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Definitions Invariants Higher invariants New computations Applications

Question

How can we tell if two polygons have the same area?

• Calculate the area of each one.
• Or, make scissors congruence: cut one into finitely many pieces, and

rearrange to make the other one.
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• Calculate the area of each one.
• Make a scissors congruence.

The “indirect” method always works.

Theorem. (Wallace–Bolyai–Gerwien 1807) (Antiquity?)
P and Q are scissors congruent⇔ they have the same area.

Is this true in dimensions other than 2?
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Definition. A convex polytope is a convex hull of finitely many points in
Euclidean space En. (Must be nondegenerate.)

A polytope is a finite union of (nondegenerate) convex polytopes.
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A scissors congruence from P to Q is










P= ∪k
i=1Pi interiors disjoint,

Q= ∪k
i=1Qi interiors disjoint, and

isometries gi : Pi
∼= Qi, i= 1, . . . , k.
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Classical question
How many polytopes are there up to scissors congruence?

Example: E1

Line segments up to scissors congruence = length.

Example: E2

Polygons up to scissors congruence = area.
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Hilbert’s 3rd Problem

Polyhedra in E3 up to scissors congruence = volume?

Answer. (Dehn 1901) No! Volume isn’t enough.

Cary Malkiewich Higher scissors congruence March 30, 2025 8 /38



Definitions Invariants Higher invariants New computations Applications

Hilbert’s 3rd Problem

Polyhedra in E3 up to scissors congruence = volume?

Answer. (Dehn 1901) No! Volume isn’t enough.

Cary Malkiewich Higher scissors congruence March 30, 2025 8 /38



Definitions Invariants Higher invariants New computations Applications

Idea
Use invariants to distinguish non-scissors-congruent polytopes.

Definition. An invariant sends: polytope P 7→ element c(P) ∈ A,

• c(P) =
∑

i c(Pi) when P= ∪k
i=1Pi, interiors disjoint,

• c(gP) = c(P) for any isometry g ∈ Isom(En).

So if P is scissors congruent to Q, then c(P) = c(Q).

Volume ∈ R is an example. Are there more?
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Definition. The Dehn invariant sends P to

D(P) =

∑

edges

(length)⊗ (dihedral angle) ∈ R⊗R/πZ.

This is an invariant!

D(cube) = 12
�

s⊗
π

2

�

= s⊗ 6π= 0

D(reg. tetrahedron) = 6
�

s⊗ arccos
�

1
3

��

̸= 0

Theorem (Dehn 1901)
A cube and a regular tetrahedron are never scissors congruent.
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Are the volume and Dehn invariant everything, or is there more?

Organizing principle
K-theory is the universal invariant.

Definition. K0(En) = all polytopes up to scissors congruence, + is disjoint
union, then add negatives (group complete).

Each polytope gives an element [P] ∈ K0(En), this is an invariant.

Every other invariant factors through K-theory: K0(En)→ A.
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Organizing principle
K-theory is the universal invariant.

Computing K0 is the same thing as finding all invariants.

Example: K0(E1) = R.
Line segments up to scissors congruence = length.

Example: K0(E2) = R.
Polygons up to scissors congruence = area.

Theorem (Dehn–Sydler–Jessen)
Volume and Dehn invariant define an injective map

K0(E
3)→ R× (R⊗R/πZ).

So volume and Dehn invariant are everything in dimension 3.
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In fact, there is an exact sequence

0 // R // K0(E3) // (R⊗R/πZ) // Ω1
R/Z

// 0.

Theorem (Jessen 1972)

There is a similar exact sequence for K0(E4).

So volume and Dehn invariant are everything in dimension 4.

K0(E5) has not been computed!
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Generalization: consider other geometries!

Example: K0(H2) = R.
Hyperbolic polygons up to scissors congruence = area.

Example: K0(S2) = R.
Spherical polygons up to scissors congruence = area.
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Next is H3 and S3:

Theorem (Dupont 1982)
There are exact sequences:

0 // H3(SL2(C))− // K0(H3) // (R⊗R/πZ) // H2(SL2(C))− // 0

0 // Z⊕H3(SU(2)) // K0(S3) // (R⊗R/πZ) // H2(SU(2)) // 0.

Still open whether the volume and Dehn invariant are everything!
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Another way to generalize this is to calculate higher invariants.

Classical question
How many polytopes are there up to scissors congruence?

Modern question
How many scissors congruences are there P→ Q?
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Again, a scissors congruence P→ Q is:

• a decomposition P=
⋃k

i=1 Pi, (disjoint interiors)
• isometries gi, such that

• Q=
⋃k

i=1 giPi. (disjoint interiors)

Cutting a piece Pi into smaller pieces gives the same morphism.
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Scissors congruences between all polytopes form a groupoid.

So, scissors congruences from one polytope P to itself form a group, the
scissors automorphism group Aut(P).
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A scissors automorphism of a square:

(image by Inna Zakharevich)
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In E1, if we don’t allow reflections, Aut(P) is the group of interval
exchange transformations:
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Definitions Invariants Higher invariants New computations Applications

Definition. The scissors congruence moduli space is
∐

[P]

BAut(P).

Idea: the points are polytopes, the paths are scissors congruences.

Def. (Zakharevich) Scissors congruence K-theory is its group completion.

Homotopy groups of this are called K0, K1, K2, etc.
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Summary: K-theory is the space of polytopes up to scissors congruence,
with negatives added.

Homotopy groups are K0, K1, K2, . . ..

K0 is known up to E4. Very little known about the higher K-groups!

Theorem (Zakharevich 2017, Sah 1980)

K1(E1) = 0 and K1(E1
R) = R∧R.

Conjecture (Zakharevich)

K1(E2) = 0.

No other higher K-groups known! (As of 2022.)
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Definitions Invariants Higher invariants New computations Applications

First computation above K1:

Theorem (M 2022)

K0(E1
R) = R K0(E1) = R

K1(E1
R) = R∧R K1(E1) = 0

K2(E1
R) = R∧R∧R K2(E1) = R∧R∧R

K3(E1
R) = Λ4(R) K3(E1) = 0

K4(E1
R) = Λ5(R) K4(E1) = Λ5(R)

...
...

...
...

Theorem (M 2022)
Km(En) is always rational, and

Km(E
n)∼= Hm(Isom(En); St(En)⊗ det).

Gives a general method!
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Definitions Invariants Higher invariants New computations Applications

Builds on joint work with Bohmann, Gerhardt, Merling, and Zakharevich.

Ongoing work of Holley, Lemann, and others is drawing conclusions for E2

and H2!
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Definitions Invariants Higher invariants New computations Applications

Where does this formula come from? What is St(En)?

Definition. Tits complex T(En) is the realization of the poset of proper
affine subspaces of En.

• So, a 0-simplex for each affine-linear subspace ; ⊊ U0 ⊊ En,
• a 1-simplex for each inclusion U0 ⊊ U1,
• a 2-simplex for each inclusion U0 ⊊ U1 ⊊ U2, and so on.

Example. T(E1) = R (discrete!)

Example. T(E2)
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Definitions Invariants Higher invariants New computations Applications

Theorem (Solomon-Tits)
T(En) is homotopy equivalent to a wedge of (n− 1)-spheres.

Therefore its suspension ST(En) is a wedge of n-spheres.

Example. ST(E1) = S(R)≃
∨

R\{0}
S1.

Definition. The Steinberg module is St(En) = Hn(ST(En),∗).

Example. St(E1) =
⊕

R\{0}
Z.

Each convex polytope P ⊆ En gives an n-sphere in ST(En) called its
apartment.

Polytopes up to subdivision (but no moving around) gives St(En).
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Definitions Invariants Higher invariants New computations Applications

This was how Dupont proved his K0 exact sequences!

K0(E
n) = (St(En)⊗ det)Isom(En).

How to lift this to the higher K-groups?

Work in stable homotopy theory or spectra. A world where suspension Σ
has an inverse!

Can take ST(En)≃
∨

Sn and de-suspend n times to get
∨

S0!
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Definitions Invariants Higher invariants New computations Applications

Theorem (Bohmann–Gerhardt–M–Merling–Zakharevich 2023)
As a spectrum, K(En) is homotopy orbits,

K(En)≃ K(En
1)hIsom(En).

Theorem (M–Zakharevich 2022)
As a spectrum, K(En

1) is a wedge of 0-spheres.

In fact, K(En
1) is the de-supension of ST(En) by the tangent bundle of En.

⇒ Km(E
n)∼= Hm(Isom(En); St(En)⊗ det).
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Definitions Invariants Higher invariants New computations Applications

Example. K(E1
R) = Σ

−1S(R)hR.

So K(E1
R)≃ Σ

−1BR, and Kn = Λn+1(R). (Including K0 = R!)
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Definitions Invariants Higher invariants New computations Applications

By a similar method, we get

Kn(E
2)∼=
⊕

p+2q=n
Hp(O(2);Λ

2q+2(R2)⊗ det).

(So K0 = R!)

In progress (Holley): Kn(E2) ̸= 0 for all n≥ 2.

Zakharevich’s conjecture K1(E2) = 0 is still open! Reduces to showing

H1(O(2);Λ
2(R2)⊗ det) = 0.

Also get exact sequences for K∗(E3), higher Dehn-Sydler-Jessen theorem!
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(So K0 = R!)

In progress (Holley): Kn(E2) ̸= 0 for all n≥ 2.

Zakharevich’s conjecture K1(E2) = 0 is still open! Reduces to showing
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What do these higher groups give us?

The homology of Aut(P)!

Recall: R a ring, the homology H∗(GLn(R)) stabilizes as n→∞, and

colim
n→∞

H∗(GLn(R))∼= H∗(Ω
∞
0 K(R)).

The same thing happens for scissors congruence:

colim
P→En

H∗(Aut(P))∼= H∗(Ω
∞
0 K(En)).

(and also for mapping class groups, symmetric groups, ...)

So stably, H∗(Aut(P);Q) becomes free and the K-groups are the generators.
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Theorem (Kupers, Lemann, M, Miller, Sroka 2024)
For any nonempty polytopes P, Q ⊆ En,

H∗(Aut(P))∼= H∗(Aut(Q)).

Corollary:
H∗(Aut(P))∼= H∗(Ω

∞
0 K(En)).

Even before stabilizing, the K-groups are the generators of H∗(Aut(P);Q):

H∗(Aut(P);Q)∼= Λ∗ (K>0(E
n))⊗Q.

Λ∗(−) = free graded-commutative algebra (polynomial ⊗ exterior)

Corollary:
Aut(P)ab = H1(Aut(P))∼= K1(E

n).
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Example. Kn(E1
R) = Λ

n+1(R).

Corollary. (Tanner 2023) Homology of interval exchange transformations!

H1(Aut(P)) = Λ2R= R∧R (Sah 1980)

H2(Aut(P)) = Λ3R
H3(Aut(P)) = (Λ4R)⊕ (Λ3R⊗Λ2R)
...
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Example. “Rectangle exchange transformations” (Cornulier–Lacourte 2022)

Proposition. (Kupers, Lemann, M, Miller, Sroka 2024)

K(Rn)≃ Σ−n(BR)∧n.

Corollary. K1 = H1 = (Λ2R⊗R⊗(n−1))⊕n (Cornulier–Lacourte 2022)
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Example. Thompson’s group V: cut [0, 1] at points of the form a
2k , allow

translations and scalings by powers of 2.

Also fits into our framework. The K-theory spectrum is contractible!

Corollary (Szymik–Wahl 2019)

V is integrally acyclic, eH∗(V) = 0.

Can also do variants where the homology was not known before, e.g. the
“irrational slope Thompson’s group” (Burillo–Nucinkis–Reeves 2022).
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Thank you!
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