August 26, 2011

Dear Kisin,

I liked your argument (prop. 1.3.2) in JAMS **23** 4, p.976 to get, over a valuation ring, a closed flat $G \subset GL(M)$ to be the scheme theoretic fixer of a collection of "tensors". In your definition of "tensor", you allow symmetric and exterior powers. This is not necessary.

a) $\stackrel{d}{\wedge} \subset \stackrel{d}{\otimes}$ (over any ring, and locally a direct factor): $\stackrel{d}{\wedge}$ is the image of the antisymmetrization map from $\stackrel{d}{\otimes}$ to $\stackrel{d}{\otimes}$. You can hence dispense with $\stackrel{d}{\wedge}$.

b) You need the stabilizer some N direct factor in a Sym^d (of a sum of copies of M) [I will address your $\det(M)^{-n}$ later]. This is the same as stabilizing N^{\perp} in $(\operatorname{Sym}^d)^{\vee}$. Now, $(\operatorname{Sym}^d(X))^{\vee} = \Gamma^d(X^{\vee})$, and in the same way that over any ring Sym^d is a quotient of $\overset{d}{\otimes}$, Γ^d is a submodule of $\overset{d}{\otimes}$, locally direct factor (it is the symmetric tensors). So

$$\det(N^{\perp})$$
 is a line in $\stackrel{\dim}{\wedge} \Gamma^{d}(\cdots) \subset \stackrel{\dim}{\otimes} \stackrel{d}{\otimes} (\cdots).$

Note that if \overline{G} is the monoid schematic closure of $G \subseteq \operatorname{GL}(M)$ in $\operatorname{End}(M)$, G is the stabilizer of the ideal of \overline{G} in $\operatorname{End}(M)$. Yo can just use $\operatorname{Sym}^*(M \otimes M_0^{\vee})$ instead of $\mathcal{O}_{\operatorname{GL}}$.

Your assumption "reductive general fiber" is rather strong. Here is a trick, I learned while reading Vasiu, which can replace it in useful cases.

1) If $L \subseteq W$ is a line (over a base S; W locally free and L locally direct factor), the stabilizer of L in GL(W) equals the stabilizer of $L^{\otimes r} \subseteq W^{\otimes r}$, for any r > 0.

I was at first afraid of $p \mid r$, but the fear disappears for the more general statement: "for $L_i \subseteq W_i$, the stabilizer, in $\Pi \operatorname{GL}(W_i)$, of the L_i , equals the stabilizer of $\otimes L_i$ in $\otimes W_i$ ".

2) If we are in a tannakian situation where all 1-dim objects are tensor powers of a fixed L_0 , and if we already have tensor powers of L_0 as well as L_0^{-1} inside some $\overset{a}{\otimes} M \overset{b}{\otimes} M^{\vee}$ (such as det(M), det (M^{\vee})), one can apply 1).

Best,

P. Deligne

P.S.: Can you make the result explicit in the following example, over \mathbb{Z}_p : $G \subseteq GL(4, \mathbb{Z}_p)$ the schematic closure of the symplectic group, $\subseteq GL(4, \mathbb{Q}_p)$, fixing $e_1 \wedge e_2 + p e_3 \wedge e_4$?

CC: A. Vasiu