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In these notes we discuss the most classical method for replacing a prespectrum by an

Ω-spectrum, and how it interacts with the more modern framework of diagram spectra.

We also give a brief summary of the concept of semistability. As a corollary, we arrive at

a modern understanding of Bökstedt’s original model for the smash product of spectra.

The short story is that one has to be careful, to avoid running afoul of certain impossi-

bility theorems. The additional structure of symmetric and orthogonal spectra does not

interact as nicely as one would hope with the process of taking a colimit of loopspaces

of the levels.

1. Semistability

I’m going to assume the definitions of prespectra, symmetric spectra, and orthogonal

spectra. A π∗-isomorphism is a map of any such spectra that induces an isomorphism on

the näıve homotopy groups πk(X) = colim
n

πk+n(Xn). For the purposes of this section,

when I say “homotopy category” I mean that we invert the π∗-isomorphisms. It is well-

known that for orthogonal spectra and prespectra this gives the usual stable homotopy

category, while for symmetric spectra it does not. (At least, the forgetful functor from

symmetric spectra to prespectra does not induce an equivalence of homotopy categories.)

(see Schwede’s book project)

Let’s try to explain why that goes wrong, in an easy-to-remember way, without getting

bogged down in technical details. Here is the one-paragraph explanation: there is a

shift functor sh(−) which commutes with all the forgetful functors from orthogonal

to symmetric to prespectra, and is always a right adjoint. In orthogonal spectra and

prespectra, it has two additional properties: it (1) is an equivalence on the homotopy

category, and (2) is equivalent to the suspension functor. In suspension spectra with

π∗-isomorphisms, both (1) and (2) fail to hold: it is not an equivalence and therefore

not equivalent to the suspension functor. This is what prevents the homotopy categories

from being equivalent. And, in fact, it is the only issue. Indeed, we fix it by making

every spectrum equivalent to a semistable one, and as soon as we do this, the above

properties hold and the homotopy category of symmetric spectra becomes equivalent to

the others.
1
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Now for a few more details. Recall that there are two ways to “shift a prespectrum up:”

you take the reduced suspension ΣX, or the shift shX. The prespectrum shX is defined

by (shX)n := Xn+1 with the obvious structure maps coming from those of X. On the

homotopy category of prespectra, these two functors are isomorphic. The proof is quite

messy; on the point-set level there is an obvious map ΣXn → (shX)n, but they don’t

fit into a map of spectra because they don’t commute with the structure maps. If you

flip the Σ coordinate for all the odd values of n, then it commutes up to homotopy, and

there is a “cylinder construction” that lets you rectify this into a zig-zag of equivalences

of prespectra. To see that the map on homotopy groups is an isomorphism we take the

map of colimit systems and define the inverse by the dotted maps as shown; the minus

signs indicate that we take the negative of the obvious map, in order to make all the

triangles commute (after suspension), and their pattern repeats every two rectangles:

. . . // πk+2n(ΣX2n) //

��

πk+1+2n(ΣX1+2n) //

(−)
��

πk+2+2n(ΣX2+2n) //

��

. . . // πk(ΣX)

��
. . . // πk+2n(X1+2n) //

(−)

55

πk+1+2n(X2+2n) //

55

πk+2+2n(ΣX3+2n) // . . . // πk(shX)

TT

Therefore suspension and shift are naturally isomorphic in the homotopy category. Once

we know this, the inverses ΩX and sh−1X are also equivalent on the homotopy category.

The latter functor is defined by (sh−1X)0 = ∗ and (sh−1X)n := Xn−1 for n ≥ 1; it is

easy to check that it is a left adjoint to sh(−) on the point-set level, and an equivalence

on the homotopy category.

Now when we get to symmetric spectra, Σ(−) and Ω(−) are still inverse equivalences

that shift the homotopy groups up and down. And sh(−) still makes sense, even though

sh−1(−) does not. But something changes: there is no longer a natural isomorphism

between Σ(−) and sh(−) in the homotopy category. There are two ways we might try to

make such an equivalence. First there is the cylinder trick above, but that fails because

it doesn’t give a map of symmetric spectra. Second, we can map ΣXn → (shX)n+1

using the structure map of X, and then can compose with a permutation in Σn that

shuffles the first letter past the other letters all the way to the right-hand side:

ΣXn −→ X1+n
τ1,n−→ Xn+1

This permutation τ1,n is just what we need so that the result is a map of symmetric

spectra! And, this map is an equivalence if the permutation acts on the homotopy

groups through the sign representation. But if it doesn’t... the argument we did in the

diagram above no longer works, and we cannot construct an inverse to show that our

map is an isomorphism on π∗. All you get is that the map is an injection, that is in

general not an isomorphism.

More generally, there is no natural zig-zag of equivalences of symmetric spectra between

ΣX and shX. If there were, then sh(−) would be an equivalence on the homotopy

category. We know however that shX ∼= F (F1S
0, X) is a right adjoint in symmetric

spectra, and its left adjoint is F1S
0∧−. And if we take sh(F1S

0∧S), we get a spectrum
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whose homotopy groups are an infinite sum of copies of π∗(S). In particular they are

not isomorphic to a single copy of π∗(S), so sh(−) cannot be an equivalence.

In other words, there is a natural equivalence ΣX ' shX in the homotopy category of

prespectra, but there is no natural lift of this to the homotopy category of symmetric

spectra (with the π∗-isomorphisms).

This should sound crazy. After all, their homotopy groups are always abstractly iso-

morphic, how could they not be equivalent? Unfortunately, they just aren’t. We do not

have enough maps between them that agree with the symmetric spectrum structure.

The combinatorial structure of symmetric spectra is somehow creating an obstruction

to making these two functors agree in the homotopy category.

At any rate, we can conclude that the forgetful functor from symmetric spectra to

prespectra fails to give an equivalence of homotopy categories. If it did, the lift of

sh(−) to the homotopy category of symmetric spectra would also be a self-equivalence

of categories.

And of course not all is lost, we just have to change the category somehow until it

becomes the right one again. The most obvious way to fix this is to restrict to symmetric

spectra with the property that the natural map ΣX → shX is a π∗-isomorphism.

These are the semistable symmetric spectra. And while it is not totally obvious that

this will work, it does indeed work; the homotopy category of semistable spectra and

π∗-isomorphisms is equivalent to the homotopy category of prespectra.

The less obvious way to fix this is to define a broader notion of weak equivalence of

symmetric spectra, such that ΣX ' shX is always one of these broader equivalences.

You can find more details in Hovey-Shipley-Smith and Mandell-May-Schwede-Shipley.

Finally, we recall that orthogonal spectra are all semistable. So when X ranges over

orthogonal spectra, the maps ΣX → shX are all equivalences of orthogonal spectra.

The proof of this uses in an essential way the growing connectivity of the quotient

space O(n)/O(n− 1) as n→∞, which of course does not happen for the quotient sets

Σn/Σn−1.

2. Fibrant replacment by taking a colimit of loops

Now instead of considering the behavior of shifts, we will consider the process of taking

“fibrant replacements” of spectra X by taking a colimit of loops of the levels of X.

Although the subject matter is different, this section has the same feel as the previous

one. We make a construction of an Ω-spectrum replacement of X, that works at the level

of prespectra but does not lift to symmetric spectra. In symmetric spectra a different

construction arises, but then it does not always give an Ω-spectrum.
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We say that a prespectrum X is a strong Ω-spectrum or just Ω-spectrum if the adjoint

structure maps Xn → ΩX1+n are homeomorphisms. We say that it is a weak Ω-spectrum

if the adjoint structure maps are weak homotopy equivalences. For prespectra, sym-

metric spectra, and orthogonal spectra, it is by now common practice to replace X by

a weak Ω-spectrum, by using the small-object argument to build a fibrant replacement

in a model structure where the fibrant objects are the weak Ω-spectra. Here, we would

like to instead consider a much more classical construction.

If X is a prespectrum, and the structure maps are all closed inclusions, then for each

n, let

(RX)n = colim
r

ΩrXr+n

where the colimit is taken along the adjoints of the structure maps. The homotopy

groups of (RX)n capture homotopy groups of X in a range:

πk((RX)n) ∼= πk−n(X), k ≥ 0

Furthermore, the spaces (RX)n assemble together into a prespectrum R′X, by the

following “diagonal” structure maps:

Xn
// ΩX1+n

// ΩΩX2+n
// Ω2ΩX3+n

// . . . // RXnOO

��
Ω(X1+n) //

xx

88

Ω(ΩX2+n) //
ww

77

Ω(Ω2X3+n) //
ww

77

Ω(Ω3X4+n) // . . . // Ω(RX1+n)

These maps are all homeomorphisms, and so R′X is a strong Ω-spectrum. It is easy to

check that it receives a map of prespectra from X that is a stable equivalence.

We could also take a homotopy colimit instead of a strict colimit. This obviates the

need to assume that the structure maps are closed inclusions, but then of course we get

a weak Ω-spectrum instead of a strong one.

Now for the first pitfall. If X is a symmetric or orthogonal spectrum, not isomorphic

to ∗, then the prespectrum R′X is not symmetric or orthogonal. This can be checked

directly – the structure maps are each equivariant but their two-fold composites are not

Σ2-equivariant. However it is known that more is true, as we now explicitly show:

Proposition 2.1. The only symmetric spectrum that is also a strong Ω-spectrum is the

zero spectrum ∗.

Proof. Assume X is a symmetric Ω-spectrum. The symmetric spectrum structure forces

Xn → Ω2X2+n to be Σ2-equivariant. Therefore Ω2X2+n is entirely fixed by Σ2. It

follows that the path component of the basepoint of X2+n must be entirely Σ2-fixed. If

X2+n has any nontrivial continuous path γ starting at the basepoint, then we can easily

construct a map S2 → X2+n which is not Σ2-equivariant, just by sending each ray from

the origin in R2 ∪ {∞} to a path that travels some distance along γ before traveling

back to the basepoint, and arranging the parametrizations so that one of these paths is
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nontrivial, while the path opposite it in S2 stays at the basepoint. Therefore all paths

in X2+n at the basepoint must be trivial, so Xn
∼= Ω2X2+n

∼= ∗. �

Fortunately enough, there is a second way of defining structure maps between the same

spaces (RX)n to give a symmetric or orthogonal spectrum RX receiving a stable equiv-

alence from X. It will turn out that RX is a weak Ω-spectrum precisely when X is

semistable. (Of course, this is the best we can do. When X is not semistable, it is known

that it is impossible to give a π∗-isomorphism between X and a weak Ω-spectrum.) We

will describe the symmetric case, but the orthogonal case is argued in exactly the same

way.

The slick way to say this is that there is a functor IS ∧ IS → IS which takes the

disjoint union of the two sets. Then we may pull back X along this functor to get a

bi-symmetric spectrum, or a symmetric spectrum object in symmetric spectra. (This

move doesn’t work for prespectra because the disjoint union operation doesn’t define a

functor.) Then, since the above construction (R−)0 from spectra to spaces (using colim

or hocolim) is natural with respect to maps of symmetric spectra, this bi-symmetric

spectrum gives a symmetric spectrum RX whose nth level is (R shnX)0
∼= (RX)n for

all n.

More explicitly, tracing through the above definition, we see that the structure map

RXn → RX1+n is on the rth term in the colimit system the composite

ΩrXr+n −→ ΩΩrX1+r+n −→ ΩΩrXr+1+n

of the structure map and the action of the permutation τ1,r that shuffles the first element

past the next r elements. We can also confirm directly that these commute with the

maps of the colimit system, and that a composition of two of them is Σ2×Σn-equivariant.

It is easy to see that the inclusion of the 0th term in the colimit system defines a map

of symmetric spectra X → RX.

To summarize, for each symmetric spectrum X, we have constructed a map of symmetric

spectra X → RX and a map of prespectra X → R′X. The spectra RX and R′X have

homeomorphic levels, but different structure maps. In general, the structure maps do

not even agree up to homotopy! Instead, at level r + 1 of the colimit system, the

“vertical” structure map of RX and the “diagonal” structure map of R′X give the

following diagram, where the upper-left triangle commutes but the remaining region

does not.

Ωr+1Xr+1+n
//

��

Ω1+r+1X1+r+1+n

swap loops

{{

Ω1+r+1X1+r+1+n

Ω1+r+1τ1,r+1

��
Ω1+r+1Xr+2+n Ω1+1+rX1+r+1+n
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The best we can do is analyze the difference on homotopy groups. We assume for this

last part that either the structure maps are closed inclusions or we took homotopy

colimits when defining the spaces (RX)n.

We begin by remarking that the maps of the spectrum RX aren’t inducing equivalences

on each level so there’s no guarantee they give an equivalence on the colimits. That being

said, in the quadrilateral region of the above diagram, all maps are isomorphisms on

homotopy groups. Of course, they are different isomorphisms. The one for the structure

map of RX induces π∗(τ1,r+1), while the structure map of R′X composed with one map

of the colimit system induces (−1)r+1. Stabilizing to the colimit, the structure maps

of RX give some map πk(RXn)→ πk(RX1+n) and the structure maps of R′X give an

isomorphism between the same two groups. We may compose the structure map of RX

with the inverse of this isomorphism and get a self-map of

πk(RXn) ∼= πk−n(X).

Which map is it? Comparing with Schwede’s notes (and flipping the order of our sphere

coordinates to match his convention), we conclude that it is the action of the “shift

operator” from the injection monoidM. As a consequence, this map is an isomorphism

precisely when X is semistable (using Schwede’s notes I.8.8.iii and I.8.25). In conclusion:

Proposition 2.2. The symmetric spectrum RX is a weak Ω-spectrum precisely when

X is semistable.

Of course, if X is an orthogonal spectrum then it is always semistable, so in that case

RX is always an orthogonal weak Ω-spectrum. On the other hand, if X is symmetric

and not semistable, then I don’t know much about the behavior of RX. I am not even

sure how worthwhile it is to try to find out!

If X is a semistable symmetric spectrum then RX can alternatively be defined using a

homotopy colimit over the category I of finite sets and injections. Semistability implies

that the homotopy colimit over I agrees with the smaller homotopy colimit over N ,

so this produces another fibrant replacement functor for semistable symmetric spectra.

If X is orthogonal then we could also do a homotopy colimit over I, or even over the

category O of finite-dimensional innner product spaces and isometric linear maps, and

we would get different model for RX that is level-equivalent to the model we considered

above.

Finally, it’s worth remarking that the other expected result goes through without a

hitch:

Proposition 2.3. The maps from X to RX and R′X are always stable equivalences.

For R′X this is true because we can build it as a (homotopy) colimit of spectra where

everything below some level Xn has been replaced by loopspaces of Xn, and the maps
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between these spectra are clearly stable equivalences. For RX we think of the bispec-

trum perspective and build the homotopy colimit up one term at a time (for the whole

spectrum), observing that at each stage we are getting the standard map X → Ωr shrX,

which is a stable equivalence.

3. The Bökstedt smash product

The Bökstedt smash product is a funny construction from the modern point of view.

(Though of course it is all the more impressive because it predates modern smash

products of spectra.) It takes as input an k-tuple X1, . . . , Xk of symmetric spectra, but

its output is a space, which in under very mild assumptions (the levels are well-pointed)

is equivalent to the derived 0th space of the smash product X1∧ . . .∧Xk. The essential

idea is to take a homotopy colimit of the spaces Ωn1+...+nk(X1
n1
∧ . . .∧Xk

nk
) for varying

k-tuples of nonnegative integers (n1, . . . , nk). We have a choice between taking this

homotopy colimit over In or N n. In the official definition, it is taken over In, so that

the smash product has good functoriality properties needed to form (for instance) cyclic

bar constructions of ring spectra and FSPs. On the other hand, we usually want this

homotopy colimit to agree with the corresponding homotopy colimit over N n, in order

to have a better handle on its homotopy type.

As a result of using I, the Bökstedt smash product has a certain functoriality with

respect to maps between smash products of symmetric spectra. It cannot be as simple

as we would like, of course. For instance, since the Bökstedt smash product takes an

k-tuple of symmetric spectra to a space, it does not even make sense to ask whether it is

associative! (Just as strangely, though associativity does not make sense, commutativity

does make sense.)

We also want to consider the Bökstedt smash product as taking k-tuples of symmetric

spectrum objects in some reasonable category C, and giving an output that is an object

of C. This is because we want the output to be a spectrum. This point of view tells us

that, if we want a spectrum to come out, we ought to feed in a collection of symmetric

spectrum objects in spectra. Of course, this is not hard to arrange – every symmetric

spectrum of spaces X produces a symmetric spectrum object in symmetric spectra, in

fact in two ways: one by taking suspension spectra of the levels of X, and the other

by taking all the shifts of X. The first method will actually recover Bökstedt’s original

trick for making his space into a spectrum, by inserting an extra sphere in the smash

product on the inside.

Enough philosophy; here’s the definition. Let C be a pointed closed symmetric monoidal

category receiving a strong symmetric monoidal functor from simplicial sets. Let SpΣ(C)
denote symmetric spectrum objects in C. To each k-tuple X1, . . . , Xk of symmetric

spectrum objects of C we create a diagram ΩIk indexed by Ik as follows. The tuple
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(n1, . . . , nk) is assigned to the object of C given by

HomC(S
n1+...+nk , X1

n1
⊗ . . .⊗Xk

nk
).

Here we are blurring the distinction between the simplicial set Sn = (∆[1]/∂∆[1])∧n

and its image in C, and of course the tensor products and the hom are given by the

closed symmetric monoidal structure of C. To define the morphism induced by a tuple

of inclusion maps αi : ni → mi, we let Smi−ni denote the sphere indexed by the

complement set of ni in mi. The symmetric spectrum structure on Xi gives a map of

the form

Smi−ni ⊗Xi
ni
→ Xi

mi

induced by the injection αi, which is compatible with compositions in the obvious way.

The tensor of these for 1 ≤ i ≤ k induces a map

HomC(S
n1+...+nk , X1

n1
⊗ . . .⊗Xk

nk
)

−→ HomC(S
n1+...+nk ,HomC(S

m1−n1 ⊗ . . .⊗ Smk−nk , X1
m1
⊗ . . .⊗Xk

mk
))

∼= HomC(S
m1+...+mk , X1

m1
⊗ . . .⊗Xk

mk
).

The adjoint of this is an evaluation followed by the symmetric spectrum structure:

Sm1+...+mk ⊗HomC(S
n1+...+nk , X1

n1
⊗ . . .⊗Xk

nk
)

−→ Sm1−n1 ⊗ . . .⊗ Smk−nk ⊗X1
n1
⊗ . . .⊗Xk

nk
−→ X1

m1
⊗ . . .⊗Xk

mk
.

To check these are compatible with composition with βi : mi → pi we check that two

certain maps

Sp1+...+pk ⊗HomC(S
n1+...+nk , X1

n1
⊗ . . .⊗Xk

nk
) −→ X1

p1 ⊗ . . .⊗X
k
pk

are the same. By a long diagram-chase we identity them each with an evaluation,

followed by either a single application of the symmetric spectrum structure or one after

the other. By the assumption that the Xi are symmetric spectrum objects these agree,

hence we have a diagram indexed by Ik.

Now that we have defined a diagram ΩIk (X1, . . . , Xk) of objects of C indexed by Ik,
we take its homotopy colimit (using the Bousfield-Kan formula) and call the result the

Bökstedt smash product of the spectrum objects X1, . . . , Xk:

Bokk(X1, . . . , Xk) := hocolim
(n1,...,nk)∈Ik

HomC(S
n1+...+nk , X1

n1
⊗ . . .⊗Xk

nk
)

Our functoriality statement for Bokk follows. It is necessarily complicated because we

need to vary the number of terms in the smash product, and can only take the smash

product of k spectra all at once (not in stages).

Proposition 3.1. Let X1, . . . , Xk and Y 1, . . . , Y ` be tuples of symmetric spectrum ob-

jects of C. Let f denote a map of sets {1, . . . , k} → {1, . . . , `} equipped with a choice of

total ordering on each preimage f−1(j). Given such an f along with maps

ϕj :
⊗

i∈f−1(j)

Xi → Y j
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where the ⊗ denotes tensor product of symmetric spectrum objects of C, and the left-

hand side is composed in the chosen total ordering on f−1(j), there is a map of Bökstedt

smash products

Bok(f, {ϕj}) : Bokk(X1, . . . , Xk) −→ Bok`(Y 1, . . . , Y `).

This construction respects identity maps and compositions (using the dictionary order

to compose total orderings). It arises as a map of diagrams which respects the initial

objects of Ik and I`, and on those initial objects it agrees with the tensor product⊗
j∈{1,...,`}(ϕj)0.

Proof. We take the skeletal model of I, in which the objects are the natural numbers.

Define a functor αf : Ik → I` taking (n1, . . . , nk) to the `-tuple of finite sets whose

jth term is the coproduct
∐
i∈f−1(j) ni using the chosen total ordering of f−1(j). The

morphisms are similarly taken to a coproduct of morphisms. This construction clearly

preserves compositions and the identity map.

To define Bok(f, {ϕj}) it suffices to form a map of diagrams

ΩIk (X1, . . . , Xk)→ ΩI` (Y 1, . . . , Y `) ◦ αf
so in particular for each (n1, . . . , nk) a map in C

HomC(S
∑

i ni ,
⊗
i

Xi
ni

)→ HomC(S
∑

j

∑
i∈f−1(j) ni ,

⊗
j

Y j∑
i∈f−1(j) ni

)

using the maps {φj}. We observe that the spheres on both sides are isomorphic, and

we adopt the convention that when passing from one to the other we re-arrange the

sphere coordinates so that each ni on the left is sent to its sister ni on the right.

In this way both sides are Ik diagrams that arise from the ΩIk -construction on a k-

multisymmetric spectrum, one of which is the external smash product of the spectra

Xi, the other of which is obtained by pulling back the spectra Y j along the direct sum

maps I∧|f−1(j)| → I. (In this direct sum map we also use the chosen total order on

f−1(j).)

It therefore suffices to check that the φj define a map of k-multisymmetric spectra. But

this is automatic from the definition of the smash product of symmetric spectra as a left

Kan extension along this direct sum map. A map of symmetric spectra from the smash

product of Xi for i ∈ f−1(j) into Y j is equivalent to a map of multisymmetric spectra

from the external smash product of the spectra Xi into the pullback of Yj . Therefore

the construction ΩIk gives a map of Ik-diagrams.

It remains to check these respect compositions and identity maps in the f variable, but

this is an almost trivial exercise. (The hard part was getting our conventions right in the

first place; the choice of total ordering is important.) The functor αf clearly preserves

the zero object, and on that zero object our map of diagrams arises from the external

smash product of the maps φj on multilevel (0, . . . , 0), where it is simply the smash

product of the maps (φj)0 : ⊗i∈f−1(j)X
i
0 → Y j

0 . �
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Remark. This functoriality statement would not hold if Bokk(X1, . . . , Xk) were defined

as a homotopy colimit overN , because the functor αf does not preserve this subcategory.

However it would hold if we replaced I with the smaller category of totally ordered sets

and order-preserving injections. Furthermore a the colimit along this smaller category

will agree with the colimit over N (and therefore I) for semistable symmetric spectra.

It seems therefore that the use of I is not strictly necessary to define the cyclic bar

construction with the Bökstedt smash product! But of course we need something more

than just N . And I turns out to give the right homotopy type even if the spectra

involved are not semistable, which is really useful.

Finally we check that if R is a symmetric ring spectrum object of C then we can use

the above functoriality to form the cyclic bar construction of R.

Proposition 3.2. If R is a (not necessarily commutative) symmetric ring spectrum

object of C, then the objects Bokk+1(R, . . . , R) for k ≥ 0 assemble into a cyclic object of

C.

Proof. Given a morphism h : [k − 1] → [` − 1] in the cyclic category Λ, regarded as

a degree-one functor from the necklace of k beads category to the necklace of ` beads

category, we define f : {1, . . . , `} → {1, . . . , k} as the backwards map of arrows, with

total ordering on the preimage of the arrow i→ i+ 1 given by the order of composition

in the necklace category starting at h(i) and ending at h(i + 1). We take all maps φj
to be induced by the multiplication and unit maps of R. Then this rule for defining

backwards maps of arrows is easily checked to respect compositions. The compositions

of the maps φj agree by the assumption that R is an associative unital ring. �

To arrive at the original Bökstedt smash product, we take C to be orthogonal spectra,

and we apply Bokk to the orthogonal suspension Σ∞R of a symmetric ring spectrum R.

Since orthogonal suspension spectra are preserved under smash product, the definition

of Bokk(Σ∞R, . . . ,Σ∞R) rearranges into an orthogonal spectrum which is at level V

the space

hocolim
(n1,...,nk)∈Ik

Ωn1+...+nk(SV ∧X1
n1
∧ . . . ∧Xk

nk
).

We remark that by our conventions this homotopy colimit is taken in the based sense.

Though the category Ik has an initial object and hence a contractible nerve, so as long

as the spaces of the diagram are well-based the unbased homotopy colimit will have the

same homotopy type.

I won’t say much about semistability here, because the results are eerily strong. (I hope

I am stating them correctly; this is almost entirely pulled from Shipley and Patchkoria-

Sagave.) When C is spaces, Bokk(X1, . . . , Xk) behaves well all the time, and especially

well when the Xi are semistable. In particular, it sends stable equivalences to weak

equivalences, as soon as the levels of the Xi are well-pointed, and has the same homotopy

type as the (derived) smash product X1∧ . . .∧Xk in symmetric spectra (Shipley’s THH
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paper 4.2.3 and 4.2.9, see also Patchkoria-Sagave). And when the Xi are semistable,

it becomes permissible to take the homotopy colimit along N k instead of Ik without

changing the homotopy type. So when our inputs are semistable everything we can

think of is equivalent, and when they are not we should be wary about the hocolim over

N k, but the hocolim over Ik and the derived smash product are still equivalent.
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