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Abstract. Let p be a prime. Let V be a discrete valuation ring of mixed
characteristic (0, p) and index of ramification e. Let f : G → H be a homo-
morphism of finite flat commutative group schemes of p power order over V
whose generic fiber is an isomorphism. We provide a new proof of a result
of Bondarko and Liu that bounds the kernel and the cokernel of the special
fiber of f in terms of e. For e < p− 1 this reproves a result of Raynaud. Our
bounds are sharper that the ones of Liu, are almost as sharp as the ones of
Bondarko, and involve a very simple and short method. As an application
we obtain a new proof of an extension theorem for homomorphisms of trun-
cated Barsotti–Tate groups which strengthens Tate’s extension theorem for
homomorphisms of p-divisible groups.
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1 Introduction

Let p be a rational prime. Let V be a discrete valuation ring of mixed
characteristic (0, p). Let K be the field of fractions of V . Let k be the
residue field of V . Let e be the index of ramification of V . Let G and H
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be two finite flat commutative group schemes of p power order over V . For
n ∈ N∗, let G⌈pn⌉ be the schematic closure of GK [pn] in G. The goal of the
paper is to provide new proofs using Breuil modules of the following theorem
and of several applications of it.

Theorem 1 There exists a non-negative integer s that depends only on V
and that has the following property.

For each homomorphism f : G → H whose generic fiber fK : GK → HK

is an isomorphism, there exists a homomorphism f ′ : H → G such that
f ′ ◦ f = ps idG and f ◦ f ′ = ps idH and therefore the special fiber homo-
morphism fk : Gk → Hk has a kernel and a cokernel annihilated by ps.
If moreover H is a truncated Barsotti–Tate group of level n > s, then the
natural homomorphism f⌈pn−s⌉ : G⌈pn−s⌉ → H[pn−s] is an isomorphism.

An equivalent form of the first part of Theorem 1 (see the first part of
Corollary 2 below) was first obtained in [Bon] using Cartier–Dieudonné mod-
ules, in [Liu1] using deformation theories and Galois-descent, and in [Liu2]
using Breuil–Kisin modules. The number s admits computable upper bounds
in terms only of e. For instance, we have s ≤ (logp e + ordp e + 2)(ordp e + 2)
(cf. Examples 2 and 4). This upper bound of s is weaker than the one ob-
tained by Bondarko s ≤ ⌊logp(

pe

p−1
)⌋ but it is much stronger than the upper

bounds one can get based on the proofs of [Liu1], Theorem 1.0.5 and [Liu2],
Theorem 2.4.2. If p does not divide e, then we regain Bondarko’s upper
bound (cf. Examples 1 and 2). If e ≤ p− 2, then s = 0 (cf. Example 1) and
thus we also regain the following classical theorem of Raynaud.

Corollary 1 We assume that e ≤ p − 2 (thus p is odd). Then each finite
flat commutative group scheme of p power order over K extends in at most
one way to a finite flat commutative group scheme over V .

Corollary 1 was first proved in [R], Theorem 3.3.3 or Corollary 3.3.6 and
more recently in [Bon], [Liu1], [Liu2], and [VZ2], Proposition 15. The first
part of the next result is an equivalent form of the first part of Theorem 1.

Corollary 2 Let h : GK → HK be a homomorphism over K. Then psh ex-
tends to a homomorphism G → H (i.e., the cokernel of the natural monomor-
phism Hom(G,H) →֒ Hom(GK , HK) is annihilated by ps). Thus the natural
homomorphism Ext1(H,G) → Ext1(HK , GK) has a kernel annihilated by ps.
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The first (resp. the second) part of Corollary 2 was first obtained in
[Bon], Theorem A or B, in [Liu1], Theorem 1.0.5, and in [Liu2], Theorem
2.4.2 (resp. in [Bon], Theorem D).

The next two results are a mixed characteristic geometric analogue of
the homomorphism form [V], Theorem 5.1.1 of the crystalline boundedness
principle presented in [V], Theorem 1.2.

Corollary 3 We assume that G and H are truncated Barsotti–Tate groups
of level n > s. Let h : GK → HK be a homomorphism. Then the restriction
homomorphism h[pn−s] : GK [pn−s] → HK [pn−s] extends to a homomorphism
G[pn−s] → H[pn−s].

Corollary 4 We assume that n > 2s. Let H be a truncated Barsotti–Tate
group of level n over V . Let G be such that we have an isomorphism h :
GK → HK. Then the quotient group scheme G⌈pn−s⌉/G⌈ps⌉ is isomorphic
to H[pn−2s] and thus it is a truncated Barsotti–Tate group of level n − 2s.

A weaker form of Corollary 3 was first obtained in [Bon], Theorem E.
Let Y be a normal noetherian integral scheme with field of functions L

of characteristic zero. A classical theorem of Tate ([T], Theorem 4) says
that for every two p-divisible groups D and F over Y , each homomorphism
DL → FL extends uniquely to a homomorphism D → F . From Corollary 3
we obtain the following sharper version of this theorem.

Theorem 2 Let Y and L be as above. Then there exists a non-negative
integer sY which has the following property.

Let G and H be truncated Barsotti–Tate groups over Y of level n > sY

and of order a power of the prime p. Let h : GL → HL be a homomorphism.
Then there exists a unique homomorphism g : G[pn−sY ] → H[pn−sY ] that
induces h[pn−sY ] over L.

Section 2 recalls the classification of finite flat commutative group schemes
of p power order over V in terms of Breuil modules that holds provided k is
perfect and V is complete. This classification was conjectured by Breuil (see
[Br]), was first proved in [K1] and [K2] for p > 2 and for the connected case
with p = 2, was generalized (using a covariant language) in [VZ1], [Lau1],
and [Lau2] for all primes p, and was recently proved for p = 2 in [Lau2],
[Liu3], and [Kim]. As in [Liu2], our method to prove the above results relies
as well on Breuil modules but it performs a refined combinatorial analysis of
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Eisenstein polynomials associated to uniformizers of V which allows us to get
better upper bounds than the ones of Liu and simpler proofs (see Lemmas 1
to 4 and Proposition 2) that could be generalized to the crystalline context
of [Liu2], Theorem 2.4.2. In Section 3 we provide formulas for s as well as
explicit upper bounds of it. In Section 4 we prove Theorem 1. Corollaries 1
to 4 and Theorem 2 are proved in Section 5. In Section 6 we present extra
applications to different heights associated to G.

2 Breuil modules

Let V →֒ V ′ be an extension of discrete valuation rings of mixed characteristic
(0, p) such that the index of ramification of V ′ is also e. Theorem 1 holds
for V if it holds for V ′. There exists an extension V ′ which is complete and
has a perfect residue field. If we find an upper bound of s only in terms of e
which holds for each complete V ′ with perfect residue field, then this upper
bound of s is also good for V .

Thus from now on we assume that V is complete and that k is a perfect
field. Let W (k) be the ring of Witt vectors with coefficients in k. We will
view V as a W (k)-algebra which is a free W (k)-module of rank e. Let
ordp : W (k) → N∪{∞} be the p-adic valuation normalized by the conditions
that ordp(p) = 1 and ordp(0) = ∞. Let u be a variable and let

S := W (k)[[u]].

We extend the Frobenius endomorphism σ of W (k) to S by the rule σ(u) =
up. For n ∈ N∗ let Sn := S/pn

S. If M is a S-module let

M (σ) := S ⊗σ,S M.

Let π be a uniformizer of V . Let

E = E(u) = ue + ae−1u
e−1 + · · · + a1u + a0 ∈ W (k)[u]

be the unique Eisenstein polynomial in u which has coefficients in W (k) and
which has π as a root. For i ∈ {0, . . . , e − 1} we have ai ∈ pW (k); moreover
a0 is p times a unit of W (k). We have a W (k)-epimorphism

qπ : S ։ V

that maps u to π.
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Definition 1 By a (contravariant) Breuil window relative to qπ : S ։ V we
mean a pair (Q, φ), where Q is a free S-module of finite rank and where φ :
Q(σ) → Q is a S-linear map (Frobenius map) whose cokernel is annihilated
by E. By a (contravariant) Breuil module relative to qπ : S ։ V we mean a
pair (M,ϕ), where M is a finitely generated S-module annihilated by a power
of p and of projective dimension at most one and where ϕ : M (σ) → M is a
S-linear map (Frobenius map) whose cokernel is annihilated by E.

Definition 2 Let B be the category of Breuil modules relative to qπ : S ։ V .
Let B1 be the full subcategory of B whose objects are Breuil modules (M,ϕ)
relative to qπ : S ։ V with M annihilated by p. Let F be the category of
finite flat commutative group schemes of p power order over V . Let F1 be the
full subcategory of F whose objects are finite flat commutative group schemes
over V annihilated by p.

We explain shortly the relation to covariant Breuil windows and modules
relative to qπ : S ։ V as introduced in [VZ1], Definitions 1 and 2. Let L be
a free S-module of finite rank. We have a canonical S-linear isomorphism

S ⊗σ,S HomS(L,S) → HomS(L(σ),S)

that maps s⊗α to the σ-linear map L → S, l 7→ sσ(α(l)). The last σ-linear
map may be also regarded as an element of HomS(L(σ),S). As S

σ
−→ S is

flat, we obtain more generally that for each S-module M of finite type and
for every integer i ≥ 0 we have a canonical S-linear isomorphism

Exti
S
(M,S)(σ) ∼= Exti

S
(M (σ),S).

Let (Q, φ) be a contravariant Breuil window relative to qπ : S ։ V .
Applying the functor HomS(− ,S) to the S-linear map φ we obtain a ho-
momorphism

ψ : HomS(Q,S) → HomS(Q(σ),S) ∼= HomS(Q,S)(σ).

The pair (HomS(Q,S), ψ) is a covariant Breuil window relative to qπ : S ։

V . The rule on objects (Q, φ) 7→ (HomS(Q,S), ψ) induces an antiequivalence
of the category of contravariant Breuil windows relative to qπ : S ։ V with
the category of covariant Breuil windows relative to qπ : S ։ V .

In the same way the functor Ext1
S
(− ,S) induces naturally an antiequiv-

alence of the category of contravariant Breuil modules relative to qπ : S ։ V
with the category of covariant Breuil modules relative to qπ : S ։ V .
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If M is annihilated by p, then it is easy to see that M is a free S1-module
(cf. [VZ2], Section 2, p. 578); its rank is also called the rank of (M,ϕ). In
this paper we will use the shorter terminology (connected) Breuil module.

2.1 Classification results

We recall the following fundamental classification (see [K1], Theorem 2.3.5,
[VZ1], Theorem 1, and [Lau1], Theorem 1.1 for p > 2 and see [K2], [Lau2],
Corollary 7.7, [Liu3], Theorem 1.0.2, and [Kim], Corollary 4.3 for p = 2).

Theorem 3 There exists a contravariant functor B : F → B which is an
antiequivalence of categories, which is Zp-linear, and which takes short exact
sequences (in the category of abelian sheaves in the faithfully flat topology of
Spec V ) to short exact sequences (in the category of S-modules endowed with
Frobenius maps).

It is easy to see that B induces an antiequivalence of categories B : F1 →
B1 which takes short exact sequences to short exact sequences. For an object
G = Spec R of F , let o(G) ∈ N be such that po(G) is the order of G i.e., is
the rank of R over V .

We check that if G is an object of F1, then the object B(G) of B1 has
rank o(G). The contravariant Dieudonné module D(Gk) of Gk is equal to
k ⊗σ,S B(G), where we denote also by σ its composite with the epimorphism
S ։ k = S/(p, u) (the covariant part of this statement follows from either
[Z1], Theorem 6 or [Z2], Theorem 1.6 provided G is connected and from
[Lau2], Section 8 in general, once we recall that G is the kernel of an isogeny
of p-divisible groups over V ). This implies that the rank of B(G) is o(G).

Let H be an object of F . If pn annihilates H, then to the chain of natural
epimorphisms

H ։ H/H⌈p⌉ ։ H/⌈p2⌉ ։ · · · ։ H/H⌈pn⌉ = 0

corresponds a normal series of the Breuil module B(H) = (M,ϕ)

0 = (Mn, ϕn) ⊆ (Mn−1, ϕn−1) ⊆ · · · ⊆ (M0, ϕ0) = (M,ϕ)

by Breuil submodules whose quotient factors are objects of B1. As each
Mi−1/Mi is a free S1-module of finite rank, the multiplication by u map
u : M → M is injective. One computes the order po(H) of H via the formulas

o(H) = o(M,ϕ) :=
n

∑

i=1

rankS1(Mi−1/Mi) = lengthS(p)
(M(p)).
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Proposition 1 Let f : G → H be a morphism of F . We write g := B(f) :
B(H) = (M,ϕ) → B(G) = (N,ψ). Then we have:

(a) The homomorphism fK : GK → HK is a closed embedding if and only
if the cokernel of g : M → N is annihilated by some power of u.

(b) The homomorphism fK : GK → HK is an epimorphism if and only
if the S-linear map g : M → N is a monomorphism.

(c) The homomorphism fK : GK → HK is an isomorphism if and only if
the S-linear map g : M → N is injective and its cokernel is annihilated by
some power of u.

Proof. Let Ñ := Coker(g). We prove (a). We first show that the assumption
that fK is not a closed embedding implies that Ñ is not annihilated by
a power of u. This assumption implies that there exists a non-trivial flat
closed subgroup scheme G0 of G which is contained in the kernel of f and
which is annihilated by p. Let (N0, ψ0) := B(G0); the S1-module N0 is free
of positive rank. From the fact that G0 is contained in the kernel of f and
from Theorem 3, we get that we have an epimorphism Ñ ։ N0. Thus Ñ is
not annihilated by a power of u.

To end the proof of part (a) it suffices to show that the assumption that Ñ
is not annihilated by a power of u implies that fK is not a closed embedding.
Our assumption implies that also N1 := Ñ/pÑ is not annihilated by a power
of u. As S1 = k[[u]] is a principal ideal domain, we have a unique short exact
sequence of S1-modules

0 → N2 → N1 → N0 → 0,

where N2 is the largest S1-submodule of N1 annihilated by a power of u and
where N0 is a free S1-module of positive rank. The S-linear map N

(σ)
1 → N1

induced naturally by ψ maps N
(σ)
2 to N2 and thus it induces via quotients a

S-linear map ψ0 : N
(σ)
0 → N0. As ψ0 is a quotient map of ψ, its cokernel is

annihilated by E. Therefore the pair (N0, ψ0) is a Breuil module. From this
and Theorem 3 we get that there exists a non-trivial flat closed subgroup
scheme G0 of G which is contained in the kernel of f and for which we have
B(G0) = (N0, ψ0). Thus fK is not a closed embedding. Therefore (a) holds.

Part (b) is proved similarly to (a). Part (c) follows from (a) and (b). ¤
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2.2 Basic lemmas

Let n ∈ N∗. Let H be a truncated Barsotti–Tate group of level n over V .
Let (M,ϕ) := B(H); thus M is a free Sn-module of finite rank. Let d be
the dimension of H and let h be the height of H. There exists a direct
sum decomposition M = T ⊕ L into free Sn-modules such that the image
of ϕ is ET ⊕ L and T has rank d. The existence of such a direct sum
decomposition follows (via reduction modulo pn) from the existence of the
normal decomposition of the Breuil window relative to qπ : S ։ V of any
p-divisible group H over V such that H[pn] = H (for the covariant context
with p > 2 see [VZ1], Section 2; the case p = 2 is the same). The existence
of the direct sum decomposition M = T ⊕ L implies the existence of two
Sn-bases {e1, . . . , eh} and {v1, . . . , vh} of M such that for i ∈ {d + 1, . . . , h}
we have ϕ(1 ⊗ ei) = vi and for i ∈ {1, . . . , d} the difference ϕ(1 ⊗ ei) − Evi

belongs to the S-submodule of M generated by the elements vd+1, . . . , vh.
Indeed, we consider the composite map

M → M (σ) → ϕ(M (σ)) → M/T = L,

where the first map m 7→ 1 ⊗ m is σ-linear, where the second map is ϕ, and
where the third map is induced by the natural projection of M on L along
T . We tensor this composite map with the residue field k of Sn

k ⊗Sn
M → k ⊗Sn

M (σ) → k ⊗Sn
ϕ(M (σ)) → k ⊗Sn

M/T = k ⊗Sn
L.

As k is a perfect field, all these three maps are surjective. Therefore we find
by the lemma of Nakayama a Sn-basis {e1, . . . , eh} of M such that the images
ϕ(1⊗ ed+1), . . . , ϕ(1⊗ eh) form a Sn-basis of M/T . We can take L to be the
Sn-submodule of M generated by vd+1 := ϕ(1 ⊗ ed+1), . . . , vh := ϕ(1 ⊗ eh).
We choose an arbitrary Sn-basis {v1, . . . , vd} of T . As the image of ϕ is
ET ⊕ L we obtain the desired Sn-basis {v1, . . . , vh} by making a suitable
change of the Sn-basis {v1, . . . , vd} of T .

Lemma 1 Let t ∈ N∗. Let x ∈ 1
ut M be such that ϕ(1 ⊗ x) ∈ 1

ut M . We

write x =
∑h

i=1
αi

ut ei, where αi ∈ Sn. Then for each i ∈ {1, . . . , h} we have

Eσ(αi) ∈ ut(p−1)
Sn (equivalently, σ(αi)

utp E ∈ 1
ut Sn) and thus αi ∈ (pn−1, u)Sn.

Proof. We compute

ϕ(1 ⊗ x) =
d

∑

i=1

σ(αi)

utp
ϕ(1 ⊗ ei) +

h
∑

i=d+1

σ(αi)

utp
ϕ(1 ⊗ ei)
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=
d

∑

i=1

σ(αi)

utp
Evi +

h
∑

i=d+1

ηivi ∈
1

ut
M,

for suitable elements ηi ∈
1
ut Sn. For i ∈ {1, . . . , d} this implies directly that

σ(αi)

utp
E ∈

1

ut
Sn. (1)

The ηi for i ∈ {d + 1, . . . , h} are of the form

ηi =
σ(αi)

utp
+

d
∑

j=1

λj

σ(αj)

utp
,

for some elements λj ∈ Sn. If we multiply the last equation by E we obtain
from (1) that its belonging relation also holds for i ∈ {d + 1, . . . , h}. For
i ∈ {1, . . . , h}, we get that σ(αi)E(0) = σ(αi(0))a0 = 0 ∈ Wn(k) and this
implies that αi(0) ∈ pn−1Wn(k); therefore we have αi ∈ (pn−1, u)Sn. ¤

Lemma 2 Let t ∈ N. Let N be a Sn-submodule of 1
ut M which contains

M . We assume that ϕ induces a S-linear map N (σ) → N . Then we have
ptN ⊆ M .

Proof. We will prove this by induction on t ∈ N. The case t = 0 is trivial.
For the passage from t − 1 to t we can assume that t > 0. Let x ∈ N . From
Lemma 1 applied to x we get that px ∈ u 1

ut M = 1
ut−1 M . This implies that

pN ⊆ 1
ut−1 M . Let Ñ := pN + M ⊆ 1

ut−1 M . It is easy to see that ϕ induces a

S-linear map Ñ (σ) → Ñ . By induction applied to Ñ we get that pt−1Ñ ⊆ M .
This implies that ptN ⊆ M . This ends the induction. ¤

The technical part of the method we use in this paper can be summarized
as follows. With t and N as in Lemma 2, we will vary the uniformizer π of
V to obtain a universal sharp upper bound t0 of t (i.e., to show that in fact
we have the first universal inclusion N ⊆ 1

ut0
M) and to refine Lemma 2 so

that we get a smaller number s ∈ {0, . . . , t0} for which we have the second
universal inclusion psN ⊆ M .

3 Motivation, formulas, and bounds for s

In this section we present formulas for s and upper bounds of it in terms of
e. The main technical result that lies behind these formulas is also presented
in this section (see Proposition 2 below).
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For a real number x, let ⌊x⌋ be the integral part (floor) of x (i.e., the
greatest integer smaller or equal to x). We define

m := ordp(e).

Let ae := 1 and

E0 :=
∑

i∈pN∩[0,e]

aiu
i = ap⌊ e

p
⌋u

p⌊ e
p
⌋ + · · · + a2pu

2p + apu
p + a0 ∈ W (k)[up].

Let E1 := E − E0 ∈ W (k)[u]. We define the numbers τ and ι as follows.
If m = 0, then let τ(π) := 1 and ι(π) := 0.
If m ≥ 1, let τ(π) ∈ N∗ ∪ {∞} be the content ordp(E1) of E1. Thus

τ(π) := ordp(E1) = min{ordp(ai)|i ∈ {1, 2, . . . , e − 1} \ pN∗}.

If m ≥ 1 and τ(π) < ∞, let ι(π) ∈ {1, 2, . . . , e − 1} \ pN∗ be the smallest
number such that we have

τ(π) = ordp(aι(π)).

For all m ≥ 0 we define

τ = τV := min{τ(π)|π a uniformizer of V }.

If τ < ∞, then we also define

ι = ιV := min{ι(π)|π a uniformizer of V with τ(π) = τ}.

Lemma 3 We have τ ≤ m + 1 < ∞.

Proof. If m = 0, then this holds as τ = 1. Thus we can assume that m ≥ 1.
We consider a new uniformizer π̃ := π + p of V . The unique Eisenstein
polynomial Ẽ(u) = ue + ãe−1u

e−1 + · · · + ã1u + ã0 in u with coefficients in
W (k) that has π̃ as a root is Ẽ(u) = E(u − p). Thus ãe−1 = −pe + ae−1 =
−pm+1e′+ae−1, where e′ := p−me ∈ N∗\pN∗. Therefore pm+2 does not divide
either ae−1 or ãe−1. This implies that either τ(π) ≤ m + 1 or τ(π̃) ≤ m + 1.
Thus τ ≤ m + 1 < ∞. ¤
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Proposition 2 Let n and t be positive integers. Let C = C(u) ∈ S be a
power series whose constant term is not divisible by pn. We assume that

Eσ(C) ∈ (ut, pn)S. (2)

If τ(π) = ∞, then we have t ≤ ne. If τ(π) 6= ∞, then we have

t ≤ min{τ(π)e + ι(π), ne}.

Moreover, if m = 0, then we have pσ(C) ∈ (ut, pn)S and if m ≥ 1, then we
have pτ(π)+1σ(C) ∈ (ut, pn)S (if m ≥ 1 and the content of C is 1, then in
fact we have τ(π) + 1 ≥ n).

Proof. Clearly we can remove from C all monomials of some degree i that
satisfies the inequality pi ≥ t. Therefore we can assume that C is a polyno-
mial of degree d such that pd < t. As E0σ(C) and E1σ(C) do not contain
monomials of the same degree, the relation Eσ(C) ∈ (ut, pn)S implies that

E0σ(C) ∈ (ut, pn)S and E1σ(C) ∈ (ut, pn)S.

We first consider the case when p does not divide e (i.e., m = 0). Thus
E0 divided by p is a unit of S. Therefore we have pσ(C) ∈ (ut, pn)S. As
p deg(C) = pd < t, we get that pσ(C) ≡ 0 mod pn. As moreover E1 ≡ ue

mod p, we get ueσ(C) ∈ (ut, pn)S. As the constant term of C is not divisible
by pn this implies that t ≤ e = min{τ(π)e + ι(π), ne}.

From now on we will assume that p|e. By the Weierstraß preparation
theorem ([Bou], Chapter 7, Section 3, number 8) we can assume that C is a
Weierstraß polynomial of degree d (i.e., a monic polynomial of degree d such
that C − ud is divisible by p) and thus of content 1. Indeed, to check this let
c ∈ {0, . . . , n− 1} be such that pc is the content of C. We set C̄ := (1/pc)C.
The constant term of C̄ is not divisible by pn−c. As Eσ(C̄) ∈ (ut, pn−c)S, it
suffices to prove the proposition for (C̄, n − c) instead of (C, n). But C̄ is a
unit times a Weierstraß polynomial.

Before we continue, we first prove the following lemma.

Lemma 4 Let n and t be positive integers. We assume that p divides e. Let

C = C(u) = ud + cd−1u
d−1 + · · · + c1u + c0 ∈ W (k)[u]

be a Weierstraß polynomial such that pd < t and c0 /∈ pnW (k). We also
assume that

E0σ(C) ∈ (ut, pn)S.

11



Then d = (n − 1) e
p

and for each i ∈ {0, 1, . . . , n − 1} we have:

ordp(ci e
p
) = n − i − 1, and ordp(cj) ≥ n − i, for 0 ≤ j < i

e

p
. (3)

Moreover we also have t ≤ ne.

Proof: For l ∈ {0, . . . , d − 1}, let γl = σ(cl) ∈ W (k). Thus

σ(C) = udp + γd−1u
(d−1)p + · · · + γ1u

p + γ0.

We define cd and γd to be 1. For l < 0 or l > d, we define cl = γl = 0. We
have ordp(γl) = ordp(cl) for all l ∈ Z. Moreover we set

E0σ(C) =

d+ e
p

∑

j=0

βjpu
jp, βjp ∈ W (k).

By our assumption βjp is divisible by pn if jp < t and in particular if j ≤ d.
For j ∈ {0, . . . , d + e

p
} we have the identity

βjp = a0γj + apγj−1 + · · · + aeγj− e
p
. (4)

By induction on j ∈ {0, . . . , d} we show that (3) holds. This includes the
equality part of (3) if j = i e

p
. Our induction does not require that i < n.

But of course, the assumption that i ≥ n in the equality part of (3) (resp.
the assumptions that j ≤ d and i ≥ n+1 in the inequality part of (3)), leads
(resp. lead) to a contradiction as the order of any cj can not be negative.

The case j = 0 follows by looking at the constant term of E0σ(C). The
passage from j − 1 to j goes as follows. Let us first assume that (i − 1) e

p
<

j < i e
p

for some integer i ≥ 1 (we do not require i e
p
≤ d).

We show that the assumption ordp(cj) = ordp(γj) < n − i leads to a
contradiction. Indeed, in this case the first term of the right hand side of
(4) would have order ≤ n − i but all the other terms of the right hand side
of (4) would have order strictly bigger than n − i. Note for example that
j− e

p
< (i−1) e

p
and therefore ordp(γj− e

p
) ≥ n−i+1 by induction assumption.

As ordp(βjp) ≥ n we obtain a contradiction to (4).
Finally we consider the passage from j − 1 to j in the case when j = i e

p
.

Then we use the equation
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βie = a0γi e
p

+ apγi e
p
−1 + · · · + aeγ(i−1) e

p
. (5)

By the induction assumption we have ordp(aeγ(i−1) e
p
) = n − i. From the

inequality part of (3) we get the inequalities

ordp(apγi e
p
−1) ≥ n − i + 1, . . . , ordp(ae−pγ1+(i−1) e

p
) ≥ n − i + 1.

As βie = βjp ∈ pnW (k), it follows from (5) that

ordp(a0γi e
p
) = ordp(aeγ(i−1) e

p
) = n − i.

Thus ordp(γi e
p
) = n − i − ordp(a0) = n − i − 1. This ends our induction.

We check that d = (n − 1) e
p
. If d is of the form i e

p
, then 0 = ordp(cd) =

n−i−1 gives i = n−1 and thus d is as required. We are left to show that the
assumption that d is not of this form, leads to a contradiction. Let i ∈ N∗

be such that (i − 1) e
p

< d < i e
p
. Then the inequality 0 = ordp(cd) ≥ n − i

gives i ≥ n. But then ordp(c(i−1) e
p
) = n − i ≤ 0 contradicts the assumption

that C is a Weierstraß polynomial and therefore that c(i−1) e
p
∈ pW (k).

As p divides e and d = (n−1) e
p
, E0σ(C) ∈ (ut, pn)S is a monic polynomial

of degree e + pd = ne and thus we have t ≤ ne. ¤

Corollary 5 With the notations of Lemma 4, let l ∈ {0, 1, . . . , e − 1}. Let
E2 = E2(u) = ul + bl−1u

l−1 + · · · + b1u + b0 ∈ W (k)[u] be a Weierstraß
polynomial of degree l. If we have E2σ(C) ∈ (ut, pn)S, then l ≥ t.

Proof: If n = 1, then d = 0 and C = c0 is a unit of W (k); thus E2 ∈ (ut, pn)S
and therefore l ≥ t. Thus we can assume that n ≥ 2. We write:

E2σ(C) =

l+pd
∑

i=0

δiu
i.

Let q := ⌊ l
p
⌋ < e

p
. We have the equation:

δl = γ0 + bl−pγ1 + · · · + bl−qpγq. (6)

For i ∈ {1, . . . , q} we have ordp(γi) = ordp(ci) ≥ n − 1 (cf. Lemma 4 and
n ≥ 2); therefore ordp(bl−ipγi) ≥ n. As ordp(γ0) = ordp(c0) = n− 1, from (6)
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we get ordp(δl) = n − 1. From this and the assumption E2σ(C) ∈ (ut, pn)S,
we get l ≥ t.

We note that the inequality l ≥ t implies that actually the case n ≥ 2
does not occur (cf. the sequence of relations e > l ≥ t > pd = (n − 1)e). ¤

We are now ready to prove Proposition 2 in the case when p|e (i.e., m ≥ 1)
and the content of C is 1. It suffices to show that τ(π) + 1 ≥ n. We can
assume that τ(π) + 1 ≤ n and it suffices to show that τ(π) + 1 = n.

As τ(π) = ordp(E1), by Weierstraß preparation theorem we can write

E1 = pτ(π)E2θ,

where θ ∈ S is a unit and where E2 ∈ W (k)[u] is a Weierstraß polynomial
of degree ι(π) < e. As E1σ(C) ∈ (ut, pn)S and as n > τ(π), we get that

E2σ(C) ∈ (ut, pn−τ(π))S.

As d = (n − 1) e
p
≥ τ(π) e

p
and cd = 1, we can consider the monic polynomial

C1 = C1(u) = ud + cd−1u
d−1 + · · · + cτ(π) e

p
uτ(π) e

p ∈ W (k)[u].

It follows from Lemma 4 that ordp(cj) ≥ n − τ(π) for j < τ(π) e
p
. Thus

C1 − C ∈ pn−τ(π)
S and therefore we obtain

E2σ(C1) = E2σ(C1 − C) + E2σ(C) ∈ (ut, pn−τ(π))S. (7)

We write C1 = uτ(π) e
p C2. Then the constant term of C2 is cτ(π) e

p
and thus it is

not divisible by pn−τ(π), cf. (3). As n > τ(π), the relation (n − 1)e = pd < t
implies that t − τ(π)e > 0. Thus from (7) we get that

E2σ(C2) ∈ (ut−τ(π)e, pn−τ(π))S. (8)

A similar argument shows that

E0σ(C2) ∈ (ut−τ(π)e, pn−τ(π))S. (9)

From Corollary 5 applied to the quintuple (t − τ(π)e, C2, E0, E2, n − τ(π))
instead of (t, C,E0, E2, n), we get that ι(π) = deg(E2) ≥ t − τ(π)e. As
ι(π) ≤ e − 1 and as n ≥ τ(π) + 1, we conclude that t ≤ τ(π)e + ι(π) =
min{τ(π)e + ι(π), ne}. As ι(π) ≤ e − 1, the relations (n − 1)e = pd < t ≤
min{τ(π)e + ι(π), ne} imply that n ≤ τ(π) + 1. Thus n = τ(π) + 1 and this
ends the proof of the Proposition 2 in the second case p|e. ¤
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3.1 Formulas for s

For a uniformizer π of V , Lemma 1 and Proposition 2 motivate the intro-
duction of the following invariant

t(π) := ⌊
τ(π)e + ι(π)

p − 1
⌋ ∈ N ∪ {∞}.

Always there exists a π such that t(π) is finite, cf. Lemma 3.
Based on the last sentence of Proposition 2, we define ǫ ∈ {0, 1} as follows.

If m = 0, then ǫ := 0 and if m ≥ 1, then ǫ := 1. Next we will define a number
s = sV ∈ N as follows. For all non-negative integers i let

si := i(τ + ǫ) and ti := ⌊
τe + ι

(p − 1)pi
⌋.

Thus t0 = ⌊ τe+ι
p−1

⌋ is the minimum of t(π) for all possible uniformizers π of

V and we have ti+1 = ⌊ ti
p
⌋ for all i ≥ 0. Let z ∈ N be the smallest number

such that we have tz − tz+1 ≤ τ + ǫ. Equivalently, let z ∈ N be the smallest
number such that we have

sz + tz = min{si + ti|i ∈ N} =: s = sV .

We note that

0 = s0 < s1 < · · · < sz and 0 ≤ tz < tz−1 < · · · < t0.

Moreover the following relations hold:

s = sz + tz < sz−1 + tz−1 < · · · < s1 + t1 < s0 + t0 = t0 = ⌊
τe + ι

p − 1
⌋. (10)

By Lemma 3 there exists a π such that τ(π) ≤ m+1 (with m = ordp(e)).
We have s ≤ ⌊ τe+ι

p−1
⌋ and thus, as ι ≤ e − 1, we get

s ≤
2e − 1 + e ordp(e)

p − 1
. (11)

If t0 ≥ 1, let v := ⌊logp t0⌋ and we consider the p-adic expansion

t0 =
v

∑

j=0

ajp
j, 0 ≤ aj < p, av 6= 0. (12)
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Example 1 We assume that e ≤ p−2. Thus p is odd, m = ι = 0, and τ = 1.
We have s ≤ e

p−1
, cf. (10). Therefore s = 0.

Example 2 We assume that m = 0 and e ≥ p − 1. As m = 0 we have
τ = τ + ǫ = 1 and thus (sz, tz) is either (v, 1) or (v + 1, 0). Therefore for
m = 0 and e ≥ p − 1 we get s = v + 1 = 1 + ⌊logp(

e
p−1

)⌋ = ⌊logp(
pe

p−1
)⌋

and this is the same expression as in [Bon]. We have s = 1 if and only if
p− 1 ≤ e ≤ p2 − p− 1. In general, for m = 0 we have the following practical
upper bound s ≤ 1 + logp e.

Example 3 We assume that E = up − p. Then τ(π) = ∞. For n ∈ N∗ we
have Eσ(

∑n

i=1 pn−iui−1) = upn − pn. Thus if M = Sn and ϕ : M (σ) → M
takes 1 to the image of E in M = Sn, then for N := M+ 1

un (
∑n

i=1 pn−iui−1)M
we have ϕ(N (σ)) = M ⊂ N , pnN = 0 ⊂ M , pn−1N * M and therefore
Lemma 2 is optimal in general. The smallest t for which one has N ⊂ 1

ut M
is n itself and thus it does not have an upper bound independently of n.

Let π̃ = c0p + c1π + · · ·+ cp−1π
p−1 be another uniformizer of V . We have

c0, c1, c
−1
1 , c2, . . . , cp−1 ∈ W (k). It is easy to see that π̃p is congruent modulo

p2 to the element pcp
1 of pW (k). Thus, if Ẽ(u) = up + ãp−1u

p−1 + · · · + ã0 is
the Eisenstein polynomial that has π̃ as a root, then for i ∈ {1, . . . , p − 1}
we have ãi ∈ p2W (k). Therefore τ ≥ 2. But τ ≤ m + 1 = 2, cf. Lemma 3.
Thus τ = 2. From inequalities (10) we get that we have s ≤ 2p+ι

p−1
. Thus for

p = 3 we have s ≤ 4 and for p ≥ 5 we have s ≤ 3.

Example 4 We assume that m ≥ 1. We have tv+1 ≤ t0
pv+1 < 1 and thus

tv+1 = 0. Therefore z ≤ v + 1 and s ≤ sv+1 + tv+1 = sv+1 = (v + 1)(τ + 1).
We have the inequalities (τ + 1)e/(p − 1) ≥ t0 and logp t0 ≥ v. Moreover
τ ≤ m + 1 by Lemma 3. We find the inequality

s ≤ (logp(m + 2) + logp e − logp(p − 1) + 1)(m + 2).

As m = ordp e, logp(m + 2) < m + 1, and logp(p − 1) ∈ [0, 1), we find that

s < (logp e + ordp e + 2)(ordp e + 2).

If (p,m) 6= (2, 1), then logp(m + 2) ≤ m and we get that

s ≤ (logp e + ordp e + 1)(ordp e + 2).
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4 Proof of Theorem 1

We prove that Theorem 1 holds for the number s of Subsection 3.1 if V is
complete and has perfect residue field k. We already noted in Section 2 that
it is enough to treat this case.

We choose the uniformizer π of V in such a way that τ = τ(π) is minimal
and ι = ι(π). Let z ∈ N, the sequence of pairs (s0, t0), . . . , (sz, tz), and s ∈ N
be as in Subsection 3.1. Thus t0 = ⌊(τe+ ι)/(p−1)⌋ = t0(π) and s = sz + tz.

Let f : G → H be a homomorphism of finite flat commutative group
schemes of p power order over V , which induces an isomorphism fK : GK →
HK in generic fibers. We first remark that if there exists a homomorphism
f ′ : H → G such that f ◦ f ′ = ps idH , then we have f ′

K = psf−1
K and thus the

equality f ′ ◦ f = ps idG also holds as it holds generically; moreover, as the
equalities continue to hold in the special fibre we conclude that the kernel
and cokernel of fk are annihilated by ps.

We choose an epimorphism ξH : H̃ ։ H from a truncated Barsotti–Tate
group H̃. We consider the following fiber product

G̃
f̃

−−−→ H̃

ξG





y





y

ξH

G
f

−−−→ H

in the category F . Then f̃K is an isomorphism. Assume that there exists a
homomorphism f̃ ′ : H̃ → G̃ such that f̃ ◦ f̃ ′ = ps idH̃ . Then ξG ◦ f̃ ′ is zero
on the finite flat group scheme Ker(ξH) because this is true for the generic
fibers. Thus there exists f ′ : H → G such that f ′ ◦ ξH = ξG ◦ f̃ ′. One easily
verifies that f ◦ f ′ = ps idH .

Thus to prove the existence of f ′ we can assume that f = f̃ and that
H = H̃ is a truncated Barsotti–Tate group of level n > s.

Next we translate the existence of f ′ in terms of Breuil modules. Let
(M,ϕ) and (N,ψ) be the Breuil modules of H and G (respectively). We
know by Proposition 1 (c) that to f corresponds a S-linear monomorphism
M →֒ N whose cokernel is annihilated by some power ut. We will assume
that t is the smallest natural number with this property. We put aside the
case t = 0 (i.e., the case when f : G → H is an isomorphism) which is trivial.
The existence of f ′ : H → G is equivalent to the inclusion

psN ⊆ M. (13)
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Before we prove this inclusion we show that Theorem 1 follows from it.
It remains to prove the last sentence of the Theorem 1. Hence again let H
be a truncated Barsotti–Tate group of level n > s.

The identity f ◦ f ′ = ps idH means that we have a commutative diagram:

H
f ′

//

ps
ÃÃB

B

B

B

B

B

B

B

G

f

²²

H.

We note that a homomorphism of finite flat group schemes over V is zero if
it induces the zero homomorphism at the level of generic fibers. Therefore
we obtain a commutative diagram:

H/(H[ps])
f̆ ′

//

%%K

K

K

K

K

K

K

K

K

K

G

f

²²

H.

We see that f̆ ′ is a closed immersion because the diagonal arrow is. Now we
apply the functor ⌈pn−s⌉ (see Section 1) to the last diagram:

H/(H[ps])
f̆ ′⌈pn−s⌉

//

&&N

N

N

N

N

N

N

N

N

N

N

G⌈pn−s⌉

f⌈pn−s⌉
²²

H[pn−s].

The horizontal homomorphism is again a closed immersion. As it is a ho-
momorphism between finite flat group schemes of the same order, it has to
be an isomorphism. The diagonal arrow is trivially an isomorphism. Thus
f⌈pn−s⌉ : G⌈pn−s⌉ → H[pn−s] is an isomorphism and therefore G⌈pn−s⌉ is a
truncated Barsotti–Tate group of level n − s. This shows the last sentence
of Theorem 1. It remains to prove the inclusion (13).

We will prove by induction on j ∈ {0, . . . , z} that we have psjN ⊆ 1

u
tj

M .

We remark that by Lemma 2 this implies that psj+tjN ⊂ M . As s = sz+tz
the induction gives the desired inclusion (13) and ends the proof of Theorem
1. We also remark that already the base of the induction j = 0 implies the
Theorem 1 but with the much weaker bound s = t0.
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For the base of the induction it suffices to show that t ≤ t0. Let x ∈ N be
such that ut−1x /∈ M . With {e1, . . . , eh} a Sn-basis of M as before Lemma
1, we write

x =
h

∑

i=1

αi

ut
ei, αi ∈ Sn.

From Lemma 1 we get that for each i ∈ {1, . . . , h} we have Eσ(αi) ∈
ut(p−1)

Sn. By the minimality of t, there exists i0 ∈ {1, . . . , h} such that
αi0 is not divisible by u. Let C = C(u) ∈ S be such that its reduc-
tion modulo pn is αi0 . The constant term of C is not divisible by pn and
we have Eσ(C) ∈ (ut(p−1), pn)S. From this and Proposition 2 we get that
t(p − 1) ≤ min{τe + ι, ne}. Thus t ≤ t0 = ⌊(τe + ι)/(p − 1)⌋.

If 0 < j < z, then the inductive step from j − 1 to j goes as follows.
We assume that psj−1N ⊆ 1

u
tj−1

M . Let lj−1 ∈ {0, . . . , tj−1} be the smallest

number such that we have psj−1N ⊆ 1

u
lj−1

M . If lj−1 = 0, then psj−1N ⊆ M

and thus, as sj−1 < sj, we also have psjN ⊆ M ⊆ 1

u
tj

M . Therefore we can
assume that 1 ≤ lj−1 ≤ tj−1. Let y ∈ psj−1N . We write

y =
h

∑

i=1

ηi

uni
ei,

where ηi ∈ Sn \ uSn and where ni ∈ {0, . . . , lj−1}. Let Ci = Ci(u) ∈ S be
such that its reduction modulo pn is ηi. We want to show that pτ+ǫy ∈ 1

u
tj

M .

For this it suffices to show that for each i ∈ {1, . . . , h} we have pτ+ǫ ηi

uni
∈

1

u
tj

Sn. To check this we can assume that ni ≥ tj + 1. As

tj + 1 = ⌊
tj−1

p
⌋ + 1 ≥

tj−1 + 1

p
≥

lj−1 + 1

p
,

we get that pni − lj−1 ≥ 1. As ηi

uni
= ηiu

lj−1−ni

u
lj−1

, from Lemma 1 (ap-

plied with y, ϕ(1 ⊗ y) ∈ psj−1N ⊆ 1

u
lj−1

M) we get that Eσ(Ciu
lj−1−ni) ∈

(u(p−1)lj−1 , pn)S. This implies that

Eσ(Ci) ∈ (upni−lj−1 , pn)S ⊆ (u, pn)S.

As ηi ∈ Sn \ uSn, the constant term of Ci is not divisible by pn. Thus from
Proposition 2 applied to (Ci, pni − lj−1) instead of (C, t) and from the defini-
tion of ǫ in Subsection 3.1, we get σ(pτ+ǫCi) = pτ+ǫσ(Ci) ∈ (upni−lj−1 , pn)S.
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This implies that we can write pτ+ǫCi = Ai +Bi, where Ai ∈ pn
S and where

Bi ∈ uni−⌊
lj−1

p
⌋
S. Thus

pτ+ǫ ηi

uni
∈

1

u⌊
lj−1

p
⌋
Sn ⊆

1

u⌊
tj−1

p
⌋
Sn =

1

utj
Sn.

Therefore pτ+ǫy ∈ 1

u
tj

M . As sj = sj−1 + τ + ǫ and as y ∈ psj−1N is arbitrary,

we conclude that psjN = pτ+ǫpsj−1N ⊆ 1

u
tj

M . This ends the induction. ¤

5 Proofs of Corollaries 1 to 4 and Theorem 2

5.1 Proofs of the Corollaries 1 to 4

Corollary 1 follows from Theorem 1 and Example 1.
In connection to the Corollaries 2 to 4, let G̃ be the schematic closure in

G ×V H of the graph of the homomorphism h : GK → HK and let i : G̃ →֒
G ×V H be the resulting closed embedding homomorphism. Via the two
projections q1 : G×V H → G and q2 : G×V H → H we get homomorphisms
ρ1 : G̃ → G and ρ2 : G̃ → H. The generic fiber ρ1,K of ρ1 is an isomorphism.

We prove the first part of Corollary 2. We consider the commutative
diagram:

G̃
i

//

ρ1
$$H

H

H

H

H

H

H

H

H

H

G ×V H
q2

//

q1

²²

H

G.

By Theorem 1 there exists a homomorphism ρ′
1 : G → G̃ such that ρ′

1 ◦ ρ1 =
ps idG̃. Then q2 ◦ i ◦ ρ′

1 is the desired extension of psh.
To check the last part of Corollary 2, let 0 → G → J → H → 0 be

a short exact sequence whose generic fibre splits. It defines an arbitrary
element ν ∈ Ker(Ext1(H,G) → Ext1(HK , GK)). Let h : HK → JK be a
homomorphism that is a splitting of 0 → GK → JK → HK → 0. Let g :
H → J be such that its generic fibre is psh, cf. first part of Corollary 2. Let
0 → G → Js → H → 0 be the pull back of 0 → G → J → H → 0 via ps idH .
Then there exists a unique section gs : H → Js of 0 → G → Js → H → 0
whose composite with Js → J is g. Thus psν = 0. This proves Corollary 2.
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We prove Corollary 3. From Corollary 2 we get that psh extends to a ho-
momorphism G → H which induces a homomorphism G[pn−s] = G/G[ps] →
H[pn−s] whose generic fibre is h[pn−s]. This proves Corollary 3.

We prove Corollary 4 for n > 2s. As h : GK → HK is an isomorphism,
ρ2,K is also an isomorphism. Thus ρ2⌈p

n−s⌉ : G̃⌈pn−s⌉ → H[pn−s] is an
isomorphism, cf. Theorem 1. By applying Theorem 1 to the Cartier dual
(ρ1⌈p

n−s⌉)t : (G⌈pn−s⌉)t → (G̃⌈pn−s⌉)t of ρ1⌈p
n−s⌉ : G̃⌈pn−s⌉ → G⌈pn−s⌉,

we get that (G⌈pn−s⌉)t⌈pn−2s⌉ is isomorphic to (G̃⌈pn−s⌉)t[pn−2s] and thus
with Ht[pn−2s]. Therefore {(G⌈pn−s⌉)t⌈pn−2s⌉}t is isomorphic to H[pn−2s].
From this and the fact that we have a short exact sequence 0 → G⌈ps⌉ →
G⌈pn−s⌉ → {(G⌈pn−s⌉)t⌈pn−2s⌉}t → 0, we get that the Corollary 4 holds. ¤

5.2 Proof of Theorem 2

Clearly the homomorphism g : G[pn−sY ] → H[pn−sY ] is unique if it exists. We
proved the case Y = Spec V in Corollary 3. Let y ∈ Y be a point; let κ(y)
be its residue field and let SpecRy be its local ring. If h[pn−sY ] extends to a
homomorphism gy : GRy

[pn−sY ] → HRy
[pn−sY ], then h[pn−sY ] extends also to

a homomorphism gUy
: GUy

[pn−sY ] → HUy
[pn−sY ] over an open neighborhood

Uy of y in Y . It follows from our assumptions that the extension gy of h[pn−sY ]
exists for each point y ∈ Y of codimension 1. Indeed, if char κ(y) 6= p the
group schemes GRy

and HRy
are étale and therefore an extension gy trivially

exists. If char κ(y) = p, then Corollary 3 implies that gy exists provided we
have n > sy for a suitable non-negative integer sy that depends only on the
ramification index of the discrete valuation ring Ry. As the set Ωp(Y ) of
points of Y of codimension 1 and of characteristic p is finite, we can define

sY := max{sy|y ∈ Ωp(Y )} ∈ N.

With this sY , there exists an extension gU : GU [pn−sY ] → HU [pn−sY ] of
h[pn−sY ] over an open subscheme U ⊆ Y such that codimY (Y \ U) ≥ 2.
As Y is a normal noetherian integral scheme, the existence of an exten-
sion g : G[pn−sY ] → H[pn−sY ] of gU is a general fact which holds for every
locally free coherent OY -modules M and N and for each homomorphism
αU : MU → NU of OU -modules. ¤
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6 Upper bounds on heights

In this section we assume that V is complete and k is perfect. Let π ∈ V
and qπ : S ։ V be as in Section 2. We will study three different heights of
a finite flat commutative group scheme G of p power order over V .

Definition 3 (a) By the Barsotti–Tate height of G we mean the smallest
non-negative integer h1(G) such that G is a closed subgroup scheme of a
truncated Barsotti–Tate group over V of height h1(G).

(b) By the Barsotti–Tate co-height of G we mean the smallest non-
negative integer h2(G) such that G is the quotient of a truncated Barsotti–
Tate group over V of height h2(G).

(c) By the Brueil (or generator) height of G we mean the smallest number
h3(G) of generators of the S-module N , where (N,ψ) := B(G).

6.1 Simple inequalities

We have h2(G) = h1(G
t) and ph3(G) is the order of Gk[p]. If G is a truncated

Barsotti–Tate group, then h1(G) = h2(G) = h3(G) are equal to the height of
G. Based on these properties, it is easy to check that in general we have

h3(G) = h3(G
t) ≤ min{h1(G), h2(G)}.

Lemma 5 We have h1(G) ≤ 2h3(G).

Proof. The proof of this is similar to the proof of [VZ1], Proposition 2 (ii) but
worked out in a contravariant way. If h4(G) ∈ {0, . . . , h3(G)} is the smallest
number of generators of Im(ψ)/EN , then as in loc. cit. we argue that there
exists a Breuil window (Q, φ) relative to qπ : S ։ V which has rank h3(G)+
h4(G) and which is equipped naturally with a surjection (Q, φ) ։ (N,ψ).
More precisely, starting with S-linear maps χT : T := S

h3(G) → N and
χL : L := S

h4(G) → Im(ψ) such that χT is onto and Im(ψ) = Im(χL) + EN ,
one can take Q := T ⊕ L and the surjection χT ⊕ χL : Q ։ N .

The existence of the surjection (Q, φ) ։ (N,ψ) implies that G is a closed
subgroup scheme of the p-divisible group of height h3(G) + h4(G) over V
associated to (Q, φ). Thus h1(G) ≤ h3(G) + h4(G) ≤ 2h3(G). ¤

If o(G) is as in Section 2, then we obviously have

h3(G) ≤ o(G). (14)
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If we have a short exact sequence

0 → G1 → G → G2 → 0

of finite flat group schemes over V , then as the functor B takes short exact
sequences to short exact sequences (in the category of S-modules endowed
with Frobenius maps), we have the subadditive inequality

h3(G) ≤ h3(G1) + h3(G2). (15)

Proposition 3 For every truncated Barsotti–Tate group H over V of height
r and for each G whose generic fiber is isomorphic to HK, we have

h3(G) ≤ (2s + 1)r.

Therefore we have max{h1(G), h2(G), h3(G)} ≤ (4s + 2)r.

Proof. Let n be the level of H. If n ≤ 2s, then from (14) we get that
h3(G) ≤ o(G) ≤ 2sr. We now assume that n > 2s. Then from Corollary
4 we get that G⌈pn−s⌉/G⌈ps⌉ is isomorphic to H[pn−2s]. Therefore we have
h3(G⌈pn−s⌉/G⌈ps⌉) = r.

As the orders of G⌈ps⌉ and G/G⌈pn−s⌉ are equal to sr, from inequal-
ities (14) and (15) we get first that h3(G⌈pn−s⌉) ≤ h3(G⌈pn−s⌉/G⌈ps⌉) +
h3(G⌈ps⌉) ≤ r + sr = (s + 1)r and second that h3(G) ≤ h3(G⌈pn−s⌉) +
h3(G/G⌈pn−s⌉) ≤ (s + 1)r + sr = (2s + 1)r.

The group scheme Gt satisfies the same property as G i.e., Gt
K is iso-

morphic to Ht
K . Thus we also have h3(G

t) ≤ (2s + 1)r. From this and
Lemma 5 we get that h2(G) = h1(G

t) ≤ 2h3(G) ≤ (4s + 2)r. Similarly,
h1(G) ≤ 2h3(G) ≤ (4s + 2)r. Thus max{h1(G), h2(G), h3(G)} ≤ (4s + 2)r.¤
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ture of Fontaine, Ann. Sci. École Norm. Sup. (4) 40 (2007),
no. 4, 633–674.

[Liu3] Liu, T.: The correspondence between Barsotti-Tate groups

and Kisin modules when p = 2, manuscript available at
http://www.math.purdue.edu/˜tongliu/research.html

[T] Tate, J.: p-divisible groups, 1967 Proc. Conf. Local Fields
(Driebergen, 1966), 158–183, Springer, Berlin.

24



[V] Vasiu, A.: Crystalline boundedness principle, Ann. Sci. École
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