.1) and therefore we can choose A\ such that the kernel of the restriction of
0y, to V), extends to a similar type of a Barsotti-Tate group of level 1 over
X),- This implies that Ker(dy) extends to a connected truncated Barsotti—
Tate group of level 1 over X of height 2 and dimension 1 (its fiber over k
is automatically supersingular). If k contains F2, then we can assume that
this connected Barsotti—Tate group of level 1 over X is the one of an elliptic
curve over X.

If ¢ is a unit of R, then as in the previous paragraph we argue that we
can assume that the kernels of the restrictions of 65 to V and of dx to V

extend to X and X (respectively). The fibers over Spec(k) of these two
extensions coincide. This implies that these extensions are forms of (Z/pZ) 3
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and (Z/pZ)x (respectively) which are trivial if and only their fibers over k
are trivial and thus if and only if there exists a (p — 1)-th root of ¢ in R.

3.3 End of the proof of Proposition 1

We are now ready to prove Proposition 1.
If ¢ = 0, we consider the universal ring

Runiv,O = Z(p) [Cl, b: x, y]/(p + &xp + byp>

and the homomorphism ¢ : Runivo — R which maps the elements a + (p +
ax? + byP), b+ (p + azx? + by?), v + (p + ax? + by?), and y + (p + aaP + byP)
of Runivo to the elements a, b, ¢, z, and y (respectively) of R.

If ¢ is a unit of R, we consider the universal ring

Runivt = Zyla, b,c,ctz,yl/(p + ax? + by + ca?~yP ™),
its finite étale extension
:miv,l = Runiv,l[e]/(ep_l_c) = L) la, b, e, 3_17 z, y]/(p+a$p+byp+@p_la7p_lyp_l)a

and the homomorphism ¢; : Ryniv,1 — R which maps the elements a + (p +
ax? + by? + cxP 1y~ b+ (p + ax? + byP + caPyPY), c+ (p + axP + byP +
cxP~lyP™ ) x4 (p+axP +by? +cxP~yP1), and y+ (p+ axP + by? +caP~yP 1)
of Runiv1 to the elements a, b, ¢, z, and y (respectively) of R.

Let € € {0,1} be such that we have a homomorphism ¥, : Rupive — R
and let R, be the henselization of the localization of R iy at the prime ideal
which is the inverse image via 1. of the maximal ideal of R.

The four rings Runiv.e; Runive/ (%), Runive/ (), and Runive/ (2, y) are regu-
lar and z,y is a regular sequence in Ryyiv,e and therefore the same properties
hold for R.. Let X, = Spec(R.) and V., = X, \ Spec(R./(x,y)). As R is
henselian, we have a natural local homomorphism R, — R which defines a
local morphism 7, : X — X, with the property that 77 '(V;) = V.

From Subsection 3.2 applies to R. we get that there exists a homomor-
phism of finite flat commutative group schemes annihilated by p over X,
whose domain is connected of order p*~¢, whose codomain is p, x,, whose
restriction to V. is an epimorphism, and which at every point of X, \ V. is
not an epimorphism. By pulling back this homomorphism via 7. : X — X,
we obtain the searched for homomorphism ¢ : G — pp ».
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If e = 0, then (cf. end of Subsection 3.2 applied with ¢ = 0 to Ry) we can
assume that Ker(dy,) extends to a connected truncated Barsotti-Tate group of
level 1 over X of height 2 and dimension 1 (its fiber over k is automatically
supersingular). If moreover k contains [F,2, then we can assume that this
Barsotti—Tate group of level 1 is the one of an elliptic curve over X.

If ¢ = 1, then there exists a (p — 1)-th root of ¢ in R if and only if
Y1 Runiva — R factors through a homomorphism ] : R{miv,l — R. Based
on this and the last paragraph of Subsection 3.2 applied to the henselization
R} of the localization of Ry, ; at the prime ideal which is the inverse image
via 9] of the maximal ideal of R, it is easy to see that we have Ker(dy) =
(Z/pZ)y if and only if there exists a (p — 1)-th root of ¢ in R. O

3.4 Variants of Proposition 1

The finite flat group scheme G of Subcase 1 (resp. Subcase 2) of Subsection
3.1 is the quotient of a connected Barsotti—Tate group of level 1 over X of
order at most p® (resp. at most p*), cf. the proofs of [L1], Lem. 10.8 and
Thm. 8.5. Thus we have a variant of the first part of Proposition 1 in which
G is a connected Barsotti-Tate group of level 1 over X of order p? if ¢ is a
unit of R or of order p® if ¢ = 0, without being able to say anything about
either Ker(dy) or its extensions to X.

We refer to Subcase 1 of Subsection 3.1 in one of the following three
situations which relate to [VZ], Thm. 28:

(i) The element f = @z + by? € S is such that there exists an element
¢, of the ideal (z,y) of S which divides both @ and b in S.

(ii) We have a product factorization az? + by? = P~ 'yP~Yax + byy),
with a1,b; € S.

(iii) We have a product factorization f = az? + by? = wuP~1vP~! with w
a unit of S and with u,v € S such that g.c.d.(u,v) =1 (e.g., this holds with
w = 1 if p = 2 and the principal ideal (f) of S is not a power of a principal
prime ideal of S) and the radical of the ideal (u,v) of S is (x,y).

~ In this paragraph we assume that (i) holds. Writing ¢, = sz+ty, a = ¢,@’,
b=c b/, with s,t,a’,b' € S, we have

f_ = 51 (C_lll’p + Elyp + Elaipilypil),

where @; = @ — sy?~! and b; = b — taP~!. In this situation we have a
variant of Subcase 1 of Subsection 4.1 which is similar to [VZ], Thm. 28 (iii)
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and which is modeled on Subcase 2 of Subsection 4.1 but working with the
triple (@, b1,¢1) € S® instead of the triple (a,b,¢) € S®. We end up with a
homomorphism G — H between connected finite flat group schemes over X,
where H is associated to the nilpotent Breuil module defined by the S-linear
map M; — Ml(o) which is the multiplication by the factor a;a? + by? +
c1xPtyP~1 of f and thus is of order p but is different from p, x, where G is of
order p?, and where Ker(dy) extends to a connected finite flat group scheme
over X associated to the nilpotent Breuil module defined by the S-linear map
M, - M 1(0) which is the multiplication by ¢;.

In this paragraph we assume that (ii) holds. In this situation we have a
variant of Subcase 1 of Subsection 4.1 which is similar to [VZ], Thm. 28 (ii):
we get a morphism of nilpotent Breuil modules £y : (Ma, pa1) — (M, 1),
where @9 @ My — MQ(U) is the S-linear map whose matrix representation
with respect to standard bases is the matrix

- p—1 0
(dlx‘l’bly) ( Y 0 xp—l ) :

We end up with a homomorphism G — pp v between connected finite flat
group schemes over X with G of order p? and with Ker(dy) extending to a
connected finite flat group scheme over X associated to the nilpotent Breuil
module defined by the S-linear map M; — Ml(a) which is the multiplication
by a1z + byy.

In this paragraph we assume that (iii) holds. In this situation we have
a variant of Subcase 1 of Subsection 4.1 which is similar to [VZ], Thm. 28
(ii) as in the previous paragraph: we get a morphism of nilpotent Breuil
modules 3 : (Ma, oo — (M, 1), where 83 and @5 @ My — M2(J) are the
S-linear maps whose matrix representations with respect to standard bases

are respectively (u v) and
vP! 0
v 0wt )

We end up with a homomorphism G — pp » between connected finite flat
group schemes over X with G of order p? and with Ker(dy) extending to an
étale finite flat group scheme over X which is (Z/pZ)x if w = 1.
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4 Proof of Theorem 1

We first prove Theorem 1 (a) and thus also the ‘if” part of Theorem 1 (c).
By replacing f with a multiple of it by a unit of C'(k) or (in the case when
p is a regular parameter of R) with its image under an automorphism of
C(k)[[z,v]], we can assume that f is normalized as in [VZ], i.e., h = p — f
belongs to the ideal (z,y) of C'(k)[[z,y]].

If [ is an algebraic closure of k, then the composite homomorphism

R = R = C)|[x,y]]/(f) = WO)[z.y])/(f)

is faithfully flat (see [GV], Fact 2). Thus the fact that R is p-quasi-healthy
follows from [VZ], Thm. 3.

4.1 The proof of Theorem 1 (b)
We now show that Theorem 1 (b) follows from Proposition 1. Let

p: Okl yl) = R

be an epimorphism of rings whose kernel Ker(p) is generated by an element
f € (p,aP,y?, 2P~ yP~1). Let u,v € R generate the maximal ideal of R. We
consider a C/(k)-epimorphism ' : C(k)[[u,v]] — R which maps the variables
u and v to the elements u and v of R. Let g € C(k)[[u,v]] be such that it
generates the kernel of p/. Let

w : C(k)[[u, v]] = C(R)[[z, yl]

be a C(k)-homomorphism such that p’ = pow. The cotangent spaces of the
local rings R/pR and R/pR = k[[z,y]]/(f) are k-vector space of dimension 2
having as bases the images of u and v and the images of z and y (respectively).
This implies that the cotangent map of w is an isomorphism. Therefore w is
an isomorphism such that we have w™(f) = (g).

The ideal (zP,y?, 2P~ yP~1) of k[[z,y]] does not depend on the regular
system z, y of parameters of the maximal ideal m of k[[x,y]] as it is equal
to mP! + m?»~2 where m? is the ideal generated by p-th powers of elements
of m. Thus (as w is an isomorphism) the ideals (p,z?,y?, 2P~ 'yP~!) and
(p, w(u)?, w(v)?, w(w)P~'w(w)?~") of C(k)[x,y]] coincide.

Thus (f) C (p, 2P, y?, 2P 1yP~1) = (p,w(u)?, w(v)?, w(u)P~lw(v)P~!) if and
only if (¢9) = w™'(f) C (p,u?,vP,uP~1vP~1). As the 1-dimensional k-vector
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spaces generated by the images of ¢ and p in the cotangent space of the
local ring C'(k)[[u,v]] are equal, the inclusion (g) C (p,u?,v?, uP~1vP~1) is
equivalent to inclusions pC(k)[[z,y]] C (u?,vP,uP~tP~t g) € C(k)[[z,y]]
and thus also to inclusions pﬁ C (uP,vP,uP~toP~1) C R and therefore also
to inclusions pR C (uP,vP,uP~'vP~!) C R. Similarly we argue that the
inclusions (f) C (p,a?,y?) C R are equivalent to inclusions pR C (u,v?) C

R.
As we are assuming that (f) C (p, 2P, y?, 2P~ 'yP~1), we can write

p+au’ + b + cuP P =0 (14)
with a,b,c € R. Note that ¢ is not a unit of R, i.e., we can write
c=cCcu+crem
with ¢1, ¢y € R if and only if we have
p+auP + b =0

with (@,b) = (a+ c;0?" 1, b+ couP™ ). From this and the previous paragraph
we get that either f € (p,z?,y”) and the Equation (14) holds with ¢ = 0 or
f ¢ (p,2P,y?) and the Equation (14) holds with ¢ a unit of R.

As hypotheses of Proposition 1 hold in the context of R, elements u,v €
m, and elements a, b, c € R, Theorem 1 (b) follows from Proposition 1.

If ¢ = 0 and & contains F 2, then from the proof of Proposition 1 we get
that Ker(yy) extends to a Barsotti—Tate group of level 1 over X which is the
one associated to an elliptic curve over X.

If ¢ is a unit of R, from the proof of Proposition 1 we get that Ker(vy) is
isomorphic to (Z/pZ)y if and only if there exists a (p — 1)-th root of ¢ in R.

4.2 End of the proof of Theorem 1 (c)

We are left to show that the ‘only if” part of Theorem 1 (c) follows from The-
orem 1 (b). Using the contrapositive it suffices to show that the assumption
that f € (p,a?,y?, 2P~ yP~1) implies that R is not p-quasi-healthy. We con-
sider a homomorphism v : G — pp x of connected finite flat group schemes
annihilated by p over X which is not an epimorphism and which extends an
epimorphism vy : Gy — pp over U, cf. Theorem 1 (b). Using it, from [VZ],
Lem. 27 we get that R is not p-quasi-healthy. Thus Theorem 1 holds. O
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4.3 Cohomology classes

The homomorphism Extg, ¢(pp x, (Z/pZ)x) — Exte(ppu, (Z/pZ)y) is in-
jective regardless of what R is and thus we can define the quotient group

Av = Ext i, (o0, (Z/PL)r) [Extyy, (i, x, (Z/PL)x).

We now refer to Theorem 1 (b) and assume that f = p+ax? +by? +caP~yP~!
with ¢ a unit of C'(k)|[[x,y]]. The short exact sequence

0 — Ker(yy) = Gu = ppy — 0 (15)

defined by vy does not extend to a short exact sequence over X (as otherwise
v would be an epimorphism).

If there exists no (p — 1)-th root in k of the image of ¢ in k (equivalently,
Ker(yy) is not isomorphic to (Z/pZ)y) and if we can write az? + by? +
cxP~lyP~l = chP~1 with h € R such that (h) is a product of distinct prime
ideals of R (e.g., this holds if @ = b = 0), then it can be checked that
EXt%ppf(iu'P,U7 (Z/pZ)U) =0.

If there exists a (p — 1)-th root of ¢ in R, then (15) is a short exact
sequence

0= (Z/pZ)y — Gy — ppu — 0 (16)

(cf. end of Subsection 4.1). Thus (16) defines a non-zero class of Ay; such
short exact sequences (16) first show up in [G1].

4.4 Proof of Corollary 2

We assume that p = 2 and that R is complete of dimension 2 and is 2-
quasi-healthy. Writing R = C'(k)[[z,y]]/(f), from Theorem 1 (c) we get that
the reduction f of f modulo 2 is an element of the maximal ideal (x,%) of
k[[z,y]] which does not belong to the ideal (22,42 zy). Thus f is a regular
parameter of k[[x,y]] and by interchanging the roles of x and y if needed,

we can assume that k[[z, y|] = k[[z, f]]. Therefore C(k)[[z,y]] = C(k)][[z, f]].
Thus & = W([z, f1l/(f) = C(k)[[z]]. 0

5 Five general lemmas

We first include three general lemmas required to prove Theorem 2 in Section
6 and then we include two extra general lemmas needed to prove Theorems
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3 and 4 in Section 7. The following (first) lemma is a particular case of [GV],
Lem. 3.

Lemma 1 Let R’ be a regular local ring of the same dimension as R that is
a faithfully flat R-algebra. If R’ is p-quasi-healthy, then R is p-quasi-healthy.

Lemma 2 Let R be a regular local ring which is an ind-finite ind-étale
R-algebra. We assume that one of the following two conditions holds:

(i) The homomorphism R — R’ is in fact finite;
(ii) We have dim(R) = 2.
Then R' is p-quasi-healthy if and only if R is p-quasi-healthy.

Proof: The ‘only if’ parts follow from Lemma 1. It suffices to show that
if R is p-quasi-healthy, then R’ is p-quasi-healthy. We will follow the ideas
of [V1], Rm. 3.2.2 4) and thus will rely on properties of Weil restriction of
scalars as in [BLR], Sect. 7.6 and [V2], Subsect. 2.3. Let X’ = Spec(R/);
so U = X' xx U is the punctured spectrum of R’. Let R; be a regular
local ring which is an ind-finite ind-étale R’-algebra such that the composite
homomorphism R — R; is Galois of Galois group ©. If the condition (i)
holds, then we can assume that © is finite. If R; is p-quasi-healthy, then
R’ is p-quasi-healthy (cf. Lemma 1). Thus by replacing R’ with R; we can
assume that the homomorphism R — R’ is Galois of Galois group O.

To end the proof it suffices to show that each Barsotti-Tate group Dy,
over U’ extends to a Barsotti-Tate group D’ over X'.

We first prove that D’ exists when the condition (i) holds. Thus © is
finite. The Weil restriction of scalars Dy = Resyr Dy is a Barsotti-Tate
group over U which extends to a Barsotti-Tate group D over X (as R is
p-quasi-healthy). We have Dy = [],cq U’ Xurp Dy, cf. [V2], Prop. 2.3.1
applied in the context of Barsotti—Tate groups of finite levels over affine open
subschemes of U and their pullbacks to U’. Thus there exists a projector of
Dy whose image is Dj;,. It extends to a projector of Dy, whose image is a
Barsotti-Tate group over X' that extends Dy, .

We now prove that D’ exists when the condition (ii) holds. Thus R has
dimension 2. Let m,n € N*. The short exact sequence

0 — Dy.[p™] — Dy [p™*t™ — Dy[p"] — 0 (17)

over U’ is defined over Uy, ,, = X, \ Spec(ky, ), where R, ,, C R’ is a finite
étale R-algebra of residue field &, ,, and where X, ,, = Spec(R,, ). Let S,
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be a short exact sequence over U,,, whose pullback to U’ is (17). As R
has dimension 2, the Weil restriction Resy,, ,/uSm,» extends to a complex
0— D,, > Dyn — D, — 0 of commutative finite flat group schemes of
p-th power order over X (cf. [GV], Fact 1 (b) for such extensions) whose
restriction to U is a short exact sequence; this complex depends not only on
m and n but also on the choice of R,,,. If the homomorphism D, , — D,
is not an epimorphism, then from [VZ], Lem. 27 we get that R is not p-quasi-
healthy and this is a contradiction. Thus the homomorphism D,,,, — D,
is an epimorphism and this implies that 0 — D,, — D,,.,, =& D, — 0 is a
short exact sequence whose pullback to X, ,, will be denoted as D,,,,,. As in
the previous paragraph, based on [V2], Prop. 2.3.1 we get that S, is the
image of a projector of D, ,, v/, , Which extends to a projector of D, , whose
image is a short exact sequence over X,, ,, which is the complex that extends
Sm.n and therefore its pullback to X’ is a short exact sequence 0 — D) —
D;, ., — D. — 0 which is the complex that extends (17) and which depends
only on m and n (and not on the choice of R,,,). Thus the inductive limit
D' = lim,,_,, D), is the Barsotti-Tate group over X’ which extends Dy,. O

Let @ be a local ring which is an integral domain. Let Q" be the henseliza-
tion of (). We assume that its strict henselization Q*" is also an integral
domain (e.g., this holds if @ is normal). For a Q-algebra (); which is an
integral domain and generically étale, let [Q; : Q] = [Frac(Q1) : Frac(Q)].

Lemma 3 Let m € N*. Then there exits x(m) € N* such that for each Q
as above and for every Q-subalgebra Q1 of Q" which is local and an étale
Q-algebra with [Q1 : Q] < m, there exists a commutative diagram of local
étale QQ-homomorphisms

Q—C

|

Q2HQ37

where Qo is a Q-subalgebra of Q" satisfying [Qs = Q] < x(m) and where the
homomorphism Qs — Q3 is finite.

If Q is a reqular ring of dimension at least 2 and mized characteristic
(0,p) and if Q1 is not p-quasi-healthy, then Qs is also not p-quasi-healthy.

Proof: The first part is a standard (direct) application of the fact that the
ind-étale homomorphism Q" — @ is ind-Galois and thus its proof with
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x(m) = m(m!) is left to the reader. We check the second part. As @) is not
p-quasi-healthy, from Lemma 1 we get that )3 is not p-quasi-healthy. From
this and Lemma 2 we get that ()5 is not p-quasi-healthy. 0]

Lemma 4 Let R be a flat Z,)-algebra such that the pair (R, pR) is henselian
(e.g., this holds if R is local and henselian). Let R" be the p-adic completion
of R and let X" = Spec(R"). LetY be a closed subscheme of Spec(R/pR) =
Spec(R"/pR") and let Z =X \Y and Z" = X"\Y = X" xx Z. Then the
following two properties hold:

(a) The pullback via the morphism Z" — Z defines an equivalence of
categories between the category of finite flat commutative group schemes over
Z and the category of finite flat commutative group schemes over Z".

(b) The regular local ring R is p-quasi-healthy if and only if R" is p-
quasi-healthy.

Proof: As the pair (R,pR) is henselian, the tensor product functor which
takes a finite R-algebra ¢ to R" ®x < induces an equivalence of categories

between the category of finite R-algebras S with the property that S [%] is
an étale R[%]—algebra and the category of finite R"-algebras S" with the
property that SAE] is an étale RA[i]—algebra (cf. [E], Thm. 5).

Let E” be a finite flat commutative group scheme over Z". Let S” be
the R -algebra of global sections of E”*. We consider a finite R"-subalgebra
T of S" such that Z" x xr Spec(T") = E”. From the previous paragraph
we get that there exists a finite R-algebra T such that T" = R" @z T. Let
E = Z xy Spec(T); we have an identity E" = Z" xz E of Z"-schemes.
A similar argument applied to homomorphisms coming from the multiplica-
tion, the inverse automorphism, and the identity section of E” shows that
E has a natural structure of a finite flat commutative group scheme over Z
and that EN = Z" x4 E is in fact an identity between group schemes over
Z". This proves that the faithful pullback functor of (a) is surjective on
objects. A similar argument for homomorphisms shows that this functor is
also surjective on morphisms. Thus (a) holds.

We take R = R; thus X = X. Let U and U” be the punctured spectra of
R and R" (respectively). By taking Y € {Spec(k),0} in (a), we get that the
pullback functors define equivalences of categories between the categories of
truncated Barsotti-Tate groups over X and X" and between the categories
of truncated Barsotti-Tate groups over U and U”. Part (b) follows from
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this and the fact that R (or R") is p-quasi-healthy if and only if the pull-
back functor defines an equivalence of categories between the categories of
Barsotti-Tate groups over X and U (or over X and U"). O

Let Oy denote the structure ring sheaf of a scheme V.

Lemma 5 Let R be a commutative unitary ring such that there exists 6 €
Rad(R) with the property that R[3] is a noetherian ring of dimension at
most 1. We consider the henselization (R" OR") of the pair (R,0R). Let
VO = Spec(R"[3]) and Y = Spec(R|[3]). We consider a finite étale morphism
100 . Z0h — YO of degree 2. Let L7 be a line bundle over Z°*. We assume
that both vector bundles TI*(Ozen) and TI9M(L%") descent to vector bundles

M and L (respectively) over Y. Then the following two properties hold:

(a) The pullback homomorphism Pic(Y) — Pic(Y?") is a monomorphism.
Moreover, M and L are up to isomorphisms the unique vector bundles over
Y whose pullbacks to vector bundles over Y are isomorphic to T19%(O zen)
and 11" (LO%) (respectively).

(b) The pair (1", L) over Y descends to Y in a way compatible with
M and L, i.e., there exists a finite étale morphism Z — Y of degree 2 such
that the following two properties hold:

(b.i) the Oy-module Oz is isomorphic to M and L gets the structure of
a line bundle over Z;

(b.ii) there exists an isomorphism Z°* — Y x5, Z of Y"-schemes with
the property that the pullback of £ to Z°* under the composite morphism
ZO0h _y Yoh Xy Z — Z is isomorphic to Lo,

Proof: To prove the first part of (a), let N be a finitely generated torsion free
R-module such that R?[1] @ N is a free R[5]-module of rank 1. We deduce
the existence of a section s € R @z N such that (R ®r N/(Rs)
is annihilated by #* for some u € N. The same property holds if s is
replaced by a multiple of it by an element of 1 4+ #**'R and therefore,
as R/pR = R /pR™, we can assume that we have s = 1 ® s for some
element s € N. This implies that N/Rs is annihilated by 6" and thus the
R[5]-module N[] is free of rank 1. This implies that ¢ is injective.

We prove the second part of (a) only for £ as the argument for M is the
same. From Serre’s theorem we get the existence of a line bundle F over
Y such that we have an isomorphism M = Oy @ F (cf. [S], Thm. 1 or
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[Ba], Thm. 8.2). Moreover, F is uniquely determined up to isomorphisms
as it the determinant of £. From the first part of (a) we get that F is up
to isomorphisms the unique line bundle over ) whose pullback to Y is
isomorphic to the determinant of TI%*(£%). This implies that the second
part of (a) holds for L.

To prove (b) we consider the Azumaya Oy-algebra A = End(L).

To the isomorphism £ — Yoh ®Roy, L, as L% is a O zen-module, corre-
sponds a Oyen-monomorphism

Oz = Oyeh D Oyﬁh X0y, F = Oyeh X0y, A (18)

which is a maximal étale Oyen-subalgebra of Oy ®p,, A. We consider the
moduli vector group scheme V = Spec(Sym(Hom(F,.A)*)) over Y which
parameterizes Oy-linear homomorphisms from F to A: for a )-scheme W
we have

V(W) = Homo,, (Ow ®o,, F, Ow Ro, A) = H'W, Oy R0, (F~' ®0, A)),

equivalently, we have V(W) = H°(W, Oy ®o, Hom(F,A)). Let W be
the open subscheme of V such that W(W) consists of all Oy-linear maps
[: Ow ®0y, F — Oy ®o,, A with the property that:

() the sum [Oy ®p, Oy] + Im(l) is direct and a maximal étale Oyy-
subalgebra of Oy ®e,, A (thus [ is a monomorphism into a direct summand
of Oy ®o, A).

The fact that (4) is an open condition follows from the fact that (f) is equiv-
alent to the fact that the O)y-linear map

Trrea : (W @0y, F)¥* = Owy

defined by the (reduced) discriminant rule (reduced trace)? — 4 det is an iso-
morphism (i.e., locally in the Zariski topology of W, a generator of Oy ®oe,, F
maps to an endomorphism of Oy ®e, L which has distinct eigenvalues at
each point of W).

Let R%" be the completion of R (or of R™) in the (#)-adic topology.
Let V" = Spec(R[5]). We consider the (6,0)-adic topology of W(Y),
W), V(Y), and V(Y?") defined in [GR], Subsects. 5.4.15 to 5.4.19; the
inclusion W(Y) ¢ W(") is continuous and has a dense image.

Let I" be the finitely generated projective R[%]—module of global sections
of the Oy-module F~! ®0,, A. As I is a direct summand of R[3]* for some
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v €N, V(Y) =T is dense in V(J) = RGA[%] g I" and by considering the
open subscheme W of V we get that W()) is dense in W()%").

To the Oyen-monomorphism of (18) corresponds a point (™ € W(Y).
From the last two paragraphs we get the existence of a point I, € W())
closed to %" in the (6, §)-adic topology of W(J).

Let § = Oy +1Im(ly) be the maximal étale subalgebra of A defined by [.
The Oy-module S is isomorphic to Oy @ F, cf. property (7). Let Z — Y be
the finite étale morphism of degree 2 defined by the coherent Oy-algebra S.
We have Oz =S C A = End(L) and therefore we can view naturally £ as
a line bundle over either S or Z. Thus the property (b.i) holds.

The affine smooth group scheme Aut(.A) of automorphisms of A acts via
conjugation on W and the affine morphism zon : Aut(A)ypon — Wyen defined
by the conjugation of I is smooth. From this and [GR], Prop. 5.4.29 we
get that the morphism

Lon (yeh) : Aut(A)yeh (yeh) — Wyeh (yeh)

is open and thus we can choose [y such that there exists an element g €
Aut(A)yon (Y1) = Aut(A)(Y) such that gl®"g~! = Iy € Wyen (Y). This
implies that we have a Y’P-isomorphism Z% — Y x4, Z induced by the
conjugation by ¢ isomorphism between maximal étale )"-subalgebras of
V™ @0, A to be viewed as an identification (the notation matches). Under
this identification the pullback of £ to Z% gets identified with £%". Thus
the property (b.ii) holds as well.! O

Example 1 We assume that there exists a finite étale homomorphism R[%} —
S such that S = R[] ®gpy S (i-e., the notation matches) and that
the norm Ngonjyon (L") of L% to a line bundle on Y is trivial. Let

II: Z = Spee(S) — Y. Then as M we can take 11,(Oz). We recall a
simple arqgument for the following formula

det(th<£6h)) = d€t(th(020h)> ®@y0h Ngeh/yeh(ﬁeh) (19)

which is a particular case of a general identity on determinants. Let o" :
Ozorn — Ogzon be the involution of Oyen-algebras with the property that the
coherent Oyon-subalgebra of Ozan fized by it is exactly Oyon. We view L7 as
a fractional ideal of Z%". Thus both sides of the Equation 19 are fractional

!The property (b.i) also follows from (a) and the property (b.ii).

26



ideals of Y. Therefore to prove that Equation 19 it suffices to show that
Equation 19 holds after the pullback via (I1°%)*. Thus locally in the Zariski
topology of Y we can assume that L% = jOzen for some element j of the
ring of fractions of S* and we have to prove that we have an identity

d@t(jOZeh ) th(j)ozeh) = d@t(OZQh D Ozeh)jgeh(j)

of fractional ideals of Z°", which is obvious. As Ngzonyon(L") is the trivial
line bundle over Y°", we get that det(TI9"(L")) = det(T1(Oze1)). From this
and Serre’s theorem we get that both vector bundles TI*( L") and T1%(O zon)
over Y are isomorphic to O zen ® det(11%"(Oze1)) and therefore we can take
L = M. Thus the hypotheses of Lemma 5 are satisfied.

6 Proof of Theorem 2

To prove Theorem 2, we assume that R is of dimension 2 and its henselization
is not p-quasi-healthy. Let X" = R and U® = X® xx U = X"\ Spec(k).

From Corollary 1 we get that R is not p-quasi-healthy. From this and
Theorem 1 (c) we get that the hypotheses of Theorem 1 (b) hold for R".
Let v* : G" — Mp xt be a homomorphism of connected finite flat group
schemes over X" which is not an epimorphism and whose restriction to U" is
an epimorphism. Such a homomorphism is defined over some X’ = Spec(R'),
where R’ is a local subring of R" which is an étale R-algebra of residue field
k. Let v : G = ppx be a homomorphism over X’ whose pullback to
XM is 4h Tts restriction to U’ = X'\ Spec(k) is an epimorphism but v’ is
not an epimorphism. From this and [VZ], Lem. 27 we get that R’ is not
p-quasi-healthy.

To check that we can bound [R' : R| independently of p, let u,v be a
regular system of parameters of R. From Subsection 4.1 applied to R® we
get that p € (u?,v?,uP~1wP~1) C R® and thus also p € (uP, vP, uP~ 2P~ 1) C R.
Thus the Equation (14) holds for R, i.e., as in Subsection 4.1 we argue that we
can write p+ au? + bv? + cuP~'vP~! = 0, where a, b, ¢ € R are such that either
¢ =0 or cis a unit of R. Therefore we get the existence of a homomorphism
Ve : Runive — R, where € € {0,1} and Rypive are as in Subsection 3.3, which
maps the images of z,y, a, and b in Ry to u, v, a, and b (respectively).

Let Se be the localization of Ry at its prime ideal p. which is the
inverse image via 1. of the maximal ideal of R. The prime ideal p. contains
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p, x, and y and thus it can be viewed as a point of Spec(Pypiv,e), where
Puniv,e = Runiv,e/(p7 x, y) We have

Pinivo =Fpla,b] and Py = Fpla, b, c, c 1.

As v we can take the pullback of a similar homomorphism ~,, over the
spectrum of the henselization R, = SP of S, cf. Subsection 3.3. As 7, can
be defined over a local étale Sc-algebra S! which is an S-subalgebra of R,
we can take R’ to be a localization of S! ®g. R and therefore we have an
inequality [R' : R] < [S!:S.]. Unfortunately, it is not easy to find directly
an upper bound of [S! : S¢] that works for all points of Spec(Pyniv,) as we are
working with henselizations and not strict henselizations and the requirement
that S! has the same residue field as S, is not preserved under localizations.
To go around this difficulty we will use Lemma 3.
As Spec(Pyniv,e) is quasi-compact, there exist an étale morphism

Spec(R

univ,e

) — SpeC(Runiv,e)
whose image contains Spec(Pyiv.) and a homomorphism

+ o
/Yuniv,e G — l“"p,Spec(RJr

univ,e)

+

univ,e

between finite flat group schemes over Spec(R. ;. ) whose restriction to

SpeC(R:niv,e) X Spec(Runiv,e) [Spec(Runiv.e) \ Spec(Puniv.e)]

is an epimorphism and which at every point of Spec(Rjniv’E) which maps

to Spec(Puniv,e) is not an epimorphism. The homomorphism v, . is ob-
tained by extending different homomorphisms ~, with p. a closed point of
Spec(Punive). Let my(e) € N* be the smallest integer such that we can
choose Spec(Rjniv’e) with the property that each connected component of
Spec(Ry ) is generically a finite cover of Spec(Runiv,c) of degree at most
my(€).

Let Ry be a local ring of Ry, . ® g, ..v. B Which dominates R. We have
[Ry : R] < my(e) and the pullback of v . to X1 = Spec(R;) is not an
epimorphism but its restriction to U; = Xy X x U is an epimorphism. From
[VZ], Lem. 27 we get that R; is not p-quasi-healthy. From this and Lemma

3 we get the existence of a smallest constant

ny(e) € N*
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such that for each regular local ring of dimension 2 equipped with a homo-
morphism . : Runive — R as above, there exists a local étale homomor-
phism R — R, with the properties that [Ry : R] < n,(e) and that R, has
residue field k£ and is not p-quasi-healthy and in fact there exists a local fi-
nite étale homomorphism Ry — Rj3 for which there exists a homomorphism
v+ Gx, = Ppx, over Xz = Spec(R3) whose extension to the spectrum of
the henselization of R3 is a homomorphism which is a pullback of 'Y:fniv,e and
is as in Theorem 1 (b). We have n,(e) < x(my(€)), where x(m,(€)) is as in
Lemma 3.
The theorem follows from this by taking

np = max{np(O), np(l)}

and by choosing R’ to be Rs. OJ

7 On n,(1)

In this section we study n,(1) and thus extensions of p, by forms of Z/pZ.

Let R be of dimension 2. We consider semilocal flat noetherian R-algebras
R, of dimension 2 such that all maximal ideals of R, intersect R in the
maximal ideal of R. Let X, = Spec(R,). By the punctured spectrum U,
of R, we mean X, xx U (i.e., is the complement in X, of the finite set
of all closed points of X,). Let RE" be the R-algebra such that the pair
(REP pRPM) is the henselization of the pair (R,, pR,). If R, is local, then RP"
is an R.-subalgebra of the henselization R! of R,. Let Y, = Spec(RQ[%]).

In Subsection 7.1 and 7.2 we recall how forms of (Z/pZ)x, and suitable
extensions of p, ., by forms of (Z/pZ)y, (respectively) descend to spectra
and punctured spectra (respectively) of suitable semilocal R-subalgebras of
R,. In Subsection 7.3 we prove Theorem 3. In Subsection 7.5 we prove a
weaker form of Theorem 3 for p > 5 which relies on Lemma 5 (b) and on
Lemma 7 of Subsection 7.4 which pertains to descending line bundles.

Let X/ be the spectrum of the p-adic completion R) of R,. Let U be
the punctured spectra of R.. If p =2, let II(p) = {1} and if p > 2, let TI(p)
be the set of primes dividing p — 1. Let ¢(p) = prl o Ifp—1= Hlen(p) [m

lell(p)

with each m; € N*, then ¢(p) = [[;cry() [t
The group of units of a ring x will be denoted by **.
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7.1 Descending forms of Z/pZ

For [ € TI(p) let R, be the finite étale R-subalgebra of R" generated by R
and by all roots of unity of order ™. Let R; be the largest finite étale
R-subalgebra of R; such that [R) : R] divides [™~'. Let R{ be the finite
R-subalgebra of R" generated by all R;’s. We have R;/pR; = (R/pR)F:F]
and R /pRy = (R/pR) o,

We consider the localizations R , and R/, of R and Rj (respectively) at
the maximal ideal of R} and Ry, (respectively) contained in the maximal ideal
of R". We have R’ /pR, = R/pR and therefore R/ is an R-subalgebra of

RP. Moreover, [R!, : R]|¢(p) and the R[%]-algebra Rﬂr[%] is the localization
of the finite étale R[%]—algebra Rg[}—ﬂ. Let X' = Spec(R,), X, = Spec(R] )

and Xj . = Spec(R; ), where Ry = R}, Qg Ry.

Fact 1 Let 52? be a form of (Z/pZ)xn. Then there exists a form &, of
(Z/pZ)x:. whose pullback to X" is £,

Proof: The form 8; is defined by a class

"= 11w € HL(X"Fp) = HL (X" 1 x0) = K7/ (k) =TT w2/ (k7)™

1€TI(p) lell(p)

It suffices to show that for each I € II(p) there exists a class ) , € Hg (X[, Fy)
which maps to . Let s; € {0,...,m;} be such that the order of n is I
As R; contains all roots of unity of order [, the natural homomorphism
H(Xi g o x, ) — HE (X, xn) = k*/(F*)"™" is surjective and there
exists a class ;4 € Hélt(Xl,Jr,/J,lml,Xl,Jr) of order [* which maps to n' and

which is defined by &, = Spec(R; 4 [2]/(z!"" —al™ ™)) for some unit a; of
R} . The composite Galois homomorphism Rj , — R4 — Ry ¢ [z]/(2" — )
is abelian of order [*'d; with d; dividing [—1 (one can easily check this modulo
p). Thus E] | = Spec(R;] [2]/(z"" —a;)) — X] , is the only Galois morphism
dominated by Spec(R; 4 [2]/(z}" — a;)) which has a Galois group of order [°;
it defines a class 7, |, € H.L(X [+, 5) of order [** which maps to 7, and thus
also to . O]

7.2 Descending cohomology classes

Let &, be a form of (Z/pZ)x. Let J = Homg (ptp x,E,) and we denote by
Jn its pullback to the étale site of the X-scheme A. Over a separably closed
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field K, each extension of g, spec(r) By Epspec(i) splits. Thus extensions of
the sheaf of the fppf site of the X-scheme b defined by pp x and the sheaf of
the fppf site of b defined by &, split locally in the étale topology of b.

Each localization of R, at a maximal ideal of it is a faithfully flat R-
algebra and thus its depth is at least 2. From this we easily get that the
pullback homomorphism H, (X, Jx,) — Hi(Us, Ju,) is injective and there-
fore we can define

By, = Hy(Us, Ju,) /Hi (Xo, Tx.,) = Bxty,, ; (bp,uss Epve /Exty (B x0 - Ep.x,)-

If & = (Z/pZ)x, then we denote By, by Ay, (cf. Subsection 4.3).

If R, is local of residue field k, and if R, is a local ind-étale R,-algebra
of residue field k,, then we have a commutative diagram of étale cohomology
groups

BUQ - ngec(ko)(XW jXO)

L |

2 l
BU</> HSpec(k:o)(XO’ jXé)
with injective horizontal arrows and an excision isomorphism nat.

Lemma 6 The following four properties hold:

(a) If R, is a semilocal flat noetherian R-subalgebra of R, of dimension
2 such that the homomorphism R, — R, is faithfully flat, then the pullback
homomorphism by v, : By, — By, is injective (and thus in what follows it
will be viewed as an inclusion).

(b) We assume that R, is local of residue field k.. If the monomor-
phism By, — Hg'pec(ko)(X°7‘7X<>) is an isomorphism (i.e., if the homomor-
phism H2%(X,,Jx,) — HZ(Us, Ju,) is injective), then all arrows of the
above commutative diagram are isomorphisms and in particular we have
By, = By, = BUgh = Byp».

(c) We consider a semilocal R,-algebra R, which is a Galois extension
of R, of Galois group A of order prime to p. Then inside B we have

identities By, = B, ., = By, . N Byon.

Us,+

g’y

(d) We assume that R, is semilocal and we consider a finite semilocal
Rs-algebra R, which has the same number of mazimal ideals as R, and
for which the homomorphism RO[%] — Ro 1 [2] is Galois of a Galois group A

»
which leaves R, . invariant. Then we have By, = b By, ) N Bypi.

Ug}L/Ué),}:-
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Proof: Part (a) follows from faithfully flat descent: a short exact sequence
of finite flat group schemes over U, extends to a complex of finite flat group
schemes over X, if and only its pullback to a short exact sequence of finite
flat group schemes over U, extends to a complex over X and a complex of
finite flat group schemes over X, is exact if and only if its pullback to X is
exact. Part (b) follows from the above commutative diagram.

To prove (c) we consider the short exact sequence of A-modules

0— Hélt(X0,+7 on,+) — Hélt(UO,-‘ra on,+) — BU0,+ — 0.

As the order of A is relatively prime to the exponent p of J we have
HY(A, H}(Xo 4, Jx,.,)) = 0. This implies that we have a short exact

O — Hélt<X<>7+7 on,+>A — He}t(UQH’? on,+)A — B[/}o,+ — 0
which (cf. faithfully flat descent) is identified with the short exact sequence
0 — Hy(Xo, Ix.) = Hy(Us, Ju,) — By, — 0.

From this part (c) follows.

To prove (d), we first remark that the inclusion By, C b;ﬂ{h P (B, )N

< o, +

By follows from (a). To prove the other inclusion, we first consider the
case when R, is local; thus R,y is also local. We remark that the group
H} (XY, Jxn) is trivial and thus By = HA(UY, Jyn). Therefore to prove
that By, D b;gl’h/Ufi(BUH) N By = b;gl/Ung (Bu,,.) N By it suffices to show
that the commutative diagram

Hg (Uo, Tus) HG, (U2, Tu)

| |

Hgt<U<>,+7 «.7U<>,+>A - Hélt(U<1;l,+7 jUng)A

is cartesian. But this is a direct consequence of the facts that we have the
following identities HZ, (Ve 4, Jy, )" = Hx(Ye, Jv,) and R, C Ré‘ﬂL NRY C
Ro[%] N RY (cf. Galois descent) and Ro[%] N RY = R, (as the R,-algebra RY
is faithfully flat) and thus R, = R}, N R = Ro[%] N RY.

The general case when R, is just semilocal follows from the local case by
standard gluing arguments of short exact sequences. 0
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Corollary 3 We assume that R, is local of residue field k.. If the pair
(Ro,pR,) is henselian, i.e., we have R, = RE" (e.g., this holds if R, is p-
adically complete), then the monomorphism By, — ngec(ko)(Xo, Jx,) is an
isomorphism and we have By, = By, = By -

Proof: As Jspec(ro/pr,) = 0 and as the pair (R, pR,) is henselian, from
(G2], Thm. 1 we get that HZ(X,, Jx,) = 0. From this and Lemma 6 (b)
we get that the monomorphism By, — ngec(ko)(Xm Jx,) is an isomorphism
and moreover we have By, = By, = Byn. O]

7.3 Proof of Theorem 3

We assume that R is of dimension 2 and that there exists a regular system
of parameters x,y of R and constants a, b, c € R with ¢ a unit of R such that
p 4 ax? + byP + caP~1yP~1 = 0. We know that R" is not p-quasi-healthy and
in fact there exists a form 5;; of (Z/pZ)x» with the property that there exists
a complex 0 — 51})1 - G — ppxn — 0 with G™ connected of order p? and
annihilated by p which is not a short exact sequence but whose restriction
to UM is a short exact sequence, cf. Theorem 1 (b). Moreover, we have
&) = (Z/pZ)xn if and only if there exists a (p — 1)-th root of ¢ in R".

We have ¢(2) = ¢(3) = 1 and thus we have R, = R, cf. Subsection 7.1.
Thus, as either X = XP! or p € {2,3}, from Fact 1 we get that 5;1 is the
pullback of a form &, of (Z/pZ)x and therefore we can speak about the By,
groups. From the previous paragraph we know that B(U") # 0. If there
exists a (p — 1)-th root of ¢ in R (e.g., this holds if p = 2), then we choose
E =(Z)pZ)x. If p=3and &, # (Z/pZ)x, let k; be the quadratic extension
of k obtained by adjoining a square root of the image of ¢ in k£ and let R; be
a local finite étale R-algebra of residue field k.

If By = By, then as Byn # 0 we get that there exists a complex 0 — &, —
G — ppx — 0 which is not a short exact sequence and whose restriction to
U is a short exact sequence and from [VZ], Lem. 27 we get that R is not
p-quasi-healthy. Thus if By = Byn, then Theorem 3 holds.

If (R,pR) is a henselian pair, from Corollary 3 we get that By = Byn.

We assume that p € {2,3}. If p = 3 and &, # (Z/pZ)x, the equality
By = Byn is equivalent to the equality By, = Byn (cf. Lemma 6 (c)); thus by
replacing R with R; we can assume that &, = (Z/pZ)x. As &, = (Z/pZ)x,
below we will use Ay, instead of By, .
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We have Agn = Apm, cf. Corollary 3. Based on Lemma 4 (a) we can
identify HL (UM, Jym) = HE (UM, Jpn) and HY (XP, Ty ) = HE (XD, Txn)
and thus also Aym = Ayn. Thus to prove that the subgroup Ay of Ayn =
Ay = Ay is A itself, it suffices to show that the pullback homomorphism
nu : Hy (U, Ju) — HL (U™, Jyn) is surjective.

Asp € {2,3} we have J = ji(pp,w ), where W = Spec(R[%]) and j : W —
U is the open embedding. We consider the short exact sequence

0—=Juv — ppv — ppxr — 0,

where T = U N Spec(R/pR) is the finite affine scheme of generic points of
the closed subscheme Spec(R/pR) of X. Associated to it and its analog over
U”" we get a commutative digram with exact rows

vat(Tall’p,T) - Hélt(Uv jU) Hét(U’ :U‘I),U) - Hét(T’ :u‘p,T)

| o

Hgt(’rall’pfr) - Hélt(U/\v jUA) - Hét(U/\’ :u‘p,UA) - Hcélt(Tvl‘l‘p7T)'

Thus to prove that ny is surjective it suffices to show that the pullback homo-
morphism &y : HY (U, ppv) = HEL (U™, ppun) is surjective. By considering
the standard short exact sequence 0 — p, = G,,, = G, — 0 over U and U"
and using the fact that the Picard groups of U, X, UP" and X" are trivial,
the fact that &y is an epimorphism follows from the well-known fact that the
functorial homomorphism & : R*/(R*)? — (R")*/((R")*)P is surjective.
Thus, if p € {2,3} we have Ay = Ay, and therefore in all cases we have
By = Byn. Thus Theorem 3 holds. ([l

Corollary 4 We have ns(1) = n3(1) = 1.

7.4 Descending line bundles

Lemma 7 For each semilocal flat noetherian R-algebras R, of dimension 2
such that all mazimal ideals of R, intersect R in the mazximal ideal of R we
have a functorial commutative diagram

0 — Pic(U,) —%> Pic(UP?) —— Pic(UP")/ Pic(U,) —0

| | [

0 —= Pic(Yy) —2> Pic(YP") — Pic(YP")/ Pic(Y,) — 0.
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whose arrows are pullbacks or passages to quotients, whose rows are short
exact sequences and whose homomorphism q, is injective.

Proof: The fact that ¢, is injective is a particular case of Lemma 5 (a)
applied to (R,,p) instead of (R,#). The closed subschemes of U, and UP!
defined by the equation p = 0 coincide. Based on this, the fact that ¢, and
r% are injective follows from [FR], Prop. 4.2 applied to affine localizations
of the faithfully flat morphism U, — UP" and from the injectivity of t,. O

7.5 A variant of Theorem 3 for p > 5

Theorem 4 We assume that p > 5. Then the inequality n,(1) < q(p)2p7_1
holds. More precisely, for any reqular local ring R of dimension 2 for which
there exists a reqular system of parameters x,y of R and elements a,b,c € R
with ¢ a unit of R such that p+ ax? +by? + ca?~yP~1 = 0, there exists a local
étale homomorphism R — R’ such that the following three properties hold:

(i) we have R'/pR' = R/pR (thus R’ has residue field k);

(ii) the étale R[%]-algebm R’[%] is the localization of a finite étale R[%]-
algebra and we have [R' : R) < q(p)2"7 ;

(iii) the local regqular ring R’ is not p-quasi-healthy and in fact there exists
a homomorphism ' : Gxr — p, x» over X' = Spec(R') whose extension to

the henselization of R (or R') is a homomorphism as in Theorem 1 (b).

Proof: Let R and 0 — EZ}; — G" — ppxn — 0 be as in the first paragraph
of Subsection 7.3 with p > 5. From Subsection 7.1 we get that there exists
a local étale morphism X', = Spec(R/,) — X such that R/ /pR!, = R/pR,
the étale R[%]—algebra R;[%] is the localization of a finite étale R[}?]—algebra,
we have [R/ : R] < ¢(p) and & is the pullback of a form of (Z/pZ) X/, -
Thus by replacing R with R/ we can assume that 5;’ is the pullback of
a form &, of (Z/pZ)x and we have to show that there exists a local étale
homomorphism R — R’ which has all the required properties and in fact we
have [R': R] < 2"z .

We recall that Y = Spec(R[%]). We consider the étale sheaf C = (p, % ®z/pz
®E,)y which is a form of the étale sheaf (Z/pZ)y. Let Y1 be a connected com-
ponent of the affine Y-scheme Isom((Z/pZ)y,C) which is a torsor under the
étale finite group scheme (F,);- of automorphisms of (Z/pZ)y. Let Y5 be the
connected component of the quotient of Isom((Z/pZ)y,C) by the subgroup
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{-1,1}y of (F,); which is dominated by Y;. Let R; and Ry be the nor-
malizations of R in Y; and Y, (respectively); we have Y = Spec(Rl[%]) and
Yy = Spec(Rz[%]) and two isomorphisms (Z/pZ)y, — Cy; and Jy, — fpy;,
to be viewed as identifications. As &, splits over the strict henselization of
X and as {—1,1} acts trivially on p %, the finite homomorphism Ry — R,
is étale.

Let € € Bym = Byn be the non-zero class defined by 0 — & — G" —

ppxn — 0, cf. Corollary 3 for the equality part. We have Bypn < BUgh <
BUfh, cf. Lemma 6 (a). The class € € By is the image of a class S
HL (U Typn)- Let " e HL (U™, Jypn) be the image of nb". By considering
the standard short exact sequence 0 — pu, — G,, = G,, — 0 over U; and
U{* we get a morphism of short exact sequences

Ry/(RY) H (U, pyv,) — Pic(Uy)[p] ——0

| | |

00— (R")"/((BY")") —= HL(UP", ) — Pic(U")[p] — 0.

0

Let Ly be a line bundle over U of order p such that [EU{)h] € Pic(U™)[p]

is the image of 7*". Let EYlph be its pullback to Y.

We consider three cases as follows:

Case 1: R = R,.

Case 2: [R; : Ry = 2 and Spec(R™) has twice as many connected
components as Spec(RE") (i.e., and Ry/pRy = (Ry/pRy)? or RP™ = (RE")?).

Case 3: [Ry : Ry] = 2 and Spec(R™) and Spec(RY") have the same
number of connected components.

In Case 1 (so Ry = Ry), let Rs = Ry ® Ry and we consider the line bundle
Ly = Ly @ (EUfh)*l over UP" = UP" x UP" = UP" x U™ and its restriction
Ly to Y™ From Lemma 5 (b) and Example 1 applied with (R, 6, S, L) =
(Ra, p, R5[%], ;CYSph) we get that there exists a finite étale Ro-subalgebra Ry
of R®™ such that RE" = (RY")2 = R (thus Ry/pRs; = (Ra/pR»)?), and
there exists a line bundle Ly, over Y; whose pullback to Y7 b s Lym. Let

X3 = Spec(R3) be the affine open subscheme of X; = Spec(Ry) su5ch that
Y; =Y, (i.e., we have Rg[%] = Rg[%]) and R3/pRs = Ry/pRs is the first factor

of Ry/pRy = (Ry/pRy) & (Ry/pRy). Let Ly, = Ly,. We have RE" = Rb".
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In Case 2, let R = R; and we consider the line bundle cUzyh = ,CUgh D
(EUgh)*l over UP" = UP" x UP" = U™ where Lypn is the line bundle over
UP" such that we have a natural identification Lym = Lym & (L)™' Let

1 2 2
Ry, Rs and Ly, be obtained as in Case 1. We have RE" = RY™.

In Case 3, each connected component of X7 " is an étale cover of degree 2
of a connected component of Xgh and the norm of £, to a line bundle over
1

Y is trivial (as 77" comes from 75"). Thus from Lemma 5 (b) and Example
1 applied with (R, 0,S, L") = (R,, p, Rl[%], £Y1ph> we get that there exists a
finite étale Ry-subalgebra R3 = Ry of Rﬁ'h such that we have an identification
R = RP™ (thus Rs/pRs = Ry/pR;) and there exists a line bundle Ly, over
Y3 whose pullback to Y = V" is Lypn.

In all three Cases, the norm of Ly, to a line bundle over Y; is trivial.
From Lemma 7 applied with R, = R3, we get that there exists a unique line
bundle Ly, over Us which extends Ly, and whose pullback to U" is EUlph in
Cases 1 and 3 and is EUé)h in Case 2. As the order of EU{)h is p, based on
Lemma 7 we easily get that the order of Ly, is also p.

As the homomorphism Rj/(R3)P — (RE")*/((REM)*)? is surjective, from
the analog of the above diagram for Us and U}" and from the existence
of Ly, we get that there exists a class & € Hy (Us, pp ;) which maps to
the image & € Hélt(Ufh,up’Ufh) of 7™ in Cases 1 and 3 and to the image

e Hélt(Ugh,ll,p’Ugh) of 7" in Case 2.

If Ry contains R (i.e., if in Cases 2 and 3 we have by chance Ry = Ry),
then Jy, = p,y, and by using a commutative digram as in Subsection 7.3
but for Us and UF" = UP" instead of U and UP" we get that & is the image of
a class n3 € H (Us, Jy,) that defines a class in By, which maps to € € BUfh.
As By, < BUgh (cf. Lemma 6 (a)), we conclude that € € By, N Bypn.

If we are in Case 2 with Ry # Ry, then let X;° = X xx, X3 and an
argument similar to the one of the previous paragraph shows that we have
S BU; N Bypn.

The finite morphism 7 : Xy — X is flat. Let m.(X3) be the relative Weil
restriction X-scheme such that for a X-scheme 1 we have

T (X3)(1) = Homx (F, m.(X;3)) = Homy, (Xo X x 1, X3).

The X-scheme 7,(X3) is affine (cf. [CGP], Prop. A.5.2 (2)) and quasi-affine.
For x € X, if the fiber of X5 — X at x has s geometric points, then the
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fiber of m,(X3) — X at x has 2° geometric points if either Ry # Rs or
r € Y and it has s geometric points otherwise. In particular, the morphism
m.(Y3) = Y xx m.(X3) — Y is finite étale of degree 2%2:Fl and thus of
degree at most 2", Let Tr : X, x x T, (X3) — X3 be the trace morphism
corresponding to the identity morphism 1, (x,) € Homx (7. (X3), m(X3)).

In this paragraph we assume that we are in Cases 1 and 2. To the com-
posite morphism X, x x XPh = Xgh = Xgh — X3 corresponds a morphism
¢+ XP' — 7,(X3). Let X' = Spec(R') be the affine open subscheme of
7.(X3) such that R'/pR = R/pR, we have Y’ = m,(Y3) (so [R': R] < 2"%),
and moreover ( factors as a morphism ¢’ : XP" — X', If we are in Case 1 or
in Case 2 with Ry = Ry, then the class ¢ € By, pulls back via the morphism
Uy Xy U' — Us induced by Tr to a class in By, x, - whose correstriction is a
class in By whose pullback via (i : UPM — U’ is the class [Ry : Rle € By.
Thus by replacing € with its multiple by the natural number [R, : R] prime
to p, we can assume that € € By is the pullback via (v of a class in By
and therefore R’ has all the desired properties. If we are in Case 2 with
Ry # Ry, then by pulling back the Trace morphism Tr to a morphism of
X;-schemes we get a morphism Try, : X; Xx m.(X3) = X1 xx, X3 = X;.
The class € € BU; pulls back via the morphism U; xy U’ — U, induced by
Trx, to a class in By, x,,u» whose correstriction is a class in By» and as above
we conclude that R’ has all the desired properties.

In this paragraph we assume that we are in Case 3. Thus the morphism
X3 — X is finite, and based on this, we will show that in fact we can take
R’ = R. It suffices to show that inside B’(}h we have ¢ € By. Let R — Ry be
a finite Galois extension of order dividing p — 1 such that &, x, is isomorphic
to (Z/pZ)x, and the residue field kg of Ry is a Galois extension of k of degree
[Ro : R], cf. Subsection 7.1. Based on Lemma 6 (c) it suffices to show
that inside BUph we have € € By,. Let Ry be the Galois extension of R,
generated by Ro, the Rs-algebra R; is a subalgebra of Ry and thus we have
Tvao = Ppvao- Let Rzy be the Galois extension of Ry generated by Ry and
Rs3; we have [Rgp : Ryo] < 2. As above (for the case when R4 contains R;)
we argue that the image &30 € HY, (Us, py.u,,) of the class & € HL (Us, ppur,)
is the image of a class 13y € H t(Ug, Jus,) that defines a class in By, whose
image in BU% is the same as the image of ¢ € Bym. From Lemma 6 (c)
applied in the context of the finite Galois extension Ry — R3y we get that
inside BUph we have ¢ € By,,. Let Ry be the maximal finite Ry-subalgebra
of Ry Wthh is étale over Ry. The finite homomorphism Ryy — Rao induces
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a bijection at the level of sets of maximal ideals and by inverting p we get an
abelian extension Roo[i] — RQo[i} whose Galois group leaves Ryq invariant.
By applying Lemma 6 (d) to it we get that inside BU%’S‘ we have ¢ € By,,. From
Lemma 6 (c) applied in the context of the finite Galois extension Ry — R

we get that inside By, we have € € By,. O

8 A complement to [VZ]

In this section we prove two variants of Proposition 1 which are modeled on
[VZ], Thm. 28 (i) and (ii).

Proposition 2 Let Ry be a henselian local ring whose residue field has char-
acteristic p. We assume that there exist an element x of the maximal ideal
of R1 and an element a of Ry such that we have an identity

P+ axf = 0.

Let s € N*. Let ty,...,ts be elements of the mazximal ideal of R1. Then there
exists a homomorphism 6, : Gi — Iy of connected finite flat commutative
group schemes annihilated by p over Spec(Ri) with Gy of order p** and with
T, of order p whose restriction to Spec(Rq) \ Spec(Ri/(x,t1,...,ts)) is an
epimorphism and which at every point of Spec(R1/(x,t1,...,ts)) is not an
epimorphism. In particular, if Ry is reqular of mized characteristic (0,p) and
dimension d > 2, then Ry is not p-quasi-healthy (thus formal power series
rings in d—1 > 1 variables over a complete discrete valuation ring of absolute
ramification index at least p are not p-quasi-healthy).

Proof: The proof of the first part of the proposition is similar to the one of
Proposition 1 with the new universal ring being

Z(p)[aax7t17 s 7ts]/(p + axp)'

The only difference is in the case when R, is regular complete and moreover
Tyty, ... ts, 21,. .., 24—s_1 is a regular system of parameters of R;. We take

6 = C(kﬁ)[[l’,tl, e ,tS,Zl, Ce ,Zd_s_l]],

S = k[[xvtla ceeylsy By zd—s—l]]7
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Ri = &/(p + az?) for some a € S, and a Frobenius lift ¢ of & which is
compatible with o and which maps each t € {x,t1,... t5, 21,...,24-s-1} tO
tP. Let M3, = S3% and let oy : My, — Még) be the S-linear map whose matrix
representation with the standard S-bases of M3, and Még) is a diagonal block
matrix I' = (I';)1<i<s € M3ssx3s(S), where for i € {1,...,s} we have

00 P
D, =T(t)=| ti—tha?' 2 (z—t"")(t; — thaP )
P70 PN — 7

Let My = S and o1, : M; — Ml(a) be the S-linear map defined by the
multiplication with z?. Let £y : (Mss, 94) — (M1, ¢11) be the S-linear map
defined by the matrix

(t1, x, t1x, to, o, tou, . . . ts, @, ts).
If
" 0 x
A; = A(tz) = 0 zP! —t; + t?l’p_l c ngg(S),
1 0 0

then we have
FZAZ = Aze = Zﬁplg

(cf. [VZ], proof of Thm 28 (i)). Note that the adjugate of I'; is —aPA,;. If
A = (A))1<i<s € M3sx35(S) is the diagonal block matrix, then we have

A = ATl = 2P5;.
The identity
() 2P P th aP tha? .. 0 2P tPaP)T = aP(ty x tiw to x tou ... ts x tx)

implies that ; is a morphism of nilpotent Breuil modules. The search for
homomorphism &, : G; — Z; is the one associated to (.

The last part of the proposition follows from [VZ], Lem. 27 applied
to 0p with ¢1,... ¢, chosen such that the quotient ring Rq/(x,ty,...,t5) is
artinian. 0
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Proposition 3 Let Ry be a henselian local ring whose residue field has char-
acteristic p. We assume that there exist s € N*, elements x1,...,xs of the
maximal ideal of Ro and an element a of Ro such that we have an identity

p+af[:vf_i =0.
=1

Then there exists a homomorphism 6y : Go — Iy of connected finite flat
commutative group schemes annihilated by p over Spec(Rs) with Go of order
p® and with Zy of order p whose restriction to Spec(R2)\ Spec(Ra/ (21, ..., xs))
is an epimorphism and which at every point of Spec(Ra/(x1,...,xs)) is not
an epimorphism. In particular, if Ro is reqular of mized characteristic (0, p)
and dimension d > 2, then Ry is not p-quasi-healthy.

Proof: The proof of this proposition is entirely similar to the one of Propo-
sition 2 with the new universal ring being

Ziyla,x1, ... x5/ (p+ afo_i).
i=1

The only difference is in the construction of a morphism S5 : (M, p5) —
(M, p12) of nilpotent Breuil modules. We take ¢5 : M, — Ms@ to be the
S-linear map whose matrix representation with respect to the standard S-
bases of My = 5° and M) is the diagonal s x s matrix whose entry in the
jj position with j € {1,...,s} 18 [ cicyiz; 2?7t We take 1 0 My — Ml(a)
to be the multiplication by [[7_, #%~". We take 85 : M, — M, such that its
matrix representation is (z7 ... xg). O
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