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CHAPTER 5

Advanced theory of infinite series

Even as the finite encloses an infinite series

And in the unlimited limits appear,

So the soul of immensity dwells in minutia

And in the narrowest limits no limit in here.

What joy to discern the minute in infinity!

The vast to perceive in the small, what divinity!

Jacob Bernoulli (1654-1705) Ars Conjectandi.

This chapter is about going in-depth into the theory and application of infinite
series. One infinite series that will come up again and again in this chapter and the
next chapter as well, is the Riemann zeta function

ζ(z) =

∞∑

n=1

1

nz
,

introduced in Section 4.6. Amongst many other things, in this chapter we’ll see
how to write some well-known constants in terms of the Riemann zeta function;
e.g. we’ll derive the following neat formula for our friend log 2 (§ 5.5):

log 2 =

∞∑

n=2

1

2n
ζ(n),

another formula for our friend the Euler-Mascheroni constant (§ 5.9):

γ =

∞∑

n=2

(−1)n

n
ζ(n),

and two more formulas involving our most delicious friend π (see §’s 5.10 and 5.11):

π =
∞∑

n=2

3n − 1

4n
ζ(n + 1) ,

π2

6
= ζ(2) =

∞∑

n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · · .

In this chapter, we’ll also derive Gregory-Leibniz-Madhava’s formula (§ 5.10)

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+− · · · ,

and Machin’s formula which started the “decimal place race” of computing π (§
5.10):

π = 4arctan
(1

5

)

− arctan
( 1

239

)

= 4

∞∑

n=0

(−1)n

(2n + 1)

(
4

52n+1
− 1

2392n+1

)

.
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Leibniz’s formula for π/4 is an example of an “alternating series”. We study
these types of series in Section 5.1. In Section 5.2 and Section 5.3 we look at the
ratio and root tests, which you are probably familiar with from elementary calculus.
In Section 5.4 we look at power series and prove some pretty powerful properties
of power series. The formula for log 2, γ, and the formula π =

∑∞
n=2

3n−1
4n ζ(n + 1)

displayed above are proved using a famous theorem called the Cauchy double series
theorem. This theorem, and double sequences and series in general, are the subject
of Section 5.5. In Section 5.6 we investigate rearranging (that is, mixing up the
order of the terms in a) series. Here’s an interesting question: Does the series

∑

p is prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+

1

19
+

1

23
+

1

29
+ · · ·

converge or diverge? For the answer, see Section 5.7. In elementary calculus, you
probably never seen the power series representations of tangent and secant. This
is because these series are somewhat sophisticated mathematically speaking. In
Section 5.8 we shall derive the power representations

tan z =

∞∑

n=1

(−1)n−1 22n(22n − 1)B2n

(2n)!
z2n−1,

and

sec z =

∞∑

n=0

(−1)n E2n

(2n)!
z2n.

Here, the B2n’s are called “Bernoulli numbers” and the E2n’s are called “Euler
numbers,” which are certain numbers having extraordinary properties. Although
you’ve probably never seen the tangent and secant power series, you might have
seen the logarithmic, binomial, and arctangent series:

log(1 + z) =
∞∑

n=1

(−1)n−1

n
zn , (1 + z)α =

∞∑

n=0

(
α

n

)

zn , arctan z =
∞∑

n=0

(−1)n z2n+1

2n + 1

where α ∈ R. You most likely used calculus (derivatives and integrals) to derive
these formulæ. In Section 5.9 we shall derive these formulæ without any calculus.
Finally, in Sections 5.10 and 5.11 we derive many incredible and awe-inspiring
formulæ involving π. In particular, in Section 5.11 we look at the famous Basel
problem: Find the sum of the reciprocals of the squares of the natural numbers,
∑∞

n=1
1

n2 . The answer, first given by Euler in 1734, is π2/6.

Chapter 5 objectives: The student will be able to . . .

• determine the convergence, and radius and interval of convergence, for an infinite
series and power series, respectively, using various tests, e.g. Dirichlet, Abel,
ratio, root, and others.

• apply Cauchy’s double series theorem and know how it relates to rearrangement,
and multiplication and composition of power series.

• identify series formulæ for the various elementary functions (binomial, arctan-
gent, etc.) and for π.
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5.1. Summation by parts, bounded variation, and alternating series

In elementary calculus, you studied “integration by parts,” a formula I’m sure
you used quite often trying to integrate tricky integrals. In this section we study a
discrete version of the integration by parts formula called “summation by parts,”
which is used to sum tricky summations! Summation by parts has broad appli-
cations, including finding sums of powers of integers and to derive some famous
convergence tests for series, the Dirichlet and Abel tests.

5.1.1. Summation by parts and Abel’s lemma. Here is the famous sum-
mation by parts formula. The formula is complicated, but the proof is simple.

Theorem 5.1 (Summation by parts). For any complex sequences {an} and
{bn}, we have

n∑

k=m

bk+1(ak+1 − ak) +

n∑

k=m

ak(bk+1 − bk) = an+1bn+1 − ambm.

Proof. Combining the two terms on the left, we obtain
n∑

k=m

[

bk+1ak+1 − bk+1ak + akbk+1 − akbk

]

=

n∑

k=m

(
bk+1ak+1 − akbk

)
,

which is a telescoping sum, leaving us with only an+1bn+1 − ambm. �

As an easy corollary, we get Abel’s lemma named after Niels Abel1 (1802–
1829).

Corollary 5.2 (Abel’s lemma). Let {an} and {bn} be any complex se-
quences and let sn denote the n-th partial sum of the series corresponding to the
sequence {an}. Then for any m < n we have

n∑

k=m+1

akbk = snbn − smbm −
n−1∑

k=m

sk(bk+1 − bk).

Proof. Applying the summation by parts formula to the sequences {sn} and
{bn}, we obtain

n−1∑

k=m

bk+1(sk+1 − sk) +

n−1∑

k=m

sk(bk+1 − bk) = snbn − smbm.

Since ak+1 = sk+1 − sk, we conclude that

n−1∑

k=m

bk+1ak+1 +
n−1∑

k=m

sk(bk+1 − bk) = snbn − smbm.

Replacing k with k − 1 in the first sum and bringing the second sum to the right,
we get our result. �

Summation by parts is a very useful tool. We shall apply it find sums of powers
of integers (cf. [189], [60]); see the exercises for more applications.

1Abel has left mathematicians enough to keep them busy for 500 years. Charles Hermite

(1822–1901), in “Calculus Gems” [161].
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5.1.2. Sums of powers of integers.

Example 5.1. Let ak = k and bk = k. Then each of the differences ak+1 − ak

and bk+1 − bk equals 1, so by summation by parts, we have
n∑

k=1

(k + 1) +
n∑

k=1

k = (n + 1)(n + 1)− 1 · 1.

This sum reduces to

2
n∑

k=1

k = (n + 1)2 − n− 1 = n(n + 1),

which gives the well-known result:

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Example 5.2. Now let ak = k2 − k = k(k− 1) and bk = k− 1/2. In this case,
ak+1 − ak = (k + 1)k − k(k − 1) = 2k and bk+1 − bk = 1, so by the summation by
parts formula,

n∑

k=1

(

k +
1

2

)

(2k) +

n∑

k=1

(k2 − k)(1) = (n + 1)n ·
(

n +
1

2

)

.

The first sum on the left contains the sum
∑n

k=1 k and the second one contains the
negative of the same sum. Cancelling, we get

3

n∑

k=1

k2 =
n(n + 1)(2n + 1)

2
,

which gives the well-known result:

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Example 5.3. For our final result, let ak = k2 and bk = (k − 1)2. Then
ak+1 − ak = (k + 1)2 − k2 = 2k + 1 and bk+1 − bk = 2k − 1, so by the summation
by parts formula,

n∑

k=1

(k + 1)2(2k + 1) +

n∑

k=1

k2(2k − 1) = (n + 1)2 · n2.

Simplifying the left-hand side, we get

13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
.

In Section 12.5, using integration techniques, we’ll find a formula for 1p+· · ·+np

for any natural number p in terms of the Bernoulli numbers.

5.1.3. Sequences of bounded variation and Dirichlet’s test. A sequence
{an} of complex numbers is said to be of bounded variation if

∞∑

n=1

|an+1 − an| <∞.

Typical examples of a sequences of of bounded variation are bounded monotone se-
quences of real numbers. A nice property of general sequences of bounded variation
is that they always converge. We prove these facts in the following
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Proposition 5.3. Any sequence of bounded variation converges. Moreover,
any bounded monotone sequence is of bounded variation.

Proof. Let {an} be of bounded variation. Given m < n, we can write an−am

as a telescoping sum:

an − am = (am+1 − am) + (am+2 − am+1) + · · ·

+ (an−1 − an−2) + (an − an−1) =
n∑

k=m

(ak+1 − ak).

Hence,

|an − am| ≤
n∑

k=m

|ak+1 − ak|.

By assumption, the sum
∑∞

k=1 |ak+1 − ak| converges, so the sum on the right-
hand side of this inequality can be made arbitrarily small as m,n→∞ (Cauchy’s
criterion for series). Thus, {an} is Cauchy and hence converges.

Now let {an} be a nondecreasing and bounded sequence. We shall prove that
this sequence is of bounded variation; the proof for a nonincreasing sequence is
similar. In this case, we have an ≤ an+1 for each n, so for each n,

n∑

k=1

|ak+1 − ak| =
n∑

k=1

(ak+1 − ak) = (a2 − a1) + (a3 − a2)

+ · · ·+ (an − an−1) + (an+1 − an) = an+1,

since the sum telescoped. Since the sequence {an} is by assumption bounded, it
follows that the partial sums of the infinite series

∑∞
n=1 |an+1 − an| are bounded,

hence the series must converge by the nonnegative series test (Theorem 3.20). �

Here’s a useful test named after Johann Dirichlet (1805–1859).

Theorem 5.4 (Dirichlet’s test). Suppose that the partial sums of the series
∑

an are uniformly bounded (although the series
∑

an may not converge). Then
for any sequence {bn} that is of bounded variation and converges to zero, the series
∑

anbn converges. In particular, the series
∑

anbn converges if {bn} is a monotone
sequence of real numbers approaching zero.

Proof. The trick to use Abel’s lemma to rewrite
∑

anbn in terms of an ab-
solutely convergent series. Define a0 = 0 (so that s0 = a0 = 0) and b0 = 0. Then
setting m = 0 in Abel’s lemma, we can write

(5.1)

n∑

k=1

akbk = snbn −
n−1∑

k=1

sk(bk+1 − bk).

Now we are given two facts: The first is that the partial sums {sn} are bounded,
say by a constant C, and the second is that the sequence {bn} is of bounded
variation and converges to zero. Since {sn} is bounded and bn → 0 it follows that
snbn → 0. Since |sn| ≤ C for all n and {bn} is of bounded variation, the sum
∑∞

k=1 sk(bk+1 − bk) is absolutely convergent:

∞∑

k=1

|sk(bk+1 − bk)| ≤ C

∞∑

k=1

|bk+1 − bk| <∞.
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Therefore, taking n → ∞ in (5.1) it follows that the sum
∑

akbk converges (and
equals

∑∞
k=1 sk(bk+1 − bk)), and our proof is complete. �

Here is an example that everyone uses to illustrate Dirichlet’s test.

Example 5.4. For x ∈ (0, 2π), determine the convergence of the series
∞∑

n=1

cosnx

n
.

To do so, we let an = cosnx and bn = 1/n. Since {1/n} is a monotone sequence
converging to zero, by Dirichlet’s test, if we can prove that the partial sums of
∑

cosnx are bounded, then
∑∞

n=1
cos nx

n converges. To establish this boundedness,

we observe that Re eiθ = cos θ for any θ ∈ R, so
m∑

n=1

cos nx = Re

m∑

n=1

einx = Re
1− ei(m+1)x

1− einx
,

where we summed
∑m

n=1(e
ix)n via the geometric progression (2.3). Hence,

∣
∣
∣
∣
∣

m∑

n=1

cos nx

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

1− ei(m+1)x

1− einx

∣
∣
∣
∣
≤ 2

|1− eix| .

Since 1− eix = eix/2(e−ix/2 − eix/2) = −2ieix/2 sin(x/2), we see that

|1− eix| = 2| sin(x/2)| =⇒
∣
∣
∣
∣
∣

m∑

n=1

sinnx

∣
∣
∣
∣
∣
≤ 1

sin(x/2)
.

Thus, for x ∈ (0, 2π), by Dirichlet’s test, given any sequence {bn} of bounded
variation that converges to zero, the sum

∑∞
n=1 bn cos nx converges. In particular,

∑∞
n=1

cos nx
n converges, and more generally,

∑∞
n=1

cos nx
np converges for any p > 0. A

similar argument shows that for any x ∈ (0, 2π),
∑∞

n=1
sin nx

n converges.

Before going to other tests, it might be interesting to note that we can determine
the convergence of the series

∑∞
n=1

cos nx
n without using the fancy technology of

Dirichlet’s test. To this end, observe that from the addition formulas for sin(n ±
1/2)x, we have

cosnx =
sin(n + 1/2)x− sin(n− 1/2)x

2 sin(x/2)
,

which implies that, after gathering like terms,
m∑

n=1

cosnx

n
=

1

2 sin(x/2)

m∑

n=1

sin(n + 1/2)x− sin(n− 1/2)x

n

=
1

2 sin(x/2)

(
sin(3x/2)− sin(x/2)

1
+

sin(5x/2)− sin(3x/2)

3

+ · · ·+ sin(m + 1/2)x− sin(m− 1/2)x

m

)

=
1

2 sin(x/2)

(

− sin(x/2) +
sin(m + 1/2)x

m
+

m−1∑

n=1

sin(n + 1/2)x
( 1

n
− 1

n + 1

))

=
1

2 sin(x/2)

(

− sin(x/2) +
sin(m + 1/2)x

m
+

m−1∑

n=1

sin(n + 1/2)x
1

n(n + 1)

)

.
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Therefore,

(5.2)
1

2
+

m∑

n=1

cos nx

n
=

sin(m + 1/2)x

2m sin(x/2)
+

m−1∑

n=1

(
sin(n + 1/2)x

2 sin(x/2)
· 1

n(n + 1)

)

.

Since the sine is always bounded by 1 and
∑

1/n(n + 1) converges, it follows that
as m→∞, the first term on the right of (5.2) tends to zero while the summation
on the right of (5.2) converges; in particular, the series in question converges, and
we get the following pretty formula:

1

2
+

∞∑

n=1

cos nx

n
=

1

2 sin(x/2)

∞∑

n=1

sin(n + 1/2)x

n(n + 1)
, x ∈ (0, 2π).

In Example 5.39 of Section 5.9, we’ll show that
∑∞

n=1
cos nx

n = log(2 sin(x/2)).

5.1.4. Alternating series tests, log 2, and the irrationality of e. As a
direct consequence of Dirichlet’s test, we immediately get the alternating series test.

Theorem 5.5 (Alternating series test). If {an} is a sequence of bounded
variation that converges to zero, then the sum

∑
(−1)n−1an converges. In particu-

lar, if {an} is a monotone sequence of real numbers approaching zero, then the sum
∑

(−1)n−1an converges.

Proof. Since the partial sums of
∑

(−1)n−1 are bounded and {an} is of
bounded variation and converges to zero, the sum

∑
(−1)n−1an converges by Dirich-

let’s test. �

Example 5.5. The alternating harmonic series

∞∑

n=1

(−1)n−1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+− · · ·

converges. Of course, we already knew this and we also know that the value of the
alternating harmonic series equals log 2 (see Section 4.6).

We now come to a very useful theorem for approximation purposes.

Corollary 5.6 (Alternating series error estimate). If {an} is a monotone
sequence of real numbers approaching zero, and if s denotes the sum

∑
(−1)n−1an

and sn denotes the n-th partial sum, then

|s− sn| ≤ |an+1|.

Proof. To establish the error estimate, we assume that an ≥ 0 for each n, in
which case we have a1 ≥ a2 ≥ a3 ≥ a4 ≥ · · · ≥ 0. (The case when an ≤ 0 is similar
or can be derived from the present case by multiplying by −1.) Let’s consider how
s =

∑∞
n=1(−1)n−1an is approximated by the sn’s. Observe that s1 = a1 increases

from s0 = 0 by the amount a1; s2 = a1 − a2 = s1 − a2 decreases from s1 by the
amount a2; s3 = a1− a2 + a3 = s2 + a3 increases from s2 by the amount a3, and so
on; see Figure 5.1 for a picture of what’s going on here. Studying this figure also
shows why |s − sn| ≤ an+1 holds. For this reason, we shall leave the exact proof
details to the diligent and interested reader! �



236 5. ADVANCED THEORY OF INFINITE SERIES

0 s1

︸ ︷︷ ︸

a1

s2

a2

︷ ︸︸ ︷

s3

︸ ︷︷ ︸

a3

s4

a4

︷ ︸︸ ︷

s

Figure 5.1. The partial sums {sn} jump forward and backward
by the amounts given by the an’s. This picture also shows that
|s− s1| ≤ a2, |s− s2| ≤ a3, |s− s3| ≤ a4, . . ..

Example 5.6. Suppose that we wanted to find log 2 to two decimal places (in
base 10); that is, we want to find b0, b1, b2 in the decimal expansion log 2 = b0.b1b2

where by the usual convention, b2 is “rounded up” if b3 ≥ 5. We can determine these

decimals by finding n such that sn, the n-th partial sum of log 2 =
∑∞

n=1
(−1)n−1

n ,
satisfies

| log 2− sn| < 0.005;

that is,

log 2− 0.005 < sn < log 2 + 0.005.

Can you see why these inequalities guarantee that sn has a decimal expansion
starting with b0.b1b2? Any case, according to the alternating series error estimate,
we can make this this inequality hold by choosing n such that

|an+1| =
1

n + 1
< 0.005 =⇒ 500 < n + 1 =⇒ n = 500 works.

With about five hours of pencil and paper work (and ten coffee breaks ,) we find

that s500 =
∑500

n=1
(−1)n

n = 0.69 to two decimal places. Thus, log 2 = 0.69 to two
decimal places. A lot of work just to get two decimal places!

Example 5.7. (Irrationality of e, Proof II) Another nice application of the
alternating series error estimate (or rather its proof) is a simple proof that e is
irrational, cf. [135], [6]. Indeed, on the contrary, let us assume that e = m/n where
m,n ∈ N. Then we can write

n

m
= e−1 =

∞∑

k=0

(−1)k

k!
=⇒ n

m
−

m∑

k=0

(−1)k

k!
=

∞∑

k=m+1

(−1)k

k!
.

Multiplying both sides by m!/(−1)m+1 = ±m!, we obtain

(5.3) ±
(

n (m− 1)!−
m∑

k=0

(−1)k m!

k!

)

=

∞∑

k=m+1

(−1)k−m−1m!

k!
=

∞∑

k=1

(−1)k−1m!

(m + k)!
.

For 0 ≤ k ≤ m, m!/k! is an integer (this is because m! = 1 · 2 · · · k · (k + 1) · · ·m
contains a factor of k!), therefore the left-hand side of (5.3) is an integer, say a ∈ Z,

so that a =
∑∞

k=1
(−1)k−1m!

(m+k)! . Thus, as seen in Figure 5.1, we have

0 < a < s1 =

1∑

k=1

(−1)k−1m!

(m + k)!
=

1

m + 1
.
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Now recall that m ∈ N, so 1/(m + 1) ≤ 1/2. Thus, a is an integer strictly between
0 and 1/2; an obvious contradiction!

5.1.5. Abel’s test for series. Now let’s modify the sum
∑∞

n=1
cos nx

n , say to
the slightly more complicated version

∞∑

n=1

(

1 +
1

n

)n cos nx

n
.

If we try to determine the convergence of this series using Dirichlet’s test, we’ll have
to do some work, but if we’re feeling a little lazy, we can use the following theorem,
whose proof uses an “ε/3-trick.”

Theorem 5.7 (Abel’s test for series). Suppose that
∑

an converges. Then
for any sequence {bn} of bounded variation, the series

∑
anbn converges.

Proof. We shall apply Abel’s lemma to establish that the sequence of partial
sums for

∑
anbn forms a Cauchy sequence, which implies that

∑
anbn converges.

For m < n, by Abel’s lemma, we have

(5.4)

n∑

k=m+1

akbk = snbn − smbm −
n−1∑

k=m

sk(bk+1 − bk),

where sn is the n-th partial sum of the series
∑

an. Adding and subtracting
s :=

∑
an to sk on the far right of (5.4), we find that

n−1∑

k=m

sk(bk+1 − bk) =
n−1∑

k=m

(sk − s)(bk+1 − bk) + s
n−1∑

k=m

(bk+1 − bk)

=

n−1∑

k=m

(sk − s)(bk+1 − bk) + sbn − sbm,

since the sum telescoped. Replacing this into (5.4), we obtain

n∑

k=m+1

akbk = (sn − s)bn − (sm − s)bm −
n−1∑

k=m

(sk − s)(bk+1 − bk).

Let ε > 0. Since {bn} is of bounded variation, this sequence converges by Propo-
sition 5.3, so in particular is bounded and therefore, since sn → s, (sn − s)bn → 0
and (sm − s)bm → 0. Thus, we can choose N such that for n,m > N , we have
|(sn − s)bn| < ε/3, |(sm − s)bm| < ε/3, and |sn − s| < ε/3. Thus, for N < m < n,
we have

∣
∣
∣
∣
∣

n∑

k=m+1

akbk

∣
∣
∣
∣
∣
≤ |(sn − s)bn|+ |(sm − s)bm|+

n−1∑

k=m

|(sk − s)(bk+1 − bk)|

<
ε

3
+

ε

3
+

ε

3

n−1∑

k=m

|bk+1 − bk|.

Finally, since
∑ |bk+1 − bk| converges, by the Cauchy criterion for series, the sum

∑n−1
k=m |bk+1 − bk| can be made less than 1 for N chosen larger if necessary. Thus,

for N < m < n, we have |
∑n

k=m+1 akbk| < ε. This completes our proof. �
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Example 5.8. Back to our discussion above, we can write
∞∑

n=1

(

1 +
1

n

)n cosnx

n
=
∑

an bn,

where an = cos nx
n and bn = (1 + 1

n )n. Since we already know that
∑∞

n=1 an

converges and that {bn} is nondecreasing and bounded above (by e — see Section
3.3) and therefore is of bounded variation, Abel’s test shows that the series

∑
anbn

converges.

Exercises 5.1.

1. Following Fredricks and Nelsen [60], we use summation by parts to derive neat identities
for the Fibonacci numbers. Recall that the Fibonacci sequence {Fn} is defined as
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2.
(a) Let an = Fn+1 and bn = 1 in the summation by parts formula (see Theorem 5.1)

to derive the identity:

F1 + F2 + F3 + · · · + Fn = Fn+2 − 1.

(b) Let an = bn = Fn in the summation by parts formula to get

F 2
1 + F 2

2 + F 2
3 + · · · + F 2

n = FnFn+1.

(c) What an’s and bn’s would you choose to derive the formulas:

F1 + F3 + F5 + · · · + F2n−1 = F2n , 1 + F2 + F4 + F6 + · · · + F2n = F2n+1?

2. Following Fort [59], we relate limits of arithmetic means to summation by parts.
(a) Let {an}, {bn} be sequences of complex numbers and assume that bn → 0 and

1
n

∑n
k=1 k |bk+1 − bk| → 0 as n → ∞, and that for some constant C, we have

∣
∣ 1

n

∑n
k=1 ak

∣
∣ ≤ C for all n. Prove that

1

n

n∑

k=1

akbk → 0 as n → ∞.

(b) Apply this result to an = (−1)n−1n and bn = 1/
√

n to prove that

1

n

(√
1 −

√
2 +

√
3 −

√
4 + · · · + (−1)n−1√n

)

=
1

n

n∑

k=1

(−1)k
√

k → 0 as n → ∞.

3. Determine the convergence or divergence of the following series:

(a)
1

1
+

1

2
+

1

3
− 1

4
− 1

5
+

1

6
+

1

7
−− + + · · · , (b)

∞∑

n=1

(−1)n(
√

n + 1 −
√

n).

(c)
∞∑

n=2

cos nx

log n
, (d)

1

2 · 1 − 1

2 · 2 +
1

3 · 3 − 1

3 · 4 +
1

4 · 5 − 1

4 · 6 + − · · ·

(e)
∞∑

n=2

(−1)n−1

n
log

2n + 1

n
, (f)

∞∑

n=2

cos nx sin
(x

n

)

(x ∈ R) , (g)
∞∑

n=2

(−1)n−1 log n

n
.

5.2. Liminfs/sups, ratio/roots, and power series

It is a fact of life that most sequences simply do not converge. In this section
we introduce limit infimums and supremums, which always exist, either as real
numbers or as ±∞. We also study their basic properties. We need these limits to
study the ratio and root tests. You’ve probably seen these tests before in elementary
calculus, but in this section we’ll look at them in a slightly more sophisticated way.
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5.2.1. Limit infimums and supremums. Let a1, a2, a3, . . . be any sequence
of real numbers bounded from above. Let us put

sn := sup
k≥n

ak = sup{an, an+1, an+2, an+3, . . .}.

Note that

sn+1 = sup{an+1, an+2, . . .} ≤ sup{an, an+1, an+2, . . .} = sn,

since the set {an+1, an+2, . . .} is smaller than the set {an, an+1, an+2, . . .}. Thus,
s1 ≥ s2 ≥ · · · ≥ sn ≥ sn+1 ≥ · · · is an nonincreasing sequence. In particular, being
a monotone sequence, the limit lim sn is defined either a real number or (properly
divergent to) −∞. We define

lim sup an := lim sn = lim
n→∞

(

sup{an, an+1, an+2, . . .}
)

.

This limit, which again is either a real number or −∞, is called the limit supre-
mum or lim sup of the sequence {an}. This name fits since lim sup an is exactly
that, a limit of supremums. If {an} is not bounded from above, then we define

lim sup an :=∞ if {an} is not bounded from above.

We define an extended real number as a real number or the symbols∞ = +∞,
−∞. Then it is worth mentioning that lim sups always exist as an extended real
number, unlike regular limits which may not exist.

Example 5.9. We shall compute lim sup an where an = 1
n . According to the

definition of lim sup, we first have to find sn:

sn := sup{an, an+1, an+2, . . .} = sup

{
1

n
,

1

n + 1
,

1

n + 2
,

1

n + 3
, . . .

}

=
1

n
.

Second, we take the limit of the sequence {sn}:

lim sup an := lim
n→∞

sn = lim
n→∞

1

n
= 0.

Notice that lim an also exists and lim an = 0, the same as the lim sup. We’ll come
back to this observation in Example 5.11 below.

Example 5.10. Consider the sequence {(−1)n}. In this case, we know that
lim(−1)n does not exist. To find lim sup(−1)n, we first compute sn:

sn = sup{(−1)n, (−1)n+1, (−1)n+2, . . .} = sup{+1,−1} = 1,

where we used that the set {(−1)n, (−1)n+1, (−1)n+2, . . .} is just a set consisting
of the numbers +1 and −1. Hence,

lim sup(−1)n := lim sn = lim 1 = 1.

We can also define a corresponding lim inf an, which is a limit of infimums.
To do so, assume for the moment that our generic sequence {an} is bounded from
below. Consider the sequence {ιn} where

ιn := inf
k≥n

ak = inf{an, an+1, an+2, an+3, . . .}.

Note that

ιn = inf{an, an+2, . . .} ≤ inf{an+1, an+2, . . .} = ιn+1,
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since the set {an, an+2, . . .} on the left of ≤ is bigger than the set {an+1, an+2, . . .}.
Thus, ι1 ≤ ι2 ≤ · · · ≤ ιn ≤ ιn+1 ≤ · · · is an nondecreasing sequence. In particular,
being a monotone sequence, the limit lim ιn is defined either a real number or
(properly divergent to) ∞. We define

lim inf an := lim ιn = lim
n→∞

(

inf{an, an+1, an+2, . . .}
)

,

which exists either as a real number or +∞, is called the limit infimum or lim
inf of {an}. If {an} is not bounded from below, then we define

lim inf an := −∞ if {an} is not bounded from below.

Again, as with lim sups, lim infs always exist as extended real numbers.

Example 5.11. We shall compute lim inf an where an = 1
n . According to the

definition of lim inf, we first have to find ιn:

ιn := inf{an, an+1, an+2, . . .} = inf

{
1

n
,

1

n + 1
,

1

n + 2
,

1

n + 3
, . . .

}

= 0.

Second, we take the limit of ιn:

lim inf an := lim
n→∞

ιn = lim
n→∞

0 = 0.

Notice that lim an also exists and lim an = 0, the same as lim inf an, which is the
same as lim sup an as we saw in Example 5.9. We are thus lead to make the following
conjecture: If lim an exists, then lim sup an = lim inf an = lim an; this conjecture is
indeed true as we’ll see in Property (2) of Theorem 5.8.

Example 5.12. If an = (−1)n, then

inf{an, an+1, an+2, . . .} = sup{(−1)n, (−1)n+1, (−1)n+2, . . .} = inf{+1,−1} = −1.

Hence,

lim inf(−1)n := lim−1 = −1.

The following theorem contains the main properties of limit infimums and
supremums that we shall need in the sequel.

Theorem 5.8 (Properties of lim inf/sup). If {an} and {bn} are sequences
of real numbers, then

(1) lim sup an = − lim inf(−an) and lim inf an = − lim sup(−an).
(2) lim an is defined, as a real number or ±∞, if and only if lim sup an = lim inf an,

in which case,

lim an = lim sup an = lim inf an.

(3) If an ≤ bn for all n sufficiently large, then

lim inf an ≤ lim inf bn and lim sup an ≤ lim sup bn.

(4) The following inequality properties hold:
(a) lim sup an < a =⇒ there is an N such that n > N =⇒ an < a.
(b) lim sup an > a =⇒ there exist infinitely many n’s such that an > a.
(c) lim inf an < a =⇒ there exist infinitely many n’s such that an < a.
(d) lim inf an > a =⇒ there is an N such that n > N =⇒ an > a.



5.2. LIMINFS/SUPS, RATIO/ROOTS, AND POWER SERIES 241

Proof. To prove (1) assume first that {an} is not bounded from above; then
{−an} is not bounded from below. Hence, lim sup an := ∞ and lim inf(−an) :=
−∞, which implies (1) in this case. Assume now that {an} is bounded above.
Recall from Lemma 2.29 that given any nonempty subset A ⊆ R bounded above,
we have supA = − inf(−A). Hence,

sup{an, an+1, an+2, . . .} = − inf{−an,−an+1,−an+2,−an+3, . . .}.
Taking n→∞ on both sides, we get lim sup an = − lim inf(−an).

We now prove (2). Suppose first that lim an converges to a real number L.
Then given ε > 0, there exists an N such that

L− ε ≤ ak ≤ L + ε, for all k > N,

which implies that for any n > N ,

L− ε ≤ inf
k≥n

ak ≤ sup
k≥n

ak ≤ L + ε.

Taking n→∞ implies that

L− ε ≤ lim inf an ≤ lim sup an ≤ L + ε.

Since ε > 0 was arbitrary, it follows that lim sup an = L = lim inf an. Reversing
these steps, we leave you to show that if lim sup an = L = lim inf an, then {an}
converges to L. We now consider (2) in the case that lim an = +∞; the case where
the limit is −∞ is proved similarly. Then given any real number M > 0, there
exists an N such that

n > N =⇒ M ≤ an.

This implies that
M ≤ inf

k≥n
ak ≤ sup

k≥n
ak.

Taking n→∞ we obtain

M ≤ lim inf an ≤ lim sup an.

Since M > 0 was arbitrary, it follows that lim sup an = +∞ = lim inf an. Reversing
these steps, we leave you to show that if lim sup an = +∞ = lim inf an, then
an → +∞.

To prove (3) note that if {an} is not bounded from below, then lim inf an := −∞
so lim inf an ≤ lim inf bn automatically; thus, we may assume that {an} is bounded
from below. In this case, observe that an ≤ bn for all n sufficiently large implies
that, for n sufficiently large,

inf{an, an+1, an+2, . . .} ≤ inf{bn, bn+1, bn+2, bn+3, . . .}
Taking n → ∞, and using that limits preserve inequalities, now proves (3). The
proof that lim sup an ≤ lim sup bn is similar.

Because this proof is becoming unbearably unbearable , we’ll only prove (a),
(b) of (4) leaving (c), (d) to the reader. Assume that lim sup an < a, that is,

lim
n→∞

(

sup{an, an+1, an+2, . . .}
)

< a.

It follows that for some N , we have

n > N =⇒ sup{an, an+1, an+2, . . .} < a,

that is, the least upper bound of {an, an+1, an+2, . . .} is strictly less than a, so we
must have we have an < a for all n > N . Assume now that lim sup an > a. If
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{an} is not bounded from above (so that lim sup an = ∞) then there must exist
infinitely many n’s such that an > a, for otherwise if there were only finitely many
n’s such that an > a, then {an} would be bounded from above, which would imply
that lim sup an <∞. Assume now that {an} is bounded from above. Then,

lim
n→∞

(

sup{an, an+1, an+2, . . .}
)

> a

implies that for some N , we have

n > N =⇒ sup{an, an+1, an+2, . . .} > a.

Now if there were only finitely many n’s such that an > a, then we can choose
n > N large enough such that ak ≤ a for all k ≥ n. However, this would imply that
for such n, sup{an, an+1, an+2, . . .} ≤ a, a contradiction. Hence, there are infinitely
many n’s such that an > a. �

5.2.2. Ratio/root tests, and the exponential and ζ-functions, again.
In elementary calculus you should have studied the ratio test: If the limit L1 :=
lim
∣
∣an+1

an

∣
∣ exists, then the series

∑
an converges if L1 < 1 and diverges if L1 > 1 (if

L1 = 1, then the test is inconclusive). You also studied the root test: If the limit
L2 := lim |an|1/n exists, then the series

∑
an converges if L2 < 1 and diverges if

L2 > 1 (if L2 = 1, then the test is inconclusive). Now what if the limits lim
∣
∣an+1

an

∣
∣

or lim |an|1/n don’t exist, are there still ratio and root tests? The answer is “yes,”
but we have to replace lim with lim inf’s and lim sup’s. Before stating these new
ratio/root tests, we first consider the following important lemma.

Lemma 5.9. If {an} is a sequence of nonzero complex numbers, then

lim inf

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
.

Proof. The middle inequality is automatic (because inf’s are ≤ sup’s), so we
just need to prove the left and right inequalities. Consider the left one; the right
one is analogous and is left to the reader. If lim inf |an+1/an| = −∞, then there
is nothing to prove, so we may assume that lim inf |an+1/an| > −∞. Given any
b < lim inf |an+1/an|, we shall prove that b < lim inf |an|1/n. This proves the the
left side in our desired inequalities, for, if on the contrary we have lim inf |an|1/n <
lim inf |an+1/an|, then choosing b = lim inf |an|1/n, we would have

lim inf |an|1/n < lim inf |an|1/n,

an obvious contradiction. So, let b < lim inf |an+1/an|. Choose a such that b < a <
lim inf |an+1/an|. Then by Property 4 (d) in Theorem 5.8, for some N , we have

n > N =⇒
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
> a.

Fix m > N and let n > m > N . Then we can write

|an| =
∣
∣
∣
∣

an

an−1

∣
∣
∣
∣
·
∣
∣
∣
∣

an−1

an−2

∣
∣
∣
∣
· · ·
∣
∣
∣
∣

am+1

am

∣
∣
∣
∣
· |am|.

There are n−m quotients in this equality, each of which is greater than a, so

|an| > a · a · · · a · |am| = an−m · |am|,
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or

(5.5) |an|1/n > a1−m/n · |am|1/n.

Since

lim
n→∞

a1−m/n · |am|1/n = a,

and limit infimums preserve inequalities, we have

lim inf |an|1/n ≥ lim inf a1−m/n · |am|1/n = lim
n→∞

a1−m/n · |am|1/n = a,

where we used Property (2) of Theorem 5.8. Since a > b, we have b < lim inf |an|1/n

and our proof is complete. �

Here’s Cauchy’s root test, a far-reaching generalization of the root test you
learned in elementary calculus.

Theorem 5.10 (Cauchy’s root test). A series
∑

an converges absolutely or
diverges according as

lim sup
∣
∣an

∣
∣
1/n

< 1 or lim sup
∣
∣an

∣
∣
1/n

> 1.

Proof. Suppose first that lim sup
∣
∣an

∣
∣
1/n

< 1. Then we can choose 0 < a < 1

such that lim sup
∣
∣an

∣
∣
1/n

< a, which, by property 4 (a) of Theorem 5.8, implies
that for some N ,

n > N =⇒
∣
∣an

∣
∣
1/n

< a,

that is,

n > N =⇒
∣
∣an

∣
∣ < an.

Since a < 1, we know that the infinite series
∑

an converges; thus by the comparison
theorem, the sum

∑ |an| also converges, and hence
∑

an converges as well.

Assume now that lim sup
∣
∣an

∣
∣
1/n

> 1. Then by Property 4 (b) of Theorem

5.8, there are infinitely many n’s such that
∣
∣an

∣
∣
1/n

> 1. Thus, there are infinitely
many n’s such that |an| > 1. Hence by the n-term test, the series

∑
an cannot

converge. �

It is important to remark that in the other case, that is, lim sup
∣
∣an

∣
∣
1/n

= 1,
this test does not give information as to convergence.

Example 5.13. Consider the series
∑

1/n, which diverges, and observe that
lim sup |1/n|1/n = lim 1/n1/n = 1 (see Section 3.1 for the proof that lim n1/n = 1).
However,

∑
1/n2 converges, and lim sup |1/n2|1/n = lim(1/n1/n)2 = 1 as well, so

when lim sup |an|1/n = 1 it’s not possible to tell whether or not the series converges.

As with the root test, in elementary calculus you learned the ratio test most
likely without proof, and, accepting by faith this test as correct I’m sure that you
used it quite often to determine the convergence/divergence of many types of series.
Here’s d’Alembert’s ratio test, a far-reaching generalization of the ratio test2.

2Allez en avant, et la foi vous viendra [push on and faith will catch up with you]. Advice to

those who questioned the calculus by Jean Le Rond d’Alembert (1717–1783) [110]
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Theorem 5.11 (d’Alembert’s ratio test). A series
∑

an, with an nonzero
for n sufficiently large, converges absolutely or diverges according as

lim sup
∣
∣
∣
an+1

an

∣
∣
∣ < 1 or lim inf

∣
∣
∣
an+1

an

∣
∣
∣ > 1.

Proof. If we set L := lim sup
∣
∣an

∣
∣
1/n

, then by Lemma 5.9, we have

(5.6) lim inf

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
≤ L ≤ lim sup

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
.

Therefore, if lim sup
∣
∣
∣
an+1

an

∣
∣
∣ < 1, then L < 1 too, so

∑
an converges absolutely by

the root test. On the other hand, if lim inf
∣
∣
∣
an+1

an

∣
∣
∣ > 1, then L > 1 too, so

∑
an

diverges by the root test. �

We remark that in the other case, that is, lim inf
∣
∣an+1

an

∣
∣ ≤ 1 ≤ lim sup

∣
∣an+1

an

∣
∣,

this test does not give information as to convergence. Indeed, the same diver-
gent and convergent examples used for the root test,

∑
1/n and

∑
1/n2, have the

property that lim inf
∣
∣an+1

an

∣
∣ = 1 = lim sup

∣
∣an+1

an

∣
∣.

Note that if lim sup
∣
∣an

∣
∣
1/n

= 1 (that is, the root test fails), then setting L = 1
in (5.6), we see that the ratio test also fails. Thus,

(5.7) root test fails =⇒ ratio test fails.

Therefore, if the root test fails one cannot hope to appeal to the ratio test.
Let’s now consider some examples.

Example 5.14. First, our old friend:

exp(z) :=

∞∑

n=1

zn

n!
,

which we already knows converges, but for the fun of it, let’s apply the ratio test.
Observe that

∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

zn+1

(n+1)!
zn

n!

∣
∣
∣
∣
∣
∣

= |z| · n!

(n + 1)!
=
|z|

n + 1
.

Hence,

lim
∣
∣
∣
an+1

an

∣
∣
∣ = 0 < 1.

Thus, the exponential function exp(z) converges absolutely for all z ∈ C. This
proof was a little easier than the one in Section 3.7, but then again, back then we
didn’t have the up-to-day technology of the ratio test that we have now. Here’s an
example that fails.

Example 5.15. Consider the Riemann zeta function

ζ(z) =
∞∑

n=1

1

nz
, Re z > 1.

If z = x + iy is separated into its real and imaginary parts, then

∣
∣an

∣
∣
1/n

=

∣
∣
∣
∣

1

nz

∣
∣
∣
∣

1/n

=
( 1

nx

)1/n

=
( 1

n1/n

)x

.
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Since lim n1/n = 1, it follows that

lim
∣
∣an

∣
∣
1/n

= 1

so the root test fails to give information, which also implies that the ratio test fails
as well. Of course, using the comparison test as we did in the proof of Theorem
4.34 we already know that ζ(z) converges for all z ∈ C with Re z > 1.

It’s easy to find examples of series for which the ratio test fails but the root
test succeeds.

Example 5.16. A general class of examples that foil the ratio test are (see
Problem 4)

(5.8) a + b + a2 + b2 + a3 + b3 + a4 + b4 + · · · , 0 < b < a < 1;

here, the odd terms are given by a2n−1 = an and the even terms are given by
a2n = bn. For concreteness, let us consider the series

1

2
+

1

3
+
(1

2

)2

+
(1

3

)2

+
(1

2

)3

+
(1

3

)3

+
(1

2

)4

+
(1

3

)4

+ · · · .

Since
∣
∣
∣

a2n

a2n−1

∣
∣
∣ =

∣
∣
∣
(1/3)n

(1/2)n

∣
∣
∣ =

(2

3

)n

and
∣
∣
∣
a2n+1

a2n

∣
∣
∣ =

∣
∣
∣
(1/2)n+1

(1/3)n

∣
∣
∣ =

(3

2

)n

· 1
2
,

It follows that lim inf |an+1/an| = 0 < 1 <∞ = lim sup |an+1/an|, so the ratio test
does not give information. On the other hand, since

|a2n−1|1/(2n−1) =
(
(1/2)n

)1/(2n−1)
=
(1

2

) n
2n−1

and

|a2n|1/(2n) =
(
(1/3)n−1

)1/(2n)
=
(1

3

)n−1
2n

it follows that lim sup |an|1/n = (1/2)1/2 < 1, so the series converges by the root
test.

Thus, in contrast to (5.7),

ratio test fails /=⇒ root test fails.

However, in the following lemma we show that if the ratio test fails such that the
true limit lim |an+1

an
| = 1, then the root test fails as well.

Lemma 5.12. If |an+1

an
| → L with L an extended real number, then |an|1/n → L.

Proof. By Lemma 5.9, we know that

lim inf
∣
∣
∣
an+1

an

∣
∣
∣ ≤ lim inf

∣
∣an

∣
∣
1/n ≤ lim sup

∣
∣an

∣
∣
1/n ≤ lim sup

∣
∣
∣
an+1

an

∣
∣
∣.

By Theorem 5.8, a limit exists if and only if the lim inf and the lim sup have the
same limit, so the outside quantities in these inequalities equal L. It follows that
lim inf |an|1/n = lim sup |an|1/n = L as well, and hence lim |an|1/n = L. �

Let’s do one last (important) example:
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Example 5.17. Consider the series

(5.9) 1 +

∞∑

n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) (2n + 1)
.

Applying the ratio test, we have

(5.10)
an+1

an
=

(2n + 1)(2n + 1)

(2n + 2)(2n + 3)
=

4n2 + 8n + 1

4n2 + 10n + 6
=

1 +
2

n
+

1

4n2

1 +
5

2n
+

3

2n2

.

Therefore, lim |an+1

an
| = 1, so the ratio and root test give no information! What can

we do? We’ll see that Raabe’s test in Section 5.3 will show that (5.9) converges.
Later on (Section 11.6) we’ll see that the value of the series (5.9) equals π/2.

5.2.3. Power series. Our old friend

exp(z) :=

∞∑

n=0

zn

n!

is an example of a power series, by which we mean a series of the form
∞∑

n=0

an zn, where z ∈ C, or

∞∑

n=0

an xn, where x ∈ R,

where an ∈ C for all n (in particular, the an’s may be real). However, we shall
focus on power series of the complex variable z although essentially everything we
mention works for real variables x.

Example 5.18. Besides the exponential function, other familiar examples of
power series include the trigonometric series, sin z =

∑∞
n=0(−1)nz2n+1/(2n + 1)!,

cos z =
∑∞

n=0(−1)nz2n/(2n)!.

The convergence of power series is quite easy to analyze. First,
∑∞

n=0 anzn =
a0 + a1z + a2z

2 + · · · certainly converges if z = 0. For |z| > 0 we can use the root
test: Observe that (see Problem 7 for the proof that we can take out |z|)

lim sup
∣
∣anzn

∣
∣
1/n

= lim sup |z| |an|1/n = |z| lim sup |an|1/n.

Therefore,
∑

anzn converges (absolutely) or diverges according as

|z| · lim sup |an|1/n < 1 or |z| · lim sup |an|1/n > 1.

Therefore, if we define 0 ≤ R ≤ ∞ by

(5.11) R :=
1

lim sup |an|1/n

where by convention, we put R := +∞ when lim sup |an|1/n = 0 and R := 0
when lim sup |an|1/n = +∞, then it follows that

∑
anzn converges (absolutely) or

diverges according to |z| < R or |z| > R; when |z| = R, anything can happen.
According to Figure 5.2, it is quite fitting to call R the radius of convergence.
Let us summarize our findings in the following theorem named after Cauchy (whom
we’ve already met many times) and Jacques Hadamard (1865–1963).3

3The shortest path between two truths in the real domain passes through the complex domain.

Jacques Hadamard (1865–1963). Quoted in The Mathematical Intelligencer 13 (1991).
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�R

|z| < R converges

|z| > R diverges

Figure 5.2.
∑

anzn converges (absolutely) or diverges according
as |z| < R or |z| > R.

Theorem 5.13 (Cauchy-Hadamard theorem). If R is the radius of con-
vergence of the power series

∑
anzn, then the series is absolutely convergent for

|z| < R and is divergent for |z| > R.

One final remark. Suppose that the an’s are nonzero for n sufficiently large
and lim | an

an+1
| exists. Then by Lemma 5.12, we have

(5.12) R = lim

∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
.

This formula for the radius of convergence might, in some cases, be easier to work
with than the formula involving |an|1/n.

Exercises 5.2.

1. Find the lim inf/sups of the following sequences:

(a) an =
2 + (−1)n

4
, (b) an = (−1)n

(

1 − 1

n

)

, (c) an = 2(−1)n

, (d) an = 2n(−1)n

.

(e) If {rn} is a list of all rationals in (0, 1), prove lim inf rn = 0 and lim sup rn = 1.
2. Investigate the following series for convergence (in (c), z ∈ C):

(a)
∞∑

n=1

(n + 1)(n + 2) · · · (n + n)

nn
, (b)

∞∑

n=1

(n + 1)n

n!
, (c)

∞∑

n=1

nz

n!
, (d)

∞∑

n=1

1

2n+(−1)n .

3. Determine the radius of convergence for the following series:

(a)
∞∑

n=1

(n + 1)n

nn+1
zn , (b)

∞∑

n=1

( n

n + 1

)n

zn , (d)
∞∑

n=1

(2n)!

(n!)2
zn , (d)

∞∑

n=1

zn

np
,

where in the last sum, p ∈ R. If z = x ∈ R, state all x ∈ R such that the series (a),
(b), (c) converge. For (c), your answer should depend on p.

4. (a) Investigate the series (5.8) for convergence using both the ratio and the root tests.
(b) Here is another class of examples:

1 + a + b2 + a3 + b4 + a5 + b6 + · · · , 0 < a < b < 1.

Show that the ratio test fails but the root test works.
5. Lemma 5.12 is very useful to determine certain limits which aren’t obvious at first

glance. Using this lemma, derive the following limits:

(a) lim
n

(n!)1/n
= e , (b) lim

n + 1

(n!)1/n
= e , (c) lim

n

[(n + 1)(n + 2) · · · (n + n)]1/n
=

e

4
.

Suggestion: For (a), let an = nn/n!. Prove that lim
an+1

an
= e and hence lim a

1/n
n = e as

well. As a side remark, recall that (a) is called (the “weak”) Stirling’s formula, which
we introduced in (3.27) and proved in Problem 4 of Exercises 3.3.
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6. In this problem we investigate the interesting power series
∞∑

n=1

n!

nn
zn, z ∈ C.

(a) Prove that this series has radius of convergence R = e.
(b) If |z| = e, then the ratio and root test both fail. However, if |z| = e, then prove

that the infinite series diverges.
(c) Investigate the convergence/divergence of

∑∞
n=1

nn

n!
zn, where z ∈ C.

7. Here are some lim inf/sup problems. Let {an}, {bn} be sequences of real numbers.
(a) Prove that if c > 0, then lim inf(can) = c lim inf an and lim sup(can) = c lim sup an.

Here, we take the “obvious” conventions: c · ±∞ = ±∞.
(b) Prove that if c < 0, then lim inf(can) = c lim sup an and lim sup(can) = c lim inf an.
(c) If {an}, {bn} are bounded, prove that lim inf an + lim inf bn ≤ lim inf(an + bn).
(d) If {an}, {bn} are bounded, prove that lim sup(an + bn) ≤ lim sup an + lim sup bn.

8. If an → L where L is a positive real number, prove that lim sup(an · bn) = L lim sup bn

and lim inf(an · bn) = L lim inf bn. Here are some steps if you want them:
(i) Show that you can get the lim inf statement from the lim sup statement, hence

we can focus on the lim sup statement. We shall prove that lim sup(anbn) ≤
L lim sup bn and L lim sup bn ≤ lim sup(anbn).

(ii) Show that the inequality lim sup(anbn) ≤ L lim sup bn follows if the following
statement holds: If lim sup bn < b, then lim sup(anbn) < L b.

(iii) Now prove that if lim sup bn < b, then lim sup(anbn) < L b. Suggestion: If
lim sup bn < b, then choose a such that lim sup bn < a < b. Using Property 4
(a) of Theorem 5.8 and the definition of L = lim an > 0, prove that there is
an N such that n > N implies bn < a and an > 0. Conclude that for n > N ,
anbn < aan. Finally, take lim sups of both sides of anbn < aan.

(iv) Show that the inequality L lim sup bn ≤ lim sup(anbn) follows if the following
statement holds: If lim sup(anbn) < L b, then lim sup bn < b; then prove this
statement.

9. Let {an} be a sequence of real numbers. We prove that there are monotone subse-
quences of {an} that converge to lim inf an and lim sup an. Proceed as follows:

(i) Using Theorem 3.13, show that it suffices to prove that there are subsequences
converging to lim inf an and lim sup an

(ii) Show that it suffices to that there is a subsequence converging to lim inf an.
(iii) If lim inf an = ±∞, prove there is a subsequence converging to lim inf an.
(iv) Now assume that lim inf an = limn→∞

(
inf{an, an+1, . . .}

)
∈ R. By definition of

limit, show that there is an n so that a − 1 < inf{an, an+1, . . .} < a + 1. Show
that we can choose an n1 so that a − 1 < an1 < a + 1. Then show there an
n2 > n1 so that a − 1

2
< an2 < a + 1

2
. Continue this process.

5.3. A potpourri of ratio-type tests and “big O” notation

In the previous section, we left it in the air whether or not the series

1 +
∞∑

n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) (2n + 1)

converges (both the ratio and root tests failed). In this section we’ll develop some
new technologies that are able to detect the convergence of this series and other
series for which the ratio and root tests fail to give information.

5.3.1. Kummer’s test. The fundamental enhanced version of the ratio test
is named after Ernst Kummer (1810–1893), from which we’ll derive a potpourri of
other ratio-type tests.
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Theorem 5.14 (Kummer’s test). Let {an} and {bn} be sequences of positive
numbers where the sum

∑
bn diverges, and define

κn =
1

bn

an

an+1
− 1

bn+1
.

Then
∑

an converges or diverges according as lim inf κn > 0 or lim sup κn < 0. In
particular, if κn tends to some definite limit, κ, then

∑
an converges to diverges

according as κ > 0 or κ < 0.

Proof. If lim inf κn > 0, then by Property 4 (d) of Theorem 5.8, given any
positive number a less than this limit infimum, there is an N such that

n > N =⇒ 1

bn

an

an+1
− 1

bn+1
> a.

Thus,

(5.13) n > N =⇒ 1

bn
an −

1

bn+1
an+1 > aan+1.

Let m > N and let n > m > N . Then (5.13) implies that

n∑

k=m

a ak+1 <

n∑

k=m

( 1

bk
ak −

1

bk+1
ak+1

)

=
1

bm
am −

1

bn+1
an+1,

since the sum telescoped. Therefore, as 1
bn+1

an+1 > 0, we have
∑n

k=m a ak+1 <
1

bm
am, or more succinctly,

n∑

k=m

ak+1 < C

where C = 1
a

1
bm

am is a constant independent of n. Since n > m is completely

arbitrary it follows that the partial sums of
∑

an always remain bounded by a
fixed constant, so the sum must converge.

Assume now that lim sup κn < 0. Then by property 4 (a) of Theorem 5.8, there
is an N such that for all n > N , κn < 0, that is,

n > N =⇒ 1

bn

an

an+1
− 1

bn+1
< 0, that is,

an

bn
<

an+1

bn+1
.

Thus, for n > N , an

bn
is increasing with n. In particular, fixing m > N , for all

n > m, we have C < an/bn, where C = am/bm is a constant independent of n.
Thus, for all n > m, we have Cbn < an and since the sum

∑
bn diverges, the

comparison test implies that
∑

an diverges too. �

Note that d’Alembert’s ratio test is just Kummer’s test with bn = 1 for each n.

5.3.2. Raabe’s test and “big O” notation. The following test, attributed
to Joseph Ludwig Raabe (1801–1859), is just Kummer’s test with the bn’s making
up the harmonic series: bn = 1/n.

Theorem 5.15 (Raabe’s test). A series
∑

an of positive terms converges or
diverges according as

lim inf n

(
an

an+1
− 1

)

> 0 or lim sup n

(
an

an+1
− 1

)

< 0.
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In order to effectively apply Raabe’s test, it is useful to first introduce some
very handy notation. For a nonnegative function g, when we write f = O(g) (“big
O” of g), we simply mean that |f | ≤ Cg for some constant C. In words, the
big O notation just represents “a function that is in absolute value less than or
equal to a constant times”. This big O notation was introduced by Paul Bachmann
(1837–1920) but became well-known through Edmund Landau (1877–1938) [182].

Example 5.19. For x ≥ 0, we have

x2

1 + x
= O(x2)

because x2/(1 + x) ≤ x2 for x ≥ 0. Thus, for x ≥ 0,

(5.14)
1

1 + x
= 1− x +

x2

1 + x
=⇒ 1

1 + x
= 1− x +O(x2).

In this section, we are mostly interested in using the big O notation when
dealing with natural numbers.

Example 5.20. For n ∈ N,

(5.15)
2

n
+

1

4n2
= O

(
1

n

)

,

because 2
n + 1

4n2 ≤ 2
n + 1

4n = C
n where C = 2 + 1/4 = 9/4.

Three important properties of the big O notation are (1) if f = O(ag) with
a ≥ 0, then f = O(g), and if f1 = O(g1) and f2 = O(g2), then (2) f1f2 = O(g1 g2)
and (3) f1+f2 = O(g1+g2). To prove these properties, observe that if |f | ≤ C(ag),
then |f | ≤ C ′g, where C ′ = aC, and that |f1| ≤ C1g1 and |f2| ≤ C2g2 imply

|f1f2| ≤
(
C1C2

)
g1g2 and |f1 + f2| ≤ (C1 + C2) (g1 + g2);

hence, our three properties.

Example 5.21. Thus, in view of (5.15), we have O
(

2
n + 1

4n2

)2
= O

(
1
n · 1

n

)
=

O
(

1
n2

)
. Therefore, using (the right-hand part of) (5.14), we obtain

1

1 +

(
2

n
+

1

4n2

) = 1− 2

n
− 1

4n2
+O

(
2

n
+

1

4n2

)2

= 1− 2

n
+O

(
1

n2

)

+O
(

1

n2

)

= 1− 2

n
+O

(
1

n2

)

,

since O(2/n2) = O(1/n2).

Here we can see the very “big” advantage of using the big O notation: it hides a
lot of complicated junk information. For example, the left-hand side of the equation
is exactly equal to (see the left-hand part of (5.14))

1

1 +

(
2

n
+

1

4n2

) = 1− 2

n
+

[

− 1

4n2
+

(
2
n + 1

4n2

)2

1 + 2
n + 1

4n2

]

,

so the big O notation allows us to summarize the complicated material on the right
as the very simple O

(
1

n2

)
.
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Example 5.22. Consider our “mystery” series

1 +

∞∑

n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) (2n + 1)

already considered in (5.9). We saw that the ratio and root tests failed for this
series; however, it turns out that Raabe’s test works. To see this, let an denote the
n-th term in the “mystery” series. Then from (5.10), we see that

an

an+1
=

1 +
5

2n
+

3

2n2

1 +
2

n
+

1

4n2

=

(

1 +
5

2n
+

3

2n2

)(

1− 2

n
+O

(
1

n2

))

=

(

1 +
5

2n
+O

(
1

n2

))(

1− 2

n
+O

(
1

n2

))

.

Multiplying out the right-hand side, using the properties of big O, we get

an

an+1
= 1 +

5

2n
− 2

n
+O

(
1

n2

)

= 1 +
1

2n
+O

(
1

n2

)

.

Hence,

n

(
an

an+1
− 1

)

=
1

2
+O

(
1

n

)

=⇒ lim n

(
an

an+1
− 1

)

=
1

2
> 0,

so by Raabe’s test, the “mystery” sum converges. In Section 11.6 we’ll see that the
sum is equal to π/2.

5.3.3. De Morgan and Bertrand’s test. We next study a test due to Au-
gustus De Morgan (1806–1871) and Joseph Bertrand (1822–1900). For this test,
we let bn = 1/n log n in Kummer’s test.

Theorem 5.16 (De Morgan and Bertrand’s test). Let {an} be a sequence
of positive numbers and define αn by the equation

an

an+1
= 1 +

1

n
+

αn

n log n
.

Then
∑

an converges or diverges according as lim inf αn > 1 or lim sup αn < 1.

Proof. If we let bn = 1/n log n in Kummer’s test, then

κn =
1

bn

an

an+1
− 1

bn+1
= n log n

(

1 +
1

n
+

αn

n log n

)

− (n + 1) log(n + 1)

= αn + (n + 1)
[

log n− log(n + 1)
]

.

Since

(n + 1)
[

log n− log(n + 1)
]

= log

(

1− 1

n + 1

)n+1

→ log e−1 = −1,

we have

lim inf κn = lim inf αn − 1 and lim sup κn = lim sup αn − 1.

Invoking Kummer’s test now completes the proof. �
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5.3.4. Gauss’s test. Finally, to end our potpourri of tests, we conclude with
Gauss’ test:

Theorem 5.17 (Gauss’ test). Let {an} be a sequence of positive numbers and
suppose that we can write

an

an+1
= 1 +

ξ

n
+O

(
1

np

)

,

where ξ is a constant and p > 1. Then
∑

an converges or diverges according as
ξ ≤ 1 or ξ > 1.

Proof. The hypotheses imply that

n

(
an

an+1
− 1

)

= ξ + nO
(

1

np

)

= ξ +O
(

1

np−1

)

→ ξ

as n→∞, where we used that p−1 > 0. Thus, Raabe’s test shows that series
∑

an

converges for ξ > 1 and diverges for ξ < 1. For the case ξ = 1, let an

an+1
= 1+ 1

n +fn

where fn = O
(

1
np

)
. Then we can write

an

an+1
= 1 +

1

n
+ fn = 1 +

1

n
+

αn

n log n
,

where αn = fn n log n. If we let p = 1+δ, where δ > 0, then we know that log n
nδ → 0

as n→∞ by Problem 8 in Exercises 4.6, so

αn = fn n log n = O
(

1

n1+δ

)

n log n = O
(

log n

nδ

)

=⇒ lim αn = 0.

Thus, De Morgan and Bertrand’s test shows that the series
∑

an diverges. �

Example 5.23. Gauss’ test originated with Gauss’ study of the hypergeometric
series:

1 +
α · β
1 · γ +

α(α− 1) · β(β − 1)

2! · γ(γ + 1)
+

α(α− 1)(α− 2) · β(β − 1)(β − 2)

3! · γ(γ + 1)(γ + 2)
+ · · · ,

where α, β, γ are positive real numbers. With

an =
α(α− 1)(α− 2) · · · (α− n + 1) · β(β − 1)(β − 2) · (β − n + 1)

n! · γ(γ + 1)(γ + 2) · · · (γ + n− 1)
,

for n ≥ 1, we have

an

an+1
=

(n + 1)(γ + n)

(α + n)(β + n)
=

n2 + (γ + 1)n + γ

n2 + (α + β)n + αβ
=

1 +
γ + 1

n
+

γ

n2

1 +
α + β

n
+

αβ

n2

.

Using the handy formula from (5.14),

1

1 + x
= 1− x +

x2

1 + x
,

we see that (after some algebra)

an

an+1
=

(

1 +
γ + 1

n
+

γ

n2

)[

1− α + β

n
− αβ

n2
+O

(
1

n2

)]

= 1 +
γ + 1− α− β

n
+O

(
1

n2

)

.
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Thus, the hypergeometric series converges if γ > α + β and diverges if γ ≤ α + β.

Exercises 5.3.

1. Determine whether or not the following series converge.

(a)

∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2n(n + 1)!
, (b)

∞∑

n=1

3 · 6 · 9 · · · (3n)

7 · 10 · 13 · · · (3n + 4)
,

(c)
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
, (d)

∞∑

n=1

2 · 4 · 6 · · · (2n + 2)

1 · 3 · 5 · · · (2n − 1)(2n)
.

For α, β 6= 0,−1,−2, . . .,

(e)
∞∑

n=1

α(α + 1)(α + 2) · · · (α + n − 1)

n!
, (f)

∞∑

n=1

α(α + 1)(α + 2) · · · (α + n − 1)

β(β + 1)(β + 2) · · · (β + n − 1)
.

If α, β, γ, κ, λ 6= 0,−1,−2, . . ., then prove that the following monster

(g)
∞∑

n=1

α(α + 1) · · · (α + n − 1)β(β + 1) · · · (β + n − 1)γ(γ + 1) · · · (γ + n − 1)

n! κ(κ + 1) · · · (κ + n − 1)λ(λ + 1) · · · (λ + n − 1)

converges for κ + λ − α − β − γ > 0.
2. Using Raabe’s test, prove that

∑
1/np converges for p > 1 and diverges for p < 1.

3. (Logarithmic test) We prove a useful test called the logarithmic test: If
∑

an is
a series of positive terms, then this series converges or diverges according as

lim inf
(

n log
an

an+1

)

> 1 or lim sup
(

n log
an

an+1

)

< 1.

To prove this, proceed as follows.
(i) Suppose first that lim inf

(
n log an

an+1

)
> 1. Show that there is an a > 1 and an

N such that

n > N =⇒ a < n log
an

an+1
=⇒ an+1

an
< e−a/n.

(ii) Using
(
1 + 1

n

)n
< e from (3.26), the p-test, and the limit comparison test (see

Problem 7 in Exercises 3.6) previous problem, prove that
∑

an converges.
(iii) Similarly, prove that if lim sup

(
n log an

an+1

)
< 1, then

∑
an diverges.

(iv) Using the logarithmic test, determine the convergence/diverence of
∞∑

n=1

n!

nn
and

∞∑

n=1

nn

n!
.

5.4. Some pretty powerful properties of power series

The title of this section speaks for itself. As stated already, we focus on power
series of a complex variable z, but all the results stated in this section have corre-
sponding statements for power series of a real variable x.

5.4.1. Continuity and the exponential function (again). We first prove
that power series are always continuous (within their radius of convergence).

Lemma 5.18. If
∑∞

n=0 anzn has radius of convergence R, then
∑∞

n=1 nanzn−1

also has radius of convergence R.

Proof. (See Problem 3 for another proof of this lemma using properties of
lim sup.) For z 6= 0,

∑∞
n=1 nanzn−1 converges if and only if z ·∑∞

n=1 nanzn−1 =
∑∞

n=1 nanzn converges, so we just have to show that
∑∞

n=1 nanzn has radius of con-
vergence R. Since |an| ≤ n|an|, by comparison, if

∑∞
n=1 n |an| |z|n converges, then

∑∞
n=1 |an| |z|n also converges, so the radius of convergence of the series

∑∞
n=1 nanzn
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can’t be larger than R. To prove that the radius of convergence is at least R, fix z
with |z| < R; we need to prove that

∑∞
n=1 n |an| |z|n converges. To this end, fix ρ

with |z| < ρ < R and note that
∑∞

n=1 n (|z|/ρ)n converges, by e.g. the root test:

lim
∣
∣
∣n
( |z|

ρ

)n∣
∣
∣

1/n

= lim n1/n · |z|
ρ

=
|z|
ρ

< 1.

Since
∑∞

n=1 |an|ρn converges (because ρ < R, the radius of convergence of the
series

∑∞
n=0 anzn), by the n-th term test, |an|ρn → 0 as n → ∞. In particular,

|an|ρn ≤M for some constant M , hence

n |an| |z|n = n |an| ρn ·
( |z|

ρ

)n

≤M · n
( |z|

ρ

)n

.

Since M
∑

n (|z|/ρ)n converges, by the comparison test, it follows that
∑

n |an| |z|n
also converges. This completes our proof. �

Theorem 5.19 (Continuity theorem for power series). A power series is
continuous within its radius of convergence.

Proof. Let f(z) =
∑∞

n=0 anzn have radius of convergence R; we need to show
that f(z) is continuous at each point c ∈ C with |c| < R. So, let us fix such a c.
Since

zn − cn = (z − c) qn(z), where qn(z) = zn−1 + zn−2 c + · · ·+ z cn−2 + cn−1,

which is proved by multiplying out (z − c) qn(z), we can write

f(z)− f(c) =

∞∑

n=1

an(zn − cn) = (z − c)

∞∑

n=0

anqn(z).

To make the sum
∑∞

n=0 anqn(z) small in absolute value we proceed as follows. Fix
r such that |c| < r < R. Then for |z − c| < r − |c|, we have

|z| ≤ |z − c|+ |c| < r − |c|+ |c| = r.

Thus, as |c| < r, for |z − c| < r − |c| we see that

|qn(z)| ≤ rn−1 + rn−2 r + · · ·+ r rn−2 + rn−1

︸ ︷︷ ︸

n terms

= nrn−1.

By our lemma,
∑∞

n=1 n |an| rn−1 converges, so if C :=
∑∞

n=1 n |an| rn−1, then

|f(z)− f(c)| ≤ |z − c|
∞∑

n=1

|an| |qn(z)| ≤ |z − c|
∞∑

n=1

|an|nrn−1 = C|z − c|,

which implies that limz→c f(z) = f(c); that is, f is continuous at z = c. �

5.4.2. Abel’s limit theorem. Abel’s limit theorem has to do with the fol-
lowing question. Let f(x) =

∑∞
n=0 anxn have radius of convergence R; this implies,

in particular, that f(x) is defined for all −R < x < R and, by Theorem 5.19, is
continuous on the interval (−R,R). Let us suppose that f(R) =

∑∞
n=0 anRn con-

verges. In particular, f(x) is defined for all −R < x ≤ R. Question: Is f continuous
on the interval (−R,R], that is, is it true that

(5.16) lim
x→R−

f(x) = f(R)?
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The answer to this question is “yes” and it follows from the following more general
theorem due to Neils Abel; however, Abel’s theorem is mostly used for the real
variable case limx→R− f(x) = f(R) that we just described.

Theorem 5.20 (Abel’s limit theorem). Let f(z) =
∑∞

n=0 anzn have radius
of convergence R and let z0 ∈ C with |z0| = R where the series f(z0) =

∑∞
n=0 anzn

0

converges. Then
lim

z→z0

f(z) = f(z0)

where the limit on the left is taken in such a way that |z| < R and that the ratio
|z0−z|
R−|z| remains bounded by a fixed constant.

Proof. By considering the limit of the function g(z) = f(z0z)−f(z0) as z → 1
in such a way that |z| < 1 and that the ratio |1− z|/(1− |z|) remains bounded by
a fixed constant, we may henceforth assume that z0 = 1 and that f(z0) = 0 (the
diligent student will check the details of this statement). If sn = a0 + a1 + · · ·+ an,
then (because we’re supposing R = 1) by assumption 0 = f(1) =

∑∞
n=0 an = lim sn.

Now observe that an = sn − sn−1, so
n∑

k=0

akzk = a0 + a1z + a2z
2 + · · ·+ anzn

= s0 + (s1 − s0)z + (s2 − s1)z
2 + · · ·+ (sn − sn−1)z

n

= s0(1− z) + s1(z − z2) + · · ·+ sn−1(z
n−1 − zn) + snzn

= s0(1− z) + s1(1− z)z + · · ·+ sn−1(1− z)zn−1 + snzn

= (1− z)
(
s0 + s1z + · · ·+ sn−1z

n−1
)

+ snzn

Thus,
∑n

k=0 akzk = (1− z)
∑n

k=0 skzk + snzn. Since sn → 0 and |z| < 1 it follows
that snzn → 0. Therefore, taking n→∞, we obtain

f(z) =

∞∑

n=0

anzn = (1− z)

∞∑

n=0

snzn,

which implies that

|f(z)| ≤ |1− z|
∞∑

n=0

|sn| |z|n.

Let us now take z → 1 in such a way that |z| < 1 and |1− z|/(1− |z|) < C where
C > 0. Let ε > 0 be given and, since sn → 0, we can choose an integer N such

that n > N =⇒ |sn| < ε/(2C). Define K :=
∑N

n=0 |sn|. Then we can write

|f(z)| ≤ |1− z|
N∑

n=0

|sn| |z|n + |1− z|
∞∑

n=N

|sn| |z|n

< |1− z|
N∑

n=0

|sn| · 1n + |1− z|
∞∑

n=N

ε

2C
|z|n

= K|1− z|+ ε

2C
|1− z|

∞∑

n=0

|z|n

= K|1− z|+ ε

2C

|1− z|
1− |z| < K|1− z|+ ε

2
.



256 5. ADVANCED THEORY OF INFINITE SERIES

Thus, with δ := ε/(2K), we have

|z − 1| < δ with |z| < 1 and
|1− z|
1− |z| < C =⇒ |f(z)| < ε.

This completes our proof. �

Notice that for z = x with 0 < x < R, we have

|R− z|
R− |z| =

|R− x|
R− |x| =

R− x

R− x
= 1

which is, in particular, bounded by 1, so (5.16) holds under the assumptions stated.
Once we prove this result at x = R, we can prove a similar result at x = −R: If
f(x) =

∑∞
n=0 anxn has radius of convergence R and f(−R) =

∑∞
n=0 an(−R)n

converges, then

lim
x→−R+

f(x) = f(−R).

To prove this, consider the function g(x) = f(−x), then apply (5.16) to g.

5.4.3. The identity theorem. The identity theorem is perhaps one of the
most useful properties of power series. The identity theorem says, very roughly,
that if two power series are identical at “sufficiently many” points, then in fact, the
power series are identical everywhere!

Theorem 5.21 (Identity theorem). Let f(z) =
∑

an zn and g(z) =
∑

bnzn

have positive radii of convergence and suppose that f(ck) = g(ck) for some nonzero
sequence ck → 0. Then the power series f(z) and g(z) must be identical; that is
an = bn for every n = 0, 1, 2, 3, . . ..

Proof. We begin by proving that for each m = 0, 1, 2, . . ., the series

fm(z) :=
∞∑

n=m

anzn−m = am + am+1z + am+2z
2 + am+3z

3 + · · ·

has the same radius of convergence as f . Indeed, since we can write

fm(z) = z−m
∞∑

n=m

anzn

for z 6= 0, the power series fm(z) converges if and only if
∑∞

n=m anzn converges,
which in turn converges if and only if f(z) converges. It follows that fm(z) and
f(z) have the same radius of convergence; in particular, by the continuity theorem
for power series, fm(z) is continuous at 0. Similarly, for each m = 0, 1, 2, . . .,
gm(z) :=

∑∞
n=m bnzn−m has the same radius of convergence as g(z); in particular,

gm(z) is continuous at 0. These continuity facts concerning fm and gm are the
important facts that will be used below.

Now to our proof. We are given that

(5.17) a0 + a1ck + a2c
2
k + · · · = b0 + b1ck + b2c

2
k + · · · that is, f(ck) = g(ck)

for all k. In particular, taking k → ∞ in the equality f(ck) = g(ck), using that
ck → 0 and that f and g are continuous at 0, we obtain f(0) = g(0), or a0 = b0.
Cancelling a0 = b0 and dividing by ck 6= 0 in (5.17), we obtain

(5.18) a1 + a2ck + a3c
2
k + · · · = b1 + b2ck + b3c

2
k + · · · that is, f1(ck) = g1(ck)
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for all k. Taking k →∞ and using that ck → 0 and that f1 and g1 are continuous
at 0, we obtain f1(0) = g1(0), or a1 = b1. Cancelling a1 = b1 and dividing by
ck 6= 0 in (5.18), we obtain

(5.19) a2 + a3ck + a4c
2
k + · · · = b2 + b3ck + b4c

2
k + · · · that is, f2(ck) = g2(ck)

for all k. Taking k → ∞, using that ck → 0 and that f2 and g2 are continuous at
0, we obtain f2(0) = g2(0), or a2 = b2. Continuing by induction we get an = bn for
all n = 0, 1, 2, . . ., which is exactly what we wanted to prove. �

Corollary 5.22. If f(z) =
∑

an zn and g(z) =
∑

bnzn have positive radii
of convergence and f(x) = g(x) for all x ∈ R with |x| < ε for some ε > 0, then
an = bn for every n; in other words, f and g are actually the same power series.

Proof. To prove this, observe that since f(x) = g(x) for all x ∈ R such that
|x| < ε, then f(ck) = g(ck) for all k sufficiently large where ck = 1/k; the identity
theorem now implies an = bn for every n. �

Using the identity theorem we can deduce certain properties of series.

Example 5.24. Suppose that f(z) =
∑

anzn is an odd function in the sense
that f(−z) = −f(z) for all z within its radius of convergence. In terms of power
series, the identity f(−z) = −f(z) is

∑

an(−1)nzn =
∑

−anzn.

By the identity theorem, we must have (−1)nan = −an for each n. Thus, for n
even we must have an = −an or an = 0, and for n odd, we must have −an = −an,
a tautology. In conclusion, we see that f is odd if and only if all coefficients of even
powers vanish:

f(z) =

∞∑

n=0

a2n+1z
2n+1;

that is, f is odd if and only if f has only odd powers in its series expansion.

Exercises 5.4.

1. Prove that f(z) =
∑

anzn is an even function in the sense that f(−z) = f(z) for all
z within its radius of convergence if and only if f has only even powers in its expansion,
that is, f takes the form f(z) =

∑∞
n=0 a2nz2n.

2. Recall that the binomial coefficient is
(

n
k

)
= n!

k!(n−k)!
for 0 ≤ k ≤ n. Prove the highly

nonobvious result:
(

m + n

k

)

=
k∑

j=0

(

m

j

)(

n

k − j

)

.

Suggestion: Apply the binomial formula to (1+z)m+n, which equals (1+z)m · (1+z)n.
Prove that

(

2n

n

)

=
n∑

k=0

(

n

k

)2

.

3. Prove that
∑∞

n=1 n |an| rn converges, where the notation is as in the proof of Theorem
5.19, using the root test. You will need Problem 8 in Exercises 5.2.

4. (Abel!summability) We say that a series
∑

an is Abel!summable to L if the power
series f(x) :=

∑
anxn is defined for all x ∈ [0, 1) and limx→1− f(x) = L.

(a) Prove that if
∑

an converges to L ∈ C, then
∑

an is also Abel summable to L.
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(b) Derive the following amazing formulas (properly interpreted!):

1 − 1 + 1 − 1 + 1 − 1 + − · · · =a
1

2
,

1 + 2 − 3 + 4 − 5 + 6 − 7 + − · · · =a
1

4
,

where =a mean “is Abel summable to”. You will need Problem 5 in Exercises 3.5.
5. In this problem we continue our fascinating study of Abel summability. Let a0, a1, a2, . . .

be a positive nonincreasing sequence tending to zero (in particular,
∑

(−1)n−1an con-
verges by the alternating series test). Define bn := a0 + a1 + · · · + an. We shall prove
the neat formula

b0 − b1 + b2 − b3 + b4 − b5 + − · · · =a
1

2

∞∑

n=0

(−1)nan.

(i) Let f(x) =
∑∞

n=0(−1)nbn xn. Prove that f has radius of convergence 1. Sugges-
tion: Use the ratio test.

(ii) Let

fn(x) =
n∑

k=0

(−1)kbk xk

= a0 − (a0 + a1)x + (a0 + a1 + a2)x
2 − · · · + (−1)n(a0 + a1 + · · · + an)xn

be the n-th partial sum of f(x). Prove that

fn(x) =
1

1 + x

(
a0 − a1x + a2x

2 − a3x
3 + · · · + (−1)nanxn)

+ (−1)n xn+1

1 + x

(
a0 + a2 + a3 + · · · + an).

(iii) Prove that4

f(x) =
1

1 + x

∞∑

n=0

(−1)nanxn.

Finally, from this formula prove the desired result.
(iv) Establish the remarkable formula

1 −
(

1 +
1

2

)

+
(

1 +
1

2
+

1

3

)

−
(

1 +
1

2
+

1

3
+

1

4

)

+ − · · · =a
1

2
log 2 .

6. Suppose that f(z) =
∑

anzn has radius of convergence 1, where
∑

an is a divergent
series of positive real numbers. Prove that limx→1− f(x) = +∞.

5.5. Double sequences, double series, and a ζ-function identity

After studying single integrals in elementary calculus, you probably took a
course where you studied “double integrals”. In a similar way, now that we have a
thorough background in “single infinite series,” we now move to the topic of “double
infinite series”. The main result of this section is Cauchy’s double series theorem,
which we’ll use quite often in the sequel.

4In the next section, we’ll learn how to prove this identity in a much quicker way using the

technologically advanced Cauchy’s double series theorem.



5.5. DOUBLE SEQUENCES, DOUBLE SERIES, AND A ζ-FUNCTION IDENTITY 259

5.5.1. Double sequences and series and Pringsheim’s theorem. We
begin by studying double sequences. Recall that a complex sequence is really just
a function s : N→ C where we usually denote s(n) by sn. By analogy, we define a
double sequence of complex numbers as a function s : N×N −→ C. We usually
denote s(m,n) by smn and the corresponding double sequence by {smn}.

Example 5.25. For m,n ∈ N,

smn =
m · n

(m + n)2

defines a double sequence {smn}.
Whenever we talk about sequences, the idea of convergence is bound to follow.

Let {smn} be a double sequence of complex numbers. We say that the double
sequence {smn} converges if there is a complex number L having the property
that given any ε > 0 there is a real number N such that

m,n > N =⇒ |L− smn| < ε,

in which case we write L = lim smn.
Care has to be taken when dealing with double sequences because sometimes

sequences that look convergent are actually not.

Example 5.26. The nice looking double sequence smn = mn/(m + n)2 does
not converge. To see this, observe that if m = n, then

smn =
n · n

(n + n)2
=

n2

4n2
=

1

4
.

However, if m = 2n, then

smn =
2n · n

(2n + n)2
=

2n2

9n2
=

2

9
.

Therefore it is impossible for smn to approach any single number no matter how
large we take m,n.

Given a double sequence {smn} it is convenient to look at the iterated limits:

(5.20) lim
m→∞

lim
n→∞

smn and lim
n→∞

lim
m→∞

smn.

For limm→∞ limn→∞ smn on the left, we mean to first take n → ∞ and second to
take m→∞, reversing the order for limn→∞ limm→∞ smn. In general, the iterated
limits (5.20) may have no relationship!

Example 5.27. Consider the double sequence smn = mn/(m + n2). We have

lim
n→∞

smn = lim
n→∞

mn

m + n2
= 0 =⇒ lim

m→∞
lim

n→∞
smn = lim

m→∞
0 = 0.

On the other hand,

lim
m→∞

smn = lim
m→∞

mn

m + n2
= n =⇒ lim

n→∞
lim

m→∞
smn = lim

n→∞
n =∞.

Here are a couple questions:

(I) If both iterated limits (5.20) exist and are equal, say to a number L, is it
true that the regular double limit lim smn exists and lim smn = L?
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(II) If L = lim smn exists, then is it true that both iterated limits (5.20) exist
and are equal to L:

(5.21) L = lim
m→∞

lim
n→∞

smn = lim
n→∞

lim
m→∞

smn?

It may shock you, but the answer to both of these questions is “no”.

Example 5.28. For a counter example to Question I, consider our first example
smn = mn/(m + n)2. We know that lim smn does not exist, but observe that

lim
n→∞

smn = lim
n→∞

mn

(m + n)2
= 0 =⇒ lim

m→∞
lim

n→∞
smn = lim

m→∞
0 = 0.

and

lim
m→∞

smn = lim
m→∞

mn

(m + n)2
= 0 =⇒ lim

n→∞
lim

m→∞
smn = lim

n→∞
0 = 0,

so both iterated limits converge. For a counter example to Question II, see limit
(d) in Problem 1.

However, if a double sequence converges and both iterated sequences converge,
then they all must equal the same number. This is the content of the following
theorem, named after Alfred Pringsheim (1850–1941).

Theorem 5.23 (Pringsheim’s theorem for sequences). If a double se-
quence converges and both iterated sequences converge, then the equality (5.21)
holds.

Proof. Let ε > 0. Then there is an N such that for all m,n > N , we have
|L− smn| < ε/2. Taking n→∞ implies that

∣
∣L− lim

n→∞
smn

∣
∣ ≤ ε

2
,

and then taking m→∞, we get
∣
∣L− lim

m→∞
lim

n→∞
smn

∣
∣ ≤ ε

2
< ε.

Since ε > 0 is arbitrary, this establishes the first equality in (5.21). A similar
argument establishes the equality with the limits of m and n reversed. �

Recall that if {an} is a sequence of complex numbers, then we say that
∑

an

converges if the sequences {sn} converges, where sn :=
∑n

k=1 ak. By analogy,
we define a double series of complex numbers as follows. Let {amn} be a double
sequence of complex numbers and let

smn :=

m∑

i=1

n∑

j=1

aij ,

called the m,n-th partial sum of
∑

amn. We say that the double series
∑

amn

converges if the double sequence {smn} of partial sums converges. If
∑

amn

exists, we can ask whether or not

(5.22)
∑

amn =
∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn ?
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Figure 5.3. In the first array we are “summing by rows” and in
the second array we are “summing by columns”.

Here, with smn =
∑m

i=1

∑n
j=1 aij , the iterated series on the right are defined as

∞∑

m=1

∞∑

n=1

amn := lim
m→∞

lim
n→∞

smn and
∞∑

n=1

∞∑

m=1

amn := lim
n→∞

lim
m→∞

smn.

Thus, (5.22) is just the equality (5.21) with s =
∑

amn. Hence, Pringsheim’s
theorem for sequences immediately implies the following.

Theorem 5.24 (Pringsheim’s theorem for series). If a double series con-
verges and both iterated series converge, then the equality (5.22) holds.

We can “visualize” the iterated sums in (5.22) as follows. First, we arrange
the amn’s in an infinite array as shown in Figure 5.3. Then for fixed m ∈ N, the
sum

∑∞
n=1 amn is summing all the numbers in the m-th row shown on the left

picture in Figure 5.3. For example, if m = 1, then
∑∞

n=1 a1n is summing all the
numbers in the first row shown on the left picture in Figure 5.3. The summation
∑∞

m=1

∑∞
n=1 amn is summing over all the rows (that have already been summed).

Similarly,
∑∞

n=1

∑∞
m=1 amn is summing over all the columns. In the next section,

we shall generalize summing by rows and columns to “summing by curves”.

5.5.2. Absolutely convergent double series and “summing by curves”.
In analogy with single series, we say that a double series

∑
amn converge abso-

lutely if the series of absolute values
∑ |amn| converges. In order to study ab-

solutely convergent double series it is important to understand double series of
nonnegative terms, which is the content of the following lemma.

Lemma 5.25 (Nonnegative double series lemma). If
∑

amn converges
where amn ≥ 0 for all m,n, then both iterated series converge, and

∑

amn =

∞∑

m=1

∞∑

n=1

amn =

∞∑

n=1

∞∑

m=1

amn.

Moreover, given ε > 0 there is an N such that

k > N =⇒
∞∑

i=1

∞∑

j=k

aij < ε and

∞∑

i=k

∞∑

j=1

aij < ε.

Proof. Assume that the series
∑

amn converges and let ε > 0. Since
∑

amn

converges, setting s :=
∑

amn and

(5.23) smn :=
m∑

i=1

n∑

j=1

aij =
n∑

j=1

m∑

i=1

aij ,
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by definition of convergence we can choose N such that

(5.24) m,n > N =⇒ |s− smn| <
ε

2
.

Given i ∈ N, choose m ≥ i such that m > N and let n > N . Then in view of (5.24)
we have

n∑

j=1

aij ≤
m∑

i=1

n∑

j=1

aij = smn < s +
ε

2
.

Therefore, the partial sums of
∑∞

j=1 aij are bounded above by a fixed constant and

hence (by the nonnegative series test — see Theorem 3.20), for any i ∈ N, the sum
∑∞

j=1 aij exists. In particular,

lim
n→∞

smn = lim
n→∞

m∑

i=1

n∑

j=1

aij =
m∑

i=1

∞∑

j=1

aij ;

here, we can interchange the limit with the first sum because the first sum is finite.
Now taking n→∞ in (5.24), we see that

m > N =⇒
∣
∣
∣
∣
s−

m∑

i=1

∞∑

j=1

aij

∣
∣
∣
∣
≤ ε

2
< ε.

Since ε > 0 was arbitrary, by definition of convergence,
∑∞

i=1

∑∞
j=1 aij exists with

limit s =
∑

amn:
∑

amn =
∞∑

i=1

∞∑

j=1

aij .

Similarly, using the second form of smn in (5.23), one can use an analogous argument
to show that

∑
amn =

∑∞
j=1

∑∞
i=1 aij .

We now prove the last statement of our lemma. To this end, we observe that
for any k ∈ N, we have

s =

∞∑

i=1

∞∑

j=1

aij =

∞∑

i=1

( k∑

j=1

aij +

∞∑

j=k+1

aij

)

=

∞∑

i=1

k∑

j=1

aij +

∞∑

i=1

∞∑

j=k+1

aij ,

which implies that

(5.25)

∞∑

i=1

∞∑

j=k+1

aij = s−
∞∑

i=1

k∑

j=1

aij = s− lim
m→∞

smk.

By the first part of this proof, we know that s = limk→∞ limm→∞ smk, so taking
k →∞ in (5.25), we see that the left-hand side of (5.25) tends to zero as k →∞,
so it follows that for some N1,

k > N1 =⇒
∞∑

i=1

∞∑

j=k

aij < ε.

A similar argument shows that there is an N2 such that

k > N2 =⇒
∞∑

i=k

∞∑

j=1

aij < ε.

Setting N as the largest of N1 and N2 completes the proof. �
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Figure 5.4. “Summing by squares” and “summing by triangles”.

Before presenting the “sum by curves theorem” (Theorem 5.26 below) it might
be helpful to give a couple examples of this theorem to help in understanding what
it says. Let

∑
amn be an absolutely convergent series.

Example 5.29. Let

Sk = {(m,n) ; 1 ≤ m ≤ k , 1 ≤ n ≤ k},
which represents a k× k square of numbers; see the left-hand picture in Figure 5.4
for 1× 1, 2× 2, 3× 3, and 4× 4 examples. We denote by

∑

(m,n)∈Sk
amn the sum

of those amn’s within the k × k square Sk. Explicitly,

∑

(m,n)∈Sk

amn =

k∑

m=1

k∑

n=1

amn.

The sum by curves theorem implies that

(5.26)
∑

amn = lim
k→∞

∑

(m,n)∈Sk

amn = lim
k→∞

k∑

m=1

k∑

n=1

amn.

As we already noted,
∑

(m,n)∈Sk
amn involves summing the amn’s within a k × k

square; for this reason, (5.26) is referred to as “summing by squares”.

Example 5.30. Now let

Sk = T1 ∪ · · · ∪ Tk , where T` = {(m,n) ; m + n = ` + 1}.
Notice that T` = {(m,n) ; m + n = ` + 1} = {(1, `), (2, ` − 1), . . . , (`, 1)} rep-
resents the `-th diagonal in the right-hand picture in Figure 5.4; for instance,
T3 = {(1, 3), (2, 2), (3, 1)} is the third diagonal in Figure 5.4. Then

∑

(m,n)∈Sk

amn =

k∑

`=1

∑

(m,n)∈T`

amn

is the sum of the amn’s that are within the triangle consisting of the first k diagonals.
The sum by curves theorem implies that

∑

amn = lim
k→∞

∑

(m,n)∈Sk

amn = lim
k→∞

k∑

`=1

∑

(m,n)∈T`

amn,

or using that T` = {(1, `), (2, `− 1), . . . , (`, 1)}, we have

(5.27)
∑

amn =

∞∑

k=1

(
a1,k + a2,k−1 + · · ·+ ak,1

)
.

We refer to (5.27) as “summing by triangles”.
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More generally, we can “sum by curves” as long as the curves increasingly fill
up the array like the squares or triangles shown in Figure 5.4.

Theorem 5.26 (Sum by curves theorem). An absolutely convergent series
∑

amn itself converges. Moreover, if S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ N×N is a nondecreasing
sequence of finite sets having the property that for any m,n there is a k such that

(5.28) {1, 2, . . . ,m} × {1, 2, . . . , n} ⊆ Sk ⊆ Sk+1 ⊆ Sk+2 ⊆ · · · ,
then the sequence {sk} converges, where sk is the finite sum

sk :=
∑

(m,n)∈Sk

amn,

and furthermore,
∑

amn = lim sk.

Proof. We first prove that the sequence {sk} converges by showing that the
sequence is Cauchy. Indeed, let ε > 0 be given. By assumption,

∑ |amn| converges,
so by the nonnegative double series lemma we can choose N ∈ N such that

(5.29) k > N =⇒
∞∑

i=1

∞∑

j=k

|aij | < ε and

∞∑

i=k

∞∑

j=1

|aij | < ε.

By the property (5.28) of the sets {Sk} there is an N ′ such that

(5.30) {1, 2, . . . , N} × {1, 2, . . . , N} ⊆ SN ′ ⊆ SN ′+1 ⊆ SN ′+2 ⊆ · · ·
Let k > ` > N ′. Then, since S` ⊆ Sk, we have

|sk − s`| =
∣
∣
∣
∣

∑

(i,j)∈Sk

aij −
∑

(i,j)∈S`

aij

∣
∣
∣
∣
=

∣
∣
∣
∣

∑

(i,j)∈Sk\S`

aij

∣
∣
∣
∣
≤

∑

(i,j)∈Sk\S`

|aij |.

Since ` > N ′, by (5.30), S` contains {1, 2, . . . , N} × {1, 2, . . . , N}. Hence,

Sk \ S` is a subset of N× {N + 1, N + 2, . . .} or {N + 1, N + 2, . . .} × N.

For concreteness, assume that the first case holds; the second case can be dealt
with in a similar way. In this case, by the property (5.29), we have

|sk − s`| ≤
∑

(i,j)∈Sk\S`

|aij | ≤
∞∑

i=1

∞∑

j=N+1

|aij | < ε.

This shows that {sk} is Cauchy and hence converges.
We now show that

∑
amn converges with sum equal to lim sk. Let ε > 0 be

given and choose N such that (5.29) holds with ε replaced by ε/2. Fix natural
numbers m,n > N . By the property (5.28) and the fact that sk → s := lim sk we
can choose a k > N such that

{1, 2, . . . ,m} × {1, 2, . . . , n} ⊆ Sk

and |sk − s| < ε/2. Now observe that

|sk − smn| =
∣
∣
∣
∣

∑

(i,j)∈Sk

aij −
∑

(i,j)∈{1,...,m}×{1,...,n}
aij

∣
∣
∣
∣
≤

∑

(i,j)∈Sk\({1,...,m}×{1,...,n})
|aij |.

Notice that Sk \ ({1, . . . ,m} × {1, . . . , n}) is a subset of N × {n + 1, n + 2, . . .} or
{m + 1,m + 2, . . .} × N. For concreteness, assume that the first case holds; the
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second case can be dealt with in a similar manner. In this case, by the property
(5.29) (with ε replaced with ε/2), we have

|sk − smn| ≤
∑

(i,j)∈Sk\({1,...,m}×{1,...n})
|aij | <

∞∑

i=1

∞∑

j=n+1

|aij | <
ε

2
.

Hence,

|smn − s| ≤ |smn − sk|+ |sk − s| < ε

2
+

ε

2
= ε.

This proves that
∑

amn = s and completes our proof. �

We now come to Cauchy’s double series theorem, the most important result of
this section.

5.5.3. Cauchy’s double series theorem. Instead of summing by curves, in
many applications we are interested in summing by rows or by columns.

Theorem 5.27 (Cauchy’s double series theorem). A series
∑

amn is ab-
solutely convergent if and only if

∞∑

m=1

∞∑

n=1

|amn| <∞ or

∞∑

n=1

∞∑

m=1

|amn| <∞,

in which case
∑

amn =
∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn

in the sense that both iterated sums converge and are equal to the sum of the series.

Proof. Assume that the sum
∑

amn converges absolutely. Then by the non-
negative double series lemma, we know that

∞∑

m=1

∞∑

n=1

|amn| =
∞∑

n=1

∞∑

m=1

|amn| =
∑

|amn|.

We shall prove that the iterated sums
∑∞

m=1

∑∞
n=1 amn and

∑∞
n=1

∑∞
m=1 amn con-

verge and equal s :=
∑

amn, which exists by the sum by curves theorem. Let smn

denote the partial sums of
∑

amn. Let ε > 0 and choose N such that

(5.31) m,n > N =⇒ |s− smn| <
ε

2
.

Since
∞∑

m=1

∞∑

n=1

|amn| <∞,

this implies, in particular, that for any m ∈ N, the sum
∑∞

n=1 |amn| converges, and
hence for any m ∈ N,

∑∞
n=1 amn = limn→∞ smn converges. Thus, taking n → ∞

in (5.31), we obtain

m > N =⇒ |s− lim
n→∞

smn| ≤
ε

2
< ε.

But this means that s = limm→∞ limn→∞ smn; that is,

s =

∞∑

m=1

∞∑

n=1

amn.

A similar argument gives this equality with the sums reversed.
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Now assume that
∞∑

m=1

∞∑

n=1

|amn| = t <∞.

We will show that
∑

amn is absolutely convergent; a similar proof shows that if
∑∞

n=1

∑∞
m=1 |amn| < ∞, then

∑
amn is absolutely convergent. Let ε > 0. Then

the fact that
∑∞

i=1

(∑∞
j=1 |aij |

)
< ∞ implies, by the Cauchy criterion for series,

there is an N such that for all m > N ,

m > N =⇒
∞∑

i=m+1

( ∞∑

j=1

|aij |
)

<
ε

2
.

Let m,n > N . Then for any k > m, we have
∣
∣
∣
∣
∣
∣

k∑

i=1

∞∑

j=1

|aij | −
m∑

i=1

n∑

j=1

|aij |

∣
∣
∣
∣
∣
∣

≤
k∑

i=m+1

∞∑

j=1

|aij | ≤
∞∑

i=m+1

∞∑

j=1

|aij | <
ε

2
.

Taking k →∞ shows that for all m,n > N ,
∣
∣
∣
∣
∣
∣

t−
m∑

i=1

n∑

j=1

|aij |

∣
∣
∣
∣
∣
∣

≤ ε

2
< ε,

which proves that
∑ |amn| converges, and completes the proof of our result. �

Corollary 5.28. If {amn} is a double sequence of nonnegative numbers, then

∑

amn =
∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn

in the sense that either sum converges or diverges together and when one, and hence
all, converge, their values are equal.

Now for examples.

Example 5.31. For our first example, consider the sum
∑

1/(mpnq) where
p, q ∈ R. Since in this case,

∞∑

n=1

1

mpnq
=

1

mp
·
( ∞∑

n=1

1

nq

)

,

it follows that
∞∑

m=1

∞∑

n=1

1

mpnq
=
( ∞∑

m=1

1

mp

)

·
( ∞∑

n=1

1

nq

)

.

Therefore, by Cauchy’s double series theorem and the p-test,
∑

1/(mpnq) converges
if and only if both p, q > 1.

Example 5.32. The previous example can help us with other examples such
as
∑

1/(m4 + n4). Observe that

(m2 − n2)2 ≥ 0 =⇒ m4 + n4 − 2m2n2 ≥ 0 =⇒ 1

m4 + n4
≤ 1

2m2n2
.

Since
∑

1/(m2n2) converges, by an easy generalization of our good ole comparison
test (Theorem 3.27) to double series, we see that

∑
1/(m4 + n4) converges too.
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Example 5.33. For an application of Cauchy’s theorem and the sum by curves
theorem, we look at the double sum

∑
zm+n for |z| < 1. For such z, this sum

converges absolutely because
∞∑

m=0

∞∑

n=0

|z|m+n =

∞∑

m=0

|z|m · 1

1− |z| =
1

(1− |z|)2 <∞,

where we used the geometric series test (twice): If |r| < 1, then
∑∞

k=0 rk = 1
1−r .

So
∑

zm+n converges absolutely by Cauchy’s double series theorem, and

∑

zm+n =
∞∑

m=0

∞∑

n=0

zm+n =
∞∑

m=0

zm · 1

1− z
=

1

(1− z)2
.

On the other hand, by our sum by curves theorem, we can determine
∑

zm+n by
summing over curves; we shall choose to sum over triangles. Thus, if we set

Sk = T0 ∪ T1 ∪ T2 ∪ · · · ∪ Tk , where T` = {(m,n) ; m + n = ` , m, n ≥ 0},
then

∑

zm+n = lim
k→∞

∑

(m,n)∈Sk

zm+n = lim
k→∞

k∑

`=0

∑

(m,n)∈T`

zm+n.

Since T` = {(m,n) ; m + n = `} = {(0, `), (1, `− 1), . . . , (`, 0)}, we have
∑

(m,n)∈T`

zm+n = z0+` + z1+(`−1) + z2+(`−2) + · · ·+ z`+0 = (` + 1)z`.

Thus,
∑

zm+n =
∑∞

k=0(k + 1)zk. However, we already proved that
∑

zm+n =
1/(1− z)2, so

(5.32)
1

(1− z)2
=

∞∑

n=1

nzn−1.

Example 5.34. Another very neat application of Cauchy’s double series the-
orem is to derive nonobvious identities. For example, let |z| < 1 and consider the
series

∞∑

n=1

zn

1 + z2n
=

z

1 + z2
+

z2

1 + z4
+

z3

1 + z6
+ · · · ;

we’ll see why this converges in a moment. Observe that (since |z| < 1)

1

1 + z2n
=

∞∑

m=0

(−1)mz2mn,

by the familiar geometric series test: If |r| < 1, then
∑∞

k=0 rk = 1
1−r with r = −z2n.

Therefore,
∞∑

n=1

zn

1 + z2n
=

∞∑

n=1

zn ·
∞∑

m=0

(−1)mz2mn =

∞∑

n=1

∞∑

m=0

(−1)mz(2m+1)n

We claim that the double sum
∑

(−1)mz(2m+1)n converges absolutely. To prove
this, observe that

∞∑

n=1

∞∑

m=0

|z|(2m+1)n =
∞∑

n=1

|z|n
∞∑

m=0

|z|2nm =
∞∑

n=1

|z|n
1− |z|2n

.
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Since 1
1−|z|2n ≤ 1

1−|z| (this is because |z|2n ≤ |z| for |z| < 1), we have

|z|n
1− |z|2n

≤ 1

1− |z| · |z|
n.

Since
∑ |z|n converges, by the comparison theorem,

∑∞
n=1

|z|n
1−|z|2n converges too.

Hence, Cauchy’s double series theorem applies, and

∞∑

n=1

∞∑

m=0

(−1)mz(2m+1)n =

∞∑

m=0

∞∑

n=1

(−1)mz(2m+1)n

=
∞∑

m=0

(−1)m
∞∑

n=1

z(2m+1)n

=
∞∑

m=0

(−1)m z2m+1

1− z2m+1
.

Thus,
∞∑

n=1

zn

1 + z2n
=

∞∑

m=0

(−1)m z2m+1

1− z2m+1
;

that is, we have derived the striking identity between even and odd powers of z:

z

1 + z2
+

z2

1 + z4
+

z3

1 + z6
+ · · · = z

1− z
− z3

1− z3
+

z5

1− z5
−+ · · · .

There are more beautiful series like this found in the exercises (see Problem 4
or better yet, Problem 5). We just touch on one more because it’s so nice:

5.5.4. A neat ζ-function identity. Recall that the ζ-function is defined by
ζ(z) =

∑∞
n=1

1
nz , which converges absolutely for z ∈ C with Re z > 1. Here’s a

beautiful theorem from Flajolet and Vardi [58, 176].

Theorem 5.29. If f(z) =
∑∞

n=2 an zn and
∑∞

n=2 |an| converges, then

∞∑

n=1

f
( 1

n

)

=

∞∑

n=2

an ζ(n).

Proof. We first write
∞∑

n=1

f
( 1

n

)

=

∞∑

n=1

∞∑

m=2

am
1

nm
.

Now if we set C :=
∑∞

m=2 |am| <∞, then

∞∑

n=1

∞∑

m=2

∣
∣
∣am

1

nm

∣
∣
∣ ≤

∞∑

n=1

∞∑

m=2

|am|
1

n2
≤ C

∞∑

n=1

1

n2
<∞.

Hence, by Cauchy’s double series theorem, we can switch order of summation:

∞∑

n=1

f
( 1

n

)

=

∞∑

n=1

∞∑

m=2

am
1

nm
=

∞∑

m=2

am

∞∑

n=1

1

nm
=

∞∑

m=2

am ζ(m),

which completes our proof. �
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Using this theorem we can derive the pretty formula (see Problem 7):

(5.33) log 2 =
∞∑

n=2

1

2n
ζ(n).

Not only is this formula pretty, it converges to log 2 much faster than the usual

series
∑∞

n=1
(−1)n−1

n (from which (5.33) is derived by the help of Theorem 5.29);
see [58, 176] for a discussion of such convergence issues.

Exercises 5.5.

1. Determine the convergence of the limits and the iterated limits for the double sequences

(a) smn =
1

m
+

1

n
, (b) smn =

m

m + n
, smn =

(n + 1

n + 2

)m

,

(d) smn = (−1)m+n
( 1

m
+

1

n

)

, (e) smn =
1

1 + (m − n)2
.

2. Determine the convergence, iterated convergence, and absolute convergence, for the
double series

(a)
∑

m,n≥1

(−1)mn

mn
, (b)

∑

m,n≥1

(−1)n

(m + np)(m + np − 1)
, p > 1 , (c)

∑

m≥2,n≥1

1

mn

Suggestion: For (b), show that
∑∞

m=1
1

(m+np)(m+np−1)
telescopes.

3. (mn-term test for double series) Show that if
∑

amn converges, then amn → 0.
Suggestion: First verify that amn = smn − sm−1,n − sm,n−1 + sm−1,n−1.

4. Let |z| < 1. Using Cauchy’s double series theorem, derive the beautiful identities

(a)
z

1 + z2
+

z3

1 + z6
+

z5

1 + z10
+ · · · =

z

1 − z2
− z3

1 − z6
+

z5

1 − z10
− + · · · ,

(b)
z

1 + z2
− z2

1 + z4
+

z3

1 + z6
− + · · · =

z

1 + z
− z3

1 + z3
+

z5

1 + z5
− + · · · ,

(c)
z

1 + z
− 2z2

1 + z2
+

3z3

1 + z3
− + · · · =

z

(1 + z)2
− z2

(1 + z2)2
+

z3

(1 + z3)2
− + · · · .

Suggestion: For (c), you need the formula 1/(1 − z)2 =
∑∞

n=1 nzn−1 found in (5.32).
5. (Number theory series) Here are some pretty formulas involving number theory!

(1) For n ∈ N, let τ(n) denote the number of positive divisors of n (that is, the number
of positive integers that divide n). For example, τ(1) = 1 and τ(4) = 3 (because
1, 2, 4 divide 4). Prove that

(5.34)
∞∑

n=1

zn

1 − zn
=

∞∑

n=1

τ(n)zn , |z| < 1.

Suggestion: Write 1/(1 − zn) =
∑∞

m=0 zmn =
∑∞

m=1 zn(m−1), then prove that the
left-hand side of (5.34) equals

∑
zmn. Finally, use Theorem 5.26 with the set Sk

given by Sk = T1 ∪ · · · ∪ Tk where Tk = {(m, n) ∈ N × N ; m · n = k}.
(2) For n ∈ N, let σ(n) denote the sum of the positive divisors of n. For example,

σ(1) = 1 and σ(4) = 1 + 2 + 4 = 7). Prove that
∞∑

n=1

zn

(1 − zn)2
=

∞∑

n=1

σ(n)zn , |z| < 1.

6. Here is a neat problem. Let f(z) =
∑∞

n=1 anzn and g(z) =
∑∞

n=1 bnzn. Determine a
set of z ∈ C for which the following formula is valid:

∞∑

n=1

bnf(zn) =
∞∑

n=1

ang(zn).
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From this formula, derive the following pretty formulas:
∞∑

n=1

f(zn) =
∞∑

n=1

anzn

1 − zn
,

∞∑

n=1

(−1)n−1f(zn) =
∞∑

n=1

anzn

1 + zn
,

and my favorite:
∞∑

n=1

f(zn)

n!
=

∞∑

n=1

anezn

.

7. In this problem we derive (5.33).

(i) Prove that log 2 =
∑∞

n=1
1

2n(2n−1)
=
∑∞

n=1 f
(

1
n

)

, where f(z) = z2

2(2−z)
.

(ii) Show that f(z) =
∑∞

n=2
zn

2n and from this and Theorem 5.29 prove (5.33).
8. (Cf. [58, 176]) Prove the following extension of Theorem 5.29: If f(z) =

∑∞
n=2 an zn

and for some N ∈ N,
∑∞

n=2
|an|
Nn converges, then

∞∑

n=N

f
( 1

n

)

=

∞∑

n=2

an

{

ζ(n) −
(

1 +
1

2n
+ · · · + 1

(N − 1)n

)}

,

where the sum
(

1 + 1
2n + · · · + 1

(N−1)n

)

is (by convention) zero if N = 1.

5.6. Rearrangements and multiplication of power series

We already know that the associative law holds for infinite series. That is, we
can group the terms of an infinite series in any way we wish and the resulting series
still converges with the same sum (see Theorem 3.23). A natural question that you
may ask is whether or not the commutative law holds for infinite series. That is,
suppose that s = a1 + a2 + a3 + · · · exists. Can we commute the an’s in any way
we wish and still get the same sum? For instance, is it true that

s = a1 + a2 + a4 + a3 + a6 + a8 + a5 + a10 + a12 + · · ·?
For general series, the answer is, quite shocking at first, “no!”

5.6.1. Rearrangements. A sequence ν1, ν2, ν3, . . . of natural numbers such
that every natural number occurs exactly once in this list is called a rearrange-
ment of the natural numbers.

Example 5.35. 1, 2, 4, 3, 6, 8, 5, 10, 12, . . ., where we follow every odd number
by two adjacent even numbers, is a rearrangement.

A rearrangement of a series
∑∞

n=1 an is a series
∑∞

n=1 aνn
where {νn} is a

rearrangement of N.

Example 5.36. Let us rearrange the alternating harmonic series

log 2 =
∞∑

n=1

(−1)n−1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+− · · ·

using the rearrangement 1, 2, 4, 3, 6, 8, 5, 10, 12, . . . we’ve already mentioned:

s = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+−−

· · ·+ 1

2k − 1
− 1

4k − 2
− 1

4k
+ · · · ,

provided of course that this sum converges. Here, the bottom three terms represent
the general formula for the k-th triplet of a positive term followed by two negative
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ones. To see that this sum converges, let sn denote its n-th partial sum. Then we
can write n = 3k + ` where ` is either 0, 1, or 2, and so

sn = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+−− · · ·+ 1

2k − 1
− 1

4k − 2
− 1

4k
+ rn,

where rn consists of the next ` (= 0, 1, 2) terms of the series for sn. Note that
rn → 0 as n→∞. In any case, we can write

sn =

(

1− 1

2

)

− 1

4
+

(
1

3
− 1

6

)

− 1

8
+−− · · ·+

(
1

2k − 1
− 1

4k − 2

)

− 1

4k
+ rn

=
1

2
− 1

4
+

1

6
− 1

8
+− · · ·+ 1

4k − 2
− 1

4k
+ rn

=
1

2

(

1− 1

2
+

1

3
− 1

4
+− · · ·+ 1

2k − 1
− 1

2k

)

+ rn.

Taking n→∞, we see that

s =
1

2
log 2.

Thus, the rearrangement s has a different sum than the original series!

In summary, rearrangements of series can, in general, have different sums that
the original series. In fact, it turns out that a convergent series can be rearranged
to get a different value if and only if the series is not absolutely convergent. The
“only if” portion is proved in Theorem 5.31 and the “if” portion is proved in

5.6.2. Riemann’s rearrangement theorem.

Theorem 5.30 (Riemann’s rearrangement theorem). If a series
∑

an of
real numbers converges, but not absolutely, then there are rearrangements of the
series that can be made to converge to ±∞ or any real number whatsoever.

Proof. We shall prove that there are rearrangements of the series that con-
verge to any real number whatsoever; following the argument for this case, you
should be able to handle the ±∞ cases yourself.

Step 1: We first show that the series corresponding to the positive and negative
terms in

∑
an each diverge. Let b1, b2, b3, . . . denote the terms in the sequence {an}

that are nonnegative, in the order in which they occur, and let c1, c2, c3, . . . denote
the absolute values of the terms in {an} that are negative, again, in the order in
which they occur. We claim that both series

∑
bn and

∑
cn diverge. To see this,

observe that

(5.35)

n∑

k=1

ak =
∑

i

bi −
∑

j

cj ,

where the right-hand sums are only over those natural numbers i, j such that bi

and cj occur in the left-hand sum. The left-hand side converges as n → ∞ by as-
sumption, so if either sum

∑∞
n=1 bn or

∑∞
n=1 cn of nonnegative numbers converges,

then the equality (5.35) would imply that the other sum converges. But this would
then imply that

n∑

k=1

|ak| =
∑

i

bi +
∑

j

cj

converges as n→∞, which does not. Hence, both sums
∑

bn and
∑

cn diverge.
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Step 2: We produce a rearrangement. Let ξ ∈ R. We shall produce a re-
arrangement

(5.36) b1 + · · ·+ bm1
− c1 − · · · − cn1

+ bm1+1 + · · ·+ bm2

− cn1+1 − · · · − cn2
+ bm2+1 + · · ·+ bm3

− cn2+1 − · · ·
such that such that its partial sums converge to ξ. We do so as follows. Let {βn}
and {γn} denote the partial sums for

∑
bn and

∑
cn, respectively. Since βn →∞,

for n sufficiently large, βn > ξ. We define m1 as the smallest natural number such
that

βm1
> ξ.

Note that βm1
differs from ξ by at most bm1

. Since γn →∞, for n sufficiently large,
βm1
− γn < ξ. We define n1 to be the smallest natural number such that

βm1
− γn1

< ξ.

Note that the left-hand side differs from ξ by at most cn1
. Now define m2 as the

smallest natural number greater than m1 such that

βm2
− γn1

> ξ.

As before, such a number exists because βn → ∞, and the left-hand side differs
from ξ by at most bm2

. We define the number n2 as the smallest natural number
greater than n1 such that

βm2
− γn2

< ξ,

where the left-hand side differs from ξ by at most cn2
. Continuing this process, we

produce sequences m1 < m2 < m3 < · · · and n1 < n2 < n3 < · · · such that for
every k,

βmk
− γnk−1

> ξ,

where the left-hand side differs from ξ by at most bmk
, and

βmk
− γnk

< ξ,

where the left-hand side differs from ξ by at most cnk
.

Step 3: We now show that the series (5.36), which is just a rearrangement of
∑

an, converges to ξ. Let

β′
k := b1 + · · ·+ bm1

− c1 − · · · − cn1
+ bm1+1 + · · ·+ bm2

−
· · · − cnk−2+1 − · · · − cnk−1

+ bmk−1+1 + · · ·+ bmk
= βmk

− γnk−1

and

γ′
k := b1 + · · ·+ bm1

− c1 − · · · − cn1
+ bm1+1 + · · ·+ bm2

−
· · ·+ bmk−1+1 + · · ·+ bmk

− cnk−1+1 − · · · − cnk
= βmk

− γnk
.

Then any given partial sum t of (5.36) is of the following two sorts:

t = b1 + · · ·+ bm1
− c1 − · · · − cn1

+ bm1+1 + · · ·+ bm2
−

· · · − cnk−2+1 − · · · − cnk−1
+ bmk−1+1 + · · ·+ b`,

where ` ≤ mk, in which case, γ′
k−1 < t ≤ β′

k; otherwise,

t = b1 + · · ·+ bm1
− c1 − · · · − cn1

+ bm1+1 + · · ·+ bm2
−

· · ·+ bmk−1+1 + · · ·+ bmk
− cnk−1+1 − · · · − c`,
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where ` ≤ nk, in which case, γ′
k ≤ t < β′

k+1. Now by construction, β′
k differs from

ξ by at most bmk
and γ′

k differs from ξ by at most cnk
. Therefore, the fact that

γ′
k−1 < t ≤ β′

k or γ′
k ≤ t < β′

k+1 imply that

ξ − cnk−1
< t < ξ + bnk

or ξ − cnk
< t < ξ + bnk+1

.

By assumption,
∑

an converges, so bnk
, cnk

→ 0, hence the partial sums of (5.36)
must converge to ξ. This completes our proof. �

We now prove that a convergent series can be rearranged to get a different
value only if the series is not absolutely convergent. Actually, we shall prove the
contrapositive: If a series is absolutely convergent, then any rearrangement has the
same value as the original sum. This is a consequence of the following theorem.

Theorem 5.31 (Dirichlet’s theorem). All rearrangements of an absolutely
convergent series of complex numbers converge with the same sum as the original
series.

Proof. Let
∑

an converge absolutely. We shall prove that any rearrange-
ment of this series converges to the same value as the sum itself. To see this, let
ν1, ν2, ν3, . . . be any rearrangement of the natural numbers and define

amn =

{

am if m = νn,

0 else.

Then by definition of amn, we have

am =
∞∑

n=1

amn and aνn
=

∞∑

m=1

amn.

Moreover,
∞∑

m=1

∞∑

n=1

|amn| =
∞∑

m=1

|am| <∞,

so by Cauchy’s double series theorem,

∞∑

m=1

am =

∞∑

m=1

∞∑

n=1

amn =

∞∑

n=1

∞∑

m=1

amn =

∞∑

n=1

aνn
.

�

We now move to the important topic of multiplication of series.

5.6.3. Multiplication of power series and infinite series. If we consider
two power series

∑∞
n=0 anzn and

∑∞
n=0 bnzn, then formally multiplying and com-

bining like powers of z, we get

(
a0 + a1z + a2z

2 + a3z
3 + · · ·

)(
b0 + b1z + b2z

2 + b3z
3 + · · ·

)
=

a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z
2

+ (a0b3 + a1b2 + a2b1 + a3b0)z
3 + · · · .
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In particular, taking z = 1, we get (again, only formally!)
(
a0 + a1 + a2 + a3 + · · ·

)(
b0 + b1 + b2 + b3 + · · ·

)
=

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0)

+ (a0b3 + a1b2 + a2b1 + a3b0) + · · · .
These thoughts suggest the following definition. Given two series

∑∞
n=0 an and

∑∞
n=0 bn, their Cauchy product is the series

∑∞
n=0 cn, where

cn = a0bn + a1bn−1 + · · ·+ anb0 =
n∑

k=0

akbn−k.

A natural question to ask is if
∑∞

n=0 an and
∑∞

n=0 bn converge, then is it true that

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)

=

∞∑

n=0

cn ?

The answer is, what may be a surprising, “no”.

Example 5.37. Let us consider the example (
∑∞

n=1
(−1)n−1

√
n

)(
∑∞

n=1
(−1)n−1

√
n

),

which is due to Cauchy. That is, let a0 = b0 = 0 and

an = bn = (−1)n−1 1√
n

, n = 1, 2, 3, . . . .

We know, by the alternating series test, that
∑∞

n=1
(−1)n−1

√
n

converges. However,

we shall see that the Cauchy product does not converge. Indeed,

c0 = a0b0 = 0, c1 = a0b1 + a1b0 = 0,

and for n ≥ 2,

cn =

n∑

k=0

akbn−k =

n−1∑

k=1

(−1)k(−1)n−k

√
k
√

n− k
= (−1)n

n−1∑

k=1

1√
k
√

n− k
.

Since for 1 ≤ k ≤ n− 1, we have

k(n− k) ≤ (n− 1)(n− 1) = (n− 1)2 =⇒ 1

n− 1
≤ 1
√

k(n− k)
,

we see that

(−1)ncn =

n−1∑

k=1

1
√

k(n− k)
≥

n−1∑

k=1

1

n− 1
=

1

n− 1

n−1∑

k=1

1 = 1.

Thus, the terms cn do not tend to zero as n → ∞, so by the n-th term test, the
series

∑∞
n=0 cn does not converge.

The problem with this example is that the series
∑ (−1)n−1

√
n

does not converge

absolutely. However, for absolutely convergent series, there is no problem as the
following theorem, due to Franz Mertens (1840–1927), shows.

Theorem 5.32 (Mertens’ multiplication theorem). If at least one of two
convergent series

∑
an = A and

∑
bn = B converges absolutely, then their Cauchy

product converges with sum equal to AB
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Proof. Consider the partial sums of the Cauchy product:

Cn = c0 + c1 + · · ·+ cn

= a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0(b0 + · · ·+ bn) + a1(b0 + · · ·+ bn−1) + · · ·+ anb0(5.37)

We need to show that Cn tends to AB as n→∞. Because our notation is symmetric
in A and B, we may assume that the sum

∑
an is absolutely convergent. If An

denotes the n-th partial sum of
∑

an and Bn that of
∑

bn, then from (5.37), we
have

Cn = a0Bn + a1Bn−1 + · · ·+ anB0.

If we set Bk = B + βk, then βk → 0, and we can write

Cn = a0(B + βn) + a1(B + βn−1) + · · ·+ an(B + β0)

= AnB + (a0βn + a1βn−1 + · · ·+ anβ0).

Since An → A, the first part of this sum converges to AB. Thus, we just need to
show that the term in parenthesis tends to zero as n → ∞. To see this, let ε > 0
be given. Putting α =

∑ |an| and using that βn → 0, we can choose a natural
number N such that for all n > N , we have |βn| < ε/(2α). Also, since βn → 0, we
can choose a constant C such that |βn| ≤ C for every n. Then for n > N ,

|a0βn+a1βn−1 + · · ·+ anβ0| = |a0βn + a1βn−1 + · · ·+ an−N+1βN+1

+ an−NβN + · · ·+ anβ0|
≤ |a0βn + a1βn−1 + · · ·+ an−N+1βN+1|+ |an−NβN + · · ·+ anβ0|

<
(

|a0|+ |a1|+ · · ·+ |an−N+1|
)

· ε

2α
+
(

|an−N |+ · · ·+ |an|
)

· C

≤ α · ε

2α
+ C

(

|an−N |+ · · ·+ |an|
)

=
ε

2
+ C

(

|an−N |+ · · ·+ |an|
)

.

Since
∑ |an| <∞, by the Cauchy criterion for series, we can choose N ′ > N such

that

n > N ′ =⇒ |an−N |+ · · ·+ |an| <
ε

2C
.

Then for n > N ′, we see that

|a0βn + a1βn−1 + · · ·+ anβ0| <
ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary, this completes the proof of the theorem. �

As an easy corollary, we see that if
∑∞

n=0 anzn and
∑∞

n=0 bnzn have radii of
convergence R1, R2, respectively, then since power series converge absolutely within
their radii of convergence, for all z ∈ C with |z| < R1, R2, we have

( ∞∑

n=0

anzn

)( ∞∑

n=0

bnzn

)

=

∞∑

n=0

cnzn

where cn =
∑n

k=0 akbn−k. In words: The product of power series is a power series.
Here’s a question: Suppose that

∑
an and

∑
bn converge and their Cauchy

product
∑

cn also converges; is it true that
∑

cn =
(∑

an

)(∑
bn

)
? The answer

may seem to be an “obvious” yes. However, it’s not so “obvious’ because the
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definition of the Cauchy product was based on a formal argument. Here is a proof
of this “obvious” fact.

Theorem 5.33 (Abel’s multiplication theorem). If the Cauchy product of
two convergent series

∑
an = A and

∑
bn = B converges, then the Cauchy product

has the value AB.

Proof. In my opinion, the slickest proof of this theorem is Abel’s original,
prove in 1826 using his limit theorem, Theorem 5.20 [92, p. 321]. Let

f(z) =
∑

anzn, g(z) =
∑

bnzn, h(z) =
∑

cnzn,

where cn = a0bn + · · ·+ anb0. These power series converge at z = 1, so they must
have radii of convergence at least 1. In particular, each series converges absolutely
for |z| < 1 and for these values of z according to according to Merten’s theorem,
we have

h(z) = f(z) · g(z).

Since each of the sums
∑

an,
∑

bn, and
∑

cn converges, by Abel’s limit theorem,
the functions f , g, and h converge to A, B, and C =

∑
cn, respectively, as z =

x→ 1 from the left. Thus,

C = lim
x→1−

h(x) = lim
x→1−

f(x) · g(x) = A ·B.

�

Example 5.38. For example, let us square log 2 =
∑∞

n=1
(−1)n−1

n . It turns

out that it will be convenient to write log 2 in two ways: log 2 =
∑∞

n=1
(−1)n−1

n

(here a0 = 0 and an = (−1)n−1

n for n = 1, 2, . . .) and as log 2 =
∑∞

n=0
(−1)n

n+1 (here

bn = (−1)n

n+1 ). Thus, c0 = a0b0 = 0 and for n = 1, 2, . . ., we see that

cn =

n∑

k=0

akbn−k =

n∑

k=1

(−1)k−1(−1)n−k

k(n + 1− k)
= (−1)n−1αn,

where αn =
∑n

k=1
1

k(n+1−k) . By Abel’s multiplication theorem, we have (log 2)2 =
∑∞

n=0 cn =
∑∞

n=1(−1)n−1αn as long as this latter sum converges. By the alternat-
ing series test, this sum converges if we can prove that {αn} is nonincreasing and
converges to zero. To prove these statements hold, observe that we can write

1

k(n− k + 1)
=

1

n + 1

(1

k
+

1

n− k + 1

)

,

therefore

αn =
1

1
· 1

n
+

1

2
· 1

n− 1
+

1

3
· 1

n− 2
+ · · ·+ 1

n
· 1
1

=
1

n + 1

[(

1 +
1

n

)

+
(1

2
+

1

n− 1

)

+
(1

3
+

1

n− 2

)

+ · · ·+
( 1

n
+

1

1

)]

.

In the brackets there are two copies of 1 + 1
2 + · · ·+ 1

n . Thus,

αn =
2

n + 1
Hn, where Hn := 1 +

1

2
+

1

3
+ · · ·+ 1

n
.
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It is common to use the notation Hn for the n-th partial sum of the harmonic
series. Now, recall from Section 4.6.5 on the Euler-Mascheroni constant that γn :=
Hn − log n is bounded above by 1, so

αn =
2

n + 1
(γn + log n) ≤ 2

n + 1
+ 2

log n

n + 1
=

2

n + 1
+ 2 · n

n + 1
· 1

n
log n

=
2

n + 1
+ 2 · n

n + 1
· log(n1/n)→ 0 + 2 · 1 · log 1 = 0

as n→∞. Thus, αn → 0. Moreover,

αn − αn+1 =
2

n + 1
Hn −

2

n + 2
Hn+1 =

2

n + 1
Hn −

2

n + 2

(

Hn +
1

n + 1

)

=
( 2

n + 1
− 2

n + 2

)

Hn −
2

(n + 1)(n + 2)

=
2

(n + 1)(n + 2)
Hn −

2

(n + 1)(n + 2)

=
2

(n + 1)(n + 2)
(Hn − 1) ≥ 0.

Thus, αn ≥ αn+1, so
∑

cn =
∑

(−1)n−1αn converges. Hence, we have proved the
following pretty formula:

1

2

(
log 2

)2
=

∞∑

n=1

(−1)n−1

n + 1
Hn

=

∞∑

n=1

(−1)n−1

n + 1

(

1 +
1

2
+ · · ·+ 1

n

)

.

Our final theorem, Cauchy’s multiplication theorem, basically says that we
can multiply absolutely convergent series without worrying about anything. To
introduce this theorem, note that if we have finite sums

∑
an and

∑
bn, then

(∑

an

)

·
(∑

bn

)

=
∑

ambn,

where the sum on the right means to add over all such products ambn in any order
we wish. One can ask if this holds true in the infinite series realm. The answer is
“yes” if both series on the left are absolutely convergent.

Theorem 5.34 (Cauchy’s multiplication theorem). If two series
∑

an =
A and

∑
bn = B converge absolutely, then the double series

∑
ambn converges

absolutely and has the value AB.

Proof. Since
∞∑

m=0

∞∑

n=0

|ambn| =
∞∑

m=0

|am|
∞∑

n=0

|bn| =
( ∞∑

m=0

|am|
)( ∞∑

n=0

|bn|
)

<∞,

by Cauchy’s double series theorem, the double series
∑

ambn converges absolutely,
and we can iterate the sums:

∑

ambn =

∞∑

m=0

∞∑

n=0

ambn =

∞∑

m=0

am

∞∑

n=0

bn =

( ∞∑

m=0

am

)( ∞∑

n=0

bn

)

= A ·B.

�
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We remark that Cauchy’s multiplication theorem generalizes to a product of
more than two absolutely convergent series.

5.6.4. The exponential function (again). Using Mertens’ or Cauchy’s mul-
tiplication theorem, we can give an alternative and quick proof of the formula
exp(z) exp(w) = exp(z + w) for z, w ∈ C, which was originally proved in Theorem
4.29 using a completely different method:

exp(z) exp(w) =

( ∞∑

n=0

zn

n!

)

·
( ∞∑

n=0

wn

n!

)

=

∞∑

n=0

( n∑

k=0

zk

k!
· wn−k

(n− k)!

)

=

∞∑

n=0

1

n!

( n∑

k=0

n!

k!(n− k)!
zkwn−k

)

=

∞∑

n=0

1

n!

( n∑

k=0

(
n

k

)

zkwn−k

)

=

∞∑

n=0

1

n!
(z + w)n = exp(z + w),

where we used the binomial theorem for (z + w)n in the last line.

Exercises 5.6.

1. Here are some alternating series problems:
(a) Prove that

1

1
+

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · + 1

4k − 3
+

1

4k − 1
− 1

2k
+ · · · =

3

2
log 2.

that is, we rearrange the alternating harmonic series so that two positive terms are
followed by one negative one, otherwise keeping the ordering the same. Suggestion:
Observe that

1

2
log 2 =

1

2
− 1

4
+

1

6
− 1

8
+

1

9
− 1

10
+ · · ·

= 0 +
1

2
+ 0 − 1

4
+ 0 +

1

6
+ 0 − 1

8
+ · · · .

Add this term-by-term to the series for log 2.
(b) Prove that

1

1
+

1

3
+

1

5
+

1

7
− 1

2
+ · · · + 1

8k − 7
+

1

8k − 5
+

1

8k − 3
+

1

8k − 1
− 1

2k
+ · · · =

3

2
log 2;

that is, we rearrange the alternating harmonic series so that four positive terms
are followed by one negative one, otherwise keeping the ordering the same.

(c) What’s wrong with the following argument?

1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · =

(

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

)

− 2
(1

2
+ 0 +

1

4
+ 0 +

1

6
+ · · ·

)

=
(

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

)

−
(

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

)

= 0.

2. Let f(z) =
∑∞

n=0 an zn be absolutely convergent for |z| < 1. Prove that for |z| < 1, we
have

f(z)

1 − z
=

∞∑

n=0

(a0 + a1 + a2 + · · · + an)zn.
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3. Using the previous problem, prove that for z ∈ C with |z| < 1,

1

(1 − z)2
=

∞∑

n=0

(n + 1)zn; that is,
( ∞∑

n=0

zn
)

·
( ∞∑

n=0

zn
)

=

∞∑

n=0

(n + 1)zn.

Using this formula, derive the neat looking formula: For z ∈ C with |z| < 1,

(5.38)
( ∞∑

n=0

cos nθ zn
)

·
( ∞∑

n=0

sin nθ zn
)

=
1

2

∞∑

n=0

(n + 1) sin nθ zn.

Suggestion: Put z = eiθx with x real into the formula (
∑∞

n=0 zn) · (
∑∞

n=0 zn) =
∑∞

n=0(n+1)zn, then equate imaginary parts of both sides; this proves (5.38) for z = x
real and |x| < 1. Why does (5.38) hold for z ∈ C with |z| < 1?

4. Derive the beautiful formula: For |z| < 1,

( ∞∑

n=1

cos nθ

n
zn
)

·
( ∞∑

n=1

sin nθ

n
zn
)

=
1

2

∞∑

n=2

Hn sin nθ

n
zn.

5. In this problem we prove the following fact: Let f(z) =
∑∞

n=0 anzn be a power series
with radius of convergence R > 0 and let α ∈ C with |α| < R. Then we can write

f(z) =

∞∑

n=0

bn(z − α)n,

where this series converges absolutely for |z − α| < R − α.
(i) Show that

(5.39) f(z) =

∞∑

n=0

∞∑

m=0

an

(

n

m

)

αn−m(z − α)m.

(ii) Prove that

∞∑

n=0

∞∑

m=0

|an|
(

n

m

)

|α|n−m|z − α|m =

∞∑

n=0

|an|
(
|z − α| + |α|

)m
< ∞.

(iii) Verifying that you can change the order of summation in (5.39), prove the result.

5.7. F Proofs that
∑

1/p diverges

We know that the harmonic series
∑

1/n diverges. However, if we only sum
over the squares, then we get the convergent sum

∑
1/n2. Similarly, if we only sum

over the cubes, we get the convergent sum
∑

1/n3. One may ask: What if we sum
only over all primes:

∑ 1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+ · · · ,

do we get a convergent sum? We know that there are arbitrarily large gaps be-
tween primes (see Problem 1 in Exercises 2.4), so one may conjecture that

∑
1/p

converges. However, following [19], [50], [125] (cf. [126]), and [100] we shall prove
that

∑
1/p diverges! Other proofs can be found in the exercises. An expository

article giving other proofs (cf. [119], [41]) on this fascinating divergent sum can be
found in [175].
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5.7.1. Proof I: Proof by multiplication and rearrangement. This is
Bellman [19] and Dux’s [50] argument. Suppose, for sake of contradiction, that
∑

1/p converges. Then we can fix a prime number m such that
∑

p>m 1/p < 1.
Let 2 < 3 < · · · < m be the list of all prime numbers up to m. Given N > m, let
PN be the set of natural numbers greater than one and less than or equal to N all
of whose prime factors are less than or equal to m, and let QN be the set of natural
numbers greater than one and less than or equal to N all of whose prime factors
are greater than m. Explicitly,

k ∈ PN ⇐⇒ 1 < k ≤ N and k = 2i3j · · ·mk, some i, j, . . . , k,

` ∈ QN ⇐⇒ 1 < ` ≤ N and ` = p q · · · r, p, q, . . . , r > m are prime.
(5.40)

In the product p q · · · r prime numbers may be repeated. Observe that any integer
1 < n ≤ N that is not in PN or QN must have prime factors that are both less than
or equal to m and greater than m, and hence can be factored in the form n = k `
where k ∈ PN and ` ∈ QN . Thus, the finite sum

∑

k∈PN

1

k
+
∑

`∈QN

1

`
+
( ∑

k∈PN

1

k

)( ∑

`∈QN

1

`

)

=
∑

k∈PN

1

k
+
∑

`∈QN

1

`
+

∑

k∈PN ,`∈QN

1

k `
,

contains every number of the form 1/n where 1 < n ≤ N . (Of course, the resulting
sum contains other numbers too.) In particular,

∑

k∈PN

1

k
+
∑

`∈QN

1

`
+
( ∑

k∈PN

1

k

)( ∑

`∈QN

1

`

)

≥
N∑

n=2

1

n
,

We shall prove that the finite sums on the left remain bounded as N →∞, which
contradicts the fact that the harmonic series diverges.

To see that
∑

PN
1/k converges, note that each geometric series

∑∞
j=1 1/pj

converges (absolutely since all the 1/pj are positive) to a finite real number. Hence,
by Cauchy’s multiplication theorem (or rather its generalization to a product of
more than two absolutely convergent series), we have

( ∞∑

i=1

1

2i

)( ∞∑

j=1

1

3j

)

· · ·
( ∞∑

k=1

1

mk

)

=
∑ 1

2i3j · · ·mk

is a finite real number, where the sum on the right is over all i, j, . . . , k = 1, 2, . . ..
Using the definition of PN in (5.40), we see that

∑

PN
1/k is bounded above by this

finite real number uniformly in N . Thus, limN→∞
∑

PN
1/k is finite.

We now prove that limN→∞
∑

QN
1/` is finite. To do so observe that since

α :=
∑

p>m 1/p < 1 and all the 1/p’s are positive, the sum
∑

p>m 1/p, in particular,
converges absolutely. Hence, by Cauchy’s multiplication theorem, we have

α2 =

(
∑

p>m

1

p

)2

=
∑

p,q>m

1

p q
,

where the sum is over all primes p, q > m, and

α3 =

(
∑

p>m

1

p

)3

=
∑

p,q,r>m

1

p q r
,

where the sum is over all primes p, q, r > m. We can continue this procedure show-
ing that αj is the sum

∑
1/(p q · · · r) where the sum is over all primes p, q, . . . , r >
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m. In view of the definition of QN in (5.40), it follows that the sum
∑

QN
1/` is

bounded by the number
∑∞

j=1 αj , which is finite because α < 1. Hence, the limit

limN→∞
∑

QN
1/` is finite, and we have reached a contradiction.

5.7.2. An elementary number theory fact. Our next proof depends on
the idea of square-free integers. A positive integer is said to be square-free if no
squared prime divides it, that is, if a prime occurs in its prime factorization, then
it occurs with multiplicity one. For instance, 1 is square-free because no squared
prime divides it, 10 = 2 ·5 is square-free, but 24 = 23 ·3 = 22 ·2 ·3 is not square-free.

We claim that any positive integer can be written uniquely as the product of
a square and a square-free integer. Indeed, let n be an integer and let k2 be the
largest square that divides n. Then n/k2 must be square-free, for if n/k2 is divided
by a squared prime p2, then (pk)2 > k2 divides n, which is not possible because
k2 was the largest such square that divided n. Thus, any positive integer n can be
uniquely written as n = k2 if n is a perfect square, or

(5.41) n = k2 · p q · · · r,

where k ≥ 1 and where p, q, . . . , r are primes less than or equal to n that occur with
multiplicity one. Using the fact that any positive integer can be uniquely written
as the product of a square and a square-free integer, we shall prove that

∑
1/p

diverges.

5.7.3. Proof II: Proof by comparison. Here is Niven’s [125, 126] proof.
We first prove that the product

∏

p<N

(

1 +
1

p

)

diverges to ∞ as N → ∞, where the product is over all primes less than N . Let
2 < 3 < · · · < m be all the primes less than N . Consider the product

∏

p<N

(

1 +
1

p

)

=
(

1 +
1

2

)(

1 +
1

3

)

· · ·
(

1 +
1

m

)

.

For example, if N = 5, then

∏

p<5

(

1 +
1

p

)

= 1 +
1

2
+

1

3
+

1

2 · 3 .

If N = 6, then

∏

p<6

(

1 +
1

p

)

=
(

1 +
1

2

)(

1 +
1

3

)(

1 +
1

5

)

= 1 +
1

2
+

1

3
+

1

5
+

1

2 · 3 +
1

2 · 5 +
1

3 · 5 +
1

2 · 3 · 5 .

Using induction on N , we can always write

∏

p<N

(

1 +
1

p

)

= 1 +
∑

p<N

1

p
+
∑

p,q<N

1

p · q + · · ·+
∑

p,q,...,r<N

1

p · q · · · r ,
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where the k-th sum on the right is the sum over over all reciprocals of the form
1

p1·p2···pk
with p1, . . . , pk distinct primes less than N . Thus,

∏

p<N

(

1 +
1

p

)

·
∑

k<N

1

k2
=
∑

k<N

1

k2
+
∑

k<N

∑

p<N

1

k2p

+
∑

k<N

∑

p,q<N

1

k2 · p · q + · · ·+
∑

k<N

∑

p,q,...,r<N

1

k2 · p · q · · · r .

By our discussion on square-free numbers around (5.41), the right-hand side con-
tains every number of the form 1/n where n < N (and many other numbers too).
In particular,

(5.42)
∏

p<N

(

1 +
1

p

)

·
∑

k<N

1

k2
≥
∑

n<N

1

n
.

From this inequality, we shall prove that
∑

1/p diverges. To this end, we know
that

∑∞
k=1 1/k2 converges while

∑∞
n=1 1/n diverges, so it follows that

lim
N→∞

∏

p<N

(

1 +
1

p

)

=∞.

To relate this product to the sum
∑

1/p, note that

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · ≥ 1 + x

for x ≥ 0 — in fact, this inequality holds for all x ∈ R by Theorem 4.30. Hence,

∏

p<N

(

1 +
1

p

)

≤
∏

p<N

exp(1/p) = exp
( ∑

p<N

1

p

)

.

Since the left-hand side increases without bound as N → ∞, so must the sum
∑

p<N 1/p. This ends Proof II; see Problem 1 for a related proof.

5.7.4. Proof III: Another proof by comparison. This is Gilfeather and
Meister’s argument [100]. The first step is to prove that for any natural number
N > 1, we have

∏

p<N

p

p− 1
≥

N−1∑

n=1

1

n
.

To prove this we shall prove that
∏

p<N

(

1− 1
p

)−1

→∞. To see this, observe that

(

1− 1

p

)−1

= 1 +
1

p
+

1

p2
+

1

p3
+ · · · .

Let 2 < 3 < · · · < m be all the primes less than N . Then every natural n < N can
be written in the form

n = 2i 3j · · · mk
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for some nonnegative integers i, j, . . . , k. It follows that the product
∏

p<N

(

1− 1

p

)−1

=
(

1− 1

2

)−1(

1− 1

3

)−1

· · ·
(

1− 1

m

)−1

=
(

1 +
1

2
+

1

22
+

1

23
· · ·
)(

1 +
1

3
+

1

32
+

1

33
+ · · ·

)

· · ·

· · ·
(

1 +
1

m
+

1

m2
+

1

m3
+ · · ·

)

after multiplying out using Cauchy’s multiplication theorem (or rather its gener-
alization to a product of more than two absolutely convergent series), contains all
the numbers 1

1 , 1
2 , 1

3 , 1
4 , . . . , 1

N−1 (and of course, many more numbers too). Thus,

(5.43)
∏

p<N

p

p− 1
=
∏

p<N

(

1− 1

p

)−1

≥
N−1∑

n=1

1

n
,

which proves our first step. Now recall from (4.29) that for any natural number n,
we have

(5.44)
1

n + 1
< log(n + 1)− log n <

1

n
.

In particular, taking logarithms of both sides of (5.43), we get

log
(N−1∑

n=1

1

n

)

≤ log
( ∏

p<N

p

p− 1

)

=
∑

p<N

(
log p− log(p− 1)

)
≤
∑

p<N

1

p− 1
≤
∑

p<N

2

p
,

where we used that p ≤ 2(p−1) (this is because n ≤ 2(n−1) for all natural numbers

n > 1). Since
∑N−1

n=1 1/n → ∞ as N → ∞, log
(∑N−1

n=1 1/n
)
→ ∞ as N → ∞ as

well, so the sum
∑

1/p must diverge.

Exercises 5.7.

1. Niven’s proof can be slightly modified to avoid using the square-free fact. Prove that
for any prime p, we have

(

1 +
1

p

)

·
n∑

k=0

1

p2k
=

2n+1∑

k=0

1

pk
.

Use this identity to derive the inequality (5.42), which as shown in the main body
implies that

∑
1/p diverges.

2. Here is another proof that is similar to Gilfeather and Meister’s argument where we
replace the inequality (5.44) with the following argument.

(i) Prove that

(5.45)
1

1 − x/2
≤ ex for all 0 ≤ x ≤ 1.

Suggestion: Multiplying e−x(1− x/2) to both sides, it might be slightly easier to
prove the inequality e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1. The series expansion for e−x

might be helpful.
(ii) Taking logarithms of (5.45), prove that for any prime number p, we have

− log
(

1 − 1

p

)

= − log
(

1 − 2/p

2

)

≤ 2

p
.
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(iii) Prove that
1

2

∑

p<N

log
( p

p − 1

)

≤
∑

p<N

1

p
.

(iv) Finally, use (5.43) as in the main text to prove that
∑

1/p diverges.
3. Here’s Vanden Eynden’s proof [175]. Assume that

∑
1/p converges. Then we can

choose an N such that α :=
∑

p>N 1/p < 1/2 and (since the harmonic series
∑

1/n

diverges) β :=
∑

n>N 1/n > 2.
(i) Prove that β − 1 ≤ α · β.
(ii) Deduce that 1 − β−1 ≤ α and use this fact, together with the assumptions that

α < 1/2 and β > 2, to derive a contradiction.
4. Here is Paul Erdös’ (1913–1996) celebrated proof [51]. Assume that

∑
1/p converges.

Then we can choose an N such that
∑

p>N 1/p < 1/2; derive a contradiction as follows.

(i) For any x ∈ N, let Ax be the set of all integers 1 ≤ n ≤ x such that n = 1 or all
the prime factors of n are ≤ N ; that is, n = p1 · · · pk where the pj ’s are prime
and pj ≤ N . Given n ∈ Ax, we can write n = k2m where m is square free. Prove
that k ≤ √

x. From this, deduce that

#Ax ≤ C
√

x,

where #Ax denotes the number of elements in the set Ax and C is a constant
(you can take C to equal the number of square free integers m ≤ N).

(ii) Given x ∈ N and a prime p, prove that the number of integers 1 ≤ n ≤ x divisible
by p is no more than x/p.

(iii) Given x ∈ N, prove that x − #Ax equals the number of integers 1 ≤ n ≤ x that
are divisible by some prime p > N . From this fact and Part (b) together with
our assumption that

∑

p>N 1/p < 1/2, prove that

x − #Ax <
x

2
.

(iv) Using (c) and the inequality #Ax ≤ C
√

x you proved in Part (a), conclude that
for any x ∈ N, we have √

x ≤ 2C.

From this derive a contradiction.

5.8. Composition of power series and Bernoulli and Euler numbers

We’ve kept you in suspense long enough concerning the extraordinary Bernoulli
and Euler numbers, so in this section we finally get to these fascinating numbers.

5.8.1. Composition and division of power series. The Bernoulli and Eu-
ler numbers come up when dividing power series, so before we do anything, we
need to understand division of power series, and to understand this we first need
to consider the composition of power series. The following theorem basically says
that the composition of power series is again a power series.

Theorem 5.35 (Power series composition theorem). If f(z) and g(z) are
power series, then the composition f(g(z)) can be written as a power series that is
valid for all z ∈ C such that

∞∑

n=0

|anzn| < the radius of convergence of f ,

where g(z) =
∑∞

n=0 anzn.
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Proof. Let f(z) =
∑∞

n=0 bnzn have radius of convergence R and let g(z) =
∑∞

n=0 anzn have radius of convergence r. Then by Cauchy or Mertens’ multiplica-
tion theorem, for each m, we can write g(z)m as a power series:

g(z)m =

( ∞∑

n=0

an zn

)m

=

∞∑

n=0

amn zn, |z| < r.

Thus,

f(g(z)) =

∞∑

m=0

bm g(z)m =

∞∑

m=0

∞∑

n=0

bmamn zn.

If we are allowed to interchange the order of summation in f(g(z)), then our result
is proved:

f(g(z)) =

∞∑

n=0

∞∑

m=0

bmamn zn =

∞∑

n=0

cn zn, where cn =

∞∑

m=0

bmamn.

Thus, we can focus on interchanging the order of summation in f(g(z)). Assume
henceforth that

ξ :=

∞∑

n=0

|anzn| =
∞∑

n=0

|an| |z|n < R = the radius of convergence of f ;

in particular, since f(ξ) =
∑∞

m=0 bmξm is absolutely convergent,

(5.46)

∞∑

m=0

|bm| ξm <∞.

Now according to Cauchy’s double series theorem, we can interchange the order of
summation as long as we can show that

∞∑

m=0

∞∑

n=0

∣
∣bmamnzn

∣
∣ =

∞∑

m=0

∞∑

n=0

|bm| |amn| |z|n <∞.

To prove this, we first claim that the inner summation satisfies the inequality

(5.47)

∞∑

n=0

|amn| |z|n ≤ ξm.

To see this, consider the case m = 2. Recall that the coefficients a2n are defined
via the Cauchy product:

g(z)2 =

( ∞∑

n=0

an zn

)2

=

∞∑

n=0

a2n zn where a2n =

n∑

k=0

akan−k.

Thus, |a2n| ≤
∑n

k=0 |ak| |an−k|. On the other hand, ξ2 is defined via the Cauchy
product:

ξ2 =

( ∞∑

n=0

|an| |z|n
)2

=

∞∑

n=0

αn |z|n where αn =

n∑

k=0

|ak| |an−k|.

Hence, |a2n| ≤
∑n

k=0 |ak| |an−k| = αn, so

∞∑

n=0

|a2n| |z|n ≤
∞∑

n=0

αn |z|n = ξ2,
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which proves (5.47) for m = 2. An induction argument shows that (5.47) holds for
all m. Finally, using (5.47) and (5.46) we see that

∞∑

m=0

∞∑

n=0

∣
∣bmamnzn

∣
∣ =

∞∑

m=0

∞∑

n=0

|bm| |amn| |z|n ≤
∞∑

m=0

|bm| ξm <∞,

which shows that we can interchange the order of summation in f(g(z)) and com-
pletes our proof. �

We already know (by Mertens’ multiplication theorem for instance) that the
product of two power series is again a power series. As a consequence of the following
theorem, we get the same statement for division.

Theorem 5.36 (Power series division theorem). If f(z) and g(z) are power
series with positive radii of convergence and with g(0) 6= 0, then f(z)/g(z) is also
a power series with positive radius of convergence.

Proof. Since f(z)/g(z) = f(z) · (1/g(z)) and we know that the product of
two power series is a power series, all we have to do is show that 1/g(z) is a power
series. To this end, let g(z) =

∑∞
n=0 an zn and define

g̃(z) :=
1

a0
g(z)− 1 =

∞∑

n=1

αn zn,

where αn = an

a0
and where we recall that a0 = g(0) 6= 0. Then g̃ has a positive

radius of convergence and g̃(0) = 0. Now let h(z) := 1
a0(1+z) , which can be writ-

ten as a geometric series with radius of convergence 1. Note that for |z| small,
∑∞

n=1 |αn| |z|n < 1 (why?), thus by the previous theorem, for such z,

1

g(z)
=

1

a0(g̃(z) + 1)
= h(g̃(z))

has a power series expansion with a positive radius of convergence. �

5.8.2. Bernoulli numbers. See [92], [43], [151], or [66] for more information
on Bernoulli numbers. Since

ez − 1

z
=

1

z
·

∞∑

n=1

1

n!
zn =

∞∑

n=1

1

n!
zn−1 =

∞∑

n=0

1

(n + 1)!
zn

has a power series expansion and equals 1 at z = 0, by our division of power series
theorem, the quotient 1/((ez−1)/z) = z/(ez−1) also has a power series expansion
near z = 0. It is customary to denote its coefficients by Bn/n!, in which case we
can write

(5.48)
z

ez − 1
=

∞∑

n=0

Bn

n!
zn

where the series has a positive radius of convergence. The numbers Bn are called the
Bernoulli numbers after Jacob (Jacques) Bernoulli (1654–1705) who discovered
them while searching for formulas involving powers of integers; see Problems 3 and
4. We can find a remarkable symbolic equation for these Bernoulli numbers as
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follows. First, we multiply both sides of (5.48) by (ez − 1)/z and use Mertens’
multiplication theorem to get

1 =

( ∞∑

n=0

Bn

n!
zn

)

·
( ∞∑

n=0

1

(n + 1)!
zn

)

=

∞∑

n=0

n∑

k=0

(
Bk

k!
· 1

(n− k + 1)!

)

zn.

By the identity theorem, the n = 0 term on the right must equal 1 while all other
terms must vanish. The n = 0 term on the right is just B0, so B0 = 1, and for
n > 1, we must have

∑n
k=0

Bk

k! · 1
(n+1−k)! = 0. Multiplying this by (n + 1)! we get

0 =

n∑

k=0

Bk

k!
· (n + 1)!

(n + 1− k)!
=

n∑

k=0

(n + 1)!

k!(n + 1− k)!
·Bk =

n∑

k=0

(
n + 1

k

)

Bk,

and adding Bn+1 =
(
n+1
n+1

)
Bn+1 to both sides of this equation, we get

Bn+1 =

n+1∑

k=0

(
n + 1

k

)

Bk.

The right-hand side might look familiar from the binomial formula. Recall from
the binomial formula that for any complex number a, we have

(a + 1)n+1 =
n+1∑

k=0

(
n + 1

k

)

ak · 1n−k =
n+1∑

k=0

(
n + 1

k

)

ak.

Notice that the right-hand side of this expression is exactly the right-hand side of
the previous equation if put a = B and we make the superscript k into a subscript
k. Thus, if we use the notation + to mean “equals after making superscripts into
subscripts”, then we can write

(5.49) Bn+1
+ (B + 1)n+1 , n = 1, 2, 3, . . . with B0 = 1.

Using the identity (5.49), one can in principle find all the Bernoulli numbers: When
n = 1, we see that

B2
+ (B + 1)2 = B2 + 2B1 + 1 =⇒ 0 = 2B1 + 1 =⇒ B1 = −1

2
.

When n = 2, we see that

B3
+ (B + 1)3 = B3 + 3B2 + 3B1 + 1 =⇒ 0 = 3B2 + 3B1 + 1 =⇒ B2 =

1

6
.

Here is a partial list through B14:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0,

B4 = − 1

30
, B5 = B7 = B9 = B11 = B13 = B15 = 0,

B6 =
1

42
, B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
, B14 =

7

6
.

These numbers are rational, but besides this fact, there is no known regular pattern
these numbers conform to. However, we can easily deduce that all odd Bernoulli
numbers greater than one are zero. Indeed, we can rewrite (5.48) as

(5.50)
z

ez − 1
+

z

2
= 1 +

∞∑

n=2

Bn

n!
zn.
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The fractions on the left-hand side can be combined into one fraction

(5.51)
z

ez − 1
+

z

2
=

z(ez + 1)

2(ez − 1)
=

z(ez/2 + e−z/2)

2(ez/2 − e−z/2)
,

which an even function of z. Thus,

(5.52) B2n+1 = 0, n = 1, 2, 3, . . . .

Other properties are given in the exercises (see e.g. Problem 3).

5.8.3. Trigonometric functions. We already know the power series expan-
sions for sin z and cos z. It turns out that the power series expansions of the other
trigonometric functions involve Bernoulli numbers! For example, to find the expan-
sion for cot z, we replace z with 2iz in (5.50) and (5.51) to get

iz(eiz + e−iz)

(eiz − e−iz)
= 1 +

∞∑

n=2

Bn

n!
(2iz)n = 1 +

∞∑

n=1

B2n

(2n)!
(−1)n(2z)2n,

where used that B3, B5, B7, . . . all vanish in order to sum only over all even Bernoulli
numbers. Since cot z = cos z/ sin z, using the definition of cos z and sin z in terms
of e±iz, we see that the left-hand side is exactly z cot z. Thus, we have derived the
formula

z cot z =

∞∑

n=0

(−1)n 22n B2n

(2n)!
z2n .

From this formula, we can get the expansion for tan z by using the identity

2 cot(2z) = 2
cos 2z

sin 2z
= 2

cos2 z − sin2 z

2 sin z cos z
= cot z − tan z.

Hence,

tan z = cot z − 2 cot(2z) =

∞∑

n=0

(−1)n 22n B2n

(2n)!
z2n − 2

∞∑

n=0

(−1)n 22n B2n

(2n)!
22nz2n,

which, after combining the terms on the right, takes the form

tan z =

∞∑

n=1

(−1)n−1 22n(22n − 1)B2n

(2n)!
z2n−1 .

In Problem 1, we derive the power series expansion of csc z. In conclusion we have
power series expansions for sin z, cos z, tan z, cot z, csc z. What about sec z?

5.8.4. The Euler numbers. It turns out that the expansion for sec z involves
the Euler numbers, which are defined in a similar way as the Bernoulli numbers.
By the division of power series theorem, the function 2ez/(e2z + 1) has a power
series expansion near zero. It is customary to denote its coefficients by En/n!, so

(5.53)
2ez

e2z + 1
=

∞∑

n=0

En

n!
zn
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where the series has a positive radius of convergence. The numbers En are called
the Euler numbers. We can get the missing expansion for sec z as follows. First,
observe that

∞∑

n=0

En

n!
zn =

2ez

e2z + 1
=

2

ez + e−z
=

1

cosh z
= sech z,

where sech z := 1/ cosh z is the hyperbolic secant. Since sech z is an even function
(that is, sech(−z) = sech z) it follows that all En with n odd vanish. Hence,

(5.54) sech z =
∞∑

n=0

E2n

(2n)!
z2n .

In particular, putting iz for z in (5.54) and using that cosh(iz) = cos z, we get the
missing expansion for sec z:

sec z =

∞∑

n=0

(−1)n E2n

(2n)!
z2n .

Just as with the Bernoulli numbers, we can derive a symbolic equation for the
Euler numbers. To do so, we multiply (5.54) by cosh z =

∑∞
n=0

1
(2n)!z

2n and use

Mertens’ multiplication theorem to get

1 =

( ∞∑

n=0

E2n

(2n)!
z2n

)

·
( ∞∑

n=0

1

(2n)!
z2n

)

=

∞∑

n=0

n∑

k=0

(
E2k

(2k)!
· 1

(2n− 2k)!

)

z2n

By the identity theorem, the n = 0 term on the right must equal 1 while all other
terms must vanish. The n = 0 term on the right is just E0, so E0 = 1, and for
n > 1, we must have

∑n
k=0

E2k

(2k)! · 1
(2n−2k)! = 0. Multiplying this by (2n)! we get

(5.55) 0 =

n∑

k=0

E2k

(2k)!
· (2n)!

(2n− 2k)!
=

n∑

k=0

(2n)!

(2k)!(2n− 2k)!
· E2k.

Now from the binomial formula, for any complex number a, we have

(a + 1)2n + (a− 1)2n =

2n∑

k=0

(2n)!

k!(2n− k)!
ak +

2n∑

k=0

(2n)!

k!(2n− k)!
ak(−1)2n−k

=
2n∑

k=0

(2n)!

k!(2n− k)!
ak +

2n∑

k=0

(2n)!

k!(2n− k)!
ak(−1)k

=

2n∑

k=0

(2n)!

(2k)!(2n− 2k)!
a2k,

since all the odd terms cancel. Notice that the right-hand side of this expression is
exactly the right-hand side of (5.55) if put a = E and we make the superscript 2k
into a subscript 2k. Thus,

(5.56) (E + 1)2n + (E − 1)2n
+ 0 , n = 1, 2, . . . with E0 = 1 and Eodd = 0.

Using the identity (5.56), one can in principle find all the Euler numbers: When
n = 1, we see that

(E2 + 2E1 + 1) + (E2 − 2E1 + 1) + 0 =⇒ 2E2 + 2 = 0 =⇒ E2 = −1.
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Here is a partial list through E12:

E0 = 1, E1 = E2 = E3 = · · · = 0 (Eodd = 0), E2 = −1, E4 = 5

E6 = −61, E8 = 1385, E10 = −50, 521, E12 = 2, 702, 765, . . . .

These numbers are all integers, but besides this fact, there is no known regular
pattern these numbers conform to.

Exercises 5.8.

1. Recall that csc z = 1/ sin z. Prove that csc z = cot z + tan(z/2), and from this identity
deduce that

z csc z =
∞∑

n=0

(−1)n−1 (22n − 2) B2n

(2n)!
z2n.

2. (a) Let f(z) =
∑

anzn and g(z) =
∑

bnzn with b0 6= 0 be power series with positive
radii of convergence. Show that f(z)/g(z) =

∑
cnzn where {cn} is the sequence

defined recursively as follows:

c0 =
a0

b0
, b0cn = an −

n∑

k=1

bk cn−k.

(b) Use Part (a) to find the first few coefficients of the expansion for tan z = sin z/ cos z.
3. (Cf. [92, p. 526] which is reproduced in [127]) In this and the next problem we give

an elegant application of the theory of Bernoulli numbers to determine the sum of the
first k-th powers of integers, Bernoulli’s original motivation for his numbers.

(i) For n ∈ N, derive the formula

1 + ez + e2z + · · · + enz =
z

ez − 1
· e(n+1)z − 1

z
.

(ii) Writing each side of this identity as a power series (on the right, you need to use
the Cauchy product), derive the formula

(5.57) 1k + 2k + · · · + nk =

k∑

j=0

(

k

j

)

Bj
(n + 1)k+1−j

k + 1 − j
, k = 1, 2, . . . .

Plug in k = 1, 2, 3 to derive some pretty formulas!
4. Here’s another proof of (5.57) that is aesthetically appealing.

(i) Prove that for a complex number a and natural numbers k, n,

(n + 1 + a)k+1 − (n + a)k+1 =

k+1∑

j=1

(

k + 1

j

)

nk+1−j
(

(a + 1)j − aj
)

.

(ii) Replacing a with B, prove that

1k + 2k + · · · + nk
+

1

k + 1

{
(n + 1 + B)k+1 − Bk+1}.

Suggestion: Look for a telescoping sum and recall that (B + 1)j
+ Bj for j ≥ 2.

5. The n-th Bernoulli polynomial Bn(t) is by definition, n! times the coefficient of zn in
the power series expansion in z of the function f(z, t) := zezt/(ez − 1); that is,

(5.58)
z ezt

ez − 1
=

∞∑

n=0

Bn(t)

n!
zn.
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(a) Prove that Bn(t) =
∑n

k=0

(
n
k

)
Bk tn−k where the Bk’s are the Bernoulli numbers.

Thus, the first few Bernoulli polynomials are

B0(t) = 1, B1(t) = t − 1

2
, B2(t) = t2 − t +

1

6
, B3(t) = t3 − 3

2
t2 +

1

2
t.

(b) Prove that Bn(0) = Bn for n = 0, 1, . . . and that Bn(0) = Bn(1) = Bn for n 6= 1.
Suggestion: Show that f(z, 1) = z + f(z, 0).

(c) Prove that Bn(t + 1) − Bn(t) = ntn−1 for n = 0, 1, 2, . . .. Suggestion: Show that
f(z, t + 1) − f(z, t) = zezt.

(d) Prove that B2n+1(0) = 0 for n = 1, 2, . . . and B2n+1(1/2) = 0 for n = 0, 1, . . ..

5.9. The logarithmic, binomial, arctangent series, and γ

From elementary calculus, you might have seen the logarithmic, binomial, and
arctangent series (discovered by Nicolaus Mercator (1620–1687), Sir Isaac Newton
(1643–1727), and Madhava of Sangamagramma (1350–1425), respectively):

log(1 + x) =

∞∑

n=1

(−1)n−1

n
xn , (1 + x)α =

∞∑

n=0

(
α

n

)

xn , arctan x =

∞∑

n=0

(−1)n x2n+1

2n + 1

where α ∈ R. (Below we’ll discuss the meaning of
(
α
n

)
.) I can bet that you used

calculus (derivatives and integrals) to derive these formulæ. In this section we’ll
derive even more general complex versions of these formulæ without derivatives!

5.9.1. The binomial coefficients. From our familiar binomial theorem, we

know that for any z ∈ C and k ∈ N, we have (1+z)k =
∑k

n=0

(
k
n

)
zn, where

(
k
0

)
:= 1

and for n = 1, 2, . . . , k,

(5.59)

(
k

n

)

:=
k!

n!(k − n)!
=

1 · 2 · · · k
n! · 1 · 2 · · · (k − n)

=
k(k − 1) · · · (k − n + 1)

n!
.

Thus,

(1 + z)k = 1 +

k∑

n=1

k(k − 1) · · · (k − n + 1)

n!
zn.

With this motivation, given any complex number α, we define the binomial coef-
ficient

(
α
n

)
for any nonnegative integer n as follows:

(
α
0

)
= 1 and for n > 0,

(
α

n

)

=
α(α− 1) · · · (α− n + 1)

n!
.

Note that if α = 0, 1, 2, . . ., then we see that all
(
α
n

)
vanish for n ≥ α + 1 and

(
α
n

)

is exactly the usual binomial coefficient (5.59). In the following lemma, we derive
an identity that will be useful later.

Lemma 5.37. For any α, β ∈ C, we have
(

α + β

n

)

=
n∑

k=0

(
α

k

)(
β

n− k

)

, n = 0, 1, 2, . . . .

Proof. Certainly this formula holds when n = 0 since in this case both sides
equal 1. Assume that this formula holds for n, we shall prove it holds for n + 1.
The following formula will come in handy: For any γ ∈ C and k ≥ 0,

(5.60)

(
γ

k + 1

)

=
γ(γ − 1) · · · (γ − k + 1)(γ − k)

(k + 1)!
=

(
γ

k

)
(γ − k)

k + 1
.
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With γ = α + β and k = n, by induction hypothesis, we can write
(

α + β

n + 1

)

=

(
α + β

n

)
(α + β − n)

n + 1
=

n∑

k=0

(
α

k

)(
β

n− k

)
(α + β − n)

n + 1
.

Using (5.60) various times, we obtain
(

α

k

)(
β

n− k

)
(α + β − n)

n + 1
=

(
α

k

)(
β

n− k

)
(α− k + β − n + k)

n + 1

=

(
α

k

)(
β

n− k

)
(α− k)

n + 1
+

(
α

k

)(
β

n− k

)
(β − n + k)

n + 1

=

(
α

k + 1

)(
β

n− k

)
k + 1

n + 1
+

(
α

k

)(
β

n + 1− k

)
n + 1− k

n + 1

=

(
α

k + 1

)(
β

n− k

)
k + 1

n + 1
+

(
α

k

)(
β

n + 1− k

)

−
(

α

k

)(
β

n + 1− k

)
k

n + 1
.

Therefore,

(
α + β

n + 1

)

=
n∑

k=0

(
α

k + 1

)(
β

n− k

)
k + 1

n + 1
+

n∑

k=0

(
α

k

)(
β

n + 1− k

)

−
n∑

k=0

(
α

k

)(
β

n + 1− k

)
k

n + 1

since the k = 0 term in the last expression vanishes. It turns out that the first
expression on the right has many terms that cancel with many terms in the last
expression, since replacing k + 1 with k, we get

n∑

k=0

(
α

k + 1

)(
β

n− k

)
k + 1

n + 1
=

n+1∑

k=0

(
α

k

)(
β

n + 1− k

)
k

n + 1
.

(We really start from k = 1 on the right, but the k = 0 vanishes anyways so we can
start from k = 0.) Substituting this expression into the line above it and cancelling
appropriate terms from the first and last expressions, we obtain

(
α + β

n + 1

)

=

n+1∑

k=0

(
α

k

)(
β

n + 1− k

)

,

which completes our proof. �

5.9.2. The complex logarithm and binomial series. In Theorem 5.39 we
shall derive (along with a power series for Log) the binomial series:

(5.61) (1 + z)α =
∞∑

n=0

(
α

n

)

zn = 1 + α z +
α(α− 1)

1!
z2 + · · · , |z| < 1.

Let us define f(α, z) :=
∑∞

n=0

(
α
n

)
zn. Our goal is to show that f(α, z) = (1 + z)α

for all α ∈ C and |z| < 1, where

(1 + z)α := exp(α Log(1 + z))

with Log the principal logarithm of the complex number 1+z. If α = k = 0, 1, 2, . . .,
then we already know that all the

(
k
n

)
vanish for n ≥ k + 1 and these binomial

coefficients are the usual ones, so f(k, z) converges with sum f(k, z) = (1+ z)k. To
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see that f(α, z) converges for all other α, assume that α ∈ C is not a nonnegative
integer. Then setting an =

(
α
n

)
, we have

∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
=

∣
∣
∣
∣

α(α− 1) · · · (α− n + 1)

n!
· (n + 1)!

α(α− 1) · · · (α− n)

∣
∣
∣
∣
=

n + 1

|α− n| ,

which approaches 1 as n→∞. Thus, the radius of convergence of f(α, z) is 1 (see
(5.12)). In conclusion, f(α, z) is convergent for all α ∈ C and |z| < 1.

We now prove the real versions of the logarithm series and the binomial series
(5.61); see Theorem 5.39 below for the more general complex version. It is worth
emphasizing that we do not use the advanced technology of the differential and
integral calculus to derive these formulas! (In Sections 9.5 and 11.5 we’ll develop this
advanced technology to derive these formulas in the way they’re usually derived.)

Lemma 5.38. For all x ∈ R with |x| < 1, we have

log(1 + x) =

∞∑

n=1

(−1)n−1

n
xn

and for all α ∈ C and x ∈ R with |x| < 1, we have

(1 + x)α =

∞∑

n=0

(
α

n

)

xn = 1 + α x +
α(α− 1)

1!
x2 + · · · .

Proof. We prove this lemma in three steps.
Step 1: We first show that f(r, x) = (1+x)r for all r = p/q ∈ Q where p, q ∈ N

with q odd and x ∈ R with |x| < 1. To see this, observe for any z ∈ C with |z| < 1,
taking the Cauchy product of f(α, z) and f(β, z) and using our lemma, we obtain

f(α, z) · f(β, z) =
∞∑

n=0

( n∑

j=0

(
α

j

)(
β

n− j

))

zn =
∞∑

n=0

(
α + β

n

)

zn = f(α + β, z).

By induction it easily follows that

f(α1, z) · f(α2, z) · · · f(αk, z) = f(α1 + α2 + · · ·+ αk, z).

Using this identity, we obtain

f(1/q, z)q = f(1/q, z) · · · f(1/q, z)
︸ ︷︷ ︸

q times

= f(1/q + · · ·+ 1/q
︸ ︷︷ ︸

q times

, z) = f(1, z) = 1 + z.

Now put z = x ∈ R with |x| < 1 and let q ∈ N be odd. Then f(1/q, x)q = 1 + x,
so taking q-th roots, we get f(1/q, x) = (1 + x)1/q. Here we used that every real
number has a unique q-th root, which holds because q is odd — for q even we could
only conclude that f(1/q, x) = ±(1 + x)1/q (unless we checked that f(1/q, x) is
positive, then we would get f(1/q, x) = (1 + x)1/q). Therefore,

f(r, x) = f(p/q, x) = f(1/q + · · ·+ 1/q
︸ ︷︷ ︸

p times

, x) = f(1/q, x) · · · f(1/q, x)
︸ ︷︷ ︸

p times

= f(1/q, x)p = (1 + x)p/q = (1 + x)r.

Step 2: Second, we prove that for any given z ∈ C with |z| < 1, f(α, z) can
be written as a power series in α ∈ C:

f(α, z) = 1 +
∞∑

m=1

am(z)αm, α ∈ C;
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in particular, since we know that power series are continuous, f(α, z) is a continuous
function of α ∈ C. Here, the coefficients am(z) depend on z (which we’ll see are
power series in z) and we’ll show that

(5.62) a1(z) =

∞∑

n=1

(−1)n−1

n
zn

To prove these statements, note that for n ≥ 1, α(α−1) · · · (α−n+1) is a polynomial
of degree n in α, so for n ≥ 1 we can write

(5.63)

(
α

n

)

=
α(α− 1) · · · (α− n + 1)

n!
=

n∑

m=1

amn αm,

for some coefficients amn. Defining amn = 0 for m = n + 1, n + 2, n + 3, . . ., we can
write

(
α
n

)
=
∑∞

m=0 amn αm. Hence,

(5.64) f(z, α) = 1 +

∞∑

n=1

(
α

n

)

zn = 1 +

∞∑

n=1

( ∞∑

m=1

amn αm

)

zn.

To make this a power series in α, we need to switch the order of summation,
which we can do by Cauchy’s double series theorem if we can demonstrate absolute
convergence by showing that

∞∑

n=1

∞∑

m=1

∣
∣amn αmzn

∣
∣ =

∞∑

n=1

∞∑

m=1

|amn| |α|m |z|n <∞.

To verify this, we first observe that for all α ∈ C, we have

(5.65)
α(α + 1)(α + 2) · · · (α + n− 1)

n!
=

n∑

m=1

bmn αm,

where the bmn’s are nonnegative real numbers. (This is certainly plausible because
the numbers 1, 2, . . . , n− 1 on the left each come with positive signs; any case, this
statement can be verified by induction for instance.) We secondly observe that
replacing α with −α in (5.63), we get

n∑

m=1

amn (−1)mαm =
−α(−α− 1) · · · (−α− n + 1)

n!

= (−1)n α(α + 1) · · · (α + n− 1)

n!
=

n∑

m=1

(−1)nbmn αm.

By the identity theorem, we have amn(−1)m = (−1)nbmn. In particular, |amn| =
bmn since bmn > 0, therefore in view of (5.65), we see that

∞∑

m=0

|amn| |α|m =

n∑

m=0

|amn| |α|m =

n∑

m=0

bmn |α|m =
|α|(|α|+ 1) · · · (|α|+ n− 1)

n!
.

Therefore,

∞∑

n=1

∞∑

m=1

|amn| |α|m |z|n =
∞∑

n=1

|α|(|α|+ 1) · · · (|α|+ n− 1)

n!
|z|n.
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Using the now very familiar ratio test it’s easily checked that, since |z| < 1, the
series on the right converges. Thus, we can iterate sums in (5.64) and conclude
that

f(α, z) = 1 +

∞∑

n=1

( ∞∑

m=1

amn αm

)

zn = 1 +

∞∑

m=1

( ∞∑

n=1

amn zn

)

αm.

Thus, f(α, z) is indeed a power series in α. To prove (5.62), we just need to
determine the coefficients of α1 in (5.63), which we see is just

a1n = coefficient of α in
α(α− 1)(α− 2) · · · (α− n + 1)

n!

=
(−1)(−2)(−3) · · · (−n + 1)

n!
= (−1)n−1 (n− 1)!

n!
=

(−1)n−1

n
.

Therefore,

a1(z) =

∞∑

n=1

a1n zn =

∞∑

n=1

(−1)n−1

n
zn,

just as we stated in (5.62). This completes Step 2.
Step 3: We are finally ready to prove our theorem. Let x ∈ R with |x| < 1.

By Step 2, we know that for any α ∈ C,

f(α, x) = 1 +

∞∑

m=1

am(x)αm

is a power series in α. However,

(1 + x)α = exp(α log(1 + x)) =

∞∑

n=0

1

n!
log(1 + x)n · αn

is also a power series in α ∈ C. By Step 1, f(α, x) = (1 + x)α for all α ∈ Q with
α > 0 having odd denominators. The identity theorem applies to this situation
(why?), so we must have f(α, x) = (1 + x)α for all α ∈ C. Also by the identity
theorem, the coefficients of αn must be identical; in particular, the coefficients of α1

are identical: a1(x) = log(1 + x). Now (5.62) implies the series for log(1 + x). �

Using this lemma and the identity theorem, we are ready to generalize these
formulas for real x to formulas for complex z.

Theorem 5.39 (The complex logarithm and binomial series). We have

Log(1 + z) =
∞∑

n=1

(−1)n−1

n
zn, |z| ≤ 1, z 6= −1,

and given any α ∈ C, we have

(1 + z)α =

∞∑

n=0

(
α

n

)

zn = 1 + α z +
α(α− 1)

1!
z2 + · · · , |z| < 1.

Proof. We prove this theorem first for Log(1 + z), then for (1 + z)α.
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Step 1: Let us define f(z) :=
∑∞

n=1
(−1)n−1

n zn. Then one can check that the
radius of convergence of f(z) is 1, so by our power series composition theorem, we
know that exp(f(z)) can be written as a power series:

exp(f(z)) =

∞∑

n=0

an zn, |z| < 1.

Restricting to real values of z, by our lemma we know that f(x) = log(1 + x), so

∞∑

n=0

an xn = exp(f(x)) = exp(log(1 + x)) = 1 + x.

By the identity theorem for power series, we must have a0 = 1, a1 = 1, and all
other an = 0. Thus, exp(f(z)) = 1 + z. Since exp(Log(1 + z)) = 1 + z as well, we
have

exp(f(z)) = exp(Log(1 + z)),

which implies that f(z) = Log(1 + z) + 2πik for some integer k. Setting z = 0

shows that k = 0 and hence proves that Log(1 + z) = f(z) =
∑∞

n=1
(−1)n−1

n zn.

We now prove that Log(1+z) =
∑∞

n=1
(−1)n−1

n zn holds for |z| = 1 with z 6= −1
(note that for z = −1, both sides of this equality are not defined). If |z| = 1, then
we can write z = −eix with x ∈ (0, 2π). Recall from Example 5.4 in Section 5.1
that for any x ∈ (0, 2π), the series

∑∞
n=1

cos nx
n and

∑∞
n=1

sin nx
n converge. Hence,

(5.66)
∞∑

n=1

cos nx

n
+ i

∞∑

n=1

sin nx

n
=

∞∑

n=1

einx

n

=
∞∑

n=1

(−1)n(−eix)n

n
= −

∞∑

n=1

(−1)n−1

n
zn,

which shows that
∑∞

n=1
(−1)n−1

n zn converges for |z| = 1 with z 6= −1. Now fix a
point z0 with |z0| = 1 and z0 6= −1, and let us take z → z0 through the straight
line from z = 0 to z = z0 (that is, let z = tz0 where 0 ≤ t ≤ 1 and take t → 1−).
Since the ratio

|z0 − z|
1− |z| =

|z0 − tz0|
1− |tz0|

=
|z0 − tz0|

1− t
=
|1− t|
1− t

= 1,

which bounded by a fixed constant, by Abel’s theorem (Theorem 5.20), it follows
that

∞∑

n=1

(−1)n−1

n
zn
0 = lim

z→z0

∞∑

n=1

(−1)n−1

n
zn = lim

z→z0

Log(1 + z) = Log(1 + z0),

where we used that Log(1 + z) is continuous.
Step 2: Let α ∈ C. To prove the binomial series, we note that by the power

series composition theorem, (1 + z)α = exp(α Log(1 + z)), being the composition
of exp and Log, can be written as a power series:

(1 + z)α =
∞∑

n=0

bn zn, |z| < 1.
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Restricting to real z = x ∈ R with |x| < 1, by our lemma we know that (1 + x)α =
f(α, x). Hence, by the identity theorem, we must have (1 + z)α = f(α, z) for all
z ∈ C with |z| < 1. This proves the binomial series. �

For any z ∈ C with |z| < 1, we have Log
(
(1 + z)/(1 − z)

)
= Log(1 + z) −

Log(1− z). Therefore, we can use this theorem to prove that (see Problem 1)

(5.67)
1

2
Log

(
1 + z

1− z

)

=

∞∑

n=0

z2n+1

2n + 1
.

Here’s another consequence of Theorem 5.39.

Example 5.39. In the proof of Theorem 5.39 we used that, for x ∈ (0, 2π), the
series

∑∞
n=1

cos nx
n and

∑∞
n=1

sin nx
n converge. We shall now determine the sum of

these series! In fact, we shall prove that

∞∑

n=1

cos nx

n
= log

(
2 sin(x/2)

)
and

∞∑

n=1

sin nx

n
=

x− π

2
.

To see this, recall from (5.66) that, with z = −eix, we have

∞∑

n=1

cosnx

n
+ i

∞∑

n=1

sin nx

n
= −

∞∑

n=1

(−1)n−1

n
zn = −Log(1− z) = −Log(1− eix).

We can write

1− eix = eix/2(e−ix/2 − eix/2) = −2ieix/2 sin(x/2) = 2 sin(x/2)eix/2−iπ/2.

Hence, by definition of Log, we have

Log(1− eix) = log
(
2 sin(x/2)

)
+ i

x− π

2
.

This proves our result.

5.9.3. Gregory-Madhava series and formulæ for γ. Recall from Section
4.9 that

Arctan z =
1

2i
Log

1 + iz

1− iz
.

Using (5.67), we get the famous formula first discovered by Madhava of Sangama-
gramma (1350–1425) around 1400 and rediscovered over 200 years later in Europe
by James Gregory (1638–1675), who found it in 1671! In fact, the mathematicians
of Kerala in southern India not only discovered the arctangent series, they also
discoved the infinite series for sine and cosine, but their results were written up
in Sanskrit and not brought to Europe until the 1800’s. For more history on this
fascinating topic, see the articles [86], [145], and the website [132].

Theorem 5.40. For any complex number z with |z| < 1, we have

Arctan z =

∞∑

n=0

(−1)n z2n+1

2n + 1
, Gregory-Madhava’s series.
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This series is commonly known as Gregory’s arctangent series, but we
shall call it the Gregory-Madhava arctangent series because of Madhava’s
contribution to this series. Setting z = x, a real variable, we obtain the usual
formula learned in elementary calculus:

arctan x =

∞∑

n=0

(−1)n x2n+1

2n + 1
.

In Problem 5 we prove the following stunning formulæ for the Euler-Mascheroni
constant γ in terms of the Riemann ζ-function ζ(z):

(5.68)

γ =

∞∑

n=2

(−1)n

n
ζ(n)

= 1−
∞∑

n=2

1

n

(
ζ(n)− 1

)

=
3

2
− log 2−

∞∑

n=2

(−1)n

n

(
n− 1)

(
ζ(n)− 1

)
.

The first two formulas are due to Euler and the last one to Philippe Flajolet and
Ilan Vardi (see [148, pp. 4,5], [58]). .

Exercises 5.9.

1. Fill in the details in the proof of formula (5.67).
2. Derive the remarkably pretty formulas:

2(Arctan z)2 =

∞∑

n=0

(−1)n

2n + 2

(

1 +
1

3
+

1

5
+ · · · + 1

2n + 1

)

z2n+2,

and the formula

1

2
(Log(1 + z))2 =

∞∑

n=0

(−1)n

n + 2

(

1 +
1

2
+

1

3
+ · · · + 1

n + 1

)

zn+2,

both valid for |z| < 1.
3. Before looking at the next section, prove that

arctan x =
∞∑

n=0

(−1)n x2n+1

2n + 1
and log(1 + x) =

∞∑

n=0

(−1)n−1

n
xn

are valid for −1 < x ≤ 1. Suggestion: I know you are Abel to do this! From these
facts, derive the formulas

π

4
= 1 − 1

3
+

1

5
− 1

7
+ − · · · and log 2 = 1 − 1

2
+

1

3
− 1

4
+ · · · .

4. For α ∈ R, prove that
∑∞

n=0

(
α
n

)
converges if and only if α ≤ 0 or α ∈ N, in which case,

2α =

∞∑

n=0

(

α

n

)

.

Suggestion: To prove convergence use Gauss’ test.
5. Prove the exquisite formulas

(a)
∞∑

n=1

1

n

zn

1 − zn
=

∞∑

n=1

Log
1

1 − zn
, |z| < 1,
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(b)
∞∑

n=1

(−1)n−1

n

zn

1 − zn
=

∞∑

n=1

Log(1 + zn), |z| < 1.

Suggestion: Cauchy’s double series theorem.
6. In this problem, we prove the stunning formulæ in (5.68).

(i) Using the first formula for γ in Problem 7a of Exercises 4.6, prove that γ =
∑∞

n=1 f
(

1
n

)

where f(z) =
∑∞

n=2
(−1)n

n
zn.

(ii) Prove that γ = 1 − log 2 +
∑∞

n=2
(−1)n

n
(ζ(n) − 1) using (i) and Problem 8 in

Exercises 5.5. Show that this formula is equivalent to the first formula in (5.68).
(iii) Using the second and third formulas in Problem 7a of Exercises 4.6, derive the

second and third formulas in (5.68).

5.10. F π, Euler, Fibonacci, Leibniz, Madhava, and Machin

In this section, we continue our fascinating study of formulas for π that we
initiated in Section 4.10. In particular, we derive Leibniz-Madhava’s formula for
π/4, formulas for π discovered by Euler involving the arctangent function and even
the Fibonacci numbers, and finally, we look at Machin’s formula for π, versions of
which has been used to compute trillions of digits of π by Yasumasa Kanada and
his coworkers at the University of Tokyo.5 For other formulas for π/4 in terms of
arctangents, see the articles [102, 75]. For more on the history of computations of
π, see [10], and for interesting historical facets on π in general, see [16], [37, 38].
The website [152] has tons of information.

5.10.1. Leibniz-Madhava’s formula for π. Recall Gregory-Madhava’s for-
mula for real values:

arctan x =
∞∑

n=0

(−1)n−1 x2n−1

2n− 1
.

By the alternating series theorem, we know that
∑∞

n=0(−1)n−1/(2n−1) converges,
therefore by Abel’s limit theorem (Theorem 5.20) we know that

π

4
= lim

x→1−
arctan x =

∞∑

n=0

(−1)n−1 1

2n− 1
= 1− 1

3
+

1

5
− 1

7
+− · · · .

Therefore,

π

4
= 1− 1

3
+

1

5
− 1

7
+− · · · , Gregory-Leibniz-Madhava’s series.

This formula is usually called Leibniz’ series after Leibniz (1646–1716) because he
is usually accredited to be the first to mention this formula in print in 1673, although
Madhava of Sangamagramma (1350–1425) discovered this formula over 200 years
earlier. Note that the Gregory-Leibniz-Madhava’s series is really just a special
case of Gregory-Madhava’s formula, which was discovered in 1671 by Gregory (and
earlier by Madhava), Gregory seems to have not noticed this beautiful expression for
π/4; however, see [16, p. 133]. For more history, including Nilakantha Somayaji’s
(1444–1544) contribution, see [145, 132].

5The value of π has engaged the attention of many mathematicians and calculators from the

time of Archimedes to the present day, and has been computed from so many different formulae,

that a complete account of its calculation would almost amount to a history of mathematics.

James Glaisher (1848–1928) [64].
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Example 5.40. Let us say that we want to approximate π/4 by Gregory-
Leibniz-Madhava’s series to within, say a reasonable amount of 7 decimal places.
Then denoting the n-th partial sum of Gregory-Leibniz-Madhava’s series by sn,
according to the alternating series error estimate, we want

∣
∣
∣
π

4
− sn

∣
∣
∣ ≤ 1

2n + 1
< 0.00000005 = 5× 10−8,

which implies that 2n + 1 > 108/5, which works for n ≥ 10, 000, 000. Thus, we
can approximate π/4 by the n-th partial sum of Gregory-Leibniz-Madhava’s series
by taking ten million terms! Thus, although Gregory-Leibniz-Madhava’s series is
beautiful, it is quite useless to compute π.

Example 5.41. From Gregory-Leibniz-Madhava’s formula, we can easily derive
the pretty formula (see Problem 4)

(5.69) π =

∞∑

n=2

3n − 1

4n
ζ(n + 1),

due to Philippe Flajolet and Ilan Vardi (see [149, p. 1], [176, 58]).

5.10.2. Euler’s arctangent formula and the Fibonacci numbers. In
1738, Euler derived a very pretty two-angle arctangent expression for π:

(5.70)
π

4
= arctan

1

2
+ arctan

1

3
.

This formula is very easy to derive. We start off with the addition formula for
tangent (see (4.34), but now considering real variables)

(5.71) tan(θ + φ) =
tan θ + tan φ

1− tan θ tan φ
,

where it is assumed that 1 − tan θ tan φ 6= 0. Let x = tan θ and y = tan φ and
assume that −π/2 < θ + φ < π/2. Then taking arctangents of both sides of the
above equation, we obtain

θ + φ = arctan

(
x + y

1− xy

)

,

or after putting the left-hand in terms of x, y, we get

(5.72) arctan x + arctan y = arctan

(
x + y

1− xy

)

.

Setting x = 1/2 and y = 1/3, we see that

x + y

1− xy
=

5/6

1− 5/6
= 1,

which implies that

arctan
1

2
+ arctan

1

3
= arctan 1.

This expression is just (5.70).
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In Problem 7 of Exercises 2.2 we studied the Fibonacci sequence, named
after Leonardo Fibonacci (1170–1250): F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for
all n ≥ 2 and you proved that for every natural number,

(5.73) Fn =
1√
5

[

Φn − (−Φ)−n
]

, Φ =
1 +
√

5

2
.

We can use (5.70) and (5.72) to derive the following fascinating formula for π/4 in
terms of the (odd-indexed) Fibonacci numbers due to Lehmer [101] (see Problem
2 and [103]):

(5.74)
π

4
=

∞∑

n=0

arctan

(
1

F2n+1

)

.

Also, in Problem 3 you will prove the following series for π, due to Castellanos [37]:

(5.75)
π√
5

=

∞∑

n=0

(−1)nF2n+12
2n+3

(2n + 1)(3 +
√

5)2n+1
.

5.10.3. Machin’s arctangent formula for π. In 1706, John Machin (1680–
1752) derived a fairly rapid convergent series for π. To derive this expansion,
consider the smallest positive angle α whose tangent is 1/5:

tan α =
1

5
(that is, α := arctan(1/5)).

Now setting θ = φ = α in (5.71), we obtain

tan 2α =
2 tan α

1− tan2 α
=

2/5

1− 1/25
=

5

12
,

so

tan 4α =
2 tan 2α

1− tan2 2α
=

5/6

1− 25/144
=

120

119
,

which is just slightly above one. Hence, 4α− π/4 is positive, and moreover,

tan
(

4α− π

4

)

=
tan 4α + tan π/4

1 + tan 4α tan π/4
=

1/119

1 + 120/119
=

1

239
.

Taking the inverse tangent of both sides and solving for π
4 , we get

π

4
= 4 tan−1 1

5
− tan−1 1

239
.

Substituting 1/5 and 1/239 into the Gregory-Madhava series for the inverse tangent,
we arrive at Machin’s formula for π:

Theorem 5.41 (Machin’s formula). We have

π = 16

∞∑

n=0

(−1)n

(2n + 1)52n+1
− 4

∞∑

n=0

(−1)n

(2n + 1) 2392n+1
.
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Example 5.42. Machin’s formula gives many decimal places of π without much

effort. Let sn denote the n-th partial sum of s := 16
∑∞

n=0
(−1)n

(2n+1)52n+1 and tn that

of t := 4
∑∞

n=0
(−1)n

(2n+1) 2392n+1 . Then π = s − t and by the alternating series error

estimate,

|s− s3| ≤
16

9 · 59
≈ 9.102× 10−7

and

|t− t0| ≤
4

3 · (239)3 ≈ 10−7.

Therefore,

|π − (s3 − t0)| = |(s− t)− (s3 − t0)| ≤ |s− s3|+ |t− t0| < 5× 10−6.

A manageable computation (even without a calculator!) shows that s3 − t0 =
3.14159 . . .. Therefore, π = 3.14159 to five decimal places!

Exercises 5.10.

1. From Gregory-Madhava’s series, derive the following pretty series

π

2
√

3
= 1 − 1

3 · 3 +
1

5 · 32
− 1

7 · 33
+

1

9 · 34
− + · · · .

How many terms of this series do you need to approximate π/2
√

3 to within seven

decimal places? Suggestion: Consider arctan(1/
√

3) = π/6. History Bite: Abraham
Sharp (1651–1742) used this formula in 1669 to compute π to 72 decimal places, and
Thomas Fantet de Lagny (1660–1734) used this formula in 1717 to compute π to 126
decimal places (with a mistake in the 113-th place) [37].

2. In this problem we prove (5.74).
(i) Prove that arctan 1

3
= arctan 1

5
+ arctan 1

8
, and use this prove that

π

4
= arctan

1

2
+ arctan

1

5
+ arctan

1

8
.

Prove that arctan 1
8

= arctan 1
13

+ arctan 1
21

, and use this prove that

π

4
= arctan

1

2
+ arctan

1

5
+ arctan

1

13
+ arctan

1

21
.

From here you can now see the appearance of Fibonacci numbers.
(ii) To continue this by induction, prove that for every natural number n,

F2n =
F2n+1F2n+2 − 1

F2n+3
.

Suggestion: Can you use (5.73)?
(iii) Using the formula in (b), prove that

arctan

(
1

F2n

)

= arctan

(
1

F2n+1

)

+ arctan

(
1

F2n+2

)

.

Using this formula derive (5.74).
3. In this problem we prove (5.75).

(i) Using (5.72), prove that

tan−1

√
5 x

1 − x2
= tan−1

(
1 +

√
5

2

)

x − tan−1

(
1 −

√
5

2

)

x.

(ii) Now prove that

tan−1

√
5 x

1 − x2
=

∞∑

n=0

(−1)nF2n+1 x2n+1

5n (2n + 1)
.
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(iii) Finally, derive the formula (5.75).
4. In this problem, we prove the breath-taking formula (5.69).

(i) Prove that

π

4
=

∞∑

n=1

( 1

4n − 3
− 1

4n − 1

)

=
∞∑

n=1

f
( 1

n

)

where f(z) = z
4−3z

− z
4−z

.

(ii) Use Theorem 5.29 to derive our breath-taking formula.

5.11. F Proofs that π2/6 =
∑∞

n=1 1/n2 (The Basel problem)

Pietro Mengoli (1625–1686) posed the question: What’s the value of the sum

∞∑

n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · · ?

This problem was made popular through Jacob (Jacques) Bernoulli (1654–1705)
when he wrote about it in 1689 and was solved by Leonhard Euler (1707–1783) in
1734. Bernoulli wrote

If somebody should succeed in finding what till now withstood
our efforts and communicate it to us, we shall be much obliged
to him. [37, p. 73].

Before Euler’s solution to this request, known as the Basel problem (Bernoulli lived
in Basel, Switzerland), this problem eluded many of the great mathematicians of
that day. Needless to say, it shocked the mathematical community when Euler found
the sum to be π2/6. (You’ll have to wait until Section 6.6 to see Euler’s original
proof.) In this section, we present two “elementary” proofs, where “elementary”
means that we use nothing involving calculus or beyond. The first proof is of
historical interest, but long, and goes back to Nicolaus Bernoulli (1687–1759) (Jacob
Bernoulli’s nephew) from 1738, and the other proof is more recent and is truly very
elementary, and short, which we found in an article by Hofbauer [79]. For more on
various solutions to the Basel problem, see [84] and [39] and for more on Euler, see
[8], [91].

5.11.1. Cauchy’s arithmetic mean theorem. Before giving our first proof
of Euler’s sum, we prove the following theorem.

Theorem 5.42 (Cauchy’s arithmetic mean theorem). If a sequence a1,
a2, a3, . . . converges to L, then the sequence of arithmetic means (or averages)

mn :=
1

n

(

a1 + a2 + · · ·+ an

)

also converges to L. Moreover, if the sequence {an} is nonincreasing, then so is its
sequence of arithmetic means {mn}.

Proof. To show that mn → L, we need to show that

mn − L =
1

n

(

(a1 − L) + (a2 − L) + · · ·+ (an − L)
)
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tends to zero as n → ∞. Let ε > 0 and choose N ∈ N so that for all n > N , we
have |an| < ε/2. Then for n > N , we can write

|mn| ≤
1

n

(

|(a1 − L) + · · ·+ (aN − L)|
)

+
1

n

(

|(aN+1 − L) + · · ·+ (an − L)|
)

≤ 1

n

(

|(a1 − L) + · · ·+ (aN − L)|
)

+
1

n

(ε

2
+ · · ·+ ε

2

)

=
1

n

(

|(a1 − L) + · · ·+ (aN − L)|
)

+
n−N

n
· ε
2

≤ 1

n

(

|a1 + · · ·+ aN |
)

+
ε

2
.

By choosing n larger, we can make 1
n

(

|a1 + · · · + aN |
)

also less than ε/2, which

shows that |mn| < ε for n sufficiently large. This shows that mn → 0.
Assume now that {an} is nonincreasing. We shall prove that {mn} is also

nonincreasing; that is, for each n,

1

n + 1

(

a1 + · · ·+ an + an+1

)

≤ 1

n

(

a1 + · · ·+ an

)

,

or, after multiplying both sides by n(n + 1),

n
(

a1 + · · ·+ an

)

+ nan+1 ≤ n
(

a1 + · · ·+ an

)

+
(

a1 + · · ·+ an

)

.

Cancelling, we conclude that the sequence {mn} is nonincreasing if and only if

nan+1 = an+1 + an+1 + · · · an+1
︸ ︷︷ ︸

n times

≤ a1 + a2 + · · ·+ an.

But this inequality certainly holds since an+1 ≤ ak for k = 1, 2, . . . , n. This com-
pletes the proof. �

There is a related theorem for geometric means found in Problem 2, which can
be used to derive the following neat formula:

(5.76) e = lim
n→∞

{(
2

1

)1(
3

2

)2(
4

3

)3

· · ·
(

n + 1

n

)n}1/n

.

5.11.2. Proof I of Euler’s formula for π2/6. Assuming only Gregory-
Leibniz-Madhava’s series:

π

4
= 1− 1

3
+

1

5
− 1

7
+− · · ·

we give our first of many proofs of the fact that

π2

6
=

∞∑

n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · · .

According to Knopp [92, p. 324], the proof we are about to give “may be regarded as
the most elementary of all known proofs, since it borrows nothing from the theory
of functions except the Leibniz series”. Knopp attributes the main ideas of the
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proof to Nicolaus Bernoulli (1687–1759). First we shall apply Abel’s multiplication
theorem to Gregory-Leibniz-Madhava’s series

(π

4

)2

=

( ∞∑

n=0

(−1)n 1

2n + 1

)

·
( ∞∑

n=0

(−1)n 1

2n + 1

)

.

To do so, we first form the n-th term in the Cauchy product:

cn =
n∑

k=0

(−1)k 1

2k + 1
· (−1)n−k 1

2n− 2k + 1
= (−1)n

n∑

k=0

1

(2k + 1)(2n− 2k + 1)
.

Observe that

1

(2k + 1)(2n− 2k + 1)
=

1

2(n + 1)

(
1

2k + 1
+

1

2n− 2k + 1

)

,

which implies that

cn =
(−1)n

2(n + 1)

(
n∑

k=0

1

2k + 1
+

n∑

k=0

1

2n− 2k + 1

)

=
(−1)n

n + 1

n∑

k=0

1

2k + 1
.

Thus, the Cauchy product of Gregory-Leibniz-Madhava’s series with itself is

∞∑

n=0

(−1)n 1

n + 1

(

1 +
1

3
+ · · ·+ 1

2n + 1

)

,

provided that this series converges. To see that this series converges, note that the
sum

1

n + 1

(

1 +
1

3
+

1

5
+ · · ·+ 1

2n− 1
+

1

2n + 1

)

is just the arithmetic mean, or average, of the numbers 1, 1/3, . . . , 1/(2n+1). Since
1/(2n+1)→ 0 monotonically, Cauchy’s arithmetic mean theorem shows that these
averages also tend to zero monotonically. In particular, by the alternating series
theorem, the Cauchy product of Gregory-Leibniz-Madhava’s series converges, so by
Abel’s multiplication theorem, we get the formula

(5.77)
(π

4

)2

=

∞∑

n=0

(−1)n 1

n + 1

(

1 +
1

3
+ · · ·+ 1

2n + 1

)

.

We evaluate the right-hand side using the following technical theorem.

Theorem 5.43. Let {an} be a nonincreasing sequence of positive numbers such
that

∑
a2

n converges. Then both series

s :=

∞∑

n=0

(−1)nan and δk :=

∞∑

n=0

anan+k, k = 1, 2, 3, . . .

converge. Moreover, ∆ :=
∑∞

k=1(−1)k−1δk also converges, and we have the formula

∞∑

n=0

a2
n = s2 + 2∆.

Proof. Since
∑

a2
n converges, we must have an → 0, which implies that

∑
(−1)nan converges by the alternating series test. By monotonicity, anan+k ≤
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an · an = a2
n and since

∑
a2

n converges, by comparison, so does each series δk =
∑∞

n=0 anan+k. Also by monotonicity,

δk+1 =
∞∑

n=0

anan+k+1 ≤
∞∑

n=0

anan+k = δk,

so by the alternating series test, the sum ∆ converges if δk → 0. To prove this, let
ε > 0 and choose N such that a2

N+1 + a2
N+2 + · · · < ε/2. Then, since the sequence

{an} is nondecreasing, we can write

δk =

∞∑

n=0

anan+k

=
(

a0ak + · · ·+ aNaN+k

)

+
(

aN+1aN+1+k + aN+2aN+2+k + · · ·
)

≤
(

a0ak + · · ·+ aNak

)

+
(

a2
N+1 + a2

N+2 + a2
N+3 + · · ·

)

< ak ·
(

a0 + · · ·+ aN

)

+
ε

2
.

As ak → 0 we can make the first term less than ε/2 for all k large enough. Thus,
δk < ε for all k sufficiently large. This proves that ∆ =

∑∞
k=1(−1)k−1δk converges.

Finally, we need to prove the equality
∞∑

n=0

a2
n = s2 + 2

∞∑

k=1

(−1)k−1δk = s2 + 2
[
δ1 − δ2 + δ3 −+ · · ·

]
.

To prove this, let sn denote the n-th partial sum of the series s =
∑∞

n=0(−1)nan.
We have

s2
n =

(
n∑

k=0

(−1)kak

)2

=

n∑

k=0

n∑

`=0

(−1)k+`ak a`.

Consider the following array (called a matrix) of numbers:









+a2
0 −a0a1 +a0a2 −a0a3 · · · (−1)na0an

−a1a0 +a2
1 −a1a2 +a1a3 · · · −(−1)na1an

+a2a0 −a2a1 +a2
2 −a2a3 · · · (−1)na2an

...
(−1)nana0 −(−1)nana1 (−1)nana2 −(−1)nana3 · · · a2

n










.

Then s2
n is the sum of all the terms in this array. We can sum diagonally along

every diagonal stretching from the north-west to south-east, obtaining

s2
n =

n∑

k=0

a2
k−2

[
a0a1 + a1a2 + a2a3 + · · ·+ an−1an

]

+ 2
[
a0a2 + a1a3 + · · ·+ an−2an

]

− 2
[
a0a3 + a1a4 + · · ·+ an−3an

]
+− · · ·+ 2(−1)na0an,

where we used that the matrix is symmetric about the main diagonal. Let

dn := 2
[
δ1 − δ2 + δ3 −+ · · ·+ (−1)n+1δn

]
.

We need to show that s2
n + dn →

∑∞
k=0 a2

k as n → ∞. To prove this, we add the
expressions for s2

n and dn given in the previous two displayed equations, recalling
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that δk = a0ak + a1ak+1 + a2ak+2 + · · · , to obtain

s2
n + dn =

n∑

k=0

a2
k+2

[
anan+1 + an+1an+2 + an+2an+3 + · · ·

]

− 2
[
an−1an+1 + anan+2 + · · ·

]

+ 2
[
an−2an+1 + an−1an+2 + · · ·

]

−+ · · ·+ 2(−1)n+1
[
a1an+1 + a2an+2 + · · ·

]
.

With αk := akan+1 + ak+1an+2 + ak+2an+3 + · · · , this expression takes the form

s2
n + dn −

n∑

k=0

a2
k = 2(−1)n+1

[
α1 − α2 + α3 −+ · · ·+ (−1)n+1αn

]
.

Since the sequence {an} is nonincreasing, it follows that the sequence {αk} is also
nonincreasing:

αk = akan+1 + ak+1an+2 + · · · ≥ ak+1an+1 + ak+2an+2 + · · · = αk+1.

Now assuming n is even, we have
∣
∣
∣
∣
∣
s2

n + dn −
n∑

k=0

a2
k

∣
∣
∣
∣
∣
= 2
∣
∣(α1 − α2) + (α3 − α4) + · · ·+ (αn−1 − αn)

∣
∣

= (α1 − α2) + (α3 − α4) + · · ·+ (αn−1 − αn)

= α1 − (α2 − α3)− (α4 − α5)− · · · − (αn−2 − αn−1)− αn

≤ α1 − αn ≤ α1 = a1an+1 + a2an+2 + · · · = δn − a0an,

where we used the fact that the terms in the parentheses are all nonnegative because
the αk’s are nonincreasing. Using a very similar argument, we get

(5.78)

∣
∣
∣
∣
s2

n + dn −
n∑

k=0

a2
k

∣
∣
∣
∣
≤ δn − a0an

for n odd. Therefore, (5.78) holds for all n. We already know that δn → 0 and
an → 0, so (5.78) shows that the left-hand side tends to zero as n → ∞. This
completes the proof of the theorem. �

Finally, we are ready to prove Euler’s formula for π2/6. To do so, we apply the
preceding theorem to the sequence an = 1/(2n + 1). In this case,

δk =

∞∑

n=0

anan+k =

∞∑

n=0

1

(2n + 1)(2n + 2k + 1)
.

Observe that

1

(2n + 1)(2n + 2k + 1)
=

1

2k

{
1

2n + 1
− 1

2n + 2k + 1

}

,

so

δk =
1

2k

∞∑

n=0

{
1

2n + 1
− 1

2n + 2k + 1

}

=
1

2k

(

1 +
1

3
+ · · ·+ 1

2k − 1

)

,

since the sum telescoped. Hence, the equality
∑∞

n=0 a2
n = s2 + 2∆ takes the form

∞∑

n=0

1

(2n + 1)2
=
(π

4

)2

+

∞∑

k=1

(−1)k−1 1

k

(

1 +
1

3
+ · · · 1

2k − 1

)

.
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However, see (5.77), we already proved that the Cauchy product of Gregory-Leibniz-
Madhava’s series with itself is given by the sum on the right. Thus,

(5.79)

∞∑

n=0

1

(2n + 1)2
=
(π

4

)2

+
(π

4

)2

=
π2

8
.

Finally, summing over the even and odd numbers, we have
∞∑

n=1

1

n2
=

∞∑

n=0

1

(2n + 1)2
+

∞∑

n=1

1

(2n)2
=

π2

8
+

1

4

∞∑

n=1

1

n2
,

and solving for
∑∞

n=1 1/n2, we obtain Euler’s formula:

π2

6
=

∞∑

n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · · .

5.11.3. Proof II. Follow Hofbauer [79] we give another proof of Euler’s sum,
which is short and sweet! For this proof, we shall use many properties of trigono-
metric functions. We begin with the identity

1

sin2 x
=

1

4 sin2 x
2 cos2 x

2

=
1

4

[

1

sin2 x
2

+
1

cos2 x
2

]

=
1

4

[

1

sin2 x
2

+
1

sin2
(

π+x
2

)

]

,

or, since sin(x) = sin(π − x),

(5.80)
1

sin2 x
=

1

4

[

1

sin2 x
2

+
1

sin2
(

π−x
2

)

]

.

In particular, setting x = π/2, we obtain

1 =
1

4

[

1

sin2 π
22

+
1

sin2 π
22

]

=
2

4
· 1

sin2 π
22

.

Applying (5.80) (with x = π/22) to the right-hand side of this equation gives

1 =
2

42

[

1

sin2 π
23

+
1

sin2 3π
23

]

=
2

42

1∑

k=0

1

sin2 (2k+1)π
23

.

Repeatedly applying (5.80), we arrive at the interesting formula

(5.81) 1 =
2

4n

2n−1−1∑

k=0

1

sin2 (2k+1)π
2n+1

.

To establish Euler’s formula, we need the following lemma.

Lemma 5.44. For 0 < x < π/2, we have

1

sin2 x
>

1

x2
> −1 +

1

sin2 x
.

Proof. Taking reciprocals in the formula from Lemma 4.56: For 0 < x < π/2,

sinx < x < tan x,

we get cot2 x < x−2 < sin−2 x. Since cot2 x = cos2 x/ sin2 x = −1 + sin−2 x, we
conclude that

1

sin2 x
>

1

x2
> −1 +

1

sin2 x
, 0 < x <

π

2
,
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which proves the lemma. �

Now using the inequality

1

sin2 x
>

1

x2
> −1 +

1

sin2 x
, 0 < x <

π

2

and the fact that 0 < (2k + 1)π/2n+1 < π/2 for k = 0, . . . , 2n−1 − 1, we see that

2n−1−1∑

k=0

1

sin2 (2k+1)π
2n+1

>
2n−1−1∑

k=0

1
(

(2k+1)π
2n+1

)2 > −2n−1 +
2n−1−1∑

k=0

1

sin2 (2k+1)π
2n+1

.

Multiplying both sides by 2/4n = 2/22n and using (5.81), we get

1 >
8

π2

2n−1−1∑

k=0

1

(2k + 1)2
> − 1

2n
+ 1.

Taking n→∞, we obtain
∞∑

k=0

1

(2k + 1)2
=

π2

8
.

This equality, as we showed just after (5.79), easily implies Euler’s formula. See
Problem 4 for a classic proof.

Exercises 5.11.

1. Prove that

(a) lim
1 + 21/2 + 31/3 + · · · + n1/n

n
= 1,

(b) lim

[
1

n2 + 1
+

1

n2 + 2
+ · · · + 1

n2 + n

]

= 1.

2. If a sequence a1, a2, a3, . . . of positive numbers converges to L > 0, prove that the
sequence of geometric means (a1a2 · · · an)1/n also converges to L. Suggestion: Take
logs of the geometric means. Using this result, prove (5.76). Using (5.76), prove that

e = lim
n

(n!)1/n
.

3. (Partial fraction expansion of 1/ sin2 x) Here’s Hofbauer derivation [79] of a partial
fraction expansion of 1/ sin2 x.

(i) Prove that

1

sin2 x
=

1

22n

2n−1∑

k=0

1

sin2 x+πk
2n

.

(ii) Show that

1

sin2 x
=

1

22n

2n−1−1∑

k=−2n−1

1

sin2 x+πk
2n

.

(iii) Finally, prove that 1
sin2 x

= limn→∞
∑n

k=−n
1

(x+πk)2
. We usually write this as

(5.82)
1

sin2 x
=
∑

k∈Z

1

(x + πk)2
.

4. (Euler’s sum for π2/6, Proof III) In this problem we derive Euler’s sum via an old
argument found in Thomas John l’Anson Bromwich’s (1875–1929) book [31, p. 218-19]
(cf. [5], [134], [94]).
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(ii) Recall from Problem 4 in Exercises 4.7 that for any n ∈ N and x ∈ R,

sin nx =

b(n−1)/2c
∑

k=0

(−1)k

(

n

2k + 1

)

cosn−2k−1 x sin2k+1 x.

Using this formula, prove that if sin x 6= 0, then

sin(2n + 1)x = sin2n+1 x

n∑

k=0

(−1)k

(

2n + 1

2k + 1

)

(cot2 x)n−k.

(iiii) Prove that if n ∈ N, then the roots of
∑n

k=0(−1)k
(
2n+1
2k+1

)
tn−k = 0 are the n

numbers t = cot2 mπ
2n+1

where m = 1, 2, . . . , n.

(iiiiii) Prove that if n ∈ N, then
n∑

k=1

cot2
kπ

2n + 1
=

n(2n − 1)

3
.

Suggestion: Recall that if p(t) is a polynomial of degree n with roots r1, . . . , rn,
then p(t) = a(t− r1)(t− r2) · · · (t− rn) for a constant a. What’s the coefficient
of t1 if you multiply out a(t − r1) · · · (t − rn)?

(iviv) Prove that if n ∈ N, then

(5.83)
n∑

k=1

1

sin2 πk
2n+1

=
2n(n + 1)

3
.

From this identity, derive Euler’s sum.
5. (Partial fraction expansion of 1/ sin2 x, Proof II) As noted by Hofbauer [79], the

identity (5.83), which is a key ingredient to the previous proof, can be derived from
the partial fraction expansion (5.82).

(i) Use (5.82) to prove that for any n ∈ N,

(5.84)
1

sin2 x
=

1

n2

n−1∑

m=0

1

sin2 x+πm
n

.

Suggestion: Replace x with x+πm
n

in (5.82) and sum from m = 0 to n − 1.
(ii) Take the m = 0 term in (5.84) to the left, replace n by 2n + 1, and then take

x → 0 to derive (5.83).


