MATH 478: TEST 2

1. Test 2

Problem 1 (30 points). Prove using only the ϵ - δ definition of limit that

$$\lim_{z \to \frac{1}{2}} \frac{1}{z^2} = 4$$

Recall that z is a *complex* variable!

Problem 2 (20 points). (No proofs are necessary in any part of this problem. Just make sure your example in (c) is correct!)

- (a) (5 points) What does it mean to say that f is pointwise discontinuous on the interval (-1, 1)? (i.e. give the definition of "pointwise discontinuous").
- (b) (5 points) State Volterra's theorem.
- (c) (5 points) If we remove the hypothesis of pointwise discontinuity in Volterra's theorem, the result is no longer true. Give an example to show that the conclusion of the theorem need no longer hold.
- (d) (5 points) Say what it means (i.e. give the definition) for a set A to be "dense" in an open interval I.

Problem 3 (20 points). Let z be a complex number.

- (a) (5 points) Give the definition of $\exp(z)$ as an infinite series.
- (b) (15 points) Show that this series converges.

Problem 4 (10 points). Let X be the set of all functions $f: \mathbb{N} \to \{0, 1, 2\}$. Let f_1, f_2, f_3, \ldots be any infinite sequence of elements of X. Prove that there is an element $f \in X$ that is not in this list. Use this to show that X is uncountable.

Problem 5 (20 points). Indicate in your bluebook whether each of the following statements is true or false. No reasoning or proof is required for this question. However, you will lose 2 points for each incorrect answer. Note that this means you can get a *negative* score for this section!

- (1) Let f and g be pointwise discontinuous functions on the open interval (0,1) and let C_f and C_g be the sets of points of continuity of f and g. Then the set $C_f \cap C_g$ is nonempty.
- (2) Let f and g be pointwise discontinuous functions on the open interval (0,1) and let C_f and C_g be the sets of points of continuity of f and g. Then the number of elements of the set $C_f \cap C_g$ is at least 14.
- (3) Let $\sum a_n$ be a convergent series of positive real numbers. Then $\sum \sqrt{a_n}/n$ is also convergent.

Date: November 15, 2005.

MATH 478: TEST 2

- (4) For any convergent series $\sum a_n$ of real numbers we have $na_n \to 0$. (5) If $\lim_{x\to c} f$ and $\lim_{x\to c} g$ exist and f(x) < g(x) for x sufficiently close to c, then

$$\lim_{x\to c} f < \lim_{x\to c} g$$

(6) The series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$$

diverges.

- (7) The set of real numbers which do not have a unique 3-adic expansion is uncountable.
- (8) The 2-adic expansion of $\frac{1}{3}$ is 0.201010101...
- (9) For any given $k \in \mathbb{N}$ we have

$$\lim_{n \to \infty} \left[1 - (1 - \frac{1}{n})(1 - \frac{2}{n})(1 - \frac{3}{n}) \cdots (1 - \frac{k}{n}) \right] = 0$$

(10)

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2} = 0$$

MATHEMATICS DEPARTMENT, BINGHAMTON UNIVERISTY, P. O. BOX 6000, BINGHAMTON, NEW YORK, 13902-6000 $E\text{-}mail\ address: \texttt{dikran@math.binghamton.edu}$