
HOMOTOPY COLIMITS VIA THE BAR CONSTRUCTION

CARY MALKIEWICH

The purpose of this expository note is to give explicit proofs for some well-known results

on homotopy colimits. As described in Shulman’s excellent paper [Shu06], we may think

of homotopy colimits in two distinct ways: “globally” as left derived functors of the

colimit, and “locally” by taking cofibrant replacement of each level of the diagram, and

then applying a bar construction (the Bousfield-Kan formula). Our focus here will be on

this second approach, and in particular the situations where it is unnecessary to make

the objects cofibrant.

We will discuss the case of unbased spaces, which is treated in almost as much detail in

the appendix of [DI04]. Then we will discuss based spaces, a general approach, and then

the cases of prespectra and orthogonal G-spectra as defined in [MMSS01] and [MM02].

1. Hocolims of Unbased Spaces

As a concrete example, consider the pushout diagram

A //

��

B

C

If A −→ B is an h-cofibration (i.e. has the homotopy extension property) then we call

the pushout B∪AC a homotopy pushout. Another way of saying this is, the construction

is homotopical. To be precise:

Proposition 1.1 (Gluing Lemma). If we have a weak equivalence of pushout diagrams

C

∼
��

Aoo //

∼
��

B

∼
��

C ′ A′oo // B′

where the maps A −→ B and A′ −→ B′ are h-cofibrations, then the map of pushouts

B ∪A C
∼−→ B′ ∪A′ C ′

is a weak equivalence.
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If one is familiar with model categories then it is not too difficult to prove this propo-

sition, but under the additional assumption that A, A′, B, B′, C, and C ′ are all “q-

cofibrant” (e.g. are CW-complexes). On the other hand, Strøm’s model structure on

spaces can be used to get the above statement but only when the vertical maps are ho-

motopy equivalences. Clearly, model categories alone do not give us the above version

of the gluing lemma. We have to do something more inherently topological.

Proof. We may replace each pushout with the corresponding double mapping cylinder:

B ∪A×{0} A× I ∪A×{1} C −→ B ∪A C

This collapse map is a homotopy equivalence. To see this, we define a homotopy inverse

by using the homotopy extension property to deform usual inclusion

B ↪→ B ∪A×{0} (A× I)

to a map which sends A ⊂ B to A× 1. Piecing this together with the identity C −→ C

gives a map

B ∪A C −→ B ∪A×{0} A× I ∪A×{1} C
and it is straightforward to check this is a homotopy inverse.

Now we can assume that each of our pushouts is a double mapping cylinder. The

induced map between these mapping cylinders is clearly an isomorphism on π0, and on

each component it is an isomorphism on π1 by the van Kampen theorem for fundamental

groupoids. Finally, the Mayer-Vietoris exact sequence applies to all double mapping

cylinders and homology with all twisted coefficient systems, so the proof is finished by

the lemma that follows. �

Lemma 1.2. A map X −→ Y of path-connected spaces is a weak homotopy equivalence

iff it is an isomorphism on π1, and on simplicial homology with all twisted coefficient

systems.

Proof. This is a standard result in some circles; the proof here is an adaptation of

[Hat02], Prop 4.21. We first take f : X −→ Y to be any weak equivalence of topological

spaces. By definition it is an isomorphism on π0 and π1. Let A be any twisted coefficient

system, given by a π1-action on some abelian group A. Let Mf = (X × I) ∪X Y be

the mapping cylinder. By excision, it suffices to prove that the homology of the pair

(Mf,X) with coefficients in A is zero. Any homology class α in Mf is represented

by a finite collection of simplices ∆n −→ Mf that have been lifted to the bundle A.

Let K −→ Mf be the ∆-complex obtained by taking each of these n-simplices and

gluing faces together precisely when those faces coincide in Mf . Let L ⊂ K be the

subcomplex of those (n − 1)-simplices whose image is entirely in X. Then α is in the

image of the map (K,L) −→ (Mf,X) on relative homology with coefficients in A. Since

π∗(Mf,X) = 0, this map of pairs is homotopic to one that sends all of K into X. By

a standard lemma homotopic maps induce the same map on homology, but once K

goes into X the induced map must be zero. Therefore our homology class α must have
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been zero too. This proves H∗(Mf,X;A) = 0, so by the excision long exact sequence,

H∗(X;A) −→ H∗(Y ;A) is an isomorphism.

That takes care of one direction. Now assume that X −→ Y is an isomorphism on π1 and

on homology with all twisted coefficient systems. We would like to make an argument

involving the universal covers of X and Y , but they may not exist. So consider the

CW replacements ΓX
∼−→ X and ΓY

∼−→ Y . The above argument guarantees that

Γf : ΓX −→ ΓY is also an isomorphism on twisted homology. ΓX has a universal cover

Γ̃X, whose homology with Z coefficients is naturally isomorphic to the homology of ΓX

with coefficients given by Z[π1(X)] as a module over itself. Therefore Γ̃f : Γ̃X −→ Γ̃Y

is a map of simply connected CW complexes and an isomorphism on homology with

Z coefficients. By the Hurewicz theorem, Γ̃f is a weak equivalence. But the higher

homotopy groups of Γ̃X are mapped isomorphically to the higher homotopy groups of

X, and similarly for Y , so the original map f is also an isomorphism on all homotopy

groups. �

Now that we have treated homotopy pushouts, we will lead into more general homotopy

colimits. In everything that follows, we work with compactly generated weak Hausdorff

spaces. Recall that a simplicial space X• is a diagram ∆op −→ Top from the opposite

of the category of finite ordered sets into spaces. Concretely, it is a sequence of spaces

X0, X1, . . . with face maps d0, . . . , dn : Xn −→ Xn−1 and degeneracy maps s0, . . . , sn :

Xn −→ Xn+1 satisfying some relations. The geometric realization of X• is the space(∐
n

Xn ×∆n

)
/ ∼ ∆n =

{
t ∈ Rn+1 :

∑
ti = 1, ti ≥ 0 ∀i

}
with equivalence relations

(xn, t0, . . . , ti−1, 0, ti, . . . , tn−1) = (dixn, t0, . . . , tn−1)

(sixn, t0, . . . , tn+1) = (xn, t0, . . . , ti + ti+1, . . . , tn)

We may think of the expressions on the right as being simpler than the expressions on the

left. “Simplifying” in this way allows us to write each point in this realization uniquely

as a pair (x, t) in which all the barycentric coordinates of t are nonzero (otherwise apply

the first relation) and the point x ∈ Xn is nondegenerate (otherwise apply the second

relation). We may define the n-skeleton of the realization to consist of all points whose

standard form (x, t) has x ∈ Xk with k ≤ n. This is also the realization of the simplicial

space (SknX)•, defined as

(SknX)m = {x ∈ Xm : x = si1si2 . . . sijy, y ∈ Xk, k ≤ n}

Clearly |X•| is filtered by {|SknX•|}∞n=0.
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Now, any time a space X is covered by closed subspaces A and B there is a pushout

square

A ∩B //

��

B

��
A // X

In the case we see |SknX•| is covered by the closed subspace |Skn−1X•| and the closed

image of Xn ×∆n. Manipulating this square a bit yields the pushout square

(1) LnX ×∆n ∪LnX×∂∆n Xn × ∂∆n //

��

Xn ×∆n

��
|Skn−1X•| // |SknX•|

where LnX =
⋃n−1

i=0 si(Xn−1) ⊂ Xn is the nth latching object of X. (See for example

[Dug08].) We are interested in when (1) is a homotopy pushout square, and when the

bottom map is a closed inclusion. For both of these conditions it suffices to show that the

top arrow is an h-cofibration. We use the following standard property of h-cofibrations:

Proposition 1.3 (Pushout-Product Axiom). If A −→ X and B −→ Y are h-cofibrations

then

(A× Y ) ∪(A×B) (B ×X) −→ (B × Y )

is an h-cofibration. If one of the two input maps is a homotopy equivalence then the

larger map is as well.

Proof. This appears in many places, for instance in ([May99], 6.4). The proof uses the

equivalent characterization that (X,A) is an NDR pair. �

By the pushout-product lemma, the top arrow of (1)

LnX ×∆n ∪LnX×∂∆n Xn × ∂∆n −→ Xn ×∆n

is an h-cofibration when the two maps

∂∆n −→ ∆n

LnX −→ Xn

are h-cofibrations. The first is always an h-cofibration, so we should focus our attention

on the case when the second map is an h-cofibration as well:

Definition 1.4. The simplicial space X• is Reedy cofibrant if the nth latching map

LnX −→ Xn is an h-cofibration for all n ≥ 0.

So assume that we have a map X• −→ Y• of Reedy cofibrant simplicial spaces, and each

level Xn −→ Yn is a weak equvialence. We will show that the map on latching objects

LnX −→ LnY is a weak equivalence. First observe that si(Xn−1) ∼= Xn−1 is preserved
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up to weak equivalence for each value of i. From the observation that for 1 ≤ k ≤ n− 1

we have the pushout square

(2) sk

(⋃k−1
i=0 si(Xn−2)

)
//

��

⋃k−1
i=0 si(Xn−1)

��

sk(Xn−1) //
⋃k

i=0 si(Xn−1)

we may induct the following statements on n, and inside that induction on n, induct on

k:

•
⋃k−1

i=0 si(Xn−1) −→
⋃k

i=0 si(Xn−1) is a cofibration and similarly for Y

•
⋃k

i=0 si(Xn−1) −→
⋃k

i=0 si(Yn−1) is a weak equivalence

The induction on the first statement goes by composing some maps that we know to be

cofibrations because of the inductive hypothesis

k−1⋃
i=0

si(Xn−2) −→
k⋃

i=0

si(Xn−2) −→
k+1⋃
i=0

si(Xn−2) −→ . . . −→
n−2⋃
i=0

si(Xn−2) = Ln−2X −→ Xn−1

and then applying sk to this composition to obtain a homeomorphic map

sk

(
k−1⋃
i=0

si(Xn−2)

)
−→ sk(Xn−1)

which is necessarily a cofibration. This is the left vertical in the square (2), so the right

vertical map is a cofibration and the induction is complete. The induction on the second

statement is the straightforward application of the gluing lemma to the above pushout

square.

We conclude that the map on latching objects LnX −→ LnY is a weak equivalence.

Then by the gluing lemma again, we have weak equivalences

LnX ×∆n ∪LnX×∂∆n Xn × ∂∆n −→ LnY ×∆n ∪LnY×∂∆n Yn × ∂∆n

Xn ×∆n −→ Yn ×∆n

One final application of the gluing lemma to the square (1) finishes the inductive argu-

ment that the induced map of skeleta

|SknX•| −→ |SknY•|

is a weak equivalence. We want to take the limit as n → ∞, but for this we need one

more result:

Proposition 1.5. Given a sequential diagram of weak Hausdorff unbased spaces

A1
// A2

// A3
// . . .
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in which every map is an h-cofibration, the natural map

colim
i

π∗(Ai)
∼=−→ π∗

(
colim

i
Ai

)
is an isomorphism.

Proof. It is standard that h-cofibrations of weak Hausdorff spaces are always closed

inclusions. For this proof we will only need that the maps of our colimit system are

inclusions, and that finite unions of points in An are closed.

We will show that for a compact Hausdorff space K, each map K −→ colimAi factors

through some An. Then taking K = Sn, we see that the above map of groups is

surjective. Taking K = Sn × I proves that the map is injective.

If K −→ colimAi does not factor through some finite level, then we may construct a

sequence {kn}∞n=0 ∈ K such that the image of kn lies outside An. K is compact, so

without loss of generality this sequence converges to some k ∈ K. The image of k is in

some An. Take the union of all images of ki with i > n; this union is closed because

its restriction to each Ki is a finite union of points, which is always closed in a weak

Hausdorff space. Its complement is an open subset of colimAi that contains the limit

k without containing any of the ki for i > n, contradiction. �

Now we can let n→∞ and obtain

Theorem 1.6. If X• −→ Y• is a map of Reedy cofibrant simplicial spaces, and each

level of the map Xn −→ Yn is a weak homotopy equivalence, then the induced map

|X| −→ |Y | is a weak equivalence as well.

Remark. This foundational theorem appears in many places but not always with the

same assumptions; for instance it appears in 1972 as ([May72], Thm. 11.13) but with

simple connectivity assumptions and a slightly stricter notion of Reedy cofibrant. The

above version has been known for quite some time, as also noted in [DI04].

Now we will discuss the kind of simplicial space we are really interested in. Given a

small category C and a diagram of spaces X : C −→ Top, we define its uncorrected

homotopy colimit to be

uhocolimX = B(X,C, ∗) =

∣∣∣∣∣∣∣
∐

c0−→
ϕ1

...−→
ϕn

cn

X(c0)

∣∣∣∣∣∣∣
In other words, it is the realization of the simplicial space whose level n is a disjoint

union with one copy of the topological space X(c0) for each n-tuple of composable

arrows c0
ϕ1−→ . . .

ϕn−→ cn. The face map di composes ϕi with ϕi+1, deleting ci in the

process, while acting as the identity on X(c0). The exception to this rule is the 0th face

d0, which not only deletes c0 and ϕ1 from our n-tuple of arrows, but also applies ϕ1 to
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X(c0) to land in X(c1). The degeneracies are easier: si inserts an identity arrow at the

object ci.

Exercise 1.7. If C = {• ←− • −→ •} is the category that models pushout diagrams,

prove that this uncorrected homotopy colimit construction is naturally homeomorphic

to the double mapping cylinder construction.

Proposition 1.8. Y• = B•(X,C, ∗) is always a Reedy cofibrant simplicial space.

Proof. We calculate LnY to be a disjoint union of X(c0) over a subset of all possible n-

tuples of arrows, namely those n-tuples which contain at least one identity map. Clearly

the inclusion of one of the pieces of a disjoint union is a cofibration. �

Putting this all together, we get

Theorem 1.9. A map of diagrams X −→ X ′ inducing weak equivalences X(c) −→
X ′(c) induces a weak equivalence of uncorrected homotopy colimits B(X,C, ∗) −→
B(X ′,C, ∗).

We will not go into model categories in much detail here, but we will summarize how

these uncorrected hocolims fit in with the rest of the theory. The category of diagrams

from C to spaces can be given the projective or levelwise model structure. Under this

choice of model structure, the colimit functor into spaces is left Quillen. We compute its

left derived functor on a diagram X by replacing X with a cofibrant diagram, and taking

the colimit. Let QX denote the diagram we obtain by taking a functorial cofibrant

replacement of the levels X(c). Then QX is not usually a cofibrant diagram. However

we may use a bar construction to build B(QX,C,C), and check that this is a cofibrant

diagram by verifying the appropriate left lifting property. The colimit of this fattened

diagram is B(QX,C,*). Therefore left derived functor of colim is naturally equivalent

to B(QX,C, ∗):
LcolimX ' B(QX,C, ∗)

Our work in this section demonstrates that taking QX was unnecessary:

B(QX,C, ∗) ∼−→ B(X,C, ∗)

So we may alternatively compute LcolimX with the uncorrected Bousfield-Kan formula.

In short, homotopy colimits of unbased spaces need not be corrected.
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2. Hocolims of Based Spaces

Recall that a map of based spaces X −→ Y is a based h-cofibration if it satisfies the

HEP, but with all maps basepoint-preserving. This is weaker than being an unbased

h-cofibration. We say that X is well-based or has a nondegenerate basepoint if the

inclusion of the basepoint ∗ −→ X is an unbased h-cofibration.

Clearly, we can always forget the basepoints, and conclude that unbased double mapping

cylinders and pushouts along unbased h-cofibration preserve weak equivalences. This

might seem unsatisfying; shouldn’t there be a variant where we use based h-cofibrations?

In other words, don’t reduced double mapping cylinders preserve weak equivalences?

The answer is no. That would imply that wedge sums of based spaces preserve weak

equivalences. Now, let X ⊂ R2 be the infinite shrinking wedge of circles, with CW

replacement ΓX
∼−→ X. Then the map of wedge sums

ΓX ∨ ΓX −→ X ∨X

is not surjective on π1, so a wedge of weak equivalences is not in general a weak equiva-

lence. This is why nondegenerate basepoints are essential when studying based spaces.

However, a based h-cofibration between well-based spaces is an unbased h-cofibration

[May99]. So we get the following essentially for free:

Proposition 2.1. If we have a weak equivalence of pushout diagrams of well-based

spaces

C

∼
��

Aoo //

∼
��

B

∼
��

C ′ A′oo // B′

where the maps A −→ B and A′ −→ B′ are based h-cofibrations, then the map of

pushouts

B ∪A C
∼−→ B′ ∪A′ C ′

is a weak equivalence.

Now we also get a similar colimit result, but here we don’t need nondegenerate base-

points:

Proposition 2.2. Given a sequential diagram of weak Hausdorff based spaces

A1
// A2

// A3
// . . .

in which every map is a based h-cofibration, the natural map

colim
i

π∗(Ai)
∼=−→ π∗

(
colim

i
Ai

)
is an isomorphism.
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Proof. Same proof as before, we just have to explain why based h-cofibrations have to

be inclusions. If A −→ X is a based h-cofibration then the reduced cylinder X ∧ I+

retracts onto the reduced mapping cylinder (A∧I+)∪A∧{1}+X. Therefore the inclusion

of compactly generated weak Hausdorff spaces.

(A ∧ I+) ∪A∧{1}+ X ↪→ X ∧ I+

has a retract and so it is a closed inclusion. The sequence of injective maps

A× {0} ↪→ X × {0} ↪→ X ∧ I+

composes to give the same map as the composition of the closed inclusions

A× {0} ↪→ (A ∧ I+) ∪A∧{1}+ X ↪→ X ∧ I+

and so the composite is a closed inclusion, therefore the first map A ↪→ X must be

a closed inclusion. These kinds of arguments are found in many places, for instance

Lemma 1.6.2 of [MS06]. �

Moving on, a simplicial based space X• is a diagram ∆op −→ Top∗ from the opposite

of the category of finite ordered sets into based spaces. One may check that this is the

same as a based simplicial space, i.e. a simplicial space X• with a choice of map from

the final object ∗• of simplicial spaces back into X•. The geometric realization of X• is

the same space as before (∐
n

Xn ×∆n

)
/ ∼

though because the basepoints (∐
n

∗ ×∆n

)
/ ∼

all get glued to one point, we may rewrite it as(∨
n

Xn ∧∆n
+

)
/ ∼

(We check that the result is homeomorphic by comparing universal properties.) In both

cases the equivalence relation is as above:

(xn, t0, . . . , ti−1, 0, ti, . . . , tn−1) = (dixn, t0, . . . , tn−1)

(sixn, t0, . . . , tn+1) = (xn, t0, . . . , ti + ti+1, . . . , tn)

Because the definition respects the forgetful functor into unbased spaces, we get the

same results as above:

Proposition 2.3. If X• −→ Y• is a map of based simplicial spaces which are Reedy cofi-

brant as unbased simplicial spaces, and each Xn −→ Yn is a weak homotopy equivalence,

then the induced map |X| −→ |Y | is a weak equivalence as well.
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Given a diagram X : C −→ Top∗ of based spaces, we define its uncorrected (reduced)

homotopy colimit to be the realization of a simplicial based space

˜uhocolimX = B̃(X,C, ∗) =

∣∣∣∣∣∣∣
∨

c0−→
ϕ1

...−→
ϕn

cn

X(c0)

∣∣∣∣∣∣∣
Alternatively, one may use the basepoint to form a map of uncorrected unbased homo-

topy colimits

B(∗,C, ∗) ↪→ B(X,C, ∗)

and then take the quotient. When the objects X(c) are all cofibrant, this reduced

hocolim will turn out to be the left derived functor of colim, from diagrams of based

spaces to based spaces. The unreduced hocolim is in general not equivalent to the

reduced one, in particular when B(∗,C, ∗) = BC is not contractible.

Warning 2.4. It is standard practice to drop the tilde and the word “reduced” here; in

fact, we will do this when we move to spectra. The reader is encouraged to remember

that the based hocolim is usually not equivalent to the unbased hocolim.

Now our above arguments run into a small snag: the inclusion of a smaller wedge sum

into a bigger wedge sum is not always an unbased h-cofibration. We therefore get only

this weaker result:

Proposition 2.5. If each X(c) is well-based then Y• = B̃•(X,C, ∗) is a based simplicial

space which is Reedy cofibrant as an unbased simplicial space.

Theorem 2.6. A map of diagrams of based spaces X −→ X ′ inducing weak equivalences

X(c) −→ X ′(c) induces a weak equivalence of uncorrected reduced homotopy colimits

B̃(X,C, ∗) −→ B̃(X ′,C, ∗) as long as every X(c) and X ′(c) is well-based.

As before, we can conclude that the left derived functor of colim on X is equivalent

to the uncorrected reduced hocolim B̃(X,C, ∗) for every diagram X with the property

that every X(c) is well-based. Put another way, hocolims of based spaces do need to be

corrected, but it is unnecessary to make all the spaces of the diagram cofibrant. Making

them well-based is good enough. Finally, we have

Proposition 2.7. If each X(c) is well-based then the obvious maps

BC −→ B(X,C, ∗) −→ B̃(X,C, ∗)

form a homotopy cofiber sequence of unbased spaces.

Proof. Since each X(c) is well-based, growing a whisker to get wX(c) does not change

it up to weak equivalence. Examining the constructions directly gives

C(BC) ∪BC B(X,C, ∗) ∼= B̃(wX,C, ∗)
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and the above proposition tells us that collapsing the whiskers

B̃(wX,C, ∗) ∼−→ B̃(X,C, ∗)

gives a weak equivalence. �
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3. A General Approach

At this point we would like to get a bit more abstract, and condense the previous two

sections into one. This will help us streamline our thinking, and prove the corresponding

results for spectra more quickly.

To be precise, let us consider a pointed, cofibrantly generated model category D, which

is tensored over unbased spaces. This may sound like a lot of assumptions, but in

essence we are only going to use the fact that D has a notion of “weak equivalence”

and “cell” which allows us to build homotopy colimits as bar constructions and prove

their homotopy invariance in the usual way, plus a well-behaved notion of “half-smash

product” of an object d ∈ D with the n-simplex ∆n or its boundary ∂∆n. The reader is

encouraged to think of taking an unbased space K, adding a disjoint basepoint K+, and

then taking the smash product; in fact we will write the tensoring with K as − ∧K+

to reinforce this intuition.

Smashing with ∆1
+ = I+ gives a space that can be used to define homotopies. We

define an h-cofibration in D to be a map A −→ X satisfying the most obvious analogue

of the homotopy extension property. Namely, any map X −→ Y with a homotopy

A ∧ I+ −→ Y of the restriction to A can be extended to a homotopy X ∧ I+ −→ Y of

the whole map on X. By the usual argument, this is equivalent to insisting that the

inclusion

(A ∧ I+) ∪A∧{0}+ (X ∧ {0}+) −→ X ∧ I+

has a retraction. (For based spaces, this was the notion of based h-cofibration.)

Now we want to assume that there is a full subcategory D′ ⊂ D of objects on which

pushouts and colimits are homotopical. For concreteness, one may take D to be based

spaces and D′ to be well-based spaces. To be precise, we assume D′ satisfies the following

three hypotheses.

Hypothesis 3.1 (Gluing Lemma). D′ is closed under arbitrary coproducts and pushouts

in which one leg is an h-cofibration. Furthermore, if we have a map of pushout diagrams

in D′

C

∼
��

Aoo //

∼
��

B

∼
��

C ′ A′oo // B′

where the vertical arrows are weak equivalences and the maps A −→ B and A′ −→ B′

are h-cofibrations, then the map of pushouts B∪AC −→ B′∪A′C ′ is a weak equivalence.
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Hypothesis 3.2 (Colimit Lemma). If we have a map of sequential colimit diagrams in

D′

A1
//

∼
��

A2
//

∼
��

A3
//

∼
��

. . .

B1
// B2

// B3
// . . .

where the vertical arrows are weak equivalences and horizontal maps are h-cofibrations,

the map of colimits

colim
i

Ai −→ colim
i

Bi

is a weak equivalence.

Hypothesis 3.3 (Pushout-Product Lemma). If A −→ X is an h-cofibration in D′ then

(A ∧∆n
+) ∪(A∧∂∆n

+) (X ∧ ∂∆n
+) −→ (X ∧∆n

+)

is an h-cofibration in D′. Here the left-hand side is defined as a pushout in the obvious

way. In addition, the operations −∧∂∆n
+ and −∧∆n

+ preserve weak equivalences between

objects in D′.

The expert will notice that the first part of this pushout-product lemma would follow

from a more general statement that there is a “classical” model structure on D which is

topological, meaning that the pairing with unbased spaces acts on cofibrations the way

you might expect. The existence of such a structure on unbased and based spaces was

proven by Strøm, but the problem of building these structures for very general categories

D has been the subject of much interesting recent research; cf. [BR12], [Col06], [MS06].

Define simplicial objects and geometric realization of D in the usual categorical way.

We won’t go into detail on this since it is clear what to do in each example we consider.

We get the same pushout square as before

LnX ×∆n ∪LnX×∂∆n Xn × ∂∆n //

��

Xn ×∆n

��
|Skn−1X•| // |SknX•|

from the categorical definition of realization and diagram-chasing, but again we won’t

go into detail because in the case of spectra below we may simply do the space-level

argument on each spectrum level.

A simplicial object X• of D is Reedy cofibrant if the latching maps LnX −→ Xn are

all h-cofibrations. Tracing through our argument in the case of unbased spaces, we get

everything we need for the the following proposition. (We also use that cofibrations are

closed under pushouts, but that is always true of h-cofibrations.)

Proposition 3.4. If X• −→ Y• is a map of Reedy cofibrant simplicial objects of D,

each level Xn and Yn is in our chosen subcategory D′, and each Xn −→ Yn is a weak

equivalence, then the induced map |X| −→ |Y | is a weak equivalence as well.
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Finally we define an uncorrected homotopy colimit of a diagram X : C −→ D as the

geometric realization of the following simplicial object of D:

uhocolimX = B(X,C, ∗) =

∣∣∣∣∣∣∣
∐

c0−→
ϕ1

...−→
ϕn

cn

X(c0)

∣∣∣∣∣∣∣
It is straightforward to see that every object of D is h-cofibrant, and every inclusion of

a smaller coproduct into a larger one is an h-cofibration, so

Proposition 3.5. The simplicial object Y• = B•(X,C, ∗) is always Reedy cofibrant.

Notice that this does not contradict our discussion of based spaces. It says that every

based simplicial space is Reedy cofibrant, but not necessarily Reedy cofibrant as an

unbased simplicial space. Putting this all together, we get

Theorem 3.6. A map of diagrams X −→ X ′ from C to D inducing weak equiva-

lences X(c) −→ X ′(c) induces a weak equivalence of uncorrected homotopy colimits

B(X,C, ∗) −→ B(X ′,C, ∗), so long as every X(c) and X ′(c) is in our chosen subcate-

gory D′.

Model category arguments tell us that the left derived functor of colim is given by taking

cofibrant replacement of the objects QX(c) and then applying the bar construction. By

the above, this is equivalent to the uncorrected hocolim so long as every object X(c)

is in D′. This abstract framework summarizes a large part of the argument from the

previous two sections; the only work left is to actually verify the gluing lemma, colimit

lemma, and pushout-product axiom.
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4. Hocolims of Prespectra

Now we turn to prespectra, as described in [MMSS01]. One might expect this to be a

direct extension of the above results for based spaces, but miraculously, in the stable

setting the nondegenerate basepoint hypotheses actually disappear.

If A −→ X is an h-cofibration of prespectra (as in the last section), then the levels

An −→ Xn are based h-cofibrations, so one might not expect pushouts along such maps

to preserve equivalences of spectra. But they do:

Proposition 4.1. The gluing lemma holds for the entire category of prespectra.

Proof. This is sketched in [MMSS01], Thm. 7.4(iv) so we will only comment on what

goes into the proof. Clearly we cannot prove this by working upwards from pushouts of

based spaces. Instead, we use the fact that the homotopy cofiber of a map of prespectra is

equivalent to a shift of the homotopy fiber, even when those prespectra are degenerately

based. From this, we may prove that a homotopy pushout square of spectra is also a

homotopy pullback square. More importantly, such a square gives a Mayer-Vietoris

sequence on the stable homotopy groups.

Now given a weak equivalence of pushout diagrams as in the statement of the gluing

lemma, we apply the Mayer-Vietoris sequence and use the five-lemma to conclude that

the map of pushouts is a stable equivalence. �

At this point it’s worth discussing what happens to our previous counterexample. Let

X be the infinite shrinking wedge of circles, and ΓX either its CW replacement or X

with a whisker grown onto it. Then

Σ∞ΓX −→ Σ∞X

is not a π∗-isomorphism of prespectra. We may take wedges, pushouts, and hocolims

with Σ∞X, and these will have the same homotopy groups whether we take a cofibrant

replacement of Σ∞X or not beforehand, but of course the result will be different if we

use Σ∞ΓX instead. Put another way, cofibrant replacement does not commute with

Σ∞.

Proposition 4.2. The colimit lemma holds for the entire category of prespectra.

Proof. This is more general than [MMSS01], Thm. 7.4(v), but it should not be surprising

because we know the analogous result for based spaces is true. As in that case, we prove

the stronger statement

colim
i

π∗(Ai)
∼=−→ π∗

(
colim

i
Ai

)
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We consider the colimit system indexed by both the indices i and the levels k of the

prespectra.

colim
i

πn(Ai) ∼= colim
i

colim
k

πn+k((Ai)k)

∼= colim
k

colim
i

πn+k((Ai)k)

∼= colim
k

πn+k

(
colim

i
(Ai)k

)
∼= colim

k
πn+k

((
colim

i
Ai

)
k

)
∼= πn

(
colim

i
Ai

)

Taking a particular element in πn+k((Ai)k), we check that its image in πn

(
colim

i
Ai

)
under these isomorphisms is the same as that of the natural map defined earlier, so this

isomorphism is exactly the one that we expect. �

Proposition 4.3. The pushout-product lemma holds for the entire category of prespec-

tra.

Proof. It’s enough to just use the formal pairing result of Schwan̈zl and Vogt, quoted in

([MS06], Thm. 4.3.2(i)). This requires knowing that h-cofibrations of unbased spaces

are “strong,” but that comes from Strøm’s result quoted in ([MS06], Thm 4.4.4(ii)).

The fact that − ∧K preserves weak equivalences is [MMSS01], 7.4(i). �

For a simplicial prespectrum X• : ∆op −→ Prespectra, the geometric realization |X•|
and nth latching object LnX are computed levelwise. The simplicial prespectrum X•
is Reedy cofibrant if the latching maps LnX −→ Xn, n ≥ 0, are all h-cofibrations of

prespectra as defined above. The generalities from the previous section give us

Proposition 4.4. If X• −→ Y• is a map of simplicial prespectra which are Reedy

cofibrant, and each Xn −→ Yn is a stable homotopy equivalence, then the induced map

|X| −→ |Y | is a stable equivalence as well.

Given a diagram X : C −→ Prespectra, we define its uncorrected homotopy colimit

to be the realization of a simplicial prespectrum

uhocolimX = B(X,C, ∗) =

∣∣∣∣∣∣∣
∨

c0−→
ϕ1

...−→
ϕn

cn

X(c0)

∣∣∣∣∣∣∣
This is more like a reduced hocolim than an unreduced one, but we skip the tildes

because it isn’t really possible to make an unreduced hocolim of spectra (unless one

wants a parametrized prespectrum over BC). Our general framework then gives
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Proposition 4.5. The simplicial prespectrum Y• = B•(X,C, ∗) is always Reedy cofi-

brant.

Theorem 4.6. A map of diagrams of prespectra X −→ X ′ inducing stable equiva-

lences X(c) −→ X ′(c) induces a stable equivalence of uncorrected homotopy colimits

B(X,C, ∗) −→ B(X ′,C, ∗).

So the left derived functor of colim is equivalent to the uncorrected hocolim B(−,C, ∗).
Amazingly, hocolims of prespectra never need to be corrected. As a word of warning,

though, the suspension spectrum functor Σ∞ still does not preserve weak equivalences

if the inputs are not well-based.
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5. Hocolims of Orthogonal G-Spectra

Let G be a finite group, or a compact Lie group. Orthogonal G-spectra are defined in

[MM02]; they are stable objects that have an action by the group G, a notion of weak

equivalence that keeps track of fixed points, and the wonderfully useful property that

suspending by a G-representation is invertible up to equivalence.

Proposition 5.1. The gluing lemma holds for all orthogonal G-spectra.

Proof. This is [MM02], 3.5(iv) and is proven by an equivariant analogue of the same

result for prespectra. �

Proposition 5.2. The colimit lemma holds for all orthogonal G-spectra.

Proof. Again this is more general than [MM02], Thm. 3.5(v), but is not surprising. As

before, for each closed subgroup H ≤ G we prove the stronger statement

colim
i

πHn (Ai)
∼=−→ πHn

(
colim

i
Ai

)
We prove this by examining the groups{

πn
(
(ΩVAi(V ))H

)
if n ≥ 0

π0

(
(ΩVAi(V ⊕ Rn))H

)
if n < 0

These form a colimit system indexed by both i and V , as V ranges over an indexing set

of G-representations in a complete G-universe. The proof is otherwise identical to the

case of prespectra. �

Proposition 5.3. The pushout-product lemma holds for all orthogonal G-spectra.

Proof. As in the nonequivariant case, it’s enough to just use the formal pairing result of

Schwan̈zl and Vogt, quoted in ([MS06], Thm. 4.3.2(i)). This requires knowing that h-

cofibrations of unbased spaces are “strong,” but that comes from Strøm’s result quoted

in ([MS06], Thm 4.4.4(ii)). It is nontrivial to prove that − ∧ K actually preserves

G-equivalences when K is a CW-complex, but this is [MM02], III.3.11. �

Our general framework then gives

Theorem 5.4. A map of diagrams of orthogonal G-spectra X −→ X ′ inducing G-

equivalences X(c) −→ X ′(c) induces a G-equivalence of uncorrected homotopy colimits

B(X,C, ∗) −→ B(X ′,C, ∗).

Therefore genuine G-equivalences of spectra are preserved by uncorrected homotopy

colimits, so the left derived functor of colimit is given by applying the Bousfield-Kan

formula B(X,C, ∗) directly to X. In the short companion to these notes “Fixed points

and colimits” we use this to show that the genuine fixed points functor commutes with
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hocolims of G-spectra up to equivalence, and geometric fixed points commute with

hocolims on the nose, provided that we use the uncorrected bar construction to build

our hocolims. This is the last standard fact that we have aimed to prove, so our work

here is complete.
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