MATH 478: SOLUTION TO PROBLEM 3.1.2 (C)

1. Example Solution

Problem (3.1.2 (c)). Using the $\epsilon-N$ definition of limit, prove that $\lim \left[\sqrt{n^{2}+n}-n\right]=\frac{1}{2}$.
Solution of Problem 3.1.2 (c). Our proof will have 5 steps: first we will do some algebra to put the expression for which we are computing the limit into a more convenient form. Then, using this more convenient form, we obtain a new expression which we must show is bounded by ϵ in order to prove that the limit is $1 / 2$. Next we develop bounds for the numerator and denominator of this new expression. Then we combine these bounds to get a bound for the new expression as a whole. Finally we are able to choose an N associated to a given ϵ and prove that the limit is $1 / 2$, as claimed.

Step 1. We put the expression $\sqrt{n^{2}+n}-n$ into a more convenient form. Observe that

$$
\sqrt{n^{2}+n}-n=\frac{\left(\sqrt{n^{2}+n}-n\right)\left(\sqrt{n^{2}+n}+n\right)}{\sqrt{n^{2}+n}+n}=\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n}=\frac{n}{\sqrt{n^{2}+n}+n} .
$$

So in order to solve the problem it suffices to prove that $\lim \left[\frac{n}{\sqrt{n^{2}+n}+n}\right]=\frac{1}{2}$. In other words, we wish to show that given $\epsilon>0, \exists N$ such that $\forall n>N$,

$$
\begin{equation*}
\left|\frac{n}{\sqrt{n^{2}+n}+n}-\frac{1}{2}\right|<\epsilon \tag{1}
\end{equation*}
$$

Step 2. We rewrite the left-hand-side of the inequality (1) as

$$
\begin{equation*}
\frac{n}{\sqrt{n^{2}+n}+n}-\frac{1}{2}=\frac{2 n-\left(\sqrt{n^{2}+n}+n\right)}{2\left(\sqrt{n^{2}+n}+n\right)}=\frac{n-\sqrt{n^{2}+n}}{2\left(\sqrt{n^{2}+n}+n\right)} \tag{2}
\end{equation*}
$$

Step 3. Now we obtain bounds on the numerator and denominator of the expression on the far right of (2). Observe that

$$
n^{2}<n^{2}+n<n^{2}+2 n+1=(n+1)^{2} .
$$

Taking square roots we have $n<\sqrt{n^{2}+n}<n+1$. Thus we have $\left|n-\sqrt{n^{2}+n}\right|<1$ and $\sqrt{n^{2}+n}+n>2 n$.

Step 4. We use the bounds obtained in Step 3 to bound the whole fraction on the left-hand side of (1):

$$
\left|\frac{n-\sqrt{n^{2}+n}}{2\left(\sqrt{n^{2}+n}+n\right)}\right|<\frac{1}{2(2 n)}=\frac{1}{4 n}
$$

Step 5. Now we can show that $\lim \left[\frac{n}{\sqrt{n^{2}+n}+n}\right]=\frac{1}{2}$. Given $\epsilon>0$, we take $N=\frac{1}{4 \epsilon}$. Now if $n>N$, we have $n>\frac{1}{4 \epsilon}$ and so $\frac{1}{4 n}<\epsilon$. We therefore have

$$
\left|\frac{n}{\sqrt{n^{2}+n}+n}-\frac{1}{2}\right|=\left|\frac{n-\sqrt{n^{2}+n}}{2\left(\sqrt{n^{2}+n}+n\right)}\right|<\frac{1}{4 n}<\epsilon
$$

as desired. Notice that the equality above is an application of Step 2, and that the first inequality is an application of Step 4.

Finally, note that Step 5 actually computes the desired limit, as we showed in Step 1.

Mathematics Department, Binghamton Univeristy, P. O. Box 6000, Binghamton, New York, 13902-6000

E-mail address: dikran@math.binghamton.edu

