Higher scissors congruence

Cary Malkiewich Binghamton University

March 30, 2025 AMS Spring Central Sectional Meeting University of Kansas, Lawrence

NSE: U.S. National Science Foundation

(4) E (4) E (4)

Cary Malkiewich

Higher scissors congruence

March 30, 2025

1/38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications
Acknowledgements				

Joint work with:

Bohmann, Gerhardt, Merling, and Zakharevich (BGMMZ),

Kupers, Lemann, Miller, and Sroka (KLMMS).

Cary	Ma	lkiewich
------	----	----------

Definitions ●00000	Invariants 0000000	Higher invariants 00000000	New computations	Applications 000000

Question

How can we tell if two polygons have the same area?

Cary	Malkiewich
------	------------

∍⊳

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications	
Question					
How can we tell if two polygons have the same area?					
• Calculate the area of each one.					

Definitions	Invariants	Higher invariants	New computations	Applications
●00000	0000000	00000000		000000

Question

How can we tell if two polygons have the same area?

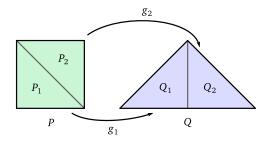
- Calculate the area of each one.
- Or, make **scissors congruence**: cut one into finitely many pieces, and rearrange to make the other one.

Definitions ●00000	Invariants 0000000	Higher invariants 00000000	New computations	Applications 000000

Question

How can we tell if two polygons have the same area?

- Calculate the area of each one.
- Or, make **scissors congruence**: cut one into finitely many pieces, and rearrange to make the other one.



) Q (
Cary Malkiewich	Higher scissors congruence	March 30, 2025	3/38

Definitions	Invariants	Higher invariants	New computations	Applications
○●○○○○	0000000	00000000		000000

- Calculate the area of each one.
- Make a scissors congruence.

Cary Mall	kiewich
-----------	---------

Definitions	Invariants	Higher invariants	New computations	Applications
0●0000	0000000	00000000	00000000	000000

- Calculate the area of each one.
- Make a scissors congruence.

The "indirect" method always works.

Cary N	Ialki	ewich
--------	-------	-------

Definitions	Invariants	Higher invariants	New computations	Applications
○●○○○○	0000000	00000000	00000000	000000

- Calculate the area of each one.
- Make a scissors congruence.

The "indirect" method always works.

Theorem. (Wallace–Bolyai–Gerwien 1807) (Antiquity?)

P and *Q* are scissors congruent \Leftrightarrow they have the same area.

Definitions	Invariants	Higher invariants	New computations	Applications
0●0000	0000000	00000000		000000

- Calculate the area of each one.
- Make a scissors congruence.

The "indirect" method always works.

Theorem. (Wallace–Bolyai–Gerwien 1807) (Antiquity?)

P and *Q* are scissors congruent \Leftrightarrow they have the same area.

Is this true in dimensions other than 2?

4/38

000000

Definition. A convex polytope is a convex hull of finitely many points in Euclidean space E^n . (Must be nondegenerate.)

Cary Ma	lkiewich
---------	----------

イロト イポト イヨト イヨト

Definitions

Definition. A **convex polytope** is a convex hull of finitely many points in Euclidean space E^n . (Must be nondegenerate.)

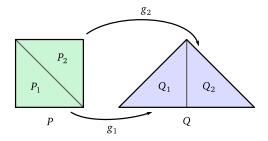
A **polytope** is a finite union of (nondegenerate) convex polytopes.

ヨト・モート

Definitions	Invariants	Higher invariants	New computations	Applications
000●00	0000000	00000000		000000

A scissors congruence from *P* to *Q* is

$$P = \bigcup_{i=1}^{k} P_i \quad \text{interiors disjoint,}$$
$$Q = \bigcup_{i=1}^{k} Q_i \quad \text{interiors disjoint, and}$$
isometries $g_i : P_i \cong Q_i, \quad i = 1, \dots, k.$



Cary Malkiewich	Higher scissors congruence	March 30, 2025	6/38

Definitions	Invariants	Higher invariants	New computations	Applications
0000●0	0000000	00000000		000000

Classical question

How many polytopes are there up to scissors congruence?

Cary Malkiewich

Definitions	Invariants	Higher invariants	New computations	Applications
0000●0	0000000	00000000		000000

Classical question

How many polytopes are there up to scissors congruence?

Example: E^1 Line segments up to scissors congruence = length.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

Classical question

How many polytopes are there up to scissors congruence?

Example: E^1

Line segments up to scissors congruence = length.

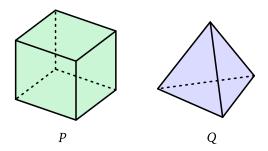
Example: E^2

Polygons up to scissors congruence = area.

Definitions 00000●	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Hilbert's 3rd Problem

Polyhedra in E^3 up to scissors congruence = volume?



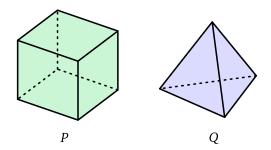
	1		.)
Cary Malkiewich	Higher scissors congruence	March 30, 2025	8/38

4 4 1

Definitions 00000●	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Hilbert's 3rd Problem

Polyhedra in E^3 up to scissors congruence = volume?



Answer. (Dehn 1901) No! Volume isn't enough.

	4	► < Ξ >	< ≣ >	2	500
Cary Malkiewich	Higher scissors congruence	March 30,	2025		8/38

Definitions 000000	Invariants ●000000	Higher invariants	New computations	Applications 000000
Idea				

Use invariants to distinguish non-scissors-congruent polytopes.

Cary Malkiewich	Higher scissors congruence	March 30, 2025	9/38

Definitions 000000	Invariants ●000000	Higher invariants 00000000	New computations	Applications 000000
Idea				

Use invariants to distinguish non-scissors-congruent polytopes.

Definition. An **invariant** sends: polytope $P \mapsto$ element $c(P) \in A$,

Cary	Ma	lkiewich
------	----	----------

Definitions 000000	Invariants •000000	Higher invariants 00000000	New computations	Applications 000000

Use invariants to distinguish non-scissors-congruent polytopes.

Definition. An **invariant** sends: polytope $P \mapsto$ element $c(P) \in A$,

• $c(P) = \sum_{i} c(P_i)$ when $P = \bigcup_{i=1}^{k} P_i$, interiors disjoint,

	4		≣
Cary Malkiewich	Higher scissors congruence	March 30, 2025	9/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	•000000	00000000		000000

Use invariants to distinguish non-scissors-congruent polytopes.

Definition. An **invariant** sends: polytope $P \mapsto$ element $c(P) \in A$,

- $c(P) = \sum_{i} c(P_i)$ when $P = \bigcup_{i=1}^{k} P_i$, interiors disjoint,
- c(gP) = c(P) for any isometry $g \in \text{Isom}(E^n)$.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	●000000	00000000		000000

Use **invariants** to distinguish non-scissors-congruent polytopes.

Definition. An **invariant** sends: polytope $P \mapsto$ element $c(P) \in A$,

- $c(P) = \sum_{i} c(P_i)$ when $P = \bigcup_{i=1}^{k} P_i$, interiors disjoint,
- c(gP) = c(P) for any isometry $g \in \text{Isom}(E^n)$.

So if *P* is scissors congruent to *Q*, then c(P) = c(Q).

9/38

Definitions 000000	Invariants ●000000	Higher invariants 00000000	New computations	Applications

Use **invariants** to distinguish non-scissors-congruent polytopes.

Definition. An **invariant** sends: polytope $P \mapsto$ element $c(P) \in A$,

- $c(P) = \sum_{i} c(P_i)$ when $P = \bigcup_{i=1}^{k} P_i$, interiors disjoint,
- c(gP) = c(P) for any isometry $g \in \text{Isom}(E^n)$.

So if *P* is scissors congruent to *Q*, then c(P) = c(Q).

Volume $\in \mathbb{R}$ is an example. Are there more?

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0●00000	00000000		000000

D(P) =

Cary Malkiewich	Higher scissors congruence	March 30, 2025	10/38

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0●00000	00000000		000000

$$D(P) = \sum_{\text{edges}} (\text{length}) \otimes (\text{dihedral angle})$$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	10/38

*ロト * 母 ト * 三 ト * 三 ト ・ 三 ・ ク ヘ (~

Definitions	Invariants	Higher invariants	New computations	Applications
000000	○●○○○○○	00000000		000000

$D(P) = \sum_{\text{edges}} (\text{length}) \otimes (\text{dihedral angle}) \in \mathbb{R} \otimes \mathbb{R} / \pi \mathbb{Z}.$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	10/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0●00000	00000000		000000

$D(P) = \sum$ (length) \otimes (dihedral angle) $\in \mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}$. edges

This is an invariant!

Cary Mall	kiewich
-----------	---------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0●00000	00000000		000000

$D(P) = \sum_{\text{edges}} (\text{length}) \otimes (\text{dihedral angle}) \in \mathbb{R} \otimes \mathbb{R} / \pi \mathbb{Z}.$

This is an invariant!

$$D(\text{cube}) = 12\left(s \otimes \frac{\pi}{2}\right) = s \otimes 6\pi = 0$$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	10/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0●00000	00000000		000000

$$D(P) = \sum_{\text{edges}} (\text{length}) \otimes (\text{dihedral angle}) \in \mathbb{R} \otimes \mathbb{R} / \pi \mathbb{Z}.$$

This is an invariant!

$$D(\text{cube}) = 12\left(s \otimes \frac{\pi}{2}\right) = s \otimes 6\pi = 0$$
$$D(\text{reg. tetrahedron}) = 6\left(s \otimes \arccos\left(\frac{1}{3}\right)\right) \neq 0$$

э

• □ > < 同 > <</p>

Definitions 000000	Invariants 0●00000	Higher invariants 00000000	New computations	Applications

$$D(P) = \sum_{\text{edges}} (\text{length}) \otimes (\text{dihedral angle}) \in \mathbb{R} \otimes \mathbb{R} / \pi \mathbb{Z}.$$

This is an invariant!

$$D(\text{cube}) = 12\left(s \otimes \frac{\pi}{2}\right) = s \otimes 6\pi = 0$$
$$D(\text{reg. tetrahedron}) = 6\left(s \otimes \arccos\left(\frac{1}{3}\right)\right) \neq 0$$

Theorem (Dehn 1901)

A cube and a regular tetrahedron are never scissors congruent.

	•	▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶	2	$\mathcal{O} \land \mathcal{O}$
Cary Malkiewich	Higher scissors congruence	March 30, 2025		10/38

Definitions 000000	Invariants 00●0000	Higher invariants 00000000	New computations	Applications

			_	~
Cary Malkiewich	Higher scissors congruence	March 30, 2025		11/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	00●0000	00000000		000000

Organizing principle

K-theory is the universal invariant.

Cary	Ma	lkiew	ich
------	----	-------	-----

Definitions 000000	Invariants 00●0000	Higher invariants 00000000	New computations	Applications

Organizing principle

K-theory is the universal invariant.

Definition. $K_0(E^n)$ = all polytopes up to scissors congruence, + is disjoint union, then add negatives (group complete).

Definitions 000000	Invariants 00●0000	Higher invariants 00000000	New computations	Applications

Organizing principle

K-theory is the universal invariant.

Definition. $K_0(E^n)$ = all polytopes up to scissors congruence, + is disjoint union, then add negatives (group complete).

Each polytope gives an element $[P] \in K_0(E^n)$, this is an invariant.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	00●0000	00000000		000000

Organizing principle

K-theory is the universal invariant.

Definition. $K_0(E^n)$ = all polytopes up to scissors congruence, + is disjoint union, then add negatives (group complete).

Each polytope gives an element $[P] \in K_0(E^n)$, this is an invariant.

Every other invariant factors through *K*-theory: $K_0(E^n) \rightarrow A$.

・ロト (得) (ヨト (ヨト) ヨ

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000€000	00000000		000000

K-theory is the universal invariant.

Computing K_0 is the same thing as finding all invariants.

Cary Malkiewich	Higher scissors congruence	March 30, 2025	12/38

• • • • • • • • • • • • • •

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000●000	00000000		000000

K-theory is the universal invariant.

Computing K_0 is the same thing as finding all invariants.

Example: $K_0(E^1) = \mathbb{R}$.

Line segments up to scissors congruence = length.

Cary	Malki	ewich
------	-------	-------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000●000	00000000		000000

K-theory is the universal invariant.

Computing K_0 is the same thing as finding all invariants.

```
Example: K_0(E^1) = \mathbb{R}.
```

Line segments up to scissors congruence = length.

Example: $K_0(E^2) = \mathbb{R}$.

Polygons up to scissors congruence = area.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000●000	00000000		000000

K-theory is the universal invariant.

Computing K_0 is the same thing as finding all invariants.

```
Example: K_0(E^1) = \mathbb{R}.
```

Line segments up to scissors congruence = length.

Example: $K_0(E^2) = \mathbb{R}$.

Polygons up to scissors congruence = area.

Theorem (Dehn-Sydler-Jessen)

Volume and Dehn invariant define an injective map $K_0(E^3) \to \mathbb{R} \times (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}).$

So volume and Dehn invariant are everything in dimension 3.

Cary Malkiewich

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Definitions 000000	Invariants 0000●00	Higher invariants 00000000	New computations	Applications

$$0 \longrightarrow \mathbb{R} \longrightarrow K_0(E^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow \Omega^1_{\mathbb{R}/\mathbb{Z}} \longrightarrow 0.$$

			= +) < (+
Cary Malkiewich	Higher scissors congruence	March 30, 2025	13 / 38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000●00	00000000		000000

$$0 \longrightarrow \mathbb{R} \longrightarrow K_0(E^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow \Omega^1_{\mathbb{R}/\mathbb{Z}} \longrightarrow 0.$$

Theorem (Jessen 1972)

There is a similar exact sequence for $K_0(E^4)$.

Cary Malkiewich	Higher scissors congruence	March 30, 2025

イロト イロト イヨト イヨト

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000●00	00000000		000000

$$0 \longrightarrow \mathbb{R} \longrightarrow K_0(E^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow \Omega^1_{\mathbb{R}/\mathbb{Z}} \longrightarrow 0.$$

Theorem (Jessen 1972)

There is a similar exact sequence for $K_0(E^4)$.

So volume and Dehn invariant are everything in dimension 4.

Cary	Mal	lkiev	vich
------	-----	-------	------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

$$0 \longrightarrow \mathbb{R} \longrightarrow K_0(E^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow \Omega^1_{\mathbb{R}/\mathbb{Z}} \longrightarrow 0.$$

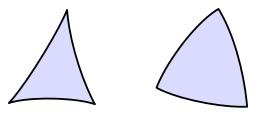
Theorem (Jessen 1972)

There is a similar exact sequence for $K_0(E^4)$.

So volume and Dehn invariant are everything in dimension 4. $K_0(E^5)$ has not been computed!

Definitions	Invariants	Higher invariants	New computations	Applications
000000	00000●0	00000000		000000

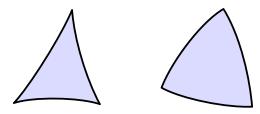
Generalization: consider other geometries!



	4	4 CP		1 2 1	-	*) Q (*
Cary Malkiewich	Higher scissors congruence		March 30), 2025		14/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	00000●0	00000000		000000

Generalization: consider other geometries!

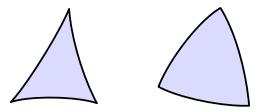


Example: $K_0(H^2) = \mathbb{R}$.

Hyperbolic polygons up to scissors congruence = area.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	00000●0	00000000		000000

Generalization: consider other geometries!



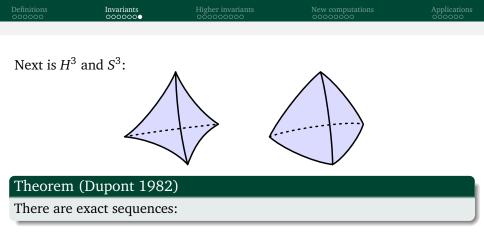
Example: $K_0(H^2) = \mathbb{R}$. Hyperbolic polygons up to scissors congruence = area.

Example: $K_0(S^2) = \mathbb{R}$. Spherical polygons up to scissors congruence = area.

Cary	Ma	lkiewich
------	----	----------

Definitions 000000	Invariants 000000●	Higher invariants 00000000	New computations	Applications 000000
Next is H^3	and S ³ :		•	

Carv		

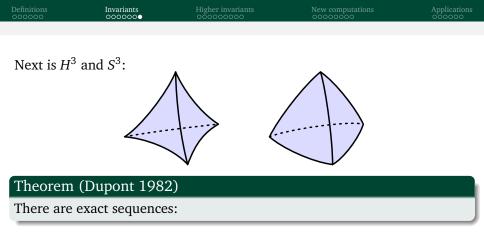


$$0 \longrightarrow H_3(SL_2(\mathbb{C}))^- \longrightarrow K_0(H^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow H_2(SL_2(\mathbb{C}))^- \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z} \oplus H_3(SU(2)) \longrightarrow K_0(S^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow H_2(SU(2)) \longrightarrow 0.$$

			=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	15/38

オロトオポトオモト



$$0 \longrightarrow H_3(SL_2(\mathbb{C}))^- \longrightarrow K_0(H^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow H_2(SL_2(\mathbb{C}))^- \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z} \oplus H_3(SU(2)) \longrightarrow K_0(S^3) \longrightarrow (\mathbb{R} \otimes \mathbb{R}/\pi\mathbb{Z}) \longrightarrow H_2(SU(2)) \longrightarrow 0.$$

Still open whether the volume and Dehn invariant are everything!

イロト イポト イヨト イヨト

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	●0000000		000000

Another way to generalize this is to calculate higher invariants.

			=) ~ ()
Cary Malkiewich	Higher scissors congruence	March 30, 2025	16/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	●00000000		000000

Another way to generalize this is to calculate higher invariants.

Classical question

How many polytopes are there up to scissors congruence?

Cary	Ma	lkiewi	ich
------	----	--------	-----

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	●00000000		000000

Another way to generalize this is to calculate higher invariants.

Classical question

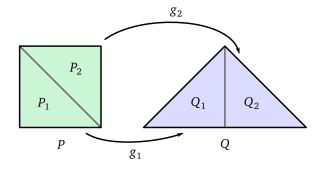
How many polytopes are there up to scissors congruence?

Modern question

How many scissors congruences are there $P \rightarrow Q$?

Cary	Ma	lkiewich
------	----	----------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	○●○○○○○○		000000



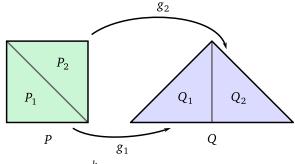
Cary Malkiewich

ヨト・モート

< □ > < 同 >

э

Definitions 000000	Invariants 0000000	Higher invariants ○●○○○○○○	New computations	Applications



a decomposition $P = \bigcup_{i=1}^{k} P_i$, (disjoint interiors) •

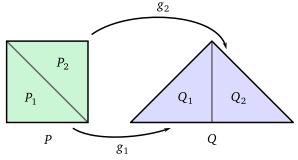
Cary Malkiewich

 $\equiv +$ March 30, 2025

(신문) 문

• □ > < 同 > <</p>

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	○●○○○○○○○		000000



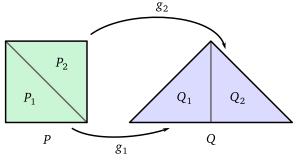
• a decomposition $P = \bigcup_{i=1}^{k} P_i$, (disjoint interiors)

• isometries g_i , such that

< 三→ 三三

<<p>(日)

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	○●○○○○○○○		000000



• a decomposition $P = \bigcup_{i=1}^{k} P_i$, (disjoint interiors)

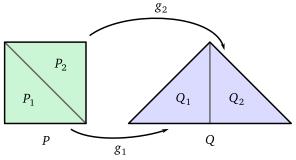
• isometries g_i , such that

•
$$Q = \bigcup_{i=1}^{k} g_i P_i$$
. (disjoint interiors)

< 三→ 三三

<<p>(日)

Definitions 000000	Invariants 0000000	Higher invariants ○●○○○○○○○	New computations	Applications



• a decomposition $P = \bigcup_{i=1}^{k} P_i$, (disjoint interiors)

- isometries *g*_{*i*}, such that
- $Q = \bigcup_{i=1}^{k} g_i P_i$. (disjoint interiors)

Cutting a piece P_i into smaller pieces gives the same morphism.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00●000000		000000

Scissors congruences between all polytopes form a groupoid.

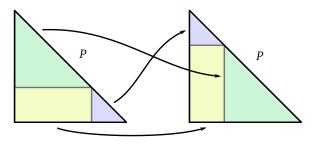
Cary Malkiewich	Higher scissors congruence	March 30, 2025	18/38

・ロト ・ 母ト ・ ヨト

Definitions 000000	Invariants 0000000	Higher invariants	New computations	Applications

Scissors congruences between all polytopes form a groupoid.

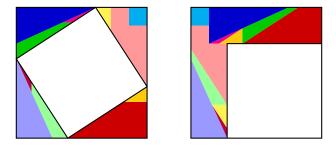
So, scissors congruences from one polytope *P* to itself form a group, the **scissors automorphism group** Aut(*P*).



			= 7.40
Cary Malkiewich	Higher scissors congruence	March 30, 2025	18/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	000●00000		000000

A scissors automorphism of a square:

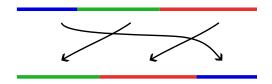


(image by Inna Zakharevich)

Cary M	Ialkie	wich
--------	--------	------

Definitions 000000	Invariants 0000000	Higher invariants	New computations	Applications

In E^1 , if we don't allow reflections, Aut(P) is the group of **interval** exchange transformations:



			= *) ~ (*
Cary Malkiewich	Higher scissors congruence	March 30, 2025	20/38

Definitions 000000	Invariants 0000000	Higher invariants 00000●000	New computations	Applications 000000
Definition	. The scissors c	ongruence moduli	space is $\prod_{[P]} BAut(P)$	

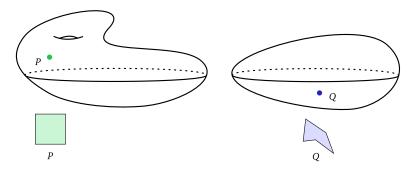
			=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	21/38

000000	0000000		0000000	000000
Definition.	The scissors c	ongruence moduli	space is $\prod_{[P]} BAut(P)$.	
Idea: the p	oints are polyte	opes, the paths are	scissors congruences	_
raca, me b	onito are porje	spes, the paths are	beibbolib congruences	•

Higher invariant

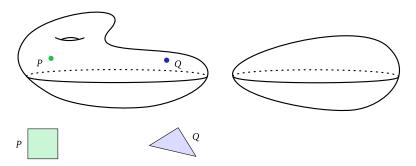
◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

Idea: the points are polytopes, the paths are scissors congruences.



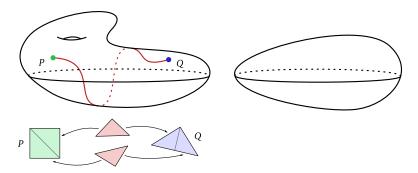
	4		≣ ∞) Q (♥
Cary Malkiewich	Higher scissors congruence	March 30, 2025	21/38

Idea: the points are polytopes, the paths are scissors congruences.



			= 1)4(1
Cary Malkiewich	Higher scissors congruence	March 30, 2025	22/38

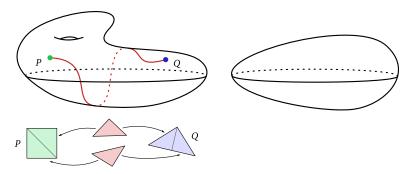
Idea: the points are polytopes, the paths are scissors congruences.



					_	
Cary Malkiewich	Higher scissors congruence	M	arch 30,	, 2025		23 / 38

イロト イポト イラトイ

Idea: the points are polytopes, the paths are scissors congruences.



Definition. (Zakharevich) Scissors congruence *K*-theory is the group completion of this space. (Formally add negatives.)

Cary Malkiewich

A (1) > A (2) > A

Definitions 000000	Invariants 0000000	Higher invariants 0000000●	New computations	Applications

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added.

Cary Malkiewich	Higher scissors congruence	March 30, 2025	24/38

◆ロト ◆課 ト ◆注 ト ◆注 ト 一注

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added. Homotopy groups are $K_0, K_1, K_2, ...$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	24/38

・ロト・日本・日本・日本・日本・日本

Definitions 000000	Invariants 0000000	Higher invariants 0000000●	New computations	Applications

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added. Homotopy groups are $K_0, K_1, K_2, ...$

 K_0 is known up to E^4 .

			=) ~ (
Cary Malkiewich	Higher scissors congruence	March 30, 2025	24/38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added. Homotopy groups are $K_0, K_1, K_2, ...$

 K_0 is known up to E^4 . Very little known about the higher *K*-groups!

Cary Malkiewich	Higher scissors congruence	March 30, 2025	24/38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added. Homotopy groups are $K_0, K_1, K_2, ...$

 K_0 is known up to E^4 . Very little known about the higher *K*-groups!

Theorem (Zakharevich 2017, Sah 1980)

 $K_1(E^1) = 0$ and $K_1(E^1_{\mathbb{R}}) = \mathbb{R} \wedge \mathbb{R}$.

Cary	Malkie	ewich
------	--------	-------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added. Homotopy groups are $K_0, K_1, K_2, ...$

 K_0 is known up to E^4 . Very little known about the higher K-groups!

Theorem (Zakharevich 2017, Sah 1980)

 $K_1(E^1) = 0$ and $K_1(E^1_{\mathbb{R}}) = \mathbb{R} \wedge \mathbb{R}$.

Conjecture (Zakharevich)

 $K_1(E^2)=0.$

	4	4 CP		1 2 1	-	*) Q (*
Cary Malkiewich	Higher scissors congruence		March 30	, 2025		24/38

Definitions 000000	Invariants 000000	Higher invariants 0000000●	New computations	Applications

Summary: *K*-theory is the *space* of polytopes up to scissors congruence, with negatives added. Homotopy groups are $K_0, K_1, K_2, ...$

 K_0 is known up to E^4 . Very little known about the higher K-groups!

Theorem (Zakharevich 2017, Sah 1980)

 $K_1(E^1) = 0$ and $K_1(E^1_{\mathbb{R}}) = \mathbb{R} \wedge \mathbb{R}$.

Conjecture (Zakharevich)

 $K_1(E^2)=0.$

No other higher *K*-groups known! (As of 2022.)

Cary	Ma	lkiev	vich
------	----	-------	------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

First computation above K_1 :

	4		$\equiv \mathcal{O} \land \mathcal{O}$
Cary Malkiewich	Higher scissors congruence	March 30, 2025	25/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

First computation above *K*₁:

Theorem (M 2022)

		\mathbb{R}			
$K_1(E_{\mathbb{R}}^{\overline{1}})$	=	$\mathbb{R} \wedge \mathbb{R}$	$K_1(E^1)$	=	0
		$\mathbb{R}\wedge\mathbb{R}\wedge\mathbb{R}$	$K_{2}(E^{1})$	=	$\mathbb{R}\wedge\mathbb{R}\wedge\mathbb{R}$
$K_3(E_{\mathbb{R}}^{\hat{1}})$	=	$\Lambda^4(\mathbb{R})$	$K_{3}(E^{1})$	=	0
$K_4(E_{\mathbb{R}}^{\hat{1}})$	=	$\Lambda^5(\mathbb{R})$	$K_{4}(E^{1})$	=	$\Lambda^5(\mathbb{R})$
÷		:	÷		:

프 - 프

First computation above *K*₁:

Theorem (M 2022)



Theorem (M 2022)

 $K_m(E^n)$ is always rational, and

```
K_m(E^n) \cong H_m(\text{Isom}(E^n); St(E^n) \otimes \det).
```

Gives a general method!

Cary Malkiewich

March 30, 2025

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

25/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	○●○○○○○○	000000

Builds on joint work with Bohmann, Gerhardt, Merling, and Zakharevich.

Cary Malkiewich	Higher scissors congruence	March 30, 2025

A D D A B D A B D A B D

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	○●○○○○○○	000000

Builds on joint work with Bohmann, Gerhardt, Merling, and Zakharevich. Ongoing work of Holley, Lemann, and others is drawing conclusions for E^2 and H^2 !

Cary Malkiewich	Higher scissors congruence	March 30, 2025	26/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	00●00000	000000

	4	4 CP	• • •	₹ •	지 문 전	-	\$) Q (\$
Cary Malkiewich	Higher scissors congruence		Marc	h 30	, 2025		27 / 38

Where does this formula come from? What is $St(E^n)$?

Definition. Tits complex $T(E^n)$ is the realization of the poset of proper affine subspaces of E^n .

					_	
Cary Malkiewich	Higher scissors congruence	Mare	ch 30, 2	2025		27/38

Definition. Tits complex $T(E^n)$ is the realization of the poset of proper affine subspaces of E^n .

• So, a 0-simplex for each affine-linear subspace $\emptyset \subsetneq U_0 \subsetneq E^n$,

		· 🖵			_	240
Cary Malkiewich	Higher scissors congruence		March 30,	2025		27/38

Definition. Tits complex $T(E^n)$ is the realization of the poset of proper affine subspaces of E^n .

- So, a 0-simplex for each affine-linear subspace $\emptyset \subsetneq U_0 \subsetneq E^n$,
- a 1-simplex for each inclusion $U_0 \subsetneq U_1$,

イロト (行) マヨト (ヨト)

Definition. Tits complex $T(E^n)$ is the realization of the poset of proper affine subspaces of E^n .

- So, a 0-simplex for each affine-linear subspace $\emptyset \subsetneq U_0 \subsetneq E^n$,
- a 1-simplex for each inclusion $U_0 \subsetneq U_1$,
- a 2-simplex for each inclusion $U_0 \subsetneq U_1 \subsetneq U_2$, and so on.

Definition. Tits complex $T(E^n)$ is the realization of the poset of proper affine subspaces of E^n .

- So, a 0-simplex for each affine-linear subspace $\emptyset \subseteq U_0 \subseteq E^n$,
- a 1-simplex for each inclusion $U_0 \subsetneq U_1$,
- a 2-simplex for each inclusion $U_0 \subsetneq U_1 \subsetneq U_2$, and so on.

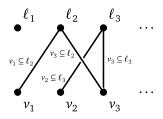
Example. $T(E^1) = \mathbb{R}$ (discrete!)

Definition. Tits complex $T(E^n)$ is the realization of the poset of proper affine subspaces of E^n .

- So, a 0-simplex for each affine-linear subspace $\emptyset \subsetneq U_0 \subsetneq E^n$,
- a 1-simplex for each inclusion $U_0 \subsetneq U_1$,
- a 2-simplex for each inclusion $U_0 \subsetneq U_1 \subsetneq U_2$, and so on.

Example. $T(E^1) = \mathbb{R}$ (discrete!)

Example. $T(E^2)$



Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Cary	Mal	lkiev	vich
------	-----	-------	------

Э

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Therefore its suspension $ST(E^n)$ is a wedge of *n*-spheres.

Cary Malkiewich	Higher scissors congruence	March 30, 2025	28/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Therefore its suspension $ST(E^n)$ is a wedge of *n*-spheres.

Example. $ST(E^1) = S(\mathbb{R}) \simeq \bigvee_{\mathbb{R}\setminus\{0\}} S^1.$

			= 2.40
Cary Malkiewich	Higher scissors congruence	March 30, 2025	28/38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Therefore its suspension $ST(E^n)$ is a wedge of *n*-spheres.

Example. $ST(E^1) = S(\mathbb{R}) \simeq \bigvee_{\mathbb{R}\setminus\{0\}} S^1.$

Definition. The Steinberg module is $St(E^n) = H_n(ST(E^n), *)$.

・ロト (雪) (日) (日) ヨ

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Therefore its suspension $ST(E^n)$ is a wedge of *n*-spheres.

Example. $ST(E^1) = S(\mathbb{R}) \simeq \bigvee S^1$. $\mathbb{R} \setminus \{0\}$

Definition. The Steinberg module is $St(E^n) = H_n(ST(E^n), *)$.

Example. $St(E^1) = \bigoplus \mathbb{Z}$. $\mathbb{R}\setminus\{0\}$

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Therefore its suspension $ST(E^n)$ is a wedge of *n*-spheres.

Example.
$$ST(E^1) = S(\mathbb{R}) \simeq \bigvee_{\mathbb{R}\setminus\{0\}} S^1.$$

Definition. The Steinberg module is $St(E^n) = H_n(ST(E^n), *)$.

Example.
$$St(E^1) = \bigoplus_{\mathbb{R} \setminus \{0\}} \mathbb{Z}$$
.

Each convex polytope $P \subseteq E^n$ gives an *n*-sphere in $ST(E^n)$ called its *apartment*.

・ロト (雪) (日) (日) ヨ

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

 $T(E^n)$ is homotopy equivalent to a wedge of (n-1)-spheres.

Therefore its suspension $ST(E^n)$ is a wedge of *n*-spheres.

Example.
$$ST(E^1) = S(\mathbb{R}) \simeq \bigvee_{\mathbb{R} \setminus \{0\}} S^1.$$

Definition. The Steinberg module is $St(E^n) = H_n(ST(E^n), *)$.

Example.
$$St(E^1) = \bigoplus_{\mathbb{R} \setminus \{0\}} \mathbb{Z}.$$

Each convex polytope $P \subseteq E^n$ gives an *n*-sphere in $ST(E^n)$ called its *apartment*.

Polytopes up to subdivision (but no moving around) gives $St(E^n)$.

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

		 		_	
Cary Malkiewich	Higher scissors congruence	March 3	30, 2025		29/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

$$K_0(E^n) = (St(E^n) \otimes \det)_{\operatorname{Isom}(E^n)}.$$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	29/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

$$K_0(E^n) = (St(E^n) \otimes \det)_{\operatorname{Isom}(E^n)}.$$

How to lift this to the higher *K*-groups?

			=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	29/38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

$$K_0(E^n) = (St(E^n) \otimes \det)_{\operatorname{Isom}(E^n)}.$$

How to lift this to the higher *K*-groups? Work in **stable homotopy theory** or **spectra**.

Cary	Ma	lkiewi	ich
------	----	--------	-----

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

$$K_0(E^n) = (St(E^n) \otimes \det)_{\operatorname{Isom}(E^n)}.$$

How to lift this to the higher K-groups?

Work in **stable homotopy theory** or **spectra**. A world where suspension Σ has an inverse!

Cary Malkiewich	Higher scissors congruence	March 30, 2025	29/38

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000000

$$K_0(E^n) = (St(E^n) \otimes \det)_{\operatorname{Isom}(E^n)}.$$

How to lift this to the higher *K*-groups?

Work in **stable homotopy theory** or **spectra**. A world where suspension Σ has an inverse!

Can take $ST(E^n) \simeq \bigvee S^n$ and de-suspend *n* times to get $\bigvee S^0$!

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000000	00000000		000000

As a spectrum, $K(E^n)$ is homotopy orbits,

 $K(E^n) \simeq K(E_1^n)_{h \operatorname{Isom}(E^n)}.$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	30 / 38

イロト イヨト イヨト

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000000	00000000	00000●00	000000

As a spectrum, $K(E^n)$ is homotopy orbits,

 $K(E^n) \simeq K(E_1^n)_{h \operatorname{Isom}(E^n)}.$

Theorem (M–Zakharevich 2022)

As a spectrum, $K(E_1^n)$ is a wedge of 0-spheres.

Cary	Mal	kiew	rich
------	-----	------	------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000000	00000000		000000

As a spectrum, $K(E^n)$ is homotopy orbits,

 $K(E^n) \simeq K(E_1^n)_{h \operatorname{Isom}(E^n)}.$

Theorem (M–Zakharevich 2022)

As a spectrum, $K(E_1^n)$ is a wedge of 0-spheres.

In fact, $K(E_1^n)$ is the de-supension of $ST(E^n)$ by the tangent bundle of E^n .

30/38

・ロト (得) (ヨト (ヨト) ヨ

Definitions	Invariants	Higher invariants	New computations	Applications
000000	000000	00000000	00000●00	000000

As a spectrum, $K(E^n)$ is homotopy orbits,

 $K(E^n) \simeq K(E_1^n)_{h \operatorname{Isom}(E^n)}.$

Theorem (M–Zakharevich 2022)

As a spectrum, $K(E_1^n)$ is a wedge of 0-spheres.

In fact, $K(E_1^n)$ is the de-supension of $ST(E^n)$ by the tangent bundle of E^n .

$$\Rightarrow K_m(E^n) \cong H_m(\operatorname{Isom}(E^n); St(E^n) \otimes \det).$$

・ロト (得) (ヨト (ヨト) ヨ

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●0	000000

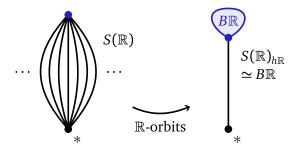
Example. $K(E^1_{\mathbb{R}}) = \Sigma^{-1} S(\mathbb{R})_{h\mathbb{R}}.$

				2.15
Cary Malkiewich	Higher scissors congruence	March 30, 202	25	31/38

H N

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●0	000000

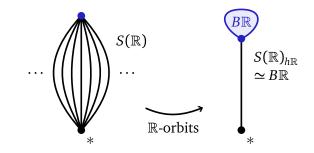
Example. $K(E^1_{\mathbb{R}}) = \Sigma^{-1} S(\mathbb{R})_{h\mathbb{R}}.$



	4	다 M 4 6 M 4 문 M 4 문 M	≣ ∞) Q (♥
Cary Malkiewich	Higher scissors congruence	March 30, 2025	31/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●0	000000

Example. $K(E_{\mathbb{R}}^1) = \Sigma^{-1}S(\mathbb{R})_{h\mathbb{R}}.$



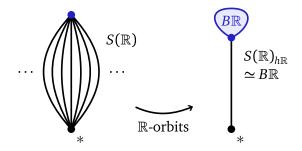
So $K(E_{\mathbb{R}}^1) \simeq \Sigma^{-1} B\mathbb{R}$, and $K_n = \Lambda^{n+1}(\mathbb{R})$.

Cary	Mal	kiewich
------	-----	---------

<20 € ► 20 €

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●0	000000

Example. $K(E_{\mathbb{R}}^1) = \Sigma^{-1}S(\mathbb{R})_{h\mathbb{R}}.$



So $K(E_{\mathbb{R}}^1) \simeq \Sigma^{-1} B\mathbb{R}$, and $K_n = \Lambda^{n+1}(\mathbb{R})$. (Including $K_0 = \mathbb{R}!$)

Cary Malkiewich

▲ □ ▶ ▲ ② ▶ ▲ ≧ ▶ ▲ ≧ ▶ ■
March 30, 2025

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	0000000●	000000

$$K_n(E^2) \cong \bigoplus_{p+2q=n} H_p(O(2); \Lambda^{2q+2}(\mathbb{R}^2) \otimes \det).$$

	1		=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	32/38

- <u>-</u>

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●	000000

$$K_n(E^2) \cong \bigoplus_{p+2q=n} H_p(O(2); \Lambda^{2q+2}(\mathbb{R}^2) \otimes \det).$$

(So $K_0 = \mathbb{R}!$)

	4	다 사람 사람 사람 사람 사	$\equiv \mathcal{O} \land \mathcal{O}$
Cary Malkiewich	Higher scissors congruence	March 30, 2025	32/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●	000000

$$K_n(E^2) \cong \bigoplus_{p+2q=n} H_p(O(2); \Lambda^{2q+2}(\mathbb{R}^2) \otimes \det).$$

(So $K_0 = \mathbb{R}!$)

In progress (Holley): $K_n(E^2) \neq 0$ for all $n \ge 2$.

Cary Malkiewich	Higher scissors congruence	March 30, 2025	32/38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	000000●	000000

$$K_n(E^2) \cong \bigoplus_{p+2q=n} H_p(O(2); \Lambda^{2q+2}(\mathbb{R}^2) \otimes \det).$$

(So $K_0 = \mathbb{R}!$)

In progress (Holley): $K_n(E^2) \neq 0$ for all $n \ge 2$.

Zakharevich's conjecture $K_1(E^2) = 0$ is still open! Reduces to showing

 $H_1(O(2); \Lambda^2(\mathbb{R}^2) \otimes \det) = 0.$

(本)日本 (日)日本

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000	0000000●	000000

$$K_n(E^2) \cong \bigoplus_{p+2q=n} H_p(O(2); \Lambda^{2q+2}(\mathbb{R}^2) \otimes \det).$$

(So $K_0 = \mathbb{R}!$)

In progress (Holley): $K_n(E^2) \neq 0$ for all $n \ge 2$.

Zakharevich's conjecture $K_1(E^2) = 0$ is still open! Reduces to showing

 $H_1(O(2); \Lambda^2(\mathbb{R}^2) \otimes \det) = 0.$

Also get exact sequences for $K_*(E^3)$, higher Dehn-Sydler-Jessen theorem!

Cary Malkiewich	kiewich	Mai	Cary
-----------------	---------	-----	------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		●00000

What do these higher groups give us?

	4		$\mathcal{O} \land \mathcal{O}$
Cary Malkiewich	Higher scissors congruence	March 30, 2025	33 / 38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		●00000

What do these higher groups give us? The homology of Aut(P)!

			=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	33 / 38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		•00000

Cary Malkiewich	Higher scissors congruence	March 30, 2025	33 / 38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		•00000

 $\operatorname{colim}_{n\to\infty} H_*(GL_n(R)) \cong H_*(\Omega_0^\infty K(R)).$

			= +) < (+
Cary Malkiewich	Higher scissors congruence	March 30, 2025	33 / 38

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		•00000

$$\operatorname{colim}_{n\to\infty} H_*(GL_n(R)) \cong H_*(\Omega_0^\infty K(R)).$$

The same thing happens for scissors congruence:

$$\operatorname{colim}_{P \to E^n} H_*(\operatorname{Aut}(P)) \cong H_*(\Omega_0^\infty K(E^n)).$$

Cary Malkiewich

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		●00000

$$\operatorname{colim}_{n\to\infty} H_*(GL_n(R)) \cong H_*(\Omega_0^\infty K(R)).$$

The same thing happens for scissors congruence:

$$\operatorname{colim}_{P\to E^n} H_*(\operatorname{Aut}(P))\cong H_*(\Omega_0^\infty K(E^n)).$$

(and also for mapping class groups, symmetric groups, ...)

Cary	Ma	lkiewich
------	----	----------

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		●00000

$$\operatorname{colim}_{n\to\infty} H_*(GL_n(R)) \cong H_*(\Omega_0^\infty K(R)).$$

The same thing happens for scissors congruence:

$$\operatorname{colim}_{P\to E^n} H_*(\operatorname{Aut}(P))\cong H_*(\Omega_0^\infty K(E^n)).$$

(and also for mapping class groups, symmetric groups, ...)

So *stably*, $H_*(Aut(P); \mathbb{Q})$ becomes free and the *K*-groups are the generators.

			=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	33 / 38

For any nonempty polytopes $P, Q \subseteq E^n$,

 $H_*(\operatorname{Aut}(P)) \cong H_*(\operatorname{Aut}(Q)).$

Cary Malkiewich	Higher scissors congruence
-----------------	----------------------------

▲ロト ▲圖ト ▲屋ト ▲屋ト

For any nonempty polytopes $P, Q \subseteq E^n$,

 $H_*(\operatorname{Aut}(P)) \cong H_*(\operatorname{Aut}(Q)).$

Corollary:

 $H_*(\operatorname{Aut}(P)) \cong H_*(\Omega_0^\infty K(E^n)).$

Cary Malkiewich	
-----------------	--

イロト (得) (ヨト (ヨト)

For any nonempty polytopes $P, Q \subseteq E^n$,

 $H_*(\operatorname{Aut}(P)) \cong H_*(\operatorname{Aut}(Q)).$

Corollary:

$$H_*(\operatorname{Aut}(P)) \cong H_*(\Omega_0^\infty K(E^n)).$$

Even before stabilizing, the *K*-groups are the generators of $H_*(Aut(P); \mathbb{Q})$:

 $H_*(\operatorname{Aut}(P); \mathbb{Q}) \cong \Lambda^*(K_{>0}(E^n)) \otimes \mathbb{Q}.$

Cary Malkiewich

・ロト (雪下) (日下)

For any nonempty polytopes $P, Q \subseteq E^n$,

 $H_*(\operatorname{Aut}(P)) \cong H_*(\operatorname{Aut}(Q)).$

Corollary:

$$H_*(\operatorname{Aut}(P)) \cong H_*(\Omega_0^\infty K(E^n)).$$

Even before stabilizing, the *K*-groups are the generators of $H_*(Aut(P); \mathbb{Q})$:

 $H_*(\operatorname{Aut}(P); \mathbb{Q}) \cong \Lambda^*(K_{>0}(E^n)) \otimes \mathbb{Q}.$

 $\Lambda^*(-) =$ free graded-commutative algebra (polynomial \otimes exterior)

Cary	Mal	kiewich
------	-----	---------

Applications

For any nonempty polytopes $P, Q \subseteq E^n$,

 $H_*(\operatorname{Aut}(P)) \cong H_*(\operatorname{Aut}(Q)).$

Corollary:

$$H_*(\operatorname{Aut}(P)) \cong H_*(\Omega_0^\infty K(E^n)).$$

Even before stabilizing, the *K*-groups are the generators of $H_*(Aut(P); \mathbb{Q})$:

 $H_*(\operatorname{Aut}(P); \mathbb{Q}) \cong \Lambda^*(K_{>0}(E^n)) \otimes \mathbb{Q}.$

 $\Lambda^*(-) =$ free graded-commutative algebra (polynomial \otimes exterior) **Corollary:**

$$\operatorname{Aut}(P)^{ab} = H_1(\operatorname{Aut}(P)) \cong K_1(E^n).$$

Cary Malkiewich

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		00●000

Example. $K_n(E_{\mathbb{R}}^1) = \Lambda^{n+1}(\mathbb{R}).$

			=
Cary Malkiewich	Higher scissors congruence	March 30, 2025	35 / 38

4 A

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Example. $K_n(E^1_{\mathbb{R}}) = \Lambda^{n+1}(\mathbb{R}).$

Corollary. (Tanner 2023) Homology of interval exchange transformations!

			= +) <(+
Cary Malkiewich	Higher scissors congruence	March 30, 2025	35 / 38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Example. $K_n(E^1_{\mathbb{R}}) = \Lambda^{n+1}(\mathbb{R}).$

Corollary. (Tanner 2023) Homology of interval exchange transformations! $H_1(\operatorname{Aut}(P)) = \Lambda^2 \mathbb{R} = \mathbb{R} \wedge \mathbb{R}$ (Sah 1980)

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Example. $K_n(E^1_{\mathbb{R}}) = \Lambda^{n+1}(\mathbb{R}).$

Corollary. (Tanner 2023) Homology of interval exchange transformations! $H_1(\operatorname{Aut}(P)) = \Lambda^2 \mathbb{R} = \mathbb{R} \land \mathbb{R}$ (Sah 1980) $H_2(\operatorname{Aut}(P)) = \Lambda^3 \mathbb{R}$

Cary Malkiewich	Higher scissors congruence	March 30, 2025	35 / 38

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Example.
$$K_n(E^1_{\mathbb{R}}) = \Lambda^{n+1}(\mathbb{R}).$$

Corollary. (Tanner 2023) Homology of interval exchange transformations!

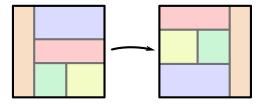
```
H_1(\operatorname{Aut}(P)) = \Lambda^2 \mathbb{R} = \mathbb{R} \wedge \mathbb{R} \text{ (Sah 1980)}H_2(\operatorname{Aut}(P)) = \Lambda^3 \mathbb{R}H_3(\operatorname{Aut}(P)) = (\Lambda^4 \mathbb{R}) \oplus (\Lambda^3 \mathbb{R} \otimes \Lambda^2 \mathbb{R})
```

:

∃ → **− ∃**

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		000€00

Example. "Rectangle exchange transformations" (Cornulier–Lacourte 2022)



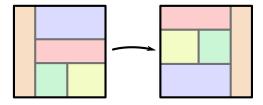
Cary Malkiewich	Higher scissors congruence	March 30, 2025

36/38

◆□▶ ◆課 ▶ ◆注 ▶ ◆注 ▶ ● 注

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Example. "Rectangle exchange transformations" (Cornulier–Lacourte 2022)



Proposition. (Kupers, Lemann, M, Miller, Sroka 2024)

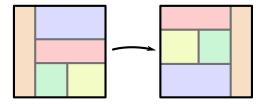
 $K(\mathscr{R}^n)\simeq \Sigma^{-n}(B\mathbb{R})^{\wedge n}.$

Cary Malkiewich

3 x 3

Definitions 000000	Invariants 0000000	Higher invariants 00000000	New computations	Applications

Example. "Rectangle exchange transformations" (Cornulier–Lacourte 2022)

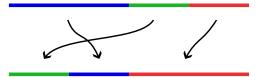


Proposition. (Kupers, Lemann, M, Miller, Sroka 2024)

 $K(\mathscr{R}^n) \simeq \Sigma^{-n} (B\mathbb{R})^{\wedge n}.$

Corollary. $K_1 = H_1 = (\Lambda^2 \mathbb{R} \otimes \mathbb{R}^{\otimes (n-1)})^{\oplus n}$ (Cornulier–Lacourte 2022)

			; •) Q (•
Cary Malkiewich	Higher scissors congruence	March 30, 2025	37/38



Also fits into our framework. The K-theory spectrum is contractible!

Cary	Mal	kiewich
------	-----	---------

ヨトィヨト

Image: A matrix

Also fits into our framework. The K-theory spectrum is contractible!

Corollary (Szymik–Wahl 2019)

V is integrally acyclic, $\tilde{H}_*(V) = 0$.

	•		$\mathcal{O} \land \mathcal{O}$
Cary Malkiewich	Higher scissors congruence	March 30, 2025	37/38

Also fits into our framework. The K-theory spectrum is contractible!

Corollary (Szymik–Wahl 2019)

V is integrally acyclic, $\tilde{H}_*(V) = 0$.

Can also do variants where the homology was not known before, e.g. the "irrational slope Thompson's group" (Burillo–Nucinkis–Reeves 2022).

Cary Malkiewich

イロト イポト イヨト イヨト

Definitions	Invariants	Higher invariants	New computations	Applications
000000	0000000	00000000		00000●

Thank you!



Cary	Ma	lkiewich
------	----	----------

ヘロト 人間 ト 人注 ト 人注 トー

æ