Example 3.47. For example, in the base 10 expansion of $\frac{3526}{495}=7.1232323 \ldots$ $=7 . a_{1} a_{2} a_{3} \ldots$. we have $a_{n}=a_{n+2}$ for all $n \geq \ell=2$.

We can actually see how the periodic pattern appears by going back to high school long division! Indeed, long dividing 495 into 3526 we get

$$
\begin{gathered}
4 9 5 \longdiv { 7 . 1 2 3 } \\
\frac{3426.000}{3465} \\
\frac{495}{1150} \\
\underline{990} \\
1600 \\
\underline{1485} \\
\hline 17
\end{gathered}
$$

At this point, we get another remainder of 115 , exactly as we did a few lines before. Thus, by continuing this process of long division, we are going to repeat the pattern 2,3 . We shall use this long division technique to prove the following theorem.

Theorem 3.34. Let b be a positive integer greater than 1. A real number is rational if and only if its b-adic expansion is periodic.

Proof. We first prove the "only if", then the "if" statement.
Step 1: We prove the "only if": Given integers p, q with $q>0$, we show that p / q has a periodic b-adic expansion. By the division algorithm (see Theorem 2.15), we can write $p / q=q^{\prime}+r / q$ where $q^{\prime} \in \mathbb{Z}$ and $0 \leq r<q$. Thus, we just have to prove that r / q has a periodic b-adic expansion. In particular, we might as well assume from the beginning that $0<p<q$ so that $p / q<1$. Proceeding via high school long division, we construct the decimal expansion of p / q.

First, using the division algorithm, we divide $b p$ by q, obtaining a unique integer a_{1} such that $b p=a_{1} q+r_{1}$ where $0 \leq r_{1}<q$. Since

$$
\frac{p}{q}-\frac{a_{1}}{b}=\frac{b p-a_{1} q}{b q}=\frac{r_{1}}{b q} \geq 0
$$

we have

$$
\frac{a_{1}}{b} \leq \frac{p}{q}<1
$$

which implies that $0 \leq a_{1}<b$.
Next, using the division algorithm, we divide $b r_{1}$ by q, obtaining a unique integer a_{2} such that $b r_{1}=a_{2} q+r_{2}$ where $0 \leq r_{2}<q$. Since

$$
\frac{p}{q}-\frac{a_{1}}{b}-\frac{a_{2}}{b^{2}}=\frac{r_{1}}{b q}-\frac{a_{2}}{b^{2}}=\frac{b r_{1}-a_{2} q}{b^{2} q}=\frac{r_{2}}{b^{2} q} \geq 0
$$

we have

$$
\frac{a_{2}}{b^{2}} \leq \frac{r_{1}}{b q}<\frac{q}{b q}=\frac{1}{b}
$$

which implies that $0 \leq a_{2}<b$.
Once more using the division algorithm, we divide $b r_{2}$ by q, obtaining a unique integer a_{3} such that $b r_{2}=a_{3} q+r_{3}$ where $0 \leq r_{3}<q$. Since

$$
\frac{p}{q}-\frac{a_{1}}{b}-\frac{a_{2}}{b^{2}}-\frac{a_{3}}{b^{3}}=\frac{r_{2}}{b^{2} q}-\frac{a_{3}}{b^{3}}=\frac{b r_{2}-a_{3} q}{b^{3} q}=\frac{r_{3}}{b^{3} q} \geq 0,
$$

