Math 304

Spring 2019

No books, no notes, no calculators. You must show work, unless the question is a true/false, multiple choice, or fill-in-the-blank question.

Name: _____

Section: _____

Section Number	Instructor	Meeting Time	
1	David Biddle	8:00	
2	Daniel Rossi	8:00	
3	David Biddle	9:40	
4	Thomas Kilcoyne	11:20	
5	Dikran Karagueuzian	11:20	
6	Thomas Kilcoyne	1:10	
7	Matt Evans	2:50	
8	Joshua Carey	4:40	

Page:	2	3	4	5	6	Total
Points:	14	18	22	10	10	74
Score:						

- 1. Fill in the blanks in the following definitions and statements of results from the textbook.
 - (a) (4 points) A linear transformation L from one vector space to another has two fundamental properties:
 - 1. For all vectors u and v, ______ = _____.
 - 2. For all vectors w and all scalars c, ______ = _____.

Hint: The properties above are listed in Chapter 1 with the heading "The key to the whole class".

- (b) (6 points) A matrix is said to be in "reduced row echelon form" if the following conditions are met:
 - 0. All zero rows are below all non-zero rows.
 - 1. In each non-zero row, the leftmost non-zero entry, called a pivot, is 1.
 - 2. The pivot of any given row is always _____
 - 3. The pivot is the only _____
- (c) (4 points) Suppose $B = (v_1, v_2, \dots, v_n)$ is an ordered basis for a vector space V. The notation below defines a vector in V which is given by the equation:

- (d) (3 points) The *Cauchy-Schwarz inequality* states that for any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the absolute value of the dot product, $|\mathbf{u} \cdot \mathbf{v}|$ ______.
- (e) (3 points) Theorem 7.5.1 states that an $n \times n$ matrix M is invertible if and only if the system of n equations in n unknowns $M\mathbf{x} = \mathbf{0}$ _____.
- 2. (12 points) Let V be the vector space of polynomials of degree less than or equal to 2. Let B be the ordered basis $(x^2, x, 1)$ for V. Let $L: V \to V$ be the linear transformation $\frac{d}{dx}$.

Find ${}_{B}L_{B}$, that is, the matrix of L with respect to the basis B (used as both the input basis and output basis).

3. (12 points) Let S and T be linear transformations from \mathbb{R}^2 to \mathbb{R}^2 defined by

$$S\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}-2 & -2\\-2 & -1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} \qquad T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}-3 & 0\\-3 & -1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$$

Find the matrix of the composition $T \circ S$ (with respect to the standard basis of \mathbb{R}^2), that is, the function that sends

 $\begin{bmatrix} x \\ y \end{bmatrix} \quad \text{to} \quad T\left(S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)\right)$

4. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ be vectors such that

$$\mathbf{u} \cdot \mathbf{v} = 8$$
, $\mathbf{u} \cdot \mathbf{w} = -7$, $\mathbf{v} \cdot \mathbf{w} = 6$, and $-2\mathbf{u} + 6\mathbf{v} = \mathbf{x}$.

- (a) (3 points) Find the dot product $\mathbf{v} \cdot \mathbf{u}$.
- (b) (7 points) Find the dot product $\mathbf{x} \cdot \mathbf{w}$.

5. (10 points) Give a geometric description of the following system of equations:

$$15x + 9y - 15z = -6$$

$$25x + 15y - 25z = -10$$

$$-35x - 21y + 35z = 14$$

Hints: this was a homework question. A "geometric description" is something like "these equations represent two lines in the plane, which intersect at the origin."

6. (10 points) Given the following LU factorization of the matrix M:

$$M = \begin{bmatrix} -2 & -3 & 1 \\ 6 & 5 & 1 \\ -6 & 3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} -2 & -3 & 1 \\ 0 & -4 & 4 \\ 0 & 0 & 1 \end{bmatrix} = LU$$

Use this factorization to solve the system of equations:

$$\begin{bmatrix} -2 & -3 & 1 \\ 6 & 5 & 1 \\ -6 & 3 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ -30 \\ 29 \end{bmatrix}$$