
Some Facts About QX

Let X be a based topological space. As always, we assume that all our spaces are compactly

generated weak Hausdorff. Define

QX = Ω∞(Σ∞X) = colimnΩnΣnX

Here the colimit has the usual property that any compact K −→ QX factors through a map into

one of the spaces ΩnΣnX, and in fact the space of based maps F (K,QX) is homeomorphic to the

colimit of the based mapping spaces F (K,ΩnΣnX). See section 5 of Strickland’s paper on CGWH

spaces for justification of this.

• Q is a functor into based spaces, obtained by applying Σ∞ to get a (pre)spectrum, followed

by Ω∞ to land back into spaces.

• The homotopy groups πk(QX) are the stable homotopy groups of X, defined by

πstable
k (X) = colimnπn+k(Σ

nX) = colimnπk(Ω
nΣnX)

In particular, if we set X = S0 then the homotopy groups of QS0 are the stable homotopy

groups of spheres. Remember that the stable homotopy groups of QX are not the same as

the homotopy groups of QX!

• Each based homotopy of maps X −→ Y induces a based homotopy QX −→ QY . Therefore Q

preserves based homotopy equivalences, so it descends to a “derived” functor on the homotopy

category of based spaces. Formally, this new functor replaces each space with a CW complex

and then applies Q to that complex. If X −→ Y is a weak homotopy equivalence, and X

and Y have nondegenerate basepoints, then ΣnX −→ ΣnY is a weak homotopy equivalence

(check that it’s an isomorphism on homology, then use Whitehead’s Theorem). Then clearly

ΩnΣnX −→ ΩnΣnY is a weak homotopy equivalence, so QX −→ QY is a weak homotopy

equivalence. So the “derived”Q on the homotopy category agrees (up to natural isomorphism)

with the simpler underived Q when we restrict to the subcategory of all well-based spaces.

• There is a natural “unit” map X −→ QX given by the identity map from X into the 0th level

of the colimit system for QX. Applying π∗, we get the homomorphism from the homotopy

groups of X into the stable homotopy groups of X.

• QX is an infinite loop space. Recall that an infinite loop space Y has deloopings {Yn}∞n=0,

with Y0 = Y , and maps Yn
∼−→ ΩYn+1. Depending on the context, these maps may be

homeomorphisms, or just weak homotopy equivalences. QX is an infinite loop space in

the stronger sense. Specifically, there is a homeomorphism QX ∼= ΩQ(ΣX). Notice that

this immediately implies that QX has infinitely many deloopings, since then Q(ΣnX) ∼=
ΩQ(Σn+1X).
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How do we construct this homeomorphism? First observe that ΩQ(ΣX) = colimnΩ(ΩnΣn(ΣX)),

so we have two colimit systems

X
ηX // ΩΣX // Ω2Σ2X // Ω3Σ3X // . . . // QX

ΩΣX
Ω(ηΣX)// Ω2Σ2X // Ω3Σ3X // Ω4Σ4X // . . . // ΩQΣX

To construct this homeomorphism QX ∼= ΩQ(ΣX) explicitly, we just have to draw diagonal

homeomorphisms that make everything commute:

X
ηX // ΩΣX // Ω2Σ2X // Ω3Σ3X // . . . // QXOO

��
ΩΣX

Ω(ηΣX)
//

yy

99tttttttttt
Ω2Σ2X //

yy

99rrrrrrrrrr
Ω3Σ3X //

yy

99rrrrrrrrrr
Ω4Σ4X // . . . // ΩQΣX

What are the diagonal maps? They can’t be the identity. Instead, we map ΩnΣnX to itself

by taking a map Sn −→ ΣnX and pre-composing it with a self-map Sn −→ Sn coming from

a permutation on n letters. This defines a self-homeomorphism of ΩnΣnX. To pick the right

permutations to make the diagram commute, we simply color the various sphere coordinates

in a way that suggests how the maps of each colimit system act:

X

ηX
��

ΩΣX

Ω(ηΣX)
��

66

vvmmmmmmmmmmmmm

ΩΣX

��

ΩΩΣΣX

��

66

vvmmmmmmmmmmmmm

ΩΩΣΣX

��

ΩΩΩΣΣΣX

��

77

wwnnnnnnnnnnnnnn

ΩΩΩΣΣΣX

��

...

��
...

��

...

��
QX ΩQ(ΣX)//oo

Then it becomes clear which permutation to pick to get the colors of the Ω’s to line up.

Anyway, this shows that QX is an infinite loop space, in the strongest possible sense. So the

infinite little cubes operad acts directly on QX (i.e. QX is an E∞ space). In fact, all of our

constructions were functorial in X, so Q is a functor from based spaces to (grouplike) E∞
spaces.
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• Since QX is an E∞ space, we can apply the delooping functor B∞ to get a connective

spectrum. Of course, Bn(QX) ' Q(ΣnX) because we already know that Q(ΣnX) is an

n-fold delooping of QX. The spectrum {Q(ΣnX)}∞n=0 is stably homotopy equivalent to

the suspension spectrum {ΣnX}∞n=0. This is because B∞ and Ω∞ are inverse equivalences

between grouplike E∞ spaces and connective spectra. Taking homology, we conclude

H̃k(X) ∼= colimnH̃n+k(Σ
nX) ∼= colimnH̃n+k(Q(ΣnX))

• If X is well-based and ∗ ↪→ X is (n − 1)-connected, then X ↪→ QX is (2n − 1)-connected.

This strengthens the previous statement about the homology of Q(ΣnX). As a special case,

the homology of QSn is Z in degrees 0 and n, and zero in all other degrees up to (2n− 1).

To prove this, we investigate the maps

X −→ ΩΣX −→ Ω2Σ2X −→ . . . −→ QX

The first map on πk is the suspension map πk(X) −→ πk+1(ΣX). By the Freudenthal

Suspension Theorem, since X is (n − 1)-connected, this map is surjective if k ≤ 2n − 1 and

an isomorphism if k ≤ 2n − 2. The next map on πk is πk+1(ΣX) −→ πk+2(Σ2X), which is

surjective if

(k + 1) ≤ 2(n+ 1)− 1

k ≤ 2n

and an isomorphism if k ≤ 2n−1. Continuing onwards, we see that all maps X −→ ΩΣX −→
Ω2Σ2X −→ . . . give an isomorphism on πk so long as the first one does, that is, if k ≤ 2n− 2.

Since πk commutes with the colimit here, we conclude that X −→ QX is an isomorphism on

πk if k ≤ 2n − 2 and is surjective on πk if k ≤ 2n − 1. Therefore X −→ QX is (2n − 1)-

connected.

• Q takes finite wedges to finite products:

Q(
n∨
i=1

Xi) = colimnΩnΣn

(∨
i

Xi

)

∼= colimnΩn

(∨
i

ΣnXi

)

' colimnΩn

(∏
i

ΣnXi

)
∼= colimn

∏
i

ΩnΣnXi

'
∏
i

colimnΩnΣnXi

=
∏
i

QXi
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The two weak equivalences here must be explained. The first comes from the fact that a

finite wedge of spectra includes into a finite product, and this inclusion is a stable homotopy

equivalence. Therefore it induces a weak homotopy equivalence between the infinite loop

spaces of the two spectra. The second equivalence comes from interchanging the finite product

with the colimit. There is certainly a map between the two, and we verify that it is a weak

homotopy equivalence by choosing any basepoint and using the fact that maps into these

spaces from spheres commute with the colimit and the product. It is also worth pointing out

that these equivalences are all natural, so their composite Q(
∨n
i=1Xi) '

∏
iQXi is natural

as well.

• What about infinite wedges? All but the two weak equivalences go through. For the first

weak equivalence, we take a CW approximation of the infinite product consisting of all finite

products of cells, and use the connectivity of this approximation to show that the map is still

a weak equivalence. What about the second weak equivalence? If there is a uniform bound

on the dimension of the Xi in the (possibly uncountable) wedge, then πn(ΣnXi) all stablilize

in the same dimension, so the argument goes through. In general, it appears that it does not.

• If ΩnZ is an n-fold loop space then n-fold loop maps

ΩnΣnX −→ ΩnZ

naturally correspond to ordinary continuous maps

ΣnX −→ Z

X −→ ΩnZ

Therefore ΩnΣnX is the free n-fold loop space on X.

• QX is the free infinite loop space on the based space X. As usual, this means that if Y is any

other infinite loop space, there is a natural bijection between infinite loop maps QX −→ Y

and ordinary maps X −→ Y . Recall that Y has deloopings {Yn}∞n=0 such that Y0 = Y and

Yn ∼= ΩYn+1. Composing these homeomorphisms gives a homeomorphism

Y0
∼= ΩY1

∼= Ω(ΩY2) ∼= Ω2Y2
∼= Ω2(ΩY3) ∼= Ω3Y3

∼= . . . ∼= ΩnYn

It turns out that this is the wrong homeomorphism to consider if we want naturally defined

diagrams to commute. Since its component maps are of the form ΩkYk −→ Ωk(ΩYk+1), the

new copies of Ω come in on the right, whereas in the colimit system for QX they come in

on the left. Therefore we want to alter this homeomorphism Y0
∼= ΩnYn so that the new

loops come in on the left. We can accomplish this by changing each component map to

ΩkYk −→ Ω(ΩkYk), or by simply reversing the order of the loops in the final space ΩnYn.

Anyway, to do one part of the adjunction, given an infinite loop map QX −→ Y , we compose

X −→ QX −→ Y to get an ordinary continuous map X −→ Y . To go the other way, given a

map X −→ Y , for each n > 0 we take X −→ Y ∼= ΩnYn, which corresponds to a unique map
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ΣnX −→ Yn, which then gives an n-fold loop map ΩnΣnX −→ ΩnYn ∼= Y . Under the above

choice of homeomorphism Y0
∼= ΩnYn, this gives commuting maps from the colimit system

for QX into Y , so we get a map QX −→ Y .

To check that QX −→ Y is an infinite loop map, we simply apply the same process to

ΣnX −→ Yn to get a map Q(ΣnX) −→ Yn. Then we check that this square commutes

Q(ΣnX) //

��

Yn

��
ΩQ(ΣΣnX) // ΩYn+1

by checking that the individual levels of the colimit system give commuting squares

Ωk−1ΩΣΣk−1ΣnX //
OO

��

ΩkYk+nOO

��

Ynoo

��
ΩΩk−1Σk−1ΣΣnX // ΩΩk−1Y(k−1)+1+n ΩYn+1

oo

As before, the middle vertical maps shuffles one of the sphere coordinates from one side to

the other. Both squares commute! So QX −→ Y is an infinite loop map.

This forms an adjunction because our choices in the second half were forced, so there exists

a unique extension of X −→ Y to an infinite loop map QX −→ Y . (Check this.)

• If Y is a weak infinite loop space, but Yn −→ ΩYn+1 is still a closed inclusion, then let Ỹ =

colimnΩnYn. (As before, we pick the maps in the colimit system so that each new loop comes

in “on the left.”) Then Ỹ is a strong infinite loop space with deloopings Ỹk = colimnΩnYn+k,

and Yk −→ Ỹk is a weak homotopy equivalence. In particular, Y −→ Ỹ is a weak homotopy

equivalence. Tracing through the above constructions, every ordinary map X −→ Y extends

to an n-fold loop map ΩnΣnX −→ ΩnYn −→ Ỹ .

• If X is a monoid in the based sense, then Σ∞X is a ring spectrum, and Ω∞Σ∞X = QX gets a

“multiplication” that is compatible with its “additive” E∞ operations. If X is a commutative

monoid, or even just an E∞ monoid, then QX is an E∞ ring space, in the sense that it has

an E∞ addition and an E∞ multiplication that distributes over addition in the appropriate

sense. So in particular, if X is a monoid then the homotopy groups of QX form a ring, and

if X is commutative then they form a commutative ring.

• If G is a discrete monoid, then G+ is a based monoid and Q(G+) ∼=
∏
GQS

0. This follows

from the above statement that Q turns wedge sums of bounded-dimension complexes into

products. The connected components of this space are in natural bijection with the group

ring Z[G]. This bijection preserves addition because a loop in
∏
GQS

0 is a product of loops

in QS0, and addition of loops can be carried out in each factor separately. To check that

the multiplication agrees, it suffices to check the generators, and this is straightforward. So

π0(QG+) ∼= Z[G] as rings.
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• If X is already an infinite loop space, then the identity map X −→ X extends to a unique infi-

nite loop map QX −→ X, using the above adjunction. (Prove QX −→ X is a quasifibration.)

Let Q′ be the fiber over the basepoint of X.

Q′
id //

��

Q′

��
Q′ ×X //

��

QX ×QX // QX

��
X

id // X

Therefore QX ' Q′ ×X.

• If G is an abelian group, then it has weak deloopings {K(G,n)}∞n=0, so G is weakly equivalent

to an infinite loop space. Therefore QG ' Q′ ×G. What about QG+?

• Let G be a topological group. Then GL1(Σ∞G+) = QG+|Z[π0G]× .
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