
Moduli schemes and the Shafarevich conjecture

(the arithmetic case) for pseudo-polarized K3 surfaces

Adrian Vasiu

first version, 8/31/99, Univ. of Utah, submitted to J. A.M.S. on 9/24/99

ABSTRACT. We construct moduli schemes of pseudo-polarized (polarized) K3 surfaces

as open subschemes of finite type integral canonical models of a particular orthogonal Shimura

variety. We draw conclusions pertaining to Shafarevich conjecture, Milne conjecture, connectivity,

specializations, and other aspects of pseudo-polarized K3 surfaces in positive characteristic.

Key words: K3 surfaces, moduli stacks, Shimura and abelian varieties, and F -crystals.
Math. Subject Classification 2000: Primary 14J10, 14J28, 14G40, 14F30, 11G18 and 11G35.

Contents
§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

§3. The basic result: the construction of moduli stacks (and schemes) . . . . . . 26

§4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

§5. Some open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

§1. Introduction

1.0. The goal of this paper is to report on some arithmetical aspects of pseudo-polarized
(or just polarized) K3 surfaces in mixt and positive characteristic. What we do: we put
together some of the ideas and results of [An], [JT1-2] and [Va1-8] to understand more
about the arithmetics of (pseudo-) polarized K3 surfaces.

1.1. Our approach to the subject is from the point of view of Shimura varieties of Hodge
type, and so (see [Va1, 4.1 and the proof of 5.1]) of abelian varieties. However the general
point of view is: one studies (the arithmetics of) abelian varieties as part of the study
of algebraic varieties over fields (schemes) of interest. Among such varieties, those which
have the closest arithmetics to abelian varieties are its “neighbours”, i.e. the smooth
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projective varieties whose canonical class is zero, and in particular the hyperkählerian
varieties (see [Be1] and [An]). The symplest example of hyperkählerian varieties is that of
K3 surfaces. In §2 we review the main definitions and properties pertaining to them and
needed in the paper (in particular 2.1 contains the definitions and notations to be used
below). The arithmetical “closeness” between abelian varieties and K3 surfaces is rooted
in Kuga–Satake’s construction (see [KS] and [De5] for the case of complex numbers, and
see [An, 1.7.1] for the case of a number field; see also 2.7), and in their deformation theory
(see [De4], [De6] and 2.8). The arithmetical aspects of pseudo-polarized (or just polarized)
K3 surfaces in mixt and positive characteristic to be dealt with here are “modelled” on
similar ones for polarized abelian varieties.

All the (pseudo-) polarizations to be mentioned in this introduction are assumed to
be primitive.

1.2. For an introduction to Shimura varieties we refer to [De1], [Mi1] and [Va1, §2]. Let
d ∈ N. Let G := SO(2, 19) be the special orthogonal group of the quadratic form x21 +
x22 − x23 − ... − x220 − x221 in 21 variables. It is an absolutely simple adjoint group over Q

of B10 Lie type. Let G1 := GSpin(2, 19) be the non-trivial central extension of G by Gm.
Let

HK3 := SO(2, 19)(R)/SO(2)(R)× SO(19)(R) = O(2, 19)(R)/SO(2)(R)×O(19)(R)

be two copies of the Hermitian symmetric domain X0 defined by the connected component
SO0(2, 19)(R) of the origin of the Lie group SO(2, 19)(R). In [BB] it is shown thatHK3 has
a natural structure (obtained via G) of a C-scheme: it is obtained by taking a projective
limit of smooth quasi-projective C-schemes whose transition morphisms are finite étale.

1.2.1. A global Torelli theorem for marked polarized K3 surfaces of degree d was first given
by Piatetskii-Shapiro and Shafarevich (see [PSS]). To explain their work, we recall some
facts. Let (Z,L) be a polarized K3 surface of degree d over C (our convention L.L = 2d).
The twisted Betti cohomology group H := H2(Z,Z)(1) is endowed naturally with a perfect
symmetric form B (the cup product). The data (c1(L) ∈ H,B) is isomorphic to a fixed
data (l0 ∈ H0, B0) (see [Be2, p. 111]). So by a marked structure of (Z,L) we mean an
isomorphism

m: (l0 ∈ H0, B0)
∼→ (c1(L) ∈ H,B).

To such a triple (Z,L,m) it is naturally associated (via Hodge structures) an element
(called the period of (Z,L,m))

x(Z,L,m) ∈ HK3.

In [PSS] (see also [LP]) it is shown that this association x(Z,L,m) to the isomorphism class
of (Z,L,m) is injective. This implies easily: an open subscheme HK3 is a fine moduli
scheme of marked polarized K3 surfaces of degree d.

1.2.2. Of course everything boils down to finite type level, i.e. to the level of finitely
marked polarized K3 surfaces. Here by finitely marked we mean: endowed with some
finite level structure L, see 2.5.3. The most common such structures are level-n marked
and (when possible; see the convention of 2.5.3.5 C)) level-n primitively marked (see 2.5.3.1
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and 2.5.3.3), where n ∈ N, n≥ 3. To detail this finite type level, for simplicity, we assume
here that the level structures involved are refined enough to “produce” smooth quasi-
projective schemes and not just stacks or non-smooth schemes (cf. 2.6 D)). Let K be the
compact open subgroup of G(Af ) defining L (cf. 2.5.3.1). Using [PSS] one shows (see
2.6) the existence of a moduli scheme AK3,d,p,LC

(of isomorphism classes of polarized K3
surfaces of degree d having the level structure L) over C; it is constructed (see 2.6) as an
open subscheme AK3,d,p,LC

of

AK3,d,pp,LC
:= Γd,L\HK3 ,

where Γd,L := K ∩G(Q) is an arithmetic subgroup of G(Q). We always assume that K is
admissible in the sense of 2.5.3.1.

1.2.3. So one naturally comes across (see 2.5 for details):

– an adjoint Shimura pair Sh(G,X), where X = HK3 is defined as the G(R)-
conjugacy class of a homomorphism T → GR, with T a one dimensional compact torus
over R;

– a Shimura variety Sh(G1, X1), with X1 = X identified as a G1(R)-conjugacy class
of monomorphisms from the Weil restriction S := ResC/RGm to G1R.

Both these Shimura varieties do not depend on d (cf. 2.5). Moreover the different Kuga–
Satake constructions associated to (Z,L) are closely related to injective maps of Sh(G1, X1)
into Siegel modular varieties (see 2.7). In 2.7.2 we detail one such injective map: the Q–
version of one of Satake over R (cf. also [Va1, 5.7.5]); we do think it offers some new insights
and simplifications. Moreover HK3 is an open subscheme of Sh(G,X)C and AK3,d,pp,LC

is
a union of one or two connected components of ShK(G,X)C (see 2.6).

1.3. There is a second approach to the construction of such moduli schemes: via Hilbert
schemes and Mumford’s geometric invariant theory (see [An, 2.3.3-5] for a quick idea; see
also [MFK] and [Vi]). This second approach works over Q, but has some limitations in
positive characteristic (cf. [MFK]). A third approach is via Artin’s method (see [FC, §4
of ch. I] and [Vi]); its limitations start from the fact that is not explicite. So we felt
more inclined in using the first approach (via Shimura varieties) in moving from moduli
schemes over Spec(C) to moduli schemes over (étale covers of) Spec(Z) punctured in some
points. Moreover this first approach relies heavily on the connection between K3 surfaces
and abelian varieties (via the Kuga–Satake construction), and so it is more suited for
arithmetical purposes.

1.3.1. The work of Kulikov (see [Ku]; see also [PP], [Be3, p. 150] and [KT]) implies that
AK3,d,pp,LC

itself is a moduli scheme of finitely marked pseudo-polarized K3 surfaces of
degree d (so pp stands for pseudo-polarized).

1.3.2. The starting point of the paper was: [Va1, 6.4.1, 6.4.2.1, 6.4.4 and 6.4.6 1)]. The
promises of [Va1, 3.2.3.2 1), 3.2.7 6) and 6.4.6 1)] (resp. of [Va1, 6.4.7]) are fulfilled in
3.1 (resp. in 3.2). So in 3.1 we present an incipient general theory (based on different
extension properties introduced in [Va1, 3.2]) of different integral canonical models of
smooth separated schemes of finite type over the field of fractions of some Dedekind integral
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ring faithfully flat over some localization of Spec(Z). It is the natural extension of the
theories of [Va1, 3.2-3].

Combining [Va1, 6.4.1, 6.4.2.1, 6.4.4 and 6.4.6 1)] one gets directly the existence of
a smooth quasi-projective model Nd,L of ShK(G,X)C over Spec(Z

[
1
6dl

]
), where l is the

product of the primes where L does not behave properly. It is uniquely determined (see
[Va1, 3.2.3.1 7)]) by three properties: by prescribing its generic fibre, by an extension
property (see [Va1, 6.4.6 1)]), and by specifying some normalizations of its pull backs over
local rings of Spec(Z

[
1
6dl

]
) (see 2.5.4 C) for details). In the language of 3.1, Nd,L is an

integral canonical model of its generic fibre. For simplicity we assume here that AK3,d,pp,LC

is formed by two connected components C0 and C1 of Nd,LC
. Let E(Ci) be the field of

definition of Ci, and let O be the ring of integers of the composite field of E(C0) and E(C1)
punctured in 6dl. Spec(O) is an étale cover of Spec(Z

[
1
6dl

]
). In practice K is normal in

the sense of 2.5.3.1: this implies that C0 is isomorphic to C1 and we have E(C0) = E(C1).
The basic result (see 3.2) says:

1.3.3. Theorem 1. a) An open subscheme AK3,d,p,L of Nd,LO is a moduli scheme of
finitely marked polarized K3 surfaces of degree d over Spec(O).

b) An open subscheme AK3,d,pp,L of Nd,LO containing AK3,d,p,L as a dense sub-
scheme, is a moduli scheme of finitely marked pseudo-polarized K3 surfaces of degree d
over Spec(O).

1.3.4. The new recent ideas needed for the proof of Theorem 1 are: the extension property
enjoyed by Nd,L and the Main lemma [An, 1.7.1]. We first detail the part a). For any
finitely marked polarized K3 surface (S,LS) of degree d over an algebraically closed field
k of positive characteristic p relatively prime to 6dl, the deformation theory (see 2.8)
shows the existence of a versal deformation of it over Y := Spec(W (k)[[x1, ..., x19]]). The
extension property enjoyed by Nd,L implies easily the existence of a morphism

mS :Y → Nd,LW (k)

extending the logical one at the level of generic fibres (hereW (k) is the ring of Witt vectors
of k). Using [An, 1.7.1 and its variant 8.4.3] one can check directly that mS is a formally
étale morphism. This is enough to get 3.1.2 a), via standard arguments. The part b) can
be checked following entirely the same pattern, starting from the ideas of part a) and from
1.3.1.

1.3.5. If the finite level structures L are the level-n marked structures (primitive or not),
with n≥ 3 such that all its prime divisors divide 6d, then we can take l to be 1. In [Va7] we
will see that in 1.3.3-4 we can replace 6dl by 2dl (i.e. the things are fine as well for p = 3)
(see 3.2.1 2)). However, here we will state the things only for primes p≥ 5, and refer to
the case p≥ 3 just as remarks. Different variants and functorial aspects of Theorem 1 are
presented in 3.2.3-5.

1.3.6. Let SQF := {m ∈ N|m is square free}. Let D be the complement of AK3,d,p,L in
AK3,d,pp,L, with the induced reduced closed subscheme structure. It has pure codimension
one, and often it is called the discriminant locus (cf. [JT1-2]). It is not clear to us for
which primes p relatively prime to 6dl we do have (with O(p) := O ⊗Z Z(p)):
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i)AK3,d,pp,LSpec(O(p))
is a disjoint union of two connected components ofNd,LSpec(O(p))

;

ii) DSpec(O(p)) is an ample divisor for AK3,d,pp,LSpec(O(p))
(for this part we assume

that d is a product of distinct primes, cf. [JT1-2]).

This leads to the introduction (see 3.3) of two functions

f :N → SQF

and
g: SQF → SQF

such that i) (resp. ii)) above is true iff p also does not divide f(d) (resp. g(d)). We always
assume that f(d) and g(d) are relatively prime to 6d. Our expectation is:

Expectation. We have f = g equal to the constant one function.

For a motivation of this expectation see 5.4.

1.3.7. We view Theorem 1 as an arithmetic global Torelli theorem, and we view the
expectation f(d) = 1 as the arithmetic Kulikov problem (of surjectivity of the period
map).

1.4. In §4 we list some of the immediate applications of Theorem 1. They are grouped in
7 sections (4.1-7). We will not state here all these applications as theorems, as §4 is very
much self explanatory; the only exemptions are the results of 4.3 and 4.5. [Va6] shows that
Nd,L has plenty of smooth toroidal projective compactifications. So the schemes AK3,d,p,L

and AK3,d,pp,L have (see 4.1) smooth projective compactifications. This implies (see 4.2)
that the moduli stack AK3,d,ppFp

(with Fr as the finite field with r elements) obtained from

AK3,d,pp,LFp
by the natural operation of forgetting the level structures, is geometrically

connected.
In 4.3 we obtain (by just combining Theorem 1 with [JT1]) variants of the Shafarevich

conjecture (for polarized K3 surfaces) over function fields in positive characteristic, similar
to one of [Sz, p. 65]. We have:

Theorem 2. We assume that d is square free. Let p be a prime not dividing 6dg(d), and
let k be an arbitrary field of characteristic p. Let C be a geometrically connected projective
curve over k. Let C1 be a finite closed k-subscheme of C. We have:

a) Any polarized K3 surface of degree d over C is isotrivial;
b) There are only a finite number of isomorphism classes of polarized K3 surfaces of

degree d over C0 := C \ C1.

In 4.4 we obtain an upper bound estimate of the number of elements of the set
AK3,d,∗,L(Fpq ) (here q ∈ N, while ∗ ∈ {p, pp}), as well as a conjectural combinatorial
description of the set AK3,d,pp,L(Fpq ) acted upon by a suitable power of the Frobenius
automorphism of Fpq . 4.4 is based (see [Va7]) on [Mi4] and on our work on the Langlands-
Rapoport conjecture of [Va1, 1.7].

In 4.5 we show that the mentioned extension property of Nd,L gets translated in
extension properties enjoyed by (pseudo-) polarized K3 surfaces. See [Va1, 3.2.1 1-2)] for
the definition of a healthy regular scheme and of an extensible pair; here we just mention
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that any regular formally smooth scheme over Z(q), with q an odd prime, is healthy (see
[Va1, 3.2.2 1)]. We have :

Theorem 3. Let (Y,U) be an extensible pair with Y a healthy regular scheme, and let
n ∈ N, n≥ 3. We assume that 6df(d) (resp. 6df(d)n) is invertible in Y. Then any
polarized (resp. level-n marked pseudo-polarized) K3 surface of degree d over U extends to
a polarized (resp. level-n marked pseudo-polarized) K3 surface over Y.

In 4.6 we show that the Milne’s conjecture proved in [Va4] for Shimura p-divisible
groups has an analogue version for K3 surfaces.

In 4.7 we prove different specialization and local deformation results for K3 surfaces
in positive characteristic, similar to the ones of [Va2] (for abelian varieties).

1.5. In §5 five extra (besides the one of 1.3.6) open problems are formulated. Here we
mention partially just two of them. First (see 5.1) is the construction of an arithmetic
à la Tate (i.e. similar to one for elliptic curves; see [Si, p. 46]) for K3 surfaces in the
projective space P3. Second, Theorem 1 allows the introduction of Kuga–Satake polarized
abelian varieties attached to a (pseudo-) polarized K3 surface in positive characteristic
relatively prime to 6 times the degree of the polarization; it is desirable to have a more
direct description of how to construct directly such polarized abelian varieties (see 5.5).

The open problems reflect our taste and interest, and are mainly inspired from the
context of polarized abelian variaeties.

1.6. In 4.1-2 (resp. 4.4) we rely on the work in progress [Va6] (resp. [Va7]); so these
three sections are starred. Most of the results presented here were mentioned in a letter
to Prof. A. Todorov, dated 6/3/96; so we are oblidged to [JT1-2]. We are also oblidged
to [An]: though this work was obtained independently of [An], loc. cit. produced some
simplifications and improvements (see 2.7.2.1). We benefited from discussions with Prof.
A. Ogus and A. Todorov, for which we thank them.

The main motivation for this work: we desired to make more accessible some of the
ideas and results of [Mi1-6] and [Va1-8] to specialist working with other classes of polarized
projective varieties. The topics touched in this paper are forming what we call “standard
aritmetics of polarized projective varieties minus rational points” (see [Va9]).

Here are some (recent) examples of classes of polarized projective varieties we have in
mind and for which the (different) period maps are having an open image: cubic fourfolds
(see [Vo] and [An]), (the known to exist) polarized hyperkählerian varieties with second
Betti number greater than 3 (see [An] and 3.4 1)), cubic surfaces (see [ACT]), and non-
hyperelliptic curves of genus three or four (see [Ko]). It is not dificult to see (see [Va9]
for details) that in the first and the last two of these examples (see 3.4 1) for the case
of polarized hyperkählerian varieties), following the pattern of the present paper, one can
descend from moduli schemes over C to ones over Spec(Z) punctured in some points, and
moreover §4-5 (under proper formulation) apply as well (in particular, as in 4.7 B) and C),
we obtain Shimura-canonical lifts of Shimura-ordinary cubic fourfolds and surfaces over
perfect fields, which are worth further study and attention). The general philosophy is:

GP. Whenever we have a global (resp. local) Torelli theorem (at least in the context of Her-
mitian symmetric domains) for some class of polarized projective varieties, an arithmetic
global (resp. local) Torelli theorem should exist (in the same sense as of 1.3.7).
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Warning: if we are in the context of a local Torelli theorem whose period map does
not map into an open subscheme of (an arithmetic quotient of) a Hermitian symmetric
domain, then a great part of §4-5 (like 4.1-2, 4.4, 4.6, etc.) does not apply.

As here we deal only with Shimura varieties of abelian type (see [Va1, defs. 3 of
2.5]), all the references to [Va1] are not starred (cf. the discussion of the last paragraph
of [Va1, 1.4]). We would like to thank University of Utah for providing us with very good
conditions for the writing of this paper. This research was partially supported by the NSF
grant DMF 97-05376.

§2. Preliminaries

We introduce the notations and mostly review some well known facts which are
needed in the subsequent chapters.

2.0. Notations and conventions. Reductive groups over fields are always assumed to
be connected. Reductive group schemes are understood to have connected fibres. For a
reductive group G over a scheme we denote by Gder, Z(G), Gab and Gad, respectively, the
derived group of G, the center of G, the maximal abelian quotient of G and the adjoint
group of G. We say that a reductive group G over Q is unramified over Qp (p being
a rational prime) if GQp

is unramified over Qp. Different classical groups like SO(2),
SO(2, 19), GSpin(2, 19), etc., are viewed as being over Q.

The expression (G,X) always denotes a pair defining a Shimura variety Sh(G,X),
while E(G,X) denotes its attached reflex field (see [Va1]). We use freely the notations
and conventions of [Va1, 2.2-4]. So we denote by S the Weil restriction from C to R of
the one dimensional torus. For the terminology and notations involving a standard Hodge
situation (to be abbreviated as SHS) we refer to [Va2, 2.3]. For the terminology involving
Shimura crystals we refer to [Va2, 2.2].

Let p be a rational prime. By Z(p) we denote the localization of Z with respect to p.

The ring of finite adèles Ẑ⊗Z Q (resp. of adèles) is denoted by Af (resp. by A := R×Af )
and the ring of finite adèles with the p-component omitted is denoted by A

p
f . We use freely

different Tate-twists: Q(1), Qp(1), Zp(1), Af (1) etc. For G a linear group over Q, G(A) is
endowed with the coarser topology which makes all the maps G(A) → A1

Q(A) = A, induced

by morphisms G→ A1
Q, continuous (A

1
Q being the affine line over Q). Similarly for G(Af ).

If G is a linear group over the field K of fractions of a discrete valuation ring (abbreviated
DVR), then G(K) is endowed in the same manner with a topology. We denote by Fpr the
field with pr (r ∈ N) elements and by F its algebraic closure.

The quasi-projective (projective) morphisms of schemes are in the sense of [Hart]. If
Y is a scheme and Y1 is a Y -scheme, then for any Y -scheme ZY , we denote by ZY1 its pull
back to Y1. For every free module M of finite rank over a commutative ring R we denote
by M∗ its dual. For any non-negative integer n, we denote by M⊗n the tensor product
of n-copies of M . By the tensor algebra of M we mean ⊕n∈N∪{0}M

⊗n. By the essential
tensor algebra of M ⊕M∗ we mean

T(M) := ⊕n,m∈N∪{0}M
⊗n ⊗M∗⊗m.

7



If vα ∈ M⊗n ⊗ M∗⊗m, with n and m non-negative integers, we denote by deg(vα) :=
n + m its degree. A family of tensors of the tensor algebra of M is usually denoted in
the form (vα)α∈J, with J a set. A bilinear form on M is called perfect if it induces an
isomorphism fromM into its dualM∗. A pair (M,ψ) with M as above and with ψ a perfect
alternating form on it, is called a symplectic space over R. We use the same notation for
two nondegenerate forms if they are obtained one from another by extension of scalars.

The Witt ring of a perfect field k is denoted by W (k). For the standard language
pertaining to different Fontaine’s categories MF[−1,1](∗) and MF[0,1](∗) we refer to [Va2,
2.1] and [Fa1]. The algebraic closure of a field E is denoted by Ē.

Let d ∈ 1
2N. Let Y be an arbitrary scheme. Let k be an arbitrary algebraically closed

field.

2.1. Definitions. a) A hyperkählerian scheme V over Y is a smooth projective scheme Z
over Y of (constant) even relative dimension 2r, whose geometic fibre over any algebraically
closed field k is connected, simply connected, and Ω2

Zk/k
has a global section w such that

wr vanishes nowhere.
b) A polarization of a hyperkählerian scheme V over Y of degree d ∈ N is (defined

by) an Y -ample line bundle L on Z of (warning) degree 2d.
c) An algebraic K3 surface over Y is a hyperkählerian scheme V over Y of relative

dimension 2. We always drop the word algebraic.
d) A pseudo-polarized K3 surface (alternative terminology polarized generalized K3

surface) over Y is a pair (Z,L), where Z is a projective flat Y -scheme of relative dimension
2, whose geometric fibre Zk over any algebraically closed field k is obtained by blowing
down (−2)-curves on a K3 surface Z̃k, and where L is an ample line bundle on Z. As
in b) we speak about its degree (provided it is constant on its geometic fibres) as being
half the self intersection number of Lk. We also refer to the pair (Z̃k, L̃k), where L̃k is
the pull back of Lk to Z̃k, as a K3 surface with a pseudo-polarization. Similarly we define
a pseudo-polarization of a K3 surface Z over Y and we speak about a K3 surface with a
pseudo-polarization.

e) A pseudo-polarized K3 surface (Z,L) over Y is said to be primitive if for any
geometric fibre Zk, Lk is not the n-th power (n ∈ N, n≥ 2) of another line bundle.

2.1.0. Remark. In 2.1 d), the singularities of Zk are double rational (see [Ba, ch. 3-4]
and especially [Ba, 3.31] for different characterizations of such singularities).

Through the rest of this chapter we consider a K3 surface Z over Y . From now on
d ∈ N.

2.2. Some numerical properties. We assume here that Y = Spec(k). We have (see [Ba,
p. 136]): the canonical class of Z is zero, b1(Z) = 0, b2(Z) = 22, χ(OZ) = 0, Pic(Z) = Zr,
with r ∈ N, r ≤ 22. Moreover there is a unique Hilbert polynomial P (x) := dx2 + 2
associated to pseudo-polarized K3 surfaces of degree d (easy check starting from the above
numerical properties and [Ba, 1.3 b)]).

2.3. Examples. For examples of hyperkählerian varieties of arbitrary even dimension see
[Be1, ch. 6 and 7]. The first examples of K3 surfaces are obtained by considering smooth
complete intersections in a projective space over Y . There are three possibilities:
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a) a smooth quartic in P3
Y ;

b) the smooth intersection of a quadric with a cubic in P4
Y ;

c) the smooth intersection of three quadrics in P5
Y .

In each of these three cases, we obtain (see [GH, p. 591-3]) versal families of polarized
K3 surfaces of dimension 19 (the degrees being respectively 2, 3 and 4).

d) The second standard example of K3 surfaces is that of Kummer surfaces. They
are constructed as follows (see [Ba, 10.5 and 10.7 b)] for details). We assume that Y has
no points of characteristic 2. Let A be an abelian surface over Y . Let τ :A ∼→A be the
automorphism (it is an involution) taking x to −x. Its fixed scheme defines the finite flat
group subscheme A[2] of 2-torsion points of A. Let Ã be obtained from A by blowing up
along A[2]. τ lifts to an automorphism τ̃ of Ã. The quotient of Ã by it is a K3 surface Z.
[FC, 1.10 a) of p. 7] guarantees that Z is indeed projective over Y . Another way to obtain
Z: we first take the quotient A1 of A through τ , and then we blow up A1 along its singular
locus. In this way we obtain families of K3 surfaces of dimension 3 whose Kodaira-Spencer
map is injective. If L1 is a polarization of A1 then, (A1, L1) is a pseudo-polarized K3
surface.

e) If d is square free than any pseudo-polarization of a K3 surface is primitive.

2.4. The “H2” and its primitive versions. We assume here that Y = Spec(k). Below
all the perfect symmetric bilinear forms (pairings) are defined by the usual cup product
(and not by its additive inverse). We distinguish three cases.

Case 1: k = C. We have (cf. 2.2; see [Me, 1.2-3]): H0
B(Z,Z) = Z, H1

B(Z,Z) = 0, and
H2
B(Z,Z) = Z22; here the lower index B refers to the Betti cohomology. Moreover we have

a perfect symmetric form H2
B(Z,Z)(1)⊗H2

B(Z,Z)(1) → Z.

Case 2: characteristic of k is zero. Let p be a prime. We have (cf. 2.2 and Case 1)
Hi

ét(Z,Zp) is Zp, 0, or Z22
p , depending on i being 0, 1, or 2. Moreover we have a perfect

symmetric form H2
ét(Z,Zp)(1)⊗H2

ét(Z,Zp)(1) → Zp.

Case 3: characteristic of k is a prime p. Let q be a prime different from p. We have
(cf. 2.2) Hi

ét(Z,Zq) is Zq, 0, or Z
22
q , depending on i being 0, 1, or 2. Moreover we have a

perfect symmetric form H2
ét(Z,Zq)(1)⊗H2

ét(Z,Zq)(1) → Zq.
We also have (see [De4, p. 59]) Hi

crys(Z/W (k)) is W (k), 0, or W (k)22, depending on
i being 0, 1, or 2. Moreover we have a perfect (even for p = 2, cf. [De4, 2.2 c)]) symmetric
form H2

crys(Z/W (k))(−1)⊗H2
crys(Z/W (k))(−1) →W (k).

2.4.1. We assume now that Z has a pseudo-polarization L of degree d ∈ N. With the
conventions of 2.1 b) we have L.L = 2d. We denote by < L > its first Chern class in any
of the H2(∗) introduced above, twisted or not by the usual Tate twist (1) or (−1) (like
Z(1), Zp(1), W (k)(−1)). We detail here the first case when k = C (see 2.8 for the third
case, and see 2.5.3 and 4.6 for the second one). So till the end of 2.5.0 we assume that
Y = Spec(C).

Let
H := H2(Z,Z)(1).

We have a perfect symmetric bilinear form B : H ⊗ H → Z. Its signiture is (3, 19) and
its main property is: B(x, x) ∈ 2Z, ∀x ∈ H (see [Me, 1.3]). The pair (H,B) does not
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depend on Z (see [Me, 1.3.2] and [Se, th. 5 of p. 54]). In other words it is isomorphic
to (L̃0, B̃0), where L̃0 = Z22, and where B0 is a fixed nondegenerate symmetric form on
L0, which w.r.t. the standard ordered basis {l1, ..., l22} of L̃0 is described by the quadratic
form 2l1l2+2l3l4+2l5l6−E8(l7, ..., l14)−E8(l15, ..., l22), with E8(x1, ..., x8) as the quadratic
form in 8 variables defined by the Cartan matrix of the E8 Lie type.

2.4.2. Convention. From now on without otherwise stated, all the pseudo-polarizations
to be considered are primitive.

2.4.3. The above convention implies that the Z-submodule of H generated by < L > is a
direct summand (this is an easy consequence of [Me, 2.3]). From [Be2, p. 111] we deduce
that an isomorphism (H,B) ∼→ (L̃0, B̃0) can be chosen such that < L > is mapped into
l1 + dl2.

Let Hpr(Z,L,Q) be the perpendicular subspace of H ⊗Q on < L > w.r.t. B. Let

Hpr = Hpr(Z,L,Z) := Hpr(Z,L,Q) ∩H.

We still denote by B its restriction to Hpr. Let L0 be the free Z-submodule of L̃0 generated

by l1 − dl2, l3,..., l22. Its rank is 21. So L0⊕ < L > Z is a subgroup of L̃0 of index 2d, and
the resulting quotient group is cyclic. Let d′ be the square free natural number dividing
2d and such that 2d

d′ is a square. Let B0 be the restriction of B̃0 to L0. The quadratic form
associated to B0 and the subbases {l1 − dl2, l3, l4, l5, l6} of L0 is −2dx21 + 2x2x3 + 2x4x5;
so the discriminant of B0 is −2d (when viewed over Q it is −d′).

We get a polarized Hodge Z
[
1
2d

]
-structure (Hpr

[
1
2d

]
, B) of weight 0 (that was the role

of using Tate twists), of type (−1, 1), (0, 0), (1,−1), and of signature (2, 19). Moreover the
Hodge numbers are h−1,1 = h1,−1 = 1 and h0,0 = 19. Let

hZ : S → SO(Hpr ⊗Z R, B)

be the homomorphism defining this polarized Hodge Z
[
1
2d

]
-structure. Let GZ be the small-

est subgroup of SO(Hpr ⊗ Q, B) through which hZ factors. It is known (for instance see
[De2-3]) that GZ is a reductive group over Q, called the Mumford-Tate group of Z. Warn-
ing: in general it is not a semisimple group, while Gder

Z is not an adjoint group.

2.5. The standard Shimura varieties attached to K3 surfaces. Let

G := SO(2, 19; d′)

be the special orthogonal group of Qd′ , where Qm (for m ∈ N) is the quadratic form
x21 + x22 − x23 − ... − x220 − mx221. We view it as an absolutely simple adjoint group over
Q. It is of B10 Lie type. If d′ > 1 then Qd′ and Q1 are not equivalent over Q, as their
discriminants do not differ by a square of Q. But d′Qd′ and Q1 are equivalent over Q. This
can be checked easily starting from the fact that any prime is a sum of four squares and that
d′Qd′ is equivalent (over Z

[
1
2d

]
) to the quadratic form x1x2+x3x4−d

′(x25+ ...+x
2
20)−x

2
21.

We deduce:

Fact. G is isomorphic to the special orthogonal group SO(2, 19) of Q1.
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We refer to 2.4.1. As the pair (Hpr, B) does not depend on (Z,L) but only on d (cf.
2.4.1), we can identify (cf. 2.4.3) G with SO(Hpr ⊗Q, B) = SO(L0, B0). So we can view
hZ as a homorphism

hZ : S → GR,

uniquely determined up to conjugation by an element of

Γd := SO(L0, B0)(L0) ∩ ΓOd ,

where
ΓOd := {g ∈ O(L̃0, B̃0)(L̃0)|g fixes l1 + dl2} ⊂ O(L0, B0)(L0).

Similarly we define

ΓSOd := {g ∈ SO(L̃0, B̃0)(L̃0)|g fixes l1 + dl2}.

Let L̃1 (resp. L1)) be a Z-lattice of L0 ⊗Q such that (cf. 2.4.1 and [Se, p. 51]):

– there is a Z-bases {ẽ1, ..., ẽ21} (resp. {e1, ..., e21}) of it with respect to which the
quadratic form of B0 is x

2
1+x

2
2−x

3
3−...−x

2
20−2dx221 (resp. is x

2
1+x

2
2−x

3
3−...−x

2
20−d

′x221);

– L̃1 ⊗ Z
[
1
2

]
= L0 ⊗ Z

[
1
2

]
(resp. L1 ⊗ Z

[
1
2d

]
= L0 ⊗ Z

[
1
2d

]
).

Let Lst be a Z-lattice of L0 ⊗ Q such that w.r.t. to a Z-bases of it the quadratic
form of d′B0 has the standard form Q1 and Lst

[
1
2d

]
= L0

[
1
2d

]
(cf. to the proof of the above

Fact).
Let X (resp. XZ) be the G(R)-conjugacy class (resp. the GZ(R)-conjugacy class)

of hZ . It is easy to see that the axioms SV1-3 of [Va1, 2.3] are satisfied for (G,X)
and (GZ , XZ). We obtain an adjoint Shimura variety Sh(G,X) and an injective map
fZ : (GZ , XZ) →֒ (G,X).

X can be described as follows (cf. [De2, 1.2.8]): it is the G(R)-conjugacy class of the
homorphism hstandard: S → GR factoring through SO(2)R, and where SO(2)R acts trivially
on e3,...,e21 and through the natural inclusion on the real subspace generated by e1 and e2.
Obviously hstandard is definable over Q. Moreover loc. cit. implies that (G,X) is uniquely
determined by G.

Let G1 := GSpin(2, 19) be the non-trivial central extension of G by Gm. Let
Sh(G1, X1) be the Shimura variety constructed in [Va1, 5.7.5] for l = 10. It is a clas-
sical Spin variety of dimension 19 and rank 2 (cf. the terminology of loc. cit.). It comes
equiped with an injective map into a Siegel modular variety

f1: Sh(G1, X1) →֒ Sh(GSp(W,ψ), S),

where (W,ψ) is a symplectic space over Q. We have (cf. loc. cit.) dim(W ) = 210 (as 10,
the rank of G, is congruent to 2 mod 4). We recall that Gad

1 = G, that Gab
1 = Gm,

and that Gder
1 = Spin(2, 19) is simply connected. Strictly speaking in loc. cit. we

worked with the signature (19, 2), but the same remains true (under the standard isomor-
phism SO(2, 19) ∼→SO(19, 2)) for the case of the signature (2, 19) (we have SO(L0, B0) =
SO(L0,−B0)).
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From [De1, 3.8] we get E(G,X) = E(G1, X1) = Q. Here X1 is the G1(R)-conjugacy
class of the unique monomorphism

h1Z : S →֒ G1R

lifting hZ and which restricted to the subgroup Gm of S acts as scalar multiplications on
W ⊗ R.

We denote by q : (G1, X1) → (Gad
1 , X

ad
1 ) = (G,X) the natural adjoint map. Fol-

lowing the conventions of [Va1, 2.4] we still denote by q the different morphisms between
quotients of Shimura varieties it induces naturally. Let G1Z = q−1(GZ); it is a reduc-
tive group over Q. Obviusly h1Z factors through G1ZR, giving birth to a Shimura variety
(G1Z , X1Z). Similarly we denote by qZ : (G1Z , X1Z) → (Gad

1Z , X
ad
1Z) = (GZ , XZ) the natural

adjoint map.
The faithful representation f1C:G

der
1C →֒ GL(W ⊗ C) defined by f1 is irreducible.

From [De2, 1.3.9] we deduce that dim(W ) is the smallest possible dimension for embedding
Sh(G1, X1) in a Siegel modular variety.

We refer to Sh(G1, X1) and its adjoint Sh(G,X) as the companion Shimura varieties
attached to pseudo-polarized K3 surfaces (of degree d). They do not depend on d. We
refer to Sh(GZ , XZ) as the Shimura variety attached to Z (or to (Z,L)) itself.

2.5.0. The d-invariant. We denote by dZ ∈ N the smallest number such that GZ can be
described as the subgroup of GL(Hpr ⊗Q) = GL(L0 ⊗Q) fixing a family of homogeneous
tensors of the essential tensor algebra of (L0 ⊕ L∗

0) ⊗ Q of degrees at most dZ (cf. [De3,
3.1 c)]). We refer to it as the d-invariant of Z. It is quite common to have dZ = 2.

We also fix an arbitrary family (vα)α∈JZ
of such tensors (with no restriction on the

degrees involved) such that it contains B0 (i.e. there is α0 ∈ JZ with vα0 = B0) and GZ
is the subgroup of GL(L0 ⊗Q) fixing its members.

2.5.1. Shimura subvarieties of Sh(G,X). Let (G0, X0) →֒ (G,X) be an injective map.
As the R-rank of G is 2, from [He, p. 518] and [De2, 1.3.9-10] we deduce that:

a) either Gad
0 is a product of at most two Q–simple adjoint groups of some An Lie

type, or
b) Gad

0 is a simple Q–group of B2, B3,..., B10, D4, D5,...., D9 or D10 Lie type, with
just one non-compact factor over R.

From [Va3, (1) of 3.0] we deduce easily that all the possibilities of b) show up. In case
Gad

0 is of Dn Lie type with n ∈ {6, ..., 10}, (G0, X0) is of D
R
n type (see [De2] for the meaning

of this). For a discussion of the possibilities of a) we refer to [Za]. Moreover from the work
of Kulikov recalled in 2.6.1 (see also [Za]) it results that any such Shimura subvariety
Sh(G0, X0) of Sh(G,X) with the property that there is no subgroup of G0 through which
all the homorphisms S → G0R defined by elements of X0 factor, is the Shimura variety
attached to a pseudo-polarized K3 surface of degree d.

If GZ = G then the group Pic(Z) is freely cyclic, having (cf. 2.4.2) L as its generator.

2.5.2. Connected components. Let K (resp. K1) be a compact subgroup of G(Af )
(resp. of G1(Af )). Let Kab

1 be the image of K1 in Gab
1 (Af ) = Gm(Af ). From [De1,

2.4-5] we deduce that the set of connected components of ShK1(G1, X1) is a principal
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homogeneous space of the group Gm(A)/Gm(Q)Kab
1 . So the situation is entirely similar

to the one of Siegel modular varieties. Moreover the natural (“adjoint”) morphism

q: Sh(G1, X1) → Sh(G,X)

is a cover in the sense of [Va1, 2.4]. From this and [Mi4, 4.10-13], asGm(Af ) = Gm(Q)Gm(Ẑ),
we get:

Fact. If K1 is the maximal compact subgroup of G1(Af ) with q(K1) = K (we recall that q
induces an epimorphism q:G1(A) → G(A)), then the natural morphism ShK1(G1, X1) →
ShK(G,X) is an isomorphism.

This is one of the reasons (see also 2.7) why it is more convenient to work part of
what follows with (G1, X1) instead of (G,X).

X1 = X is a disjoint union of two connected components, each one being (with the
standard notations of [He]) BDI(p = 2, q = 19). In other words G(R) and G1(R) have
two connected components and a connected component of X is (isomorphic to)

X0 := G(R)0/SO(2)(R)× SO(19)(R)

(the upper index 0 for G(R) refers to the connected component of the origin).

2.5.3. Level structures. In what follows we include a detail treatment of the level
structures as we hope it will be useful in other contexts as well.

We still assume that Y = Spec(C). We say that (Z,L) is marked if an isomorphism

(L̃0, B̃0, l1 + dl2)
∼→ (H,B,< L >)

is fixed. So there are ΓOd such marked structures of (Z,L).
Let p be a prime. We assume now that Y is an arbitrary scheme where p is invertible.

Let π:Z → Y be a K3 surface, and let L be a pseudo-polarization of it of degree d. We
say that (Z,L) is p-marked if an isomorphism

k0: (L̃0 ⊗ Zp, B̃0, l1 + dl2)Y
∼→ (R2π∗(Zp)(1), B,< L >)

is given (here we still denote by B the symmetric bilinear form on R2π∗(Zp)(1) defined
by the cup product, while the lower index Y refers to the fact that we view (L0 ⊗ Zp, B0)
as a constant polarized étale sheaf on Y ). We refer to the triple (Z,L, k0) as a p-marked
polarized K3 surface if L is a polarization, and as a p-marked K3 surface with a pseudo-
polarization otherwise. If p does not divide 2d, then there are precisely O(L0, B0)(L0⊗Zp)
such p-marked structures of (Z,L). If instead of Zp we work with Z/pmZ (m ∈ N), we
speak about level-pm marked polarized K3 surfaces and about a level-pm marked K3 surface
with a pseudo-polarization (notation again by a triple (Z,L, kpm)).

2.5.3.1. Definitions. A subgroup (resp. normal subgroup) of SO(L0, B0)(L0 ⊗ Ẑ) is
called weakly admissible (resp. normal). A weakly admissible subgroup is called admissible

(resp. strongly admissible) if it is contained in SOA := {g ∈ SO(L̃0, B̃0)(L̃0⊗Ẑ)|g fixes l1+
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dl2} ⊂ SO(L0, B0)(L0⊗Ẑ) (resp. is contained in the closure of ΓSOd in SO(L0, B0)(L0⊗Ẑ)).

Similarly we define (weakly or strongly) admissible subgroups of O(L0, B0)(L0 ⊗ Ẑ).

Let
KO(n) := {g ∈ O(L0, B0)(L0 ⊗ Ẑ)|g mod n is the identity}

and let
K(n) := KO(n) ∩ SO(L0, B0)(L0 ⊗ Ẑ).

It is easy to see that any subgroup of KO(2d) (and so of K(2d)) is admissible. The notions
weakly admissible and admissible coincide iff d = 1.

As above we define the notion of n-marked (or of level-nmarked) polarized K3 surface
(resp. K3 surface with a pseudo-polarization) over Y , where n ∈ N (of course we assume
that n is invertible in Y ). We apply the convention: an n-marked structure is the same
as r-marked structure for any prime r dividing n. More generally, if K is an admissible
compact subroup of O(L0, B0)(L0 ⊗ Ẑ) or of SO(L0, B0)(L0 ⊗ Ẑ), then we speak similarly
about level-K marked polarized K3 surface (resp. K3 surface with a pseudo-polarization);
so if (n, 2d) = 1 then the level-n marked structure is the same as level-K̃O(n) marked
structure, where ∀m ∈ N

K̃O(m) := {g ∈ O(L̃0, B̃0)(L̃0 ⊗ Ẑ)|g fixes l1 + dl2 and is congruent to 1 mod m}.

If n≥ 3, then KO(n) = K(n). It is desirable for the sake of flexibility not to assume K to
be an open subgroup.

2.5.3.2. Discussion. One might inquire: what is the right group to work with SO(L0, B0)
or O(L0, B0)? The answer is: as 19 and 21 are odd, multiplication by −1 is an isomorphism
of (L0, B0) which is not an element of SO(L0, B0); so the end result is the same (see (1)
below). For instance, the set PSS of isomorphism classes of marked polarized K3 surfaces
of degree d is identifiable with a subset of

Sh(G,X)(C) = G(Q)\G(A)/(SO(2)(R)× SO(19)(R))′;

(for the last equality cf. [De2, 2.1]). Here (SO(2)(R)×SO(19)(R))′ is the maximal compact
subgroup of G(R) containing SO(2)(R)× SO(19)(R) as a normal subgroup of index 2.

The fact that we have a set map from PSS to Sh(G,X)(C) is obtained in the same
manner as in [Va1, 4.1] (where the case of Shimura varieties of Hodge type is treated; with
our notations, we just have to repeat the construction of the map g(G1,X1,W,ψ) of loc. cit.),
starting from the natural identification:

(1) G(R)/SO(2)(R)× SO(19)(R) = O(L0, B0)(R)/SO(2)(R)×O(19)(R).

In [PSS] it is shown that this set map is injective. There are two other useful natural
identifications:

G(R)0/SO(2)(R)× SO(19)(R) = G(R)/(SO(2)(R)× SO(19)(R))′
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and
G(R)/(SO(2)(R)× SO(19)(R))′ = O(L0, B0)(R)/O(2)(R)×O(19)(R);

they allow the replecement of O(∗) by SO(∗). Moreover the connected components of
Sh(G,X)(C) are all identifiable (as complex manifolds) with X0. (This part should be
compared with [An, 3.1-2], where are also treated situations with even numbers, like 20
and 22 instead of 19 and 21.) However (see 2.7) it is more convenient to work with special
orthogonal groups than to orthogonal groups; that is why we most commonly speak about
level-K marked structures, for K an admissible compact subgroup of SO(L0, B0)(L0⊗ Ẑ).

2.5.3.3. The primitive counterpart. One can define level structures by just using the
primitive parts of the different H2’s involved (this is the approach used in [An], see 2.7.2.1
below). For instance we say that (Z,L) is primitively marked if an isomorphism

(L0, B0)
∼→ (Hpr, B)

is given. So there are O(L0, B0)(L0) such primitively marked structures of (Z,L). Similarly
we speak about a level-n primitively marked structure, or about a primitively n-marked
structure, or about a level-K primitively marked structure, for K a compact (not neces-

sarily open or admissible) subgroup of SO(L0, B0)(L0 ⊗ Ẑ) or of O(L0, B0)(L0 ⊗ Ẑ). The
advantage of primitively marked structures compared with the marked structure is that
the different subgroups involved are “simpler” (KO(n) is “simpler” than K̃O(n)). The
disadvantage is: the subgroups of G(Af ) involved are often not admissible. So a level-n
primitively marked structure makes sense for any n ∈ N; if (2d, n) = 1 then it is the
same as a level-KO(n) primitively marked structure. Obviously a level-n marked structure
defines naturally a level-n primitively marked structure; if n is a multiple of 4d, then a
level-n primitively marked structure defines naturally a level-n2 marked structure.

2.5.3.4. Remark. Let n ∈ N and let (Z,L, kn) be a level-n marked polarized K3 surface
over a field k0 of characteristic zero. Then k0 can not be too small, in the sense that it
must contain some number field (which of course depends on n). For instance, if n = 3
does not divide d, then from [An, 8.4.3] we deduce that k0 must contain a root of unity
of order 3. Starting from 2.8.1 it can be checked easily that the same remains true if the
characteristic of k0 is positive and relatively prime to 3.

However this phenomenon is subtler than the one for abelian varieties (see 3.2.4 C)
for details).

2.5.3.5. Comments. Let (Z,L) be an arbitrary K3 surface over Y with a pseudo-
polarization.

A) We assume here that Y is a Q–scheme. By a marked structure of (Z,L) we mean
a level-n marked structure kn of it for any n ∈ N, such that there is a Q–scheme Y1 having
the properties:

– Y factors through it;
– the data (Z,L, (kn)n∈N) descends over Y1;
– the C-valued points of Y1 are Zariski dense in Y1;
– for any C-valued point y of Y1, these level structures match together into a marked

structure of the K3 surface with a pseudo-polarization we get over C via y.
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B) Warning: if Y = C, a marked structure of (Z,L) is not the same thing as a
system of compatible level-n marked structures, n ∈ N.

C) We come back to an arbitrary scheme Y . It is not clear to us when (in general) a
level-n marked (resp. primitively marked) structure lifts (after replacing Y by a pro-étale
cover of it) to an n-marked (resp. primitively n-marked) structure. Of course this is so
if (n, 2d) = 1 (cf. 2.5.4 A) below). Also it is not clear to us when a level-n marked or
primitively marked structure lifts (after replacing Y by a pro-étale cover of it) to a marked
structure. This leads to the following convention:

Convention. All the level-K marked structures to be considered from now on, except
otherwise stated, are assumed to be defined by admissible subgroups of SO(L0, B0)(L0⊗Ẑ)
and are assumed to be liftable (to characteristic zero) to marked structures.

This convention implies that from now on a level-nmarked structure is the same thing
as a level-K̃SO(n) marked structure, where K̃SO(n) := K̃O(n) ∩ SO(L0, B0)(L0 ⊗ Ẑ); if
n≥ 3 then K̃O(n) = K̃SO(n). Warning: this convention does not apply to the primitively
marked structures; so when the things are true in a larger context then the one of the
convention, we use primitively marked structures. Based on this convention we could have
avoided in what follows the use of the adelic language; however, for greater generality and
flexibility, we felt that it is still more appropriate to use it.

D) We consider a level-n marked (resp. primitively marked) K3 surface with a
pseudo-polarization (Z,L, kn) over a field k0 of characteristic zero. We assume that n≥ 3.
Then the natural Galois representation Gal(k0/k0) → GL(H2

pr(Z0,Af (1))), under a nat-
ural identification as in 2.5 (obtained via a complex model of (Z,L, kn)), factors through
K̃SO(n) (resp. through K(n)).

2.5.4. Integral aspects. A) The closure G of G in GL(Lst

[
1
2

]
) is a reductive group over

Spec(Z
[
1
2

]
). So G1 and G are unramified over Qp, for any odd prime p. Moreover, as

the bilinear form over Z associated to the quadratic form E8(x1, ..., x8) is unimodular, we
deduce that G and G1 are unramified over Q2 as well. But the closure of G in GL(L0)
becomes semisimple only after inverting 2d (cf. 2.4.1). We can assume the existence of a a
Z-lattice LW of W such that we get a perfect alternating form ψ:LW ⊗LW → Z, and the
closure G1 of G1 in GL(LW

[
1
2

]
) is a reductive group having G as its adjoint. This is an easy

consequence of the fact that for any odd prime p, G1Zp
is split, and the spin representation

G1Qp
→֒ GL(W ⊗ Qp) is symplectic and irreducible; so multiplying eventually ψ by a

non-zero rational number, we can assume that such a Z-lattice LW does exist. The same
argument shows that we can also assume that the closure of G1 in GL(LW ⊗ Z(2)) is a

reductive group over Z(2). Let GZ be the closure of GZ in G (or in GL(L1

[
1
2

]
)). Let G1Z

be the closure of G1Z in G1 (or in GL(LW
[
1
2

]
)).

Exercise 1. Let p≥ 5 be a prime. Show that the triple (f1, LW ⊗ Z(p), p) is a SHS. Hint:
If p 6= 19, this is handled in [Va1, 5.7.5], cf. [Va2, 2.3.6]; if p = 19 use [Va2, 4.2.1, P1 of
4.6 and 4.6.12] and [BLR, Th. 1 of p. 109].

B) Let S be a finite set of primes containing the divisors of 6d. Let l be the product
of primes of the subset S0 of S of primes relatively prime to 6d; if S0 is empty we take
l = 1. In most applications l = 1, but for the sake of generality we do not assume this.
Let K and K1 be as in 2.5.2. We assume that:
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i) for any prime p relatively prime to 6dl we have Kp := G(L0 ⊗ Zp) ⊂ K and
Kp

1 := G1(LW ⊗ Zp) ⊂ K1;
ii) K1 maps (via q) into K;
iii) ShK1(G1, X1) and ShK(G,X) are pro-étale covers of smooth quasi-projective Q–

schemes (i.e., with the terminology of [Va1, 2.11], K1 and K are smooth for (G1, X1) and
respectively for (G,X)).

For instance we can take K1 to be the subgroup of G1(LW ⊗ Ẑ) acting trivially
modulo n, for some n ∈ N, n≥ 3, and we can take K = q(K1). This can be easily deduced
from Serre’s lemma (see [Mu, p. 207]) and the existence of the embedding f1. From i) we
deduce that:

Kp
1 = K1S ×KS

1 := K1S ×
∏

j a prime,j /∈S

Kj
1 ,

where K1S is a compact subgroup of G1(
∏
j∈S

Qj); similarly

K = KS ×KS := KS ×
∏

j a prime,j /∈S

Kj ,

with KS a compact subgroup of G(
∏
j∈S

Qj).

C) From B) and [Va1, 2.11, 6.4.4 and 6.4.6 1)] we deduce the existence of a pro-
étale cover N1 (resp. N) of a smooth quasi-projective scheme over Spec(Z

[
1
6dl

]
), uniquely

determined by the following three properties:

a) its generic fibre is ShK1(G1, X1) (resp. ShK(G,X));
b) it has the following extension property: for any extensible pair (Y,U) with Y a

healthy regular scheme (see [Va, 3.2.1 1-2)] for def.), any morphism U → N1 (resp. U → N)
extends uniquely to a morphism Y → N1 (resp. Y → N).

c) for any prime p relatively prime to 6dl, the normalization of N1Z(p)
(resp. of NZ(p)

)
in ShKp

1
(G1, X1) (resp. in ShKp(G,X)) has naturally a continuous right action by G1(A

p
f )

(resp. by G(Apf )) with respect to which it is the integral canonical model (see [Va1, 3.2.3 6)
and 3.2.6] for def.) of Sh(G1, X1) (resp. of Sh(G,X)) with respect to p, and is a pro-étale
cover of N1Z(p)

(resp. of NZ(p)
).

The unicity part is implied by [Va1, 3.2.4] and c). Related to b) what we need to know
in what follows: any regular formally smooth scheme over a DVR of mixt characteristic
which is faithfully flat over a localization of Spec(Z

[
1
6dl

]
) and has index of ramification one,

is a healthy regular scheme, cf. [Va1, 3.2.2]. With the notations of [Va1, 6.4.4 and 6.4.6
2)] we have N1 = M1(K1S) and N = M(KS).

D) We recall how these schemes N1 an N are constructed. We define KW (n) := {g ∈

GSp(LW ⊗ Ẑ)|g mod n is the identity}, and K1(n) := KW (n) ∩G1(Af ). First we assume
that:

iv) K1 = K1(n) for some n ∈ N, n≥ 3 being a product of primes dividing 6d, and
that l = 1.

Under this assumption we have a closed embedding of Q–schemes

ShK1(G1, X1) →֒ ShKW (n)(GSp(W,ψ), S).
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Let gW := 29, and let AgW ,1,n be the moduli scheme over Spec(Z
[
1
6d

]
) of isomorphism

classes of principally polarized abelian schemes of dimension gW having level-n symplectic
similitude structure (cf. [Va1, 3.2.9]). From loc. cit. we deduce that AgW ,1,nQ can be

identified with ShKW (n)(GSp(W,ψ), S). From [Va1, 3.2.12 and the proof of 3.4.1] we get
directly:

Theorem. N1 is the normalization N1(n) of the closure of ShK1(G1, X1) in AgW ,1,n.

If we “put aside” the prime 19, the same thing is implied by [Va1, 5.7.5] and 5.6.1],
cf. the proof of [Va1, 3.4.1]; moreover the prime 19 is also resolved by [Va2, 2.3.11] and
Exercise 1. See [Va1, 5.6.4] why morally we do not need to take this normalization.

We treat now the arbitrary case (i.e. we are not any more under the assumption
iv)). We can assume that K1 is open. We choose n ∈ N, n≥ 3, n a product of primes (not
necessarily distinct) dividing 6dl and such that K1(n) is a normal subgroup of a normal
subgroup K ′

1 of K1. Then N1 is obtained by taking the quotient by the finite group K1/K
′
1

of the quotient of N1(n)Z[ 1
6dl]

by the finite group K ′
1/K1(n) (cf. [Va1, def. 3.4.8, 6.4.2.1

and 6.4.4 a)]).

From [Va1, 6.2.2 a)] we deduce that N is obtained by the same method of taking
quotients from a scheme N1 obtained as above but for aK1 chosen such thatK1 is maximal
(still compact subgroup of G1(Af )) with the property that q(K1) is a normal subgroup of
K.

E) Let K ′
1 (resp. K ′) be a compact subgroup of K1 (resp. of K). Let S′ be a set of

primes containg S. Similarly to l of 2.5.4 B), we define l′ ∈ N. We assume that q(K ′
1) ⊂ K ′

and that i) above is satisfied for K ′
1 and K ′, but for l being replaced by l′. So i-iii) bove

are satisfied for our “primed” situation. As in B) we get a pro-étale cover N′
1 (resp. N′) of

a smooth quasi-projective Spec(Z
[

1
6dl′

]
)-scheme, by working with K ′

1 (resp. K ′) instead of
K1 (resp. of K). We have the following functorial property described by a commutative
diagram of pro-étale covers

N′
1

qZ
−−−−→ N′

nat

y
ynat

N1Z[ 1
2dl′]

q
−−−−→ N

Z[ 1
2dl′]

.

Here nat are the natural morphisms (cf. c) and def. 6) of [Va1, 3.2.3]), while the q
morphisms are defined naturally starting from [Va1, 3.2.7 4)]. The fact that morphisms
involved are pro-finite étale is implied by [Va1, 6.4.5.1].

F) We present now quickly the relative situation. Let SZ be a finite set of primes
such that it contains S and the primes j such that GZZ(j)

is not reductive. Let lZ be the

product of the primes of SZ not dividing 6d (we take lZ to be one if such primes do not
exist). We similarly can work with K1Z (resp. KZ) a compact subgroup of G1Z(A

p
f ) (resp.

of GZ(A
p
f )) such that:

iZ) for any prime p relatively prime 6dlZ we have Kp
1Z := G1Z(LW ⊗Zp) ⊂ K1Z and

Kp
Z := GZ(L0 ⊗ Zp) ⊂ KZ ;

iiZ) we have q(K1Z) ⊂ KZ ;
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iiiZ) the schemes ShK1Z
(G1Z , X1Z) and ShKZ

(GZ , XZ) are pro-étale covers of quasi-
projective smooth E(GZ , XZ)-schemes.

Let EZ := E(GZ , XZ) = E(G1Z , X1Z). Warning: it is quite common that EZ 6= Q

(plenty of such examples can be constructed with GZ a torus). Let OZ := OEZ

[
1

6dlZ

]
,

where OEZ
is the ring of integers of EZ . As in C) above we deduce the existence of pro-

étale covers N1Z and NZ of quasi-projective smooth OZ-schemes, having entirely the same
properties. In particular we have a pro-étale cover qZ :N1Z → NZ . The functorial aspects
of E) still hold in this relative situation.

G) If in C) to F) above the compact groups are also open, then the pro-étale covers
become étale covers.

2.6. Moduli schemes over C. A) From [BB] we deduce that Sh(G,X)C is a projective
limit of smooth quasi-projective C-schemes, with finite étale transition morphisms (see
also [Va1, 2.3]). In particular it has a natural structure as a C-scheme. In [PSS] (see also
[LP] and [Be2]) it is shown the existence of a coarse moduli scheme K3d,p,marked over C

of marked polarized K3 surfaces of degree d. We have K3d,p,marked(C) = PSS. In [PSS]
it is shown that PSS is the set of complex points of an open dense subscheme of a union
K3d,pp,marked (see 2.6.1 for an explanation of the notation; pp stands for pseudo-polarized)
of two distinct connected components of Sh(G,X)C, which can be identified toK3d,p,marked.

The two connected components are interchanged naturally by any element of ΓSOd \
G(R)0.

B) It is easy to see that
Γ0
d := Γd ∩G(R)

0

is a normal subgroup of Γd of index 2. Obviously it is an arithmetic subgroup of G(Q)
which acts naturally (it is a left action) on X0. The loc. cit. (see also [Be2]) shows as
well the existence of a coarse quasi-projective moduli scheme K3d,p over C of unmarked
polarized K3 surfaces of degree d. We have a canonical identification:

K3d,p = Γd\K3d,p,marked.

K3d,p has just one connected component and is isomorphic to an open subscheme of one
connected component K3d,pp of ShK(d,SO)(G,X)C, where

K(d, SO) := {g ∈ SO(L̃0, B̃0)(L̃0 ⊗ Ẑ)|g fixes l1 + dl2}.

So K3d,p can be identified with Γ0
d\X

0.

C) Let n ∈ N. Let Γd,n := Γd ∩ K̃SO(n) and let Γ0
d,n := Γ0

d ∩ K̃SO(n). Then

Γ0
d,n\X

0

is a connected component of ShK̃SO(n)(G,X)C, and there is a coarse quasi-projective moduli
scheme K3d,p,n over C of level-n marked polarized K3 surfaces of degree d, which has one
(resp. two) connected component (resp. components) if Γd,n 6= Γ0

d,n (resp. if Γd,n =
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Γ0
d,n) and is an open subscheme of a union K3d,pp,n of one (resp. two distinct) connected

component (resp. components) of ShK̃SO(n)(G,X)C.

If n≥ 3 then it is easy to see that Γd,n = Γ0
d,n. If n divides n1 ∈ N, then we have a

natural étale cover
K3d,p,n1 → K3d,p,n.

D) If moreover n≥ 3, from 2.5.4 B) we deduce that K3d,p,n is smooth over C. It is
a moduli scheme over C of level-n marked polarized K3 surfaces of degree d. This can be
checked in the same manner as for the case of principally polarized abelian schemes (see
[FC, Ch. I, 4.11]), starting from the following well-known result (Serre’s lemma for K3
surfaces):

Theorem. Let m ∈ N, m≥ 3. We assume that 2md is invertible in Y . Then any
automorphism φ of a level-m primitively marked pseudo-polarized K3 surface (Z,L) of
degree d over Y is trivial.

Proof: Using Rudakov–Shafarevich theorem (see [RS1] and [De4, 1.1 b)]) we deduce the
absence of infinitesimal automorphisms of a pseudo-polarized K3 surface. So we can assume
that Y is the spectrum of a field. We first recall briefly the argument in characteristic zero.
We can assume that Y = Spec(C). A theorem of Beauville (see [Be3, Prop. 6] for a proof)
shows that we have a natural monomorphism

Aut(Z) →֒ Aut(H2(Z,Z)(1))opp.

So Serre’ s lemma (see [Mu, p. 207]) applies directly (cf. 2.5.4 B)).
We recall now the argument in the case Y is of positive characteristic p. Standard

arguments (of specializing to finite fields) show that φ has finite order. From here there
are two ways to proceed further. The first one: from Serre’s lemma we deduce that φ acts
trivially on H2(Z,Zr) for a suitable prime r dividing n; using this, it can be deduced easily
that Φ is trivial by considering the quotient surface Z̃ of Z by φ and analysis the situation
in the Zr-étale context.

The second way is to use the characteristic zero result and the fact expressed in the
following exercise:

Exercise 2. Show that any automorphism of prime order of (Z,L) lifts to characteristic
zero. Hint: Use [Va1, 3.4.5 and 6.2.2 G) and H)] and the deformation theory recalled in
2.8.

E) Even better, if Γ0
d,K := Γ0

d ∩ K, with K an admissible compact subgroup of

SO(L0, B0)(L0 ⊗ Ẑ), then
Γ0
d,K\X0

is a connected component of ShK(G,X)C, and there is a coarse moduli scheme K3d,p,K
of level-K marked polarized K3 surfaces of degree d, which has one or two connected
components and is an open dense subscheme of a union K3d,pp,K of one or two connected
components of ShK(G,X)C; it is a moduli scheme if K is smooth for (G,X) (for instance
if K ⊂ K(n) with n≥ 3).

2.6.1. The pseudo-polarized context. From [Ku] (see also [PP], [Be3, p. 150] and
[KT]) we deduce that K3d,pp,marked (resp. K3d,pp) is the moduli scheme (resp. the coarse
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moduli scheme) parametrizing isomorphism classes of marked (resp. unmarked) pseudo-
polarized K3 surfaces of degree d. To show that the similar statements remain true for
K3d,pp,n and K3d,pp,K (with K as above), we just need to define what is a level-K marked
structure for a pseudo-polarized K3 surface (Z,L) over an arbitrary scheme Y (over which
such a structure can be defined). There are a couple of possibilities in defining it. One
way is to try to follow the pattern (see [FC, §6 of ch. IV]) of semi-abelian varieties in
comparison to abelian varieties. The difficulty in loc. cit. is: a semi-abelian scheme of
some relative dimension g ∈ N, can have fibres whose toric part is of dimension some
(varying) number of the set {0, ..., g}. In our case the singularities of the geometric fibres
of Z are varying in number: their number can be any number of the set {0, ..., 19}. Of
course by specialization the number of singular points is not decreasing. Here we adopt a
simpler way (somehow non-standard).

2.6.1.1. Definition. We say that (Z,L) is level-K marked if:

– for any point y of Y with values in a field k0, Zy can be lifted to a pseudo-polarized
K3 surface (ZV , LV ) over a DVR V having k0 as its residue field in such a way that its
generic fibre (ZK(V ), LK(V )) over the field of fractions K(V ) of V is a polarized K3 surface
having a level-K marked structure LK(V );

– the level-K structures are compatible in the usual sense, that if two such data
(ZK(V ), LK(V ),LK(V )) and (ZK(U), LK(U),LK(U)) are given which specializes to the same
one obtained through the point y, then they are obtained by specializing a particular
level-K marked polarized K3 surface.

2.6.1.2. Remark. We assume that Y is the spectrum of a field k0 of characteristic
relatively prime to 2d. It seems to us (cf. also 2.7.2.2 4)) that if (Z,L) has level-n marked
structure for n≥ 3, then the singularities of Z are defined over k0.

2.6.2. Remark. If n≥ 3, using the Theorem of D) above, we can define as well a moduli
scheme K3d,p,n,pr (resp.K3d,p,n,pr) of isomorphism classes of level-n primitively marked
polarized (resp. pseudo-polarized) K3 surfaces over C-schemes. Warning: as the conven-
tion of 2.5.3.5 C) does not apply for primitively marked structure, they can have more
than two connected components.

2.7. The Kuga–Satake construction. Let f2: (G1, X1) →֒ (GSp(W2, ψ2), S2) be an
arbitrary embedding into a pair defining a Siegel modular variety. Let

f3: (G1, X1) →֒ (GSp(W3, ψ3), S3)

be the injective map defined in [KS]. To recall in detail how f3 is defined we follow the
language of [De5] and [An, §4], in the context of present notations. We consider the even
Clifford algebra C+(L0) over Z. We also consider the even Clifford group G2 over Q. Its
Q–rational points are the invertible elements γ of C+(L0)(Q) such that

γL0 ⊗Qγ−1 = L0 ⊗Q.

It is naturally identified to G1. Let L3 be a free (left) C+(L0)-module of rank one. We
have naturally (but not canonically; see [De5] or [An, 4.3]) a nondegenerate (perfect if we
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invert 2d) sympletic form ψ3:L3 ⊗ L3 → Z, fixed by G2. Let W3 := L3 ⊗ Q. Then the
natural inclusion G1 = G2 →֒ GSp(W3, ψ3) defines f3.

Let n ∈ N. We now review Kuga–Satake construction at the level of level-n (resp.
level-n marked) polarized abelian varieties (resp. K3 surfaces with a pseudo-polarization).
Let L′

3 be an arbitrary Z-lattice of W3 such that ψ3:L
′
3 ⊗ L′

3 → Z is perfect and L3

[
1
2d

]
=

L3

[
1
2d

]
. Let (Z,L, kn) be a level-n marked K3 surface with a pseudo-polarization of degree

d over C. Let (cf. Riemann’s theorem; see [De1, 4.7]) AZ (resp. (A′
Z , pA′

Z
)) be the

complex abelian variety (resp. principally polarized abelian variety) defined by (L3, h1Z)
(resp. defined by (L′

3, h1Z , ψ3). The association: AZ to (Z,L), is called the Kuga–Satake
construction. The association: (Z ′

Z , pA′
Z
) to (Z,L) will be called here as a modified p.p.

Kuga–Satake construction (here p.p. stands for principally polarized). Obviously AZ and
A′
Z are isogeneous. Moreover, if n is realtively prime to 2d, then to kn it is associated

naturally a level-n symplectic similitude structure of (A′
Z , pA′

Z
) (still denoted by kn).

Similarly, for any Z-lattice L2 of W2 such that ψ2:L2 ⊗ L2 → Z is perfect we speak
about a modified p.p. Kuga–Satake construction. In what follows, for the case f2 = f1
and L2 = LW we will speak about the Satake construction, as the embedding f1 is just
the Q–version of the R-one of [Sa, p. 458] and as [Sa] is an earlier work than [KS].

2.7.1. Exercise 3. Show that through all these modified p.p. Kuga–Satake constructions
(starting from a fixed pair (Z,L)), the different abelian varieties obtained are isogeneous
to powers of the abelian variety associated (to (Z,L)) via f1 and LW . Hint: use [De2,
1.3.9] and the fact that Gab

1 = Gm to show that the representation Gder
1 → GL(W3) is a

direct sum of a number of copies of the representation Gder
1 → GL(W1).

This exercise motivates why in general we prefer to work with f1 instead of f3 (cf.
also the smallest dimension possible property enjoyed by dim(W ); see 2.5).

2.7.2. A digression. A natural question arises:

Q. How unique is the Satake construction, and what advantages it offers in compar-
ison to the Kuga–Satake construction?

To give an answer to this question we start remarking that the symplectic form ψ
is uniquely determined by f1 up to multiplication by a non-zero rational scalar (as f1C
is irreducible; see 2.5); the scalar has to be positive in order to ensure that εψ and rεψ
are both defining a polarization of the Hodge Q–structure of W defined by h1Z (here
ε ∈ {−1, 1}). Let r ∈ Q+ := Q ∩ (0,∞), and let L1

W be another Z-lattice of W ⊗ Q such
that:

i) rψ:L1
W ⊗ L1

W → Z is perfect;
ii) G1 is a reductive subgroup of GSp(L1

W

[
1
2

]
, ψ).

Let p be a prime not dividing 2d. The spin representations of the split group G1Fp

on LW ⊗ Fp and on L1
W ⊗ Fp are irreducible (see [Bo]). This implies that LW ⊗ Zp and

L1
W ⊗ Zp are proportional. We deduce the existence of an element m̃ ∈ Q such that

m̃LW ⊗ Z
[
1
2d

]
= L1

W ⊗ Z
[
1
2d

]
. So we can assume that:

iii) LW ⊗ Z
[
1
2d

]
= L1

W ⊗ Z
[
1
2d

]
, and that

iv) r is an invertible element of Z
[
1
2d

]
.
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So r is a product of primes dividing 2d and of their inverses. We do not know what
is the best way to handle these primes. Of course a model of G1 over Spec(Z) has to be
chosen; this implies a first choice (as natural as possible) of a model GZ of G over Spec(Z).
A first choice (the most natural one) for GZ would be the closure of G in GL(L0); a second
choice (also quite natural) is to take the closure G̃ of G in GL(L′

0), where L
′
0 is generated

by 1
d1
(l1 − dl2), l3,..., l21, with d1 ∈ N defined by d = d21d

′. We can assume that (cf. the

proof of the Fact of 2.5) that Lst

[
1
d′

]
= L′

0

[
1
d′

]
. Obviously G̃

Z[ 1
d′
] is a reductive group. If G̃1

is the non-trivial extension of G̃ by Gm, then we get (cf. 2.4.5 A)):

v) G̃1Z[ 1
d′
] is a reductive subgroup of GL(LW

[
1
d′

]
).

If we impose that G̃1Z[ 1
d′]

is a reductive subgroup of GL(L1
W

[
1
d′

]
) as well, then as bove

we can assume that:

vi) r is invertible in Z
[
1
d′

]
, and we have LW

[
1
d′

]
= L1

W

[
1
d′

]
.

Moreover we can assume that:

vii) r is square free.

2.7.2.1. A comparison. Here we put together what we can get using vi) and [An, 1.7
and 8.4.3]. Let G̃KS1 be the closure of G1 in GL(L3). From the very constructions we have:

(2) G̃KS
1Z[ 1

2d]
= G1Z[ 1

2d]
.

The representation of G1 on W3 is isomorphic to 210 copies of the representation of G1 on
W1 (see also [An, 4.2]). Moreover from (2) above we deduce (the argument is the same as
the one used to get iii) and iv) above), that we can choose a G1-isomorphism

iZ :W 210 ∼→W3

such that:

viii) L210

W

[
1
2d

]
is mapped onto L3

[
1
2d

]
.

Let (A, pA) (resp. (A1, pA1) be the principally polarized abelian scheme defined
by the triple (LW , ψ, h1Z) (resp. by (L1

W , rψ, h1Z)). Let AZ be as above in 2.7. The

isomorphism iZ achieves a Z
[
1
2d

]
-isogeny between A210 and AZ . Moreover A and A1 are

Z
[
1
d′

]
-isogeneous. Let m ∈ Z

[
1
2d

]
∩Q+ be an invertible element such that (via iZ) we have

mL210

W ⊂ L3. Let m1 ∈ N be the smallest number such that m1L3 ⊂ mL210

W . We usually
choose m and m1 so that m1 takes the smallest possible value md′ ∈ N. We have:

A. Proposition. Let k0 be an arbitrary subfield of C. We assume that (Z,L) is obtained
by extension of scalars from a K3 surface with a pseudo-polarization (Z0, L0) over k0.
Then there is a finite field extension k1 of k0 such that there is a principally polarized
abelian variety (A0, pA0) over k0 having the properties:

a) its extension to C is (A, pA) (so its Mumford-Tate group can be identified naturally
with the subgroup G1Z of G1);

b) it does not depend on the embedding of k0 in C;
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c) if l is a prime relatively prime to 2d (resp. dividing 2d), then the natural Galois
representation Gal(k̄0/k0) → GZl

(Zl) (resp. Gal(k̄0/k0) → G(Ql)) defined by A0 (via the
adjoint map of its factorization through G1Zl

) is isomorphic to the one defined by (Z0, L0).

Proof: We first remark that the standard arguments (see [Hart, 7.10 of p. 161]) allow us
to pass to a polarized context (see also [An, 4.1.5]). So [An, 1.7.1 and 8.5] applies directly.

Following [An, 4.4] we denote by Kad
n the image in G(L0 ⊗ Ẑ) of the subgroup of

G1(L3 ⊗ Ẑ) formed by elements congruent to 1 mod n. If (n, 2d) = 1, then Kad
n = K(n).

Putting the above proposition together with [An, 8.4.3] we obtain :

B. Proposition. We assume also that (Z0, L0) is level-md′ primitively marked and level-
Kad
n primitively marked, for some n ∈ {3, 4}. Then in the above proposition we can take

k1 = k0.

Proof: From loc. cit. we deduce that it is enough to show that pA0 is defined over k0. But
this is an immediate consequence of the following fact (with l an arbitrary odd prime):

Fact. G(Ql) is its own normalizer in GL(W ⊗Ql).

The Fact itself is implied by the fact that f1C is irreducible, and that GQl
is split

(being unramified) and has no outer automorphism (being of B10 Lie type).

2.7.2.2. Remarks. 1) Properties vi) and vii) above can be used as a substitute of the
rigid conditions used in [An, 5.4]; so they can be used as well to perform the necessary
descent of 2.7.2.1 A. So one can reobtain [An, 1.7.1 and 8.4.3] for K3 surfaces, working (in
the context of the Satake construction) with them.

2) The number md′ depends only on d′. It is a product of primes dividing d′. It is
easy to obtain upper bounds for it, but this is entirely irrelevant for what follows.

3) If d′ = 1 (i.e. if d is twice a square) and we are in the context of 2.7.2.1 B, then
(A0, pA0) will be referred (following the pattern of [An, 8.5.2-3]) as the Satake canonical
principally polarized abelian variety attached to (Z0, L0).

4) The conditions of 2.7.2 1 B are automatically satisfied if (Z0, L0) is 2d
′-marked.

5) In [An, 8.4.3] we can not replace n ∈ {3, 4} by an arbitrary n≥ 3 (to be compared
with 3.2.4 C)). So in 2.7.2.1 B we can not perform this general replacement as well (of
course depending on md′ , some finite values of n might still work).

6) We refer to 2.6.1.2. If (Z,L) is level-Kad
n primitively marked, for some n ∈ {3, 4},

then its singularities are defined over k0. In characteristic zero, this is an easy consequence
of [An, 8.4.3], while Claim 2 of the proof of 3.2 allows us to lift the positive characteristic
situation to a characteristic zero situation.

2.8. Deformation theory. The main references for this section are [De4] and [De6].
We will state the results for a perfect field (not necessarily algebraically closed). Let now
k be a perfect field of characteristic p > 0. Let Z be an arbitrary K3 surface. In [De4,
1.2] it is shown that there is a versal deformation of Z over Z := Spf(W (k)[[t1, ..., t20]]),
where ti’s are independent variables. Let now L be a non-trivial line bundle on Z. In
[De4, 1.6] it is shown the existence of fL ∈ W (k)[[t1, ..., t20]] not divisible by p and such
that ZLf := Spf(W (k)[[t1, ..., t20]]/(fL)) is the formal scheme of deformations of (Z,L). If
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moreover L is ample, then Grothendieck’s algebrization theorem (see [EGA, 5.4.5]) shows
that we have a versal deformation of (Z,L) over

ZL := Spec(W (k)[[t1, ..., t20]]/(fL)).

2.8.1. We consider now the case when L.L = 2d, with (p, 2d) = 1. In this case the
perfect form H2

crys(Z/W (k)) ⊗ H2
crys(Z/W (k)) → W (k)(2) is such that we have a direct

sum decomposition
H2

crys(Z/W (k)) =< L > W (k)⊕H2
pr,

where H2
pr is the perpendicular to < L > with respect to this form. This implies (cf. [De6,

2.1.11]; see also below) that (Z,L) has a formal deformation over the formal spectrum of
the ring of formal power series in 19 variables, whose Kodaira-Spencer map is injective. So
ZLf is formally smooth. In particular (Z,L) has a lift (Z1, L1) over Spf(W (k)). Associated
to it, H2 := H2

crys(Z/W (k)), gets a natural (Hodge) filtration H2 = F 0(H2) ⊃ F 1(H2) ⊃
F 2(H2) ⊃ F 3(H2) = 0 (see [De4, p. 66]); F 1(H2) and F 2(H2) are direct summands of
H2 of ranks 21 and respectively 1. With respect to the cup product, we have ([De4, p.
67]) F 2(H2) = F 1(H2)⊥. Moreover (cf. [De6, 2.1.1]), the lifts of Z to Spf(W (k)) are in
one-to-one correspondace with such a filtration of H2.

As one usually twists H2
ét with Zr coefficienrs by Zr(1) (here r is a prime), in the

same manner H2 is twisted by W (k)(−1). So Hpr := H2
pr(−1) has a natural filtration by

direct summands

Hpr = F−1(Hpr) ⊃ F 0(Hpr) ⊃ F 1(Hpr) ⊃ F 2(Hpr) = 0,

such that the rank of F 0(Hpr) (resp. of F
1(Hpr)) is 20 (resp. 1) and we have

F 0(Hpr) = F 1(Hpr)
⊥

with respect to the induced perfect form Bcrys on Hpr. From [De6, 2.1.1] we deduce that
the lifts of (Z,L) to Spf(W (k)) are in one-to-one correspondance to such filtrations of
Hpr. This implies that ZLf is canonically identifiable with the formal spectrum of the
completion of SO(Hpr, Bcrys)/P

1
SO in the origin, where P 1

SO is the parabolic subgroup of
SO(Hpr, Bcrys) leaving invariant the filtration of Hpr defined by the (arbitrarily fixed) lift
(Z1, L1).

We denote by (Hpr, φZ) the F -crystal defined by (or associated to) (Z,L). So

H := (Hpr, F
0(Hpr), F

1(Hpr), φZ)

is a p-divisible object of MF[−1,1](W (k)) (cf. the terminology of [Va2, 2.1]). When we
want to emphasize Bcrys, we speak about the polarized F -crystal defined by (Z,L), or by
a polarized p-divisible object of MF[−1,1](W (k)) (defined by (Z1, L1)).

Let g := Lie(SO(Hpr, Bcrys)). It has a natural filtration F i(g)i=−1,1 defined by the
above filtration of Hpr. We obtain (cf. the terminology of [Va2, 2.2]) a Shimura filtered
Lie σ-crystal

(g, F 0(g), F 1(g), φZ)

associated to (Z1, L1).

2.8.2. We do not assume anymore that (p, 2d) = 1. As above we define Hpr and φZ . By
the Newton polygon of (Z,L) we mean the Newton polygon of the isocrystal defined by
(Hpr

[
1
p

]
, φZ).
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§3. The basic result: the construction of moduli stacks (and schemes)

Let d ∈ N. In this chapter we show (see 3.2.4 A)) that the moduli Z-stack AK3,d,p

(resp. AK3,d,pp) of polarized (resp. pseudo-polarized) K3 surfaces of degree d, over an étale
connected cover Spec(Od) of Spec(Z

[
1
6d

]
) is an open substack of a suitable Spec(Od)-stack

of the Shimura variety Sh(G,X). We start by extending part of [Va1, 3.2-3] to the finite
type context in order to have a convenient context and language for 3.2. 3.2 starts with
the context of smooth moduli schemes and ends with its variants and direct consequences
of its proof. 3.3-4 refer to some possibilities of extending the results of 3.2.

3.1. Integral canonical models. Let D be an integral Dedekind ring and let KD be its
field of fractions. We assume that KD is of characteristic zero and that all the maximal
ideals of D are of positive characteristic. To our knowledge, Néron was the first one (see
[BLR] for a comprehensive exposition) to define good integral models over D of some
smooth quasi-projective schemes over KD, using some extension property. In [Mi4, 2.1-9]
(see also [Mi3, footnote p. 513]) this idea (of using extension properties) is used (for the
first time to our knowledge) in the context of moduli schemes. The ideas of loc. cit. were
exploited successfully in [Va1] for the construction of integral canonical models of Shimura
varieties of preabelian type.

For a general incipient theory of (and terminology involving) healhy schemes and of
different extension properties (like EP, EEP, WEP, REP, SEP, LEP, QEP, QEEP, etc.)
they define we refer to [Va1, 3.2-3]. Loc. cit. is well adapted when we are dealing with
projective limits (sort of “infinite level structures”) of schemes. Here we adapt part of loc.
cit. to the context of smooth separated KD-schemes of finite type. The main goal is: to
create a convenient language and context for 3.2 below, and to provide a framework for
other contexts where one can define moduli schemes by (or by just using) some extension
property.

Let YKD
be a smooth separeted integral KD-scheme of finite type. The general

problem is to define “good” integral models of YKD
overD. For simplifying the presentation

we often assume that D = V is a DVR, faithfully flat over Z(p), with p a prime.

3.1.1. Definitions. a) A smooth separated faithfully flat D-scheme Y of finite type is
said to be an integral canonical model (resp. an integral E-canonical model) of YKD

if:

i) its generic fibre is YKD
;

ii) for any extensible pair (Y,U) over D, with Y a healthy regular scheme (resp. with
Y an almost healthy normal scheme), every morphism U → Y extends (uniquely) to a
morphism Y → Y .

b) If in ii) above we work with healthy regular formally smooth schemes Y over
Dedekind D-algebras whose local rings have the same indices of ramification as the local
rings of D they dominate, then we speak about integral S-canonical models or about
integral smooth-canonical models.

c) If in ii) above we work with abstract (resp. quasi-compact) healthy regular D-
schemes Y, then we speak about integralW -canonical (resp. Q-canonical) models or about
integral weak canonical models.
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d) Following the same pattern we speak about integral L-canonical models (resp.
about integral R-canonical models), if in ii) above we use locally healthy regular schemes
(resp. R-healthy regular schemes) Y.

In what follows ∗ ∈ {−, E, S,W,L,R,Q}. If ∗ = − then by integral ∗-canonical
model we mean integral canonical model.

3.1.2. Examples. a) An abelian scheme A over D is an integral S-canonical model of
its generic fibre AKD

(cf. [BLR, p. 12]). The same remains true for the Néron model A
over D of an abelian variety AKD

over D, provided all the residue fields of D of positive
characteristic are perfect (cf. [BLR, p. 176]).

b) The schemesM(HS) introduced in [Va1, 6.4.4], starting from an arbitrary Shimura
pair (G,X) of preabelian type, are integral canonical models of their generic fibres, and
many of them are in fact integral E-canonical models of their generic fibres (cf. [Va1,
6.4.9]). We will refer to (the extension to Dedekind rings faithfully flat over some localiza-
tion of Z of) such schemes, as a finite type integral canonical model of Sh(G,X), for not
creating confusion with the terminology of [Va1, 3.2-3].

c) A smooth faithfully flat D-scheme finite over a scheme Y which is an integral
canonical ∗-model, is itself an integral ∗-canonical model of its generic fibre (cf. [Va1,
3.2.3.1 5)]).

d) If a faithfully flat D-scheme Y0 is an open subscheme of an integral ∗-canonical
model Y such that Y \Y0 is of pure codimension 1 in Y , then Y0 is an integral ∗-canonical
model.

e) The notion of integral ∗-canonical model is well behaved with respect to finite
products.

f) Let Y be a smooth separated faithfully flat D-scheme of finite type, such that it
has a pro-étale cover Y∞ having the EP. Then Y is an integral canonical model (cf. [Va1,
3.2.2 4)] and the classical purity theorem). The same remains true for integral ∗-canonical
models, provided ∗ ∈ {S,L,W,R,Q}.

g) Abelian schemes over integral ∗-canonical models, are integral ∗-canonical models
(cf. [BLR, th. 1 of p. 109]).

h) Regardless of how D is, the projective spaces PnD are not integral S-canonical
models.

3.1.3. Remarks. a) Different implications between different extension properties (as
examples see [Va1, 3.2.3.1 4)]), imply implications between different integral canonical
models. We will not state here all these implications. Just one example: in 3.1.2 b) we
get integral canonical models which are also integral S-canonical models (cf. [Va1, 3.2.2
1)]). It is worth mentioning that part of implications in the case D = V depend on the
fact that the index of ramification of V is smaller than p − 1 or not (for instance see loc.
cit.).

b) For different philosophies underlying different types of healthy normal schemes,
we refer to [Va1, 3.2.7 6) and 3.2.2 5)].

c) It is hard to predict what extra (geometric) conditions one needs to impose on YKD

in order to have an integral ∗-canonical model. For instance in 3.1.2 a) we have examples

27



where the canonical class is zero, while 3.1.2 b) provides us with plenty of examples of
varieties of general type.

d) If Y is an integral S-canonical model, then there is no smooth separated scheme Y1
containing Y0 as an open subscheme, and such that Y0KD

= Y1KD
and Y1\Y0 is non-empty.

e) Any affine smooth faithfully flat D-scheme is an integral ∗-canonical model. This
means: the above definitions are useful if YKD

(or Y ) is somehow “far from being affine”.

3.1.4. The unicity part. A natural question arises.

Q. To what extend an integral ∗-canonical model is unique?

Of course the most interesting case is when ∗ = S (or more generally, when an integral
∗-canonical model is automatically an integral S-canonical model). If Y is an integral S-
canonical model of YKD

, and if one of its fibres in positive characteristic has more than
one connected component, than by removing from Y one such connected component, we
obtain an open subscheme Y0 of Y which is still an integral S-canonical model. So to
answer this question precautions are in order. There are a couple of ways in assuring the
unicity part.

i) One way, in case YKD
is proper, is to impose (if possible) Y to be proper as well.

Obviously we have the unicity part of a proper integral S-canonical model.
ii) Another way is to specify the local rings of Y which are DVR’s of mixt charac-

teristic (i.e. to specify what we want to get in codimension one).
iii) A third way is to search for a minimal (see below) such integral S-canonical model

Y of YKD
.

In case D = V , a fourth potential way is to impose (if possible) Y to have the
maximality property (as defined in [Va1, 3.2.3.2.1 1)). But in this case we do not know if
indeed we get the unicity part.

3.1.4.1. Definition. An integral ∗-canonical model Y of YKD
with the property that

for any other integral ∗-canonical model Y1 of YKD
, there is a unique morphism Y1 → Y

which achieves the logical identification at the level of generic fibres, is called the minimal
integral ∗-canonical model of YKD

.

Obviously a minimal integral ∗-canonical model is unique. Moreover a proper integral
∗-integral model is minimal. It seems to us possible to prove (starting from [Ar, §5]) that,
provided YKD

has integral S-canonical models and is “far from being affine” (we have
in mind YKD

proper), then there is a uniquely determined minimal integral S-canonical
model of Y .

Let now S and l be as in 2.5.4 B). In what follows we consider primes p such that
(p, 6dl) = 1. Let K1 (resp. K) be a compact subgroup of G1(Af ) (resp. of G(Af )) such
that the requirements of 2.5.4 B) hold. We assume that K is admissible and that (cf. 2.6
E)) K3d,p,K is a moduli scheme over C of polarized K3 surfaces of degree d having two
connected components. Let N and N1 have the same significance as in 2.5.4 C). Let C0

and C1 be the connected components of K3d,pp,K . Let E(Ci) be the field of definition of
Ci (or more precisely of the connected component of ShK(G,X)C containing Ci). Let E
be the composite field of E(C0) and E(C1). Let OE be the ring of integers of E, and let
O := OE

[
1
6dl

]
. From [Va2, 6.4.4] and [Mi3, 4.7] we deduce that Spec(O) is an étale cover
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of Spec(Z
[

1
2dl

]
). Obviously E, OE and O depend on K; so sometimes we write E(K) and

O(K) instead of E and O. In practice K is normal as well; this assumption implies C0 = C1

and E(C0) = E(C1). Typical example: K = K̃SO(n), with n≥ 3. In what follows we do
not assume K normal. We have the following basic result:

3.2. Theorem. a) An open subscheme AK3,d,p,K of NO is a moduli scheme of (isomor-
phism classes of) level-K marked polarized K3 surfaces of degree d over Spec(O)-schemes.

b) An open subscheme AK3,d,pp,K of NO containing AK3,d,p,K as a dense subscheme,
is a moduli scheme of (isomorphism classes of) level-K marked pseudo-polarized K3 sur-
faces of degree d over Spec(O)-schemes.

Proof: We first proof part a). Standard arguments of descent show that we can pass from
things over Spec(O) to things over a pro-étale cover of Spec(O). So we can assume that O
contains the roots of unity of order any power of 6dl. Moreover we can assume that K is
as small as desired, subject to the requirements of 2.5.4 B). We assume from now on that
KS and K1S are trivial; so q(K1) = K. So we are dealing with 6dl-marked polarized K3
surfaces of degree d.

We can identify a connected component of NO with a quotient of a connected compo-
nent of N1O by the group Z/2Zi6dl−1, where i6dl is the number of distinct primes dividing
6dl; this is an immediate consequence of 2.5.2 and of [Mi4, 4.10-13], starting from the fact
that the natural homomorphism Gm = Z(G1) → Gab

1 = Gm is the square homomorphism.
In particular there is a universal principally polarized abelian scheme (A1,PA1) over N1

having level-m symplectic similitude structure, for any m dividing some power of 6dl; it
is obtained as in [Va2, 2.3] starting from the data of (f1, LW ) of 2.5. Moreover NO is
the moduli space of principally polarized abelian schemes over O-schemes having up to
scalar multiplication by −1 level-r symplectic structure, for any prime r dividing 6dl. In
particular (A1,PA1)O is obtained from a principaly polarized abelian scheme (A,PA) over
NO by natural pull back.

Using Hilbert schemes and geometric invariant theory (see also [An, 2.3.4]) we do get
that K3d,p,K is obtained from an E-scheme K3d,p,KE , which is the moduli scheme of level-
K marked polarized K3 surfaces of degree d over E-schemes, by extension of scalars. 2.7.2.2
4) implies that 2.7.2.1 B applies. From 2.7.2.1 B we deduce the existence of a rational map
rE :K3d,p,KE → NE which over C is an open embedding. So rE is a morphism which is an
open embedding. So K3d,p,KE is (canonically identifiable with) an open subscheme of NE .
In other words we got the characteristic zero part of a). In particular we have a universal
6dl-marked polarized K3 surface (ZE ,LE , k6dl) of degree d over K3d,p,KE .

Let AK3,d,p,K be the maximal open subscheme of NO having K3d,p,KE as its generic
fibre, and to which (ZE ,LE) extends to a polarized K3 surface (Z,L) over it. (Z,L) is
naturally 6dl-marked, and we still denote by k6dl its 6dl-marked structure (as well as other
6dl-marked structures to be introduced below). We need to show: any 6dl-marked polar-
ized K3 surface (Z,L, k6dl) of degree d over an O-scheme Y , is obtained from (Z,L, k6dl)
by pulling back through a uniquely determined morphism Y → AK3,d,p,K . We can assume
that Y is local, of perfect residue field having characteristic p relatively prime to 6dl. Stan-
dard arguments on descent (based on 2.6 D)) show that we can assume that Y is complete.
Moreover from 2.8 we deduce that we can assume that Y = Spec(W (k)[[t1, ...t19]]), and
that (Z,L) is a versal deformation. From the above characteristic zero part we already
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have a natural morphism m0:YQ → AK3,d,p,K . Standard arguments based on 2.7.2.1 A)
(see [An, 9.3.1] for details) show that the abelian scheme AYQ

over YQ we get (by pulling
back AE via m0) extends to one AU over U , where (Y, U) is an extensible pair; moreover
the natural principal polarization of AYQ

extends as well (cf. [FC, 2.7]) to one of AU . So
we get a morphism mU :U → NO extending m0. From b) of 2.5.4 C) we deduce that mU

extends uniquely to a morphism mY :Y → NO.

Claim 1. The morphism m′
Y :Y → NW (k) defined by mY is formally étale.

Proof: We can assume that k is algebraically closed and that W (k) can be embeddable in
C. So m′

Y lifts to a morphism m′
1Y :Y → N1W (k). Let y (resp. z) be the resulting k-valued

(resp. W (k)-valued) point of N1W (k) defined by m′
Y (resp. by m′

Y and by taking ti = 0,
i = 1, 19). Let (My, F

1
z , φy,G1W (k)) be the Shimura filtered σ-crystal defined by z, cf. [Va2,

2.3.10]. Let P1W (k) be the parabolic subgroup of G1W (k) leaving invariant F 1
z . Let PW (k)

be its image in GW (k). The completion of the local ring of y can be identified (cf. [Va1,
5.5.1]) with the completion of H := G1W (k)/P1W (k) = GW (k)/PW (k) in the origin. The
same identification can be achieved for Y (cf. 2.8.1). Moreover under these identifications,
the morphism m′

1Y is nothing else but the identity. As this statement can be checked at
the level of W (k)-valued points, it is a consequence of 2.7.2.1 A and B. In other words,
the Shimura filtered Lie σ-crystal associated to a polarized K3 surface over W (k) obtained
from (Z,L) via a W (k)-valued point z1 of Y is the same as the Shimura filtered Lie σ-
crystal associated to z1 ◦m

′
1Y . This is a consequence of Fontaine’s comparison theory and

of 2.7.2.1 A and B (as p≥ 5 [Fa1, 2.6] or [Fa2, §4] applies directly). This ends the proof of
the Claim 1.

Obviously the Claim 1 implies that mY factors through AK3,d,p,K . This implies (for
instance cf. [An, 9.1]) that (Z,L, k6dl) = m∗

Y ((Z,L, k6dl)); this equality ends the proof of
part a) of the theorem.

To prove part b) we have to proceed similarly. We define similarly the maximal open
subscheme AK3,d,pp,K of NO whose generic points are the generic points of AK3,d,pp,K , and

to which (Z,L) extends to a pseudo-polarized K3 surface (Z̃, L̃). It can be obtained in
the standard way using Hilbert-schemes and the fact that Lm is a very ample line bundle
locally in the Zariski topology, for m ∈ N big enough (in fact m = 3 suffices). Obviously
AK3,d,pp,KC

= K3d,pp,K ; this takes care of the characteristic zero part (cf. 2.6.1). Let now
p and Y be as above, and let (Z,L) be a level-K marked pseudo-polarized K3 surface of
degree d over Y . As above we can assume that Y is local, complete, and has a residue
field a perfect field k of characteristic p.

Let (Zk, Lk) be the fibre of (Z,L) over k. Let (Z̃k, L̃k) be the K3 surface with a
pseudo-polarization defined by (Zk, Lk). So we have a k-morphism fk: Z̃k → Zk obtained
by blowing up the singularities of Zk, and L̃k = f∗k (Lk). We have fk∗(TZ̃k/k

) = TZk/k,
where T∗ denotes the relative tangent sheaf. From the Lerray spectral sequence and the
theorem of formal functions (see [Hart, p. 277]) we get immediately that Hi(Zk, TZk/k) =

Hi(Z̃k, TZ̃k/k
), for i ∈ {0, 1}. So to deform (Zk, Lk) is the same thing as to deform (Z̃k, L̃k).

As above (cf. 2.8) we can assume now that Y = Spec(W (k)[[x1, ..., x19]]), and that (Z,L)
is a versal deformation.

Claim 2. There is a lift of fk to W (k).
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Proof: The number of singularities of Zk̄ is at most 19. Let E1,..., Em, with m ∈ N∪ {0},
be the fibres of the extension of fk to k̄ above the singular points. Let Ẽi be the line
bundle defined by Ei. We can assume m≥ 1. Their self intersection numbers are −2. We
deduce that we have

H2
crys(Z̃k̄/W (k̄)) = L0 ⊕ L⊥

0 ,

where
L0 :=< L > W (k̄)⊕⊕mi=1 < C1crys(Ei) > W (k̄).

Here C1crys refers to the crystalline first Chern class, while perpendicularity is with respect

to the cup-product. The Frobenius of H2
crys(Z̃k/W (k))

[
1
p

]
takes pL⊥

0 into L⊥
0 . We deduce

easily that the deformation space of (Z̃k̄, Lk̄, Ẽ1, ..., Ẽm) is Spec(W (k̄)[[x1, ..., x19−m]])
([Hart, 7.10 of p. 161]) shows that the formal K3 surface we get over it has an ample
line bundle, and so is algebraizable). But, as Ei is just P1 and has −2 as self inter-
section number, the deformation space of (Z̃k̄, Lk̄, E1, ..., Em) is the same as the one of
(Z̃k̄, Lk̄, Ẽ1, ..., Ẽm). So the Claim 2 follows, once we remark that L⊥

0 is obtained from a
direct summand of H2

crys(Zk/W (k)) by extension of scalars (to W (k̄)).

Claim 2 implies: the fibre of (Z,L) over the generic point of Spec(k([[x1, ..., x19]]) is a
polarized K3 surface. As in the proof of a) above we get a morphism m′

Y :Y → NW (k). The
same proof applies to show that is formally étale and it factors through AK3,d,pp,KW (k).

This ends the proof of the theorem.

3.2.1. Remarks. 1) We view the above theorem as an arithmetic global Torelli theorem.
2) In [Va7] we will see that we can replace everywhere in this paper 6d by 2d (i.e.

the things are fined for p = 3 as well).
3) A level-K marked K3 surface with a pseudo-polarization of degree d over a (per-

fect) field of characteristic relatively prime to 2d defines a level-K marked pseudo-polarized
K3 of degrre d over the field. In characteristic zero, with K small enough, this results from
2.7.2.1 B) and 3.2; general descent handles fully the characteristic zero case. Claim 2 of
the proof of 3.2, reduces the positive characteristic situation to a characteristic zero situa-
tion. Moreover we can replace a perfect field by any complete local integral scheme whose
residue field is perfect (cf. the proof of 3.2 b)).

4) Of course 3.2 has a variant where just one connected component shows up (i.e.
when K3d,pp,K is connected), or when we concentrate on just one connected component Ci

(so we can work with E(Ci) instead of E). We do not detail these variants here.
5) All the fibres of AK3,d,p,K over Spec(O) are non-empty, cf. 5.4 a).

3.2.2. The discriminant locus. The complement of AK3,d,p,K in AK3,d,pp,K with its
induced reduced structure is often called (see [JT1-2]) the discriminant locus. It is known
that DQ is of pure codimension one (see [Be2, p. 149]). From the proof of 3.2 we get DQ

is dense in D, and so D is of pure codimension one in AK3,d,pp,K .

3.2.3. Some functorial aspects. A) In what folows ∗ ∈ {p, pp}. Let K ′ be a open
subgroup of K. We have the following functorial property: there is a natural étale cover

AK3,d,∗,K′ → AK3,d,∗,KO(K1)
.
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B) When K = K(n) for some n≥ 3, then we denote AK3,d,∗,K by AK3,d,∗,n. As a
particular case of A) above we have (with n1 ∈ N) a natural étale cover

AK3,d,∗,nn1 → AK3,d,∗,nZ[ 1
6dnn1

].

3.2.4. An anlysis. It seems slightly unpleasant to pass to E(C0), E(C1) and to O. There
are a couple of ways in avoiding the “unpleasant” part.

A)One way is to use stacks: the stackAK3,d,p (resp. AK3,d,pp) of unmarked polarized
(resp. pseudo-polarized) is defined over Z. Let Od be the normalization of Z

[
1
6d

]
in

Ed := ∩n≥ 3E(K̃SO(n)).

Spec(Od) is an étale cover of Spec(Z
[
1
6d

]
). One example: O1 = Z

[
1
6

]
, cf. C) below.

The stack AK3,d,pO(K) (resp. AK3,d,ppO(K)) is obtained in the standard way by taking a

quotient of AK3,d,p,K (resp. of AK3,d,pp,K) by the equivalence relation that “eliminates”
the level-K marked structures. We deduce:

Corollary. AK3,d,pOd
and AK3,d,ppOd

are open substacks of the (Shimura) stack over
Spec(Od) defined by the quotient scheme NOd

/CK (its generic fibre is Sh
G(L0⊗Ẑ)

(G,X)
Ed

),

where for K assumed to be also normal, we have CK := SOA/K.
We do not know when Od = Z

[
1
6d

]
, or when in the above corollary we can replace Od

by Z
[
1
6d

]
.

B) A second way is to add extra connected components to K3d,p,K , and to modify
the moduli problem so that we end up in a Q–context. We will not detail this approach.
We just mention briefly: following the pattern of [Mi3, §3] and of [Va1, 4.1], we can work
with abelian motives Q–isogeneous to the ones of polarized K3 surfaces of degree d, so
that the resulting moduli scheme over C is a dense open subscheme of ShK(G,X). Its
arithmetic counterpart will be defined over Q, and so we can “move” from things over O
to things over Z

[
1
6dl

]
.

C) A third way is to work with a K for which E(Ci) has an easy description. Of
course the most interesting cases are when K = K̃SO(n), K = K(n) or K = Kad

n (here
n≥ 3). Here we treat the case when K is open and we have K = q(K1) (it is easy to see
that always such a K1 exists, if K ∈ {K(n),Kad

n }). We can assume that K1 is the maximal
compact subgroup of G1(Af ) with this property. From the Fact of 2.5.2 we deduce that
N1 = N, and that the set of connected components of NC is a principal homogeneous
space of the group Gm(A)/Gm(Q)Kab

1 (the notations are as in loc. cit.). Let m ∈ N be
the smallest number such that K(m) ⊂ K. Then denoting by K(m)1 and K(m)ab1 the
analogues of K1 and Kab

1 , we have a natural epimorphism

Gm(A)/Gm(Q)K(m)ab1 ։ Gm(A)/Gm(Q)Kab
1 .

If m is relatively prime to 2d, then Gm(A)/Gm(Q)K(m)ab1 is the group of invertible el-
ements of Z/mZ modulo squares. Warning: in the above examples, meant just to give
an idea about how complicated is the problem of finding fields of definitions (they make
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sense regardless of the fact that K is admissible or not), the groups K are not admissible
if d > 1.

Example 1. We assume that (d, 3) = 1 and that l = 3. Then for K = K(3) we have
E(C1) = E(C0) = Q(ζ3).

Example 2. We assume that (m, 2d) = 1 and that l is the product of primes dividing m.
Then for K = K(m) we have E(C1) = E(C0) equal to the maximal subfield E of Q(ζm)
with the property that Gal(Q(ζm)/E) is the subgroup of squares of Gal(Q(ζm)/Q). So
E is the composite field Em of some quadratic extensions of Q, equal in number to the
number of primes dividing m. If we just have K(m) ⊂ K, then E is a subfield of Em, but
we might have E(C0) 6= E(C1).

The situation when (m, 2d) > 1 is more complicated and it will not be treated here.

3.2.5. Variant (the relative setting). As before ∗ ∈ {p, pp}. We refer to 2.5.4 F). We
assume that K is as above. Let OZ be the composite of OZ and O

[
1
lZ

]
. Spec(OZ) is a

pro-étale cover of Spec(Z
[

1
6dlZ

]
). We have a natural pro-finite morphism

mnat:NZOZ → NOZ ,

(cf. [Va1, 3.2.7 4)] for the existence part and [Va1, 3.2.12] for the pro-finiteness part). Let
AK3,d,∗,KZ ,hZ

be the pull back of AK3,d,∗,KOZ
via mnat. It is an open subscheme of NZOZ .

If ∗ = p, then it is the moduli scheme of level-KZ marked polarized K3 surfaces of degree
d which can be lifted in characteristic zero in such a way (cf. [Va1, 4.1]) that:

– there is a family (tα)α∈JZ
of Hodge cycles indexed by the set JZ (of 2.5.0), with tα0

corresponding to the bilinear form on the primitive part of H2 defined by the cup product;
– there is a complex model (Z1, L1, kKZ

, (t1α)α∈JZ
) of this lift, such that there is an

isomorphism
Hpr(Z1, L1,Z)

∼→L0

(defined by a marked structure of (Z1, L1)) taking:

i) t1α into vα ∀α ∈ JZ (so it respects the cup products);
ii) the homorphism hZ1 into a GZ(R)-conjugate of hZ ;
iii) kKZ

into an element of KZ .

There is a similar moduli interpretation of AK3,d,pp,KZ ,hZ
.

3.3. Some functions. Let f and g be the functions defined in 1.3.6. The proof of 3.2
shows that they are well defined (i.e. the role of K is irrelevant). From 3.2.2 and 3.3 we
deduce:

3.3.1. Theorem. AK3,d,p,KO[ 1
6dlf(d)]

and AK3,d,pp,KO[ 1
6dlf(d)]

are integral canonical models

of their generic fibres.

3.4. Remarks. 1) It is natural to expect that 3.2-3 (as well as the greatest part of
§4-5) extends to other classes of polarized hyperkählerian varieties who have companion
Shimura varieties (as in 2.5) (see [An] for such classes). What made us to refrain from
approaching these classes as well, is the lack of a reference to a deformation theory in
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positive characteristic, similar to the one of [De4] (mainly [De4, 1.6 needs to be extended).
The lack of a global Torelli theorem for many classes of polarized hyperkählerian varieties
(see [An, 3.3.1 and 3.3.4]: in general we have local Torelli theorems with finite to one
morphisms in the global context) is another impediment: it is not a serious one (we
just have to move from open subschemes to étale schemes). Moreover two other things
are worth being mentioned. First the different second cohomology groups with integral
coefficients (like Z, Zp, W (k)) of these varieties might not be free over the rings involved;
so it might be more convenient to work with the notion of polarizations as in [An, 1.3],
and to “put aside” the primes involved in the torsion parts obtained for these groups
using Z-coefficients. Second the understanding of what should be polarized generalized
hyperkählerian varieties is much less.

2) We refer to 3.2. We do not know what would be the best integral models extending
AK3,d,∗,p,K to a scheme over Spec(OE), and if such “best” extensions can be interpreted
as nice moduli schemes (like open subschemes of a similar “natural” extension of NO over
Spec(OE)), or are smooth (over OE).

§4. Applications

The basic result 3.2 has many consequences. Here we list some of them, which are
obtainable by combining 3.2 with ideas (results) of [Va1-7]. We use the notations of 3.2.
We assume that K is open.

4.1*. Compactifications. In [Va6] it is shown that the schemes N and N1 of 3.2 have
plenty of smooth projective toroidal compactifications. What we mean by this for N is:
there are plenty of smooth projective schemes Nc over Spec(O) such that:

i) they contain N as an open subscheme;
ii) the complement of N in Nc is a divisor with normal crossing;
iii) Nc

Q is constructed as in [Har].

The proof of existence of such schemes Nc is not at all difficult: it follows the pattern
of [FC], as explained in [Va1, 1.8]. We deduce:

Theorem. AK3,d,pp,K (and so also AK3,d,p,K) has smooth projective compactifications
over Spec(O). Moreover we can choose such compactifications over Spec(O

[
1

f(d)

]
such that

their complements are divisors with normal crossings.

4.2*. Connectivity. Let p be a prime relatively prime to 6d. From 2.6. B) and 4.1.1 we
get directly:

Theorem. The stacks AK3,d,pFp
and AK3,d,ppFp

are geometrically connected.

4.3. Shafarevich conjecture. For the Shafarevich conjecture for polarized K3 surfaces
over number fields (resp. over function fields in characteristic zero) we refer to [An, 1.3.1]
(resp. to [JT1]). From the very definition of the function g of 3.3, as in [JT1] we get the
Theorem 2 of 1.4.

The theorems of 4.1-3 have variants in the contexts of 3.2.4 and of 3.2.5. We will not
stop to restate them.

34



4.4*. Estimates. Let v be a prime of O, and let p be the rational prime it divides. Let
m ∈ N such that the residue field k(v) of v is Fpm . We denote by a right lower index
k(v) the different fibres over v to be considered. Let r ∈ N with r ≥m. We assume that
AK3,d,pp,K has two connected components; their fibres over E are geometrically connected.
Let N0 be the disjoint union of two connected components of NO such that AK3,d,pp,K is
dense in N0. From 4.1* we deduce that N0

k(v) has two connected components, which are

geomtrically connected. So AK3,d,p,Kk(v) is dense in N0
k(v).

Let N(K3, d, p,K, v, r) be the number of elements of the set

SK3,d,p,K,v,r := AK3,d,p,Kk(v)(Fpr ).

Similarly we define N(K3, d, pp,K, v, r) and SK3,d,p,K,v,r. Let N(N, v, r) be the number
of elements of the set

Nk(v)(Fpr).

Similarly we define N(N0, v, r). Let C be the number of connected components of NO.
Warning: not always we have N(N0, v, r) = 2

CN(N, v, r), as the connected components of
NO are not always isomorphic as O-schemes. Obviously we have:

(3) N(K3, d, p,K, v, r)≤N(K3, d, pp,K, v, r)≤N(N0, v, r).

Let Φrv be the Frobenius of Fpr fixing k(v) and generating Gal(Fpr/k(v)). It acts
on the three sets SK3,d,p,K,v,r, SK3,d,pp,K,v,r and Nk(v)(Fpr ). In [Mi4, 5.1] a conjectural
description of the set Nk(v)(Fpr ) acted upon by Φrv is made. In [Mi4, 5.6] it is shown
that [Mi4, 5.1] is implied by the Main conjecture (the Langlands-Rapoport conjecture) 4.4
of [Mi4] for the Shimura quadruple (G,X,Kp, v) (see [Va1, 3.2.6] for def.). From [Mi4,
4.9] we deduce that the Langlands-Rapoport conjecture for (G,X,Kp, p) is implied by the
Langlands-Rapoport conjecture for (G1, X1,K

p
1 , p). But this is proved in [Va7]. Using

this and [Mi4, 6.13] we obtain a formula for N(N, v, r) in terms of sums of products of
twisted orbital integrals; this formula implies easily a similar formula for N(N0, v, r), as
in loc. cit. is easy to trace back the connected components. This shows the utility of (3).
In particular, if moreover p does not divide f(d), then N(K3, d, pp,K, v, r) = N(N0, v, r),
and so we get a very precise formula for N(K3, d, pp,K, v, r). See [Va7] for extra details.

The same applies to the relative context of 3.2.5.

4.5. Extension properties. Another form of 3.3.1 is:

Theorem (the extension property). Let n≥ 3. Let (Y,U) be an extensible pair with Y

a healthy regular scheme. We assume that 6df(d) (resp. 6dnf(d)) is invertible in Y. Then
any polarized K3 surface (resp. level-n marked pseudo-polarized) K3 surface of degree d
over U extends to a polarized (resp. level-n marked pseudo-polarized) K3 surface over Y.

Proof: Using the classical purity theorem and [Va1, B) of 3.2.2 4)], in the polarized context,
we can assume that Y is local and that we do have a level-n primitively marked structure.
So 3.2.3 B) and 3.3.1 apply.

4.6. Milne’s conjecture for K3 surfaces. In the whole of 4.6-7 by k we denote an
arbitrary perfect field of characteristic p; here p is an arbitrary prime. Let V be a DVR
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faithfully flat over Z(p). Let KV := V
[
1
p

]
. Let ZV be a K3 surface over V . For simplicity

we assume that all the Hodge cycles of ZKV
are defined over KV . Let (tα)α∈JZ be this

family of Hodge cycles. Following [Va3, 2.2.0] we define:

4.6.1. Definition. We say that ZV has the MC (Milne’s conjecture) property if there is
a faithfully flat p-adically complete V -algebra R such that there is an isomorphism

ρ:H2(ZKV
,Zp)⊗Zp

R ∼→H2
dR(ZV /V )⊗V R

taking the p-étale component of tα into the de Rham component of tα, ∀α ∈ JZ .

We assume now that V is complete having k̄ as its residue field. We also assume
that ZV has a polarization LV of degree d, where (2d, p) = 1. It is trivial to see that the
existence of ρ is equivalent to the existence of a similar isomorphism involving the primitive
parts of the H2’s. Let (Z,L) be a complex model of (ZV , LV ). Let GZ be the Mumford–
Tate group of (Z,L) or of (ZV , LV ) (cf. also the review of 5.2.1). We also assume, with
the notations of 2.4-5, that the closure of GZ in GZ(p)

is a reductive group GZZ(p)
. So the

closure of G1Z in G1Z(p)
is a reductive group as well. The assumptions on V imply that

(ZV , LV ) has r-marked structure for any prime r relatively prime to p. From 3.2 and 3.2.5
we deduce that V contains EZ (of 2.5.4 F)). Let vZ be the prime of EZ over which the
maximal ideal of V sits. We also assume that the triple (f1Z , LW ⊗ Z(p), vZ) is a SHS. In
[Va7] we will see that this is automatically so (cf. [Va2, 2.3.8 2)]; here we will just remark
that this is automatically so if p≥ 29 (cf. [Va1, 5.8.6] and [Va2, 2.3.6]).

From [Va2, d) of 4.4.1 3)] (its proof is achieved in [Va3]; see V3 of [Va3, 3.2]) and
2.7.2.1 A and B we get:

4.6.2. Theorem. ZV has the MC property.

As in [Va4, 4.2], it is worth pointing out that the value of dZ is irrelevant in 4.6.2.

4.6.3. Corollary. The closure in GL(H2
dR(ZV /V )) of the subgroup of GL(H2

dR(ZV /V )
[
1
p

]
)

fixing the de Rham component of tα, ∀α ∈ JZ , is a reductive group isomorphic to GZV .

4.6.4. We assume now that V =W (k) and do not assume anymore that the Hodge cycles
of ZKV

are defined over KV . We know that ZW (k̄) has the MC property. Let Hpr, Bcrys, g
(and its filtrations) and φZ have the same meaning as in 2.8.1, but working with (ZV , LV ).
As the Hodge cycles of ZW (k̄) are permuted by the Galois action of Gal(W (k̄)/W (k)), we

get that the subgroup GZW (k̄) of GL(H
2
dR(ZV /V ))W (k̄) is obtained by extension of scalars

from a reductive (cf. 4.6.3) subgroup G̃ZW (k) of GL(H
2(ZV /V )). G̃ZW (k) is an inner form

of GZW (k), cf. 4.6.2. Let gZ := Lie(G̃ZW (k)). We deduce that the Shimura filtered Lie
σ-crystal

(g, F 0(g), F 1(g), φZ)

associated to (ZV , LV ) (cf. 2.8.2) has naturally a Shimura Lie σ-subcrystal

(gZ , F
0(gZ), F

1(gZ), φZ)
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called the Shimura filtered Lie σ-crystal associated to (ZV , LV ) and the Hodge cycles of
ZW (k̄). Ignoring the filtration we obtain the Shimura Lie σ-crystal

(gZ , φZ)

associated to (Zk, Lk) with respect to (let us say) AK3,d,p,KZ(2∞):=2−marked,hZ
.

4.6.5. Exercise 4. Show that 4.6.2-4 remains true for K3 surfaces which have a pseudo-
polarization of degree d. Hint: Using [Hart, 7.10 of p. 161], reduce the situation to the
polarized context.

4.7. Specializations. Here we state some of the implications of [Va2] for the context of
(pseudo-) polarized K3 surfaces.

A) Stratifications.
All the stratifications to be mentioned are finite and are formed by locally closed

subschemes. We assume that K1 is small enough so that we can speak as in the proof of
3.2 about the principally polarized abelian scheme (A1,PA1) sitting naturally over N1. Let
p be a prime relatively prime to 6dl. NFp

has a natural Newton-polygon stratification ST

which we call the refined canonical Lie stratification (see [Va2, 4.9.8]). It is the quotient (see
the proof of [Va2, 4.9.8]) stratification of the refined canonical Lie stratification of N1Fp

.
[Va2, 4.5.6.1] allows us to drop the word refined. The canonical Lie stratification of N1Fp

can be defined (cf. loc. cit.) either starting from the Newton polygons of the Shimura σ-
crystals attached to points of N1Fp

, or of their Shimura Lie σ-crystals (see [Va2, 2.3.10] for
terminology). So AK3,d,∗,Kk(v) gets naturally a Newton-polygon stratification by pulling

back ST. From the proof of 3.2 we deduce that it is the same as the one attached (see 2.8.1)
to Newton-polygons of the F -crystals attached to K3 surfaces with a pseudo-polarization
of degree d (over perfect Fp-fields). From [Va1, 4.2.1 and P1 of 4.6] we deduce that its
generic stratum (called the ordinary locus) is Zariski dense. We got:

Fact. Any pseudo-polarized K3 surface of degree d over k is the specialization of an
ordinary polarized K3 surface.

B) Shimura-ordinary loci.
We refer to 3.2.5. We assume that (p, 6dlZ) = 1. Let vZ be the prime of E(GZ , XZ)

divided by v. We denote by f1Z the composite of the natural inclusion (G1Z , X1Z) →֒
(G1, X1) with f1. We assume that the triple (f1Z , LW ⊗ Z(p), vZ) is a SHS (cf. 4.6). To
it, it is associated naturally in [Va1, 4.1.1.2] two formal isogeny types τ and LieG1(τ).
As in A) above we deduce that N1Zk(vZ), NZk(vZ), and AK3,d,∗,KZ ,hZ k(v) are naturally

and compatibly endowed with refined canonical Lie stratifcations. If Gad
ZR has only one

non-compact factor (this is the case if (GZ , XZ) is as in 5.2.1 b)), then we can drop the
word refined (the arguments of [Va2, 4.5.6.1] apply as well). From A) and [Va2, 4.2.1] we
deduce that LieG1(τ) is the formal isogeny type associated to the F -crystals defined by the
points of the Zariski dense open stratum (called the GZ-ordinary or the Shimura-ordinary
locus) of AK3,d,∗,KZ ,hZ k(v). A pseudo-polarized K3 surface obtained through a point of

this Shimura-ordinary locus with values in fields will be called GZ-ordinary. We got:

Theorem. Any pseudo-polarized K3 surface defined by a point of AK3,d,∗,KZ ,hZ k(v) with

values in fields, is the specialization of a pseudo-polarized K3 surface which is GZ-ordinary.
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C) Shimura-canonical lifts for pseudo-polarized K3 surfaces.
From [Va2, 4.4.1 and 4.9.8 d)] we deduce that any k-valued point y of the Shimura-

ordinary locus of AK3,d,∗,KZ ,hZ k(v), has a (uniquely determined) GZ-canonical lift toW (k).

At the level of filtrations it is defined as follows. For simplicity we restrict to the polarized
context. Let (gZ , φy) be the Shimura Lie σ-crystal associated to the polarized K3 surface
defined by y (cf. 4.6.5 and the Claim 2 of the proof of 3.2); then there is a unique
W (k)-valued lift of y to AK3,d,∗,KZ ,hZ

(cf. [Va2, a) 4.4.1 2)]) such that the resulting
Shimura filtered Lie σ-crystal (gZ , F

0(gZ), F
1(gZ), φy) is such that the W (k)-submodule

of gZ generated by the non-negative slopes of (gZ , φy), is contained in F 0(gZ).
The (pseudo-) polarized K3 surfaces defined by such GZ-canonical lifts, will be called

GZ-canonical or Shimura-canonical. We have:

Theorem C1. The GZ-ordinary locus of AK3,d,∗,KZ ,hZ k(v) is included in the ordinary

locus of NZk(v) iff k(vZ) = Fp.

Proof: As E(G1Z , X1Z) = E(GZ , XZ), this is a consequence of property P1 of [Va2, 4.6].

From C1 and property P2 of [Va2, 4.6] we get directly:

Theorem C2. If k(vZ) = Fp, then any GZ-canonical lift is a usual canonical lift.

From 3.2, 3.2.5 and [MB, 5.2 p. 237] we get directly:

Theorem C3. If k(vZ) = Fp, then the ordinary locus of NZk(v) is a quasi-affine scheme.

Proof: We can assume that K contains K(n) for some n≥ 3 and relatively prime to p. It is
known (see [MB, 5.2 of p. 237]) that the ordinary locus of AgW ,1,nFp

is quasi-affine. So (cf.

2.5.4 D)) the ordinary locus of N1k(v) is a quasi-affine scheme. As N1 is a pro-étale cover
of N (see 2.5.4 D)), from the definition of refined canonical stratifications, we get that the
ordinary locus of Nk(v) is a quasi-affine scheme. So the theorem follows from 3.2.5.

In [Va7] we will see that if k is a finite field than these GZ-canonical lifts, when
viewed just as K3 surfaces, are of CM type (see 5.2.1 for the meaning of this). It seems to
us that the answer to the following question is (at least in general) yes.

Q. Is it true that under the process of taking Shimura-canonical lifts, the number of
singularities is preserved?

D) Local deformations.
In what follows p is an arbitrary prime relatively prime to 2d. Let (Z,L) be a

polarized K3 surface over W (k) of degree d. Let H := (Hpr, F
0(Hpr), F

1(Hpr), φZ , Bcrys)
be its polarized p-divisible object of MF[−1,1](W (k)). Let R := W (k)[[x1, ..., xm]], for
some m ∈ N. Let ΦR be a Frobenius lift of R such that it leaves invariant the ideal
I := (x1, ..., xm) of R. Let (ZR, LR) be a deformation of (Z,L) over Spec(R) (cf. 2.8).
As in 2.8.1 we can define its polarized p-divisible object HR of MF[−1,1](R). As in [Va2,
3.4.18] we can write

HR = (Hpr ⊗R,F 0(Hpr), F
1(Hpr), gφZ),

for some g ∈ SO(Hpr, Bcrys)(R) which is trivial mod I. A natural question arises:
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Q. What are the possible values of g?

It can be easily checked starting from [Va2, 3.4.18.3] that not always g can take any
possible value.

Theorem (the inducing property for polarized K3 surfaces). We assume that one
of the following three conditions is satisfied:

a) k = k̄;
b) ΦR is essentially of additive type (in the sense of [Va, 3.4.18.0.1]);
c) There is a Shimura filtered σ-crystal (M0, F

1
0 , φ0, G̃1W (k), (uα)α∈J1) such that:

i) its attached Shimura filtered Lie σ-crystal is isomorphic to the one attached to (Z,L);
ii) (M0, φ0) does not have either the slope 0 or the slope 1;
iii) G̃1W (k) is an inner form of G1W (k) and the faithful representation G̃der

1W (k̄)
→֒ GL(M0⊗

W (k̄)) is the spin representation.

Then the answer to Q above is: any g as above shows up.

Proof: This is a consequence of [Va2, 3.4.18.5 and 3.4.18.7], once we remark that we can
always shift things from SO(Hpr, Bcrys) to G̃1W (k). In other words, H is always obtainable
from a p-divisible object with cycles

H1 := (M0 ⊗R,F 1
0 ⊗R, g̃φ0, (uα)α∈J1)

of MF[0,1](R) in the standard way (of taking the adjoint of G̃1R); here

H0 := (M0, F
1
0 , φ0, G̃1W (k), (uα)α∈J1)

is a Shimura filtered σ-crystal satisfying i) and iii) of c), while g̃ ∈ G̃1W (k)(R) is congruent
to 1 mod I. Moreover if m = 19, ΦR(xi) = xpi , for any i ∈ {1, ..., 19}, and (ZR, LR) is
the versal deformation of (Z,L) of 2.8, then H1 is a Shimura filtered F -crystal, which is a
versal deformation of H0 (in the sense of [Va2, 3.4.19 B]). So [Fa2, th. 10 and the remarks
after] applies as in [Va2, 3.4.18.5 and 3.4.18.7]. This ends the proof of the theorem.

Of course the same result can be stated in the relative situation of 3.2.5 (cf. 4.6),
provided we still assume (we repeat that in [Va7] we will see that this is implied by the
fact that the closure of GZ in GZ(p)

is a reductive group over Z(p)) as in 4.6 that the triple
(f1Z , LW ⊗ Z(p), vZ) is a SHS: the same proof applies.

4.8. Remarks. 1) Condition ii) of 4.7 D) is equivalent to: the Shimura filtered Lie
σ-crystal associated to H does not have the slope −1. For instance, it is automatically
satisfied if Z is supersingular.

2) There are other parts of [Va2] which can be entirely transferred to the context of
K3 surfaces. We mainly have in mind: the part of [Va2, 3.4] involving connections, and
the part of [Va2, 4.7.30] involving crystalline coordinates. In particular for the existence
of crystalline coordinates for ordinary K3 surfaces over an algebraically closed field of
characteristic 2, we refer to [Va2, b) of 4.7.30 2)].

3) See [Va2, 2.3.9] for an abstract discussion on the inner form G̃1W (k) of G1W (k). In

fact, from [Va4, 4.4 2)] we deduce that in fact we always have G̃1W (k) = G1W (k).
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4) For the Mumford–Tate (resp. the ordinary reduction) conjecture for K3 surfaces
over number fields see [An, 1.6.1 3)] and [Va3, 5.1.3.2 2)] (resp. see [Va3, 5.4 2)] and [Va7]).

§5. Some open problems

We quickly present here some (to our knowledge) open problems pertaining to po-
larized K3 which are inspired from “chapters” pertaining to abelian varieties dear to us.

5.1. Arithmetics à la Tate of (some) polarized K3 surfaces. Starting from the
Weierstrass equation Y 2Z + a1XY Z + a3Y Z

2 = X3 + a2X
2Z + a4XZ

2 + a6Z
3 describing

a general elliptic curve E, one defines (see [Ta] and [Si, p. 46]) other algebraic quantities
b2, b4, b6, b8, c4, c6, ∆, j, etc., meant for a refined analysis of the arithmetics of E.
We feel that it would be very much desirable to have a similar theory (arithmetic à la
Tate) for subclasses of polarized K3 surfaces. We have in mind especially subclasses of
the four (or at least the first three) classes of K3 surfaces mentioned in 2.3. Of course the
situation is much more complicated. Even for the class of smooth surfaces in P3, is not at
all easy to define a similar Weierstrass form (involving the minimum number of variables).
Moreover one would get not just one j invariant but more than 19. Still we do believe in
the possibility of (useful) such theories for different subclasses of polarized K3 surfaces.

5.2. What is between? On one extreme we have K3 surfaces which are complete
intersection. At the other extreme we have Kummer surfaces. The natural problem arises:

P. Describe (as well as possible) what is “in between”.

We can not be very precise on what we mean by “describe”. The description can be
in terms of some embeddings in P5 (or other projective space) subject to conditions, or in
terms of covers of P2 ramified above some specific (plane curve) branch locus, or in terms
of Shimura varieties involved (like Sh(GZ , XZ) of 2.4.1), etc.

5.2.1. K3 surfaces of CM type. Let Z be a K3 surface over a field k of characteristic
zero. It is known that any Hodge cycle of Z is an absolute Hodge cycle. This allows to
define (see [De3]) the Mumford-Tate group GZ of Z even if k is not embeddable in C (see
also 2.4.1). Z is said to be of CM type (CM stands for complex multiplication) if GZ is a
torus. We would like very much to have a “description” (perhaps one similar to the one
for abelian varieties of CM type; see [Mu, ch. 22] and [Sh]) of this subclass (of K3 surfaces
CM type). We have:

Proposition. If Z is of CM type, then, passing to a finite field extension of k, Z becomes
definable over a number field.

Proof: This is an immediate consequence of 3.2 and of the similar property for abelian
varieties of CM type.

This proposition is not a trivial one: it is easy to check that it is equivalent to part
a) of 2.7.2.1 A.

5.3. Hodge conjecture for correspondances. To our knowledge the Hodge conjecture
for correspondances between complex K3 surfaces is not yet known. In positive character-
istic, often such correspondances are replaced by ones imerging from Hecke operators.
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5.3.1. Hecke orbits. Let G(6dl) be the subgroup of G(
∏
r is a prime dividing 6dl Qr) fixing

the connected component of K3d,pp,marked which projects onto C0. It acts naturally on the
connected component of NO dominated by C0, and (cf. [Va2, 6.4.4]) on the normalization
Ñ of NO in the ring of fractions of Sh(G,X). We do expect that G(6dl) takes points of
Ñ mapping into points of AK3,d,pp,K with values in fields of positive characteristic, into

points of Ñ mapping into points of AK3,d,pp,K ; moreover would be very useful to have a
full (i.e. constructive) direct description of the effect of this action on the level-K marked
pseudo-polarized K3 surfaces of degree d.

5.4. The functions. It is very much desirable (cf. §4) to compute (or estimate the
functions) f and g of 3.3. The expectation formulated in 1.3.6 is based on:

a) We use the notations of 4.4. Using Kummer surfaces attached to a product E×E,
with E a supersingular elliptic curve over F, we deduce easily that the supersingular locus
of AK3,d,pp,Kk(v) is non-empty. So (cf. 3.2.2) AK3,d,p,K,vk(v) is non-empty.

b) As p≥ 5, 3.2.1 3) and Rudakov-Shafarevich theorem (see [RS2] and [Og, p. 384])
should imply that AK3,d,p,K,vk(v) contains a connected component of the supersingular

locus of Nk(v).
c) The expectation of 5.3.1.
d) It should be possible to prove that f(d) = 1, ∀d ∈ N, by just using things similar

to the degeneration results and ideas of [RS2].
e) There is (see [Har] and [Va6]) an arithmetic version of the Borel-Baily compacti-

fication (over C) of the moduli space of pseudo-polarized K3 of degree d; so a great part
of [JT1-2] should be redonable in this arithmetic setting.

5.5. Satake and Kuga–Satake construction in positive characteristic. Let p be
a prime relatively prime to 6dl. Let k be a perfect field of characteristic p. We refer to
3.2. We assume that either k is algebraically closed or that K1 and K are small enough
so that the principally polarized abelian scheme (A1,PA1) is obtained by pulling back a
principally polarized abelian scheme over NO. Then to any k-valued point y of AK3,d,pp,K

(i.e. to any level-K marked pseudo-polarized K3 surface (Z,L, kK) over k) it is associated
a principaly polarized abelian variety (Ay, pAy

) over k (we ignore here the different finite
symplectic similitude structures it gets naturally). We refer to it as a (see 2.7.2 for a
discussion on its unicity; it is uniquely determined if d′ = 1) Satake principally polarized
abelian variety attached to (Z,L, kK) or to (Z,L). We think it would be very useful and
interesting to find a direct construction of it in terms of the triple (Z,L, kK), which does
not involve lifts to characteristic zero and specialization.

Of course we have variants (to which the same problem applies) when instead of the
data (f1, LW ) we work with another data (f3, L

′
3) or (f2, L2) (resp. (f3, L3)) of 2.7. As

above we obtain a modified p.p. Kuga–Satake or a generalized Kuga–Satake (resp. the
Kuga–Satake) “construction” in positive characteristic. Moreover 2.7.2.1 A and B can be
entirely transposed into the characteristic p situation (of course, for the part c) of 2.7.2.1
A we need to work with primes l different from p).

5.6. The integral Manin problem for polarized K3 surfaces. Let d ∈ N. Let k
be an algebraically closed field of characteristic p > 0. In this section we rephrase part of
[Ma] and of [Va2, 4.12] in the context of polarized K3 surfaces of degree d over k.
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5.6.1. Definition. By a K3 Newton polygon, we mean a Newton polygon starting from
(0, 0) and ending in (21, 0), symmetric with respect to the axis x = 10.5, and of whose
slopes are −α, 0 and α, for some α ∈ {0, 1

10 ,
1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1}.

So we have precisely 11 such K3 Newton polygons; they are all above the Newton
polygon defined by the slopes −1 (multiplicity 1), 0 (multiplicity 19) and 1 (multiplicity
1).

5.6.2. Let (Z,L) be a polarized K3 surface of degree d over k. It is known (see [Og,
(1.5)] for a quick discussion) that its Newton polygon is a K3 Newton polygon. A Manin
problem (see [Ma] for the original Manin problem for abelian varieties) in this context can
be formulated as follows:

P1. Determine which K3 Newton polygons are associated to polarized K3 surfaces
of degree d over k.

Of course one expects that the answer to P1 is: all. We assume now that (p, 6d) = 1.
An integral Manin problem (see [Va2, 4.12] for the context of Shimura varieties) in this
context can be formulated as follows:

P2. Determine which polarized F -crystals over k are associated to polarized K3
surfaces of degree d over k.

P2 can be reformulated. Let (W (k)21, φ0) be the F -crystal over k which respect
to the standard basis E := {e1,...,e21} of Hpr := W (k)21, is defined by φ0(e1) = pe1,
Φ(ei) = ei if i = 2, 20, and φ(e21) =

1
pe21. Let B be the perfect symmetric bilinear form on

Hpr whose attached quadratic form w.r.t. E is 2x1x21+x
2
2+ ...+x

2
20. From 4.6 we deduce

that the polarized F -crystal over k associated to (Z,L) is of the form (Hpr, gφ0, B), with
g ∈ SO(Hpr, B)(W (k)). So P2 can be reformulated:

P3. Determine the possible values of such g ∈ SO(H,B)(W (k)).

Of course we have a relative situation: the problems P1-3 can be rephrased in the
context of 3.2.5; this is achieved in the same manner as we passed from [Va2, 4.12.1] to
[Va2, 4.12.1] (cf. 4.6-7). Also, once the problems P1-3 are solved, using 4.7 D), we get
directly the solution of the general local integral Manin problems for polarized K3 surfaces
of degree d relatively prime to the odd prime p (they can be formulated following the
pattern of [Va2, 4.12.14-15]).

5.6.3. Remark. The above three problems (in the relative or not context) can be put
in the abstract way: we just work with F -crystals, and we interpret them in terms of
global deformations. As in the proof of the theorem of 4.7 D), such problems (following
the pattern of the proof of the inducing property of 4.6 D)) are already solved by [Va2,
Fact’ of 3.15 and 4.12.12]; moreover [Va2, Fact’ of 3.15] handles (quite successfully) the
case when k is just perfect.
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LNM 868, Springer-Verlag, 1980, p. 80-136.

[EGA] A. Grothendieck and J. Dieudonné, Eléments de géometrie algb́rique, Publ. Math.
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