
FUNDAMENTAL THEOREMS FOR THH

CARY MALKIEWICH

In this expository note we give illustrated proofs of three “fundamental theorems” for topo-
logical Hochschild homology (THH) of ring spectra and spectral categories.

• Morita invariance: THH is unchanged when we pass from a spectral category to its
thick closure (Theorem 2.1).
• Homotopy invariance: weak equivalences of spectral functors give homotopic maps

on THH (Theorem 5.3).
• Additivity: cofiber sequences of spectral functors split after applying THH (Theo-

rem 6.3 and Theorem 6.9).

We also deduce some standard corollaries: THH preserves products (Proposition 2.5), the
existence of the Dennis trace map (in the discussion after Theorem 6.9), and the THH
version of the Eilenberg swindle (Corollary 6.4).

The localization theorem from [BM12] also deserves to be here, but the author has not yet
spent enough time with it so it will have to wait until a future version.

Our perspective on these proofs was developed during the writing of [CLM+a],1 but the
ideas are older than that. Many of them go back to the origins of THH with Waldhausen
and Dennis [Wal79]. They were subsequently developed by Dundas and McCarthy [DM96],
Blumberg and Mandell [BM12], and many others [BGT13, HS18, CP19]. These results
also have conceptually similar but technically distinct proofs for THH of small stable ∞-
categories, see for instance [BGT13, HS18].

1. Definitions

Throughout, the word “spectra” will refer to orthogonal spectra (see e.g. [MMSS01, Sch07]),
but any well-behaved symmetric monoidal category of spectra will do.

A spectral category C is a (small) category enriched in spectra. We write the composition
from left to right, because this is more natural when thinking about bar constructions. So
in detail, a spectral category C consists of a set of objects (obC), a spectrum C(a, b) for
every pair of objects a, b ∈ obC, and composition maps

C(a, b) ∧ C(b, c)→ C(a, c)

that are associative and unital.

Example 1.1. • A ring spectrum A is the same thing as a spectral category with
just one object.

1Many thanks to my co-authors for sharing their wisdom and helping to develop these awesome pictures.
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• If A is a ring spectrum, there is a spectral category AMod whose objects are left
A-module spectra M . The mapping spectrum AMod(M,N) is the derived spectrum
of A-linear maps from M to N , so it has the homotopy type of the A-linear mapping
spectrum FA(M,N) when M and N are cofibrant and fibrant.

The underlying category C0 is obtained by restricting to spectrum level 0 and forgetting
the topology. The homotopy category π0C is obtained by taking π0 of all the mapping
spectra C(a, b), giving a category enriched in abelian groups.

A left module M over a spectral category C is an assignment of each object a ∈ obC to
a spectrum M(a), and multiplication maps

C(a, b) ∧M(b)→M(a)

that are associative and unital. A right module is defined similarly. We represent left and
right modules as a vertex with a single line coming out, as in Figure 1.2.

M

C

(a) Left module

M

C

(b) Right module

M

C

N

(c) Bar construction B(M ;C;N)

Figure 1.2

If M and N are a left and a right module over C, respectively, then the two-sided bar
construction B(M ;C;N) is the realization of the simplicial spectrum that at level n is∨

c0,...,cn∈obC
M(c0) ∧ C(c0, c1) ∧ C(c1, c2) ∧ . . . ∧ C(cn−1, cn) ∧N(cn).

The face maps compose the mapping spectra and the degeneracies insert units. We represent
bar constructions by connecting the lines for the two modules together, see Figure 1.2.

If C and D are spectral categories, a (C,D)-bimodule is an assignment of each ordered
pair (c, d) ∈ obC × obD to a spectrum M(c, d), multiplication maps

C(c, c′) ∧M(c′, d)→M(c, d), M(c, d) ∧D(d, d′)→M(c, d′)

that are associative and unital, and the additional “associativity” condition that the two
composites

C(a, b) ∧M(b, d) ∧D(d, e) ⇒M(a, e)

are equal. (In other words, the two actions commute with each other.)

If M is a (C,D)-bimodule and N is a (D,E)-bimodule then we can form the collection of
two-sided bar constructions

B(M(c,−);D;N(−, e)), (c, e) ∈ obC × obE.

Since the C and E actions on the outside commute with the D action, they make this
collection of spectra into a (C,E)-bimodule that we denote B(M ;D;N). We depict these
bimodules and bar constructions using vertices with two lines coming out, see Figure 1.3.
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(a) Bimodules
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(b) A bar construction with bimodules

Figure 1.3

There is a canonical (C,C)-bimodule whose spectra are just the mapping spectra C(a, b),
and whose actions come from the composition of C. We call this bimodule C by abuse of
notation. The following lemma is a standard result about bar constructions and can be
proven by an explicit simplicial homotopy.

Lemma 1.4 (Bar lemma). For any (C,D)-bimodule M there are canonical equivalences of
(C,D)-bimodules

B(C;C;M)
∼ // M, B(M ;D;D)

∼ // M

that simply compose all the mapping spectra in C or D into M .

In pictures, this means that a vertex labeled by the bimodule C can simply be deleted
without changing the picture, see Figure 1.5.

C

C

C

M

D
=

C

M

D

Figure 1.5. The bar lemma.

We can also tensor bimodules to themselves, if the same category acts on both sides. If
M is a (C,C)-bimodule then the cyclic bar construction, or topological Hochschild
homology THH(C;M), is the realization of the simplicial spectrum that at level n is∨

c0,...,cn∈obC
C(c0, c1) ∧ C(c1, c2) ∧ . . . ∧ C(cn−1, cn) ∧M(cn, c0).

We draw this as a circle with a vertex for M , as in Figure 1.6. Motivated by Figure 1.5,
if the bimodule is C itself, we write this as THH(C) = THH(C;C) and remove the vertex
from the picture.

M

C

(a) THH(C;M)

C

(b) THH(C)

Figure 1.6
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Throughout this note we assume that the mapping spectra of C are nice enough that these
bar constructions agree with their left-derived functors. For instance, it is enough if each
spectrum in C, M and N is cofibrant in the stable model structure on orthogonal spectra,
or more generally in the flat model structure. Any spectral category, module, or bimodule
can have its mapping spectra cofibrantly replaced so that this is true.

Remark 1.7. Spectral categories do not have nerves. The reason is that the terminal
object in spectra ∗ is not equivalent to the unit object S. In fact, smashing with the zero
spectrum ∗ returns the zero spectrum ∗, and so

B(∗;C; ∗) ' ∗.
This is why we focus instead on two-sided bar constructions B(M ;C;N) and the cyclic
nerve THH(C;C).2

A functor of spectral categories F : C → D is a map on object sets and on mapping spectra

C(a, b)→ D(F (a), F (b)),

respecting composition and units. For one-object categories, this is the same thing as a ring
homomorphism.

For a left D-module M we let FM denote the pullback along F , a C-module whose value
at each c ∈ obC is M(F (c)) and whose C-action is through the homomorphism F . We can
similarly define pullbacks on the right MF or on both sides FMF .

It is easy to see from the definition that F induces a map on THH

THH(C)→ THH(D).

More generally, F induces a map of cyclic bar constructions

THH(C; FMF )→ THH(D;M)

for any (D,D)-bimodule M , and a map of bar constructions

B(MF ;C; FN)→ B(M ;D;N)

for any D-modules M and N .

For any functor F : C → D, if we pull back the canonical (D,D)-bimodule D, we call the
resulting bimodule FD the base-change bimodule for F . It is a (C,D)-bimodule whose
value at (c, d) is the spectrum D(F (c), d). We similarly get a base-change bimodule on the
other side DF , and a double base-change bimodule FDF . We illustrate these bimodules in
our diagrams by an arrow rather than a vertex, see Figure 1.8.

We illustrate more general pullbacks FM by putting an arrow next to M as in Figure 1.9.
This is consistent because by the bar lemma

B(FD;D;M) ' FM.

It also explains the terminology of “base-change bimodule” – multiplying by a base-change
bimodule has the effect of pulling back M .

2More generally, enriched functors do not have colimits or homotopy colimits. They only have weighted
colimits and homotopy colimits [Kel82, Shu06]. For spectral categories, the weighted homotopy colimit of a
diagram M with weights given by N is precisely the two-sided bar construction B(M ;C;N).
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Figure 1.8
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(a) FM ' B(FD;D;M)

Figure 1.9

A Dwyer-Kan embedding is a functor C → D in which each of the maps C(c, d) →
D(Fc, Fd) is a (stable) equivalence of spectra.

If C is a spectral category, then the collection of all left or right modules over C forms
another spectral category with derived mapping spectra between them. There is a Dwyer-
Kan embedding of C into left C-modules

C → CMod

sending a ∈ obC to the “representable” left module C(−, a). It is not a stretch to call this
the Yoneda embedding. Similarly, Cop embeds into all right C-modules

Cop → ModC

by sending a to the right module C(a,−). One should think of these representable modules
as the “free rank one modules” over the “ring” C.

An important special case is when C has one object, so it is a ring spectrum A = C(a, a).
Then this is the embedding of A into its category of left modules, sending the unique object
to the free rank one left module A, and sending each element a ∈ A to the endomorphism
of A that multiplies on the right by a.

There are three distinct notions of “equivalence” of spectral categories, in increasing order
of generality:

• F : C → D is a pointwise equivalence if it is a Dwyer-Kan embedding and is the
identity on the object sets.
• F : C → D is a Dwyer-Kan equivalence if it is a Dwyer-Kan embedding and

induces an equivalence of homotopy categories π0C
∼−→ π0D.

• F : C → D is a Morita equivalence if it is a Dwyer-Kan embedding and is sur-
jective up to thick closure.

The last point requires further explanation. F is surjective up to thick closure if, after
embedding into the category of modules over D, D is obtained from the image of C by
taking retracts, cofibers, fibers, and extensions. To be concrete, it is enough to show that
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for each object d ∈ obD, the set {Fc : c ∈ obC} can be enlarged to contain d by a finite
sequence of steps of the following form.

• Take a retract in π0D of an object already in the set and add it to the set.
• Take a pair of composable morphisms d → d′ → d′′ in the underlying category D0

such that the induced maps of modules

D(d′′,−)→ D(d′,−)→ D(d,−), D(−, d)→ D(−, d′)→ D(−, d′′)
can be extended up to equivalence to cofiber sequences of modules, and two of the
objects d, d′, and d′′ are already in the set; add the third object to the set.

Example 1.10. • Cofibrant replacement of spectral categories is an example of point-
wise equivalence. For any spectral category C, there is another spectral category
C ′ on the same objects and a pointwise equivalence C ′ → C. In other words, each
map C ′(a, b)→ C(a, b) is an equivalence of spectra.
• Restricting C to a skeleton (a full subcategory with one object in each isomorphism

class in π0C) is an example of a Dwyer-Kan equivalence.
• A module P over a ring spectrum A is perfect if it is obtainable from the free

rank-one module by finite sums, cofibers, and retracts. Let APerf ⊆ AMod denote
the full subcategory on those A-modules that are perfect. Then the restriction of
the Yoneda embedding to A→ APerf is an example of a Morita equivalence.

2. Morita invariance

Our first main theorem is that THH respects all three of the above notions of equivalence.
Since we have the implications

pointwise equivalence ⇒ Dwyer-Kan equivalence ⇒ Morita equivalence,

it suffices to prove that THH respects Morita equivalences.

Theorem 2.1 (e.g. [BM12, 6.4]). If F : C → D is a Morita equivalence of spectral categories
then the map

THH(C)→ THH(D)

induced by F is an equivalence of spectra.

More generally, if F is a Morita equivalence then for any (D,D)-bimodule Q, the map

THH(C; FQF )→ THH(D;Q)

induced by F is an equivalence, as is every map of two-sided bar constructions

B(MF ;C; FN)→ B(M ;D;N).

Remark 2.2. We are assuming that the mapping spectra are nice enough that THH pre-
serves pointwise equivalences. So really, as soon as you arrange things so that THH preserves
pointwise equivalences, then it also preserves Morita equivalences.

Before we explain the proof, let’s list some consequences.

Corollary 2.3. The embedding of A into APerf induces an equivalence on THH:

THH(A)
∼−→ THH(APerf).
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Two ring spectra are Morita equivalent if their categories of perfect modules are Dwyer-Kan
equivalent.

Corollary 2.4. If A and B are Morita equivalent then

THH(A) ' THH(B).

In particular, THH(A) ' THH(Mn(A)), where Mn(A) = FA(A∨n, A∨n) ∼=
∏n∨nA is the

ring of n× n matrices in the ring spectrum A.

Another surprising corollary involves the product of two spectral categories. Given two
spectral categories C and D, define C ×D to have object set obC × obD, and morphisms
from (c, d) to (c′, d′) given by the product C(c, c′)×D(d, d′).

We similarly define the smash product category C ∧ D to have objects obC × obD and
morphisms the smash product C(c, c′)∧D(d, d′). It is not hard to check that THH respects
smash products:

THH(C ∧D) ∼= THH(C) ∧ THH(D).

It is much more surprising that THH also respects Cartesian products.

Proposition 2.5. cf. [DGM13, 1.4.4] Assuming obC and obD are nonempty,3 the projec-
tion functors C ×D → C, C ×D → D induce an equivalence

THH(C ×D)
∼−→ THH(C)× THH(D).

In particular, THH of a product ring decomposes into THH of the factors.

To prove Proposition 2.5 we introduce the wedge and zero objects for spectral categories.
C has a zero object ∗ if

C(∗, c) ∼= C(c, ∗) ∼= ∗,
in other words the spectrum of maps in or out of ∗ is the zero spectrum, for all objects
c ∈ obC. Given a spectral category C we let C+ denote the category obtained by adding
an extra zero object. It is easy to see that the inclusion C → C+ induces an isomorphism
of spectra

THH(C) ∼= THH(C+).

For two spectral categories C and D, we define the wedge C+ ∨ D+ to have object set
obC q {∗} q obD, mapping spectra coming from C or D if both objects are in the same
category, and zero otherwise. It is also easy to see that the inclusions C,D → C+ ∨ D+

induce an isomorphism

THH(C) ∨ THH(D) ∼= THH(C+) ∨ THH(D+) ∼= THH(C+ ∨D+).

Finally, we check that the inclusions

C+ ∨D+ → C+ ×D+ ← C ×D
are Morita equivalences. It is clear they are Dwyer-Kan embeddings. The first one is
surjective up to thick closure because every object (c, d) in the product fits into a cofiber
sequence with the objects (c, ∗) and (∗, d) coming from the wedge. The second one is
surjective up to thick closure because each (c, ∗) or (∗, d) is a retract of some object (c, d).4

3Note that if a spectral category has empty object set then its THH is the zero spectrum ∗.
4This is where we use the assumption that obC and obD are nonempty.
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Therefore by 2.1, the maps marked ∼ below are equivalences.

THH(C) ∨ THH(D) oo
∼= // THH(C+ ∨D+)

∼ // THH(C+ ×D+) // THH(C+)× THH(D+)

THH(C ×D) //

∼
OO

THH(C)× THH(D)
��
∼=

OO

The composite THH(C) ∨ THH(D) → THH(C) × THH(D) is just the inclusion of the
wedge into the product, so it is an equivalence of spectra. Therefore the remaining maps
are equivalences too, proving Proposition 2.5.

3. Proof of Morita invariance

The first step is to define the map of cyclic bar constructions depicted in Figure 3.1. Intu-
itively, we’re applying F to the circle bit by bit, rather than doing it all at once.

C

FF

C

D ∼

FF

C

D D

Figure 3.1

Focusing on the part of the circle where the action is, we get maps of bimodules depicted in
Figure 3.2. Again, each one applies F to a segment in C to create a segment in D. To prove
that the entire composite is an equivalence, is suffices to show that each of these maps is
an equivalence of bimodules.

C C

F

D

F

C

D

F

C

F

D D

Figure 3.2

Lemma 3.3. If F is a Morita equivalence, in other words a Dwyer-Kan embedding that is
surjective up to thick closure, then the map of (C,C)-bimodules

C → FDF ,

and the map of (D,D)-bimodules

B(DF ;C; FD)→ B(D;D;D) ' D
induced by F are both equivalences of bimodules.
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Proof. For the first one, if suffices to show that each map C(c, c′) → D(Fc, Fc′) is an
equivalence, but this follows by definition because F is a Dwyer-Kan embedding.

For the second one, we need to show for each d, d′ ∈ obD that

(3.4) B(D(d,−);C;D(−, d′)) // D(d, d′)

is an equivalence. If d = Fc and d′ = Fc′ are in the image of F , then we get the commuting
square

B(C(c,−);C;C(−, c′))

∼
��

∼ // C(c, c′)

∼
��

B(D(Fc,−);C;D(−, F c′)) // D(Fc, Fc′).

The vertical maps are equivalences since F is a Dwyer-Kan embedding and the top is an
equivalence by the bar lemma. Hence the bottom is an equivalence too. This proves that
(3.4) is an equivalence for some of the pairs of objects in D.

But recall that F is surjective up to thick closure. Therefore every other object in D can be
obtained from these objects by retracts and cofiber sequences, and these induce retracts and
cofiber sequences in both the source and target of (3.4). Therefore by a standard induction
up cofiber sequences, (3.4) is an equivalence for every pair of objects in D. �

The second step of the proof is to write down the map on THH corresponding to the picture
in Figure 3.1, and prove that it is homotopic to the desired map THH(C)→ THH(D) coming
from F . The following lemmas are the essential tools here.

Lemma 3.5 (Dennis-Waldhausen-Morita argument). For each (C,D)-bimodule M and a
(D,C)-bimodule N , there is a natural “rotator” isomorphism

THH(C;B(M ;D;N)) ∼= THH(D;B(N ;C;M)).

Proof. Both sides are the realization of a bisimplicial spectrum in which level (m,n) is∨
c0,...,cm∈obC

d0,...,dn∈obD

C(c0, c1)∧. . .∧C(cm−1, cm)∧M(cm, d0)∧D(d0, d1)∧. . .∧D(dn−1, dn)∧N(dn, c0).

�

Lemma 3.6. If M is a (D,D)-bimodule then the collapse maps B(D;D;M) → M and
B(M ;D;D)→M and the rotator isomorphism fit into a diagram

THH(D;B(D;D;M))

∼
))

oo
∼= // THH(D;B(M ;D;D))

∼
uu

THH(D;M)

that commutes up to homotopy.

Proof. The diagram does not commute strictly because different simplicial directions are
collapsed away. One can write down an explicit simplicial homotopy as in [LM19, 5.6]
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or [Lin13]. Alternatively, one can interpret all three of these constructions as left-derived
functors of the operation that takes each bimodule M to the spectrum M/D defined as the
coequalizer ∨

d,d′∈obD
D(d′, d) ∧M(d, d′) ⇒

∨
d,d′∈obD

M(d, d′)→M/D.

Each of three maps we defined between them lies over the identity of M/D, hence both
routes in the diagram are maps of left-derived functors of M/D. But left-derived functors
are unique in the homotopy category of functors over M/D, hence the two routes must
agree in the homotopy category of functors. Therefore they agree up to homotopy for any
one particular bimodule M . See e.g. [Shu06, Mal19] for more details. �

Remark 3.7. These lemmas are part of the verification that our circle diagrams can be
used in rigorous proofs. If we draw a circle studded with several bimodules, then there
are several ways to interpret it using THH and the two-sided bar construction, but all
these representations are equivalent to each other. See for instance Figure 3.8. This can
be captured formally by the idea that THH is a shadow or a trace theory on spectral
categories and bimodules, see [Pon10, PS13]. And not only are all the interpretations of
each picture equivalent, but any two equivalences obtained by expanding and collapsing bar
constructions, or rotating the circle, are in fact homotopic [MP18].

C

M

D

N

∼

D

N

C

M

Figure 3.8

Now we can write down the maps on THH corresponding to our picture in Figure 3.1. They
form the right-hand route in the following diagram. Again, the intuition is that they apply
F to the circle in stages, turning each C into a D.

(3.9) THH(C;C)

∼
��

THH(C; FDF )

��

THH(C;B(FD;D;DF ))
∼oo

∼=
��

THH(D;D) THH(D;B(DF ;C; FD))
∼oo

The composite of the vertical maps on the left is the map on THH induced by F . The square
commutes up to homotopy – mapping everything forward to D, this reduces to Lemma 3.6.

The maps marked ∼ are equivalences by Lemma 3.3 and the bar lemma (Lemma 1.4). Hence
the remaining map is also an equivalence. Therefore the composite along the left-hand side,
in other words the map induced by F , is an equivalence. This proves the Morita invariance
of THH (Theorem 2.1).
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For coefficients in a module Q, we instead see that the following square commutes up to
homotopy.

(3.10) THH(C; FQF )

��

THH(C;B(FQ;D;DF ))
∼oo

∼=
��

THH(D;Q) THH(D;B(DF ;C; FQ))
∼oo

The top map is an equivalence by the bar lemma. The bottom map B(DF ;C; FQ) → Q
is an equivalence by the same inductive argument as in Lemma 3.3. Alternatively, we can
rearrange the map as follows and use Lemma 3.3 directly to conclude it is an equivalence.

B(DF ;C; FQ) B(DF ;C;B(FD;D;Q))
∼oo oo

∼= // B(B(DF ;C; FD);D;Q)
∼ // B(D;D;Q)

∼ // Q.

At any rate, this proves that the map induced by F (the left-hand edge) is an equivalence.
The corresponding picture is shown in Figure 3.11.

F
Q

F

C

D ∼

F

Q

F

C

D ∼

D

Q

Figure 3.11

4. Interpretation by traces

Before we move on, it is useful to make the previous proof more conceptual. The idea is
that the map on THH induced by F agrees with a certain non-commutative “trace map,”
and that the bimodule FD is “invertible.” Then the theorem follows because the trace of
an invertible object is always invertible.

To simplify notation, we use a circle dot to represent bar constructions, and double angle
brackets to represent cyclic bar constructions:

M �D N = B(M ;D;N), 〈〈M〉〉D = THH(D;M)

So for instance the Dennis-Waldhausen-Morita argument can be written as

〈〈M �D N〉〉C ∼= 〈〈N �C M〉〉D
or more simply as

〈〈M �N〉〉∼= 〈〈N �M〉〉

if the spectral categories C and D are understood.
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Let C and D be spectral categories. We say the (C,D)-bimodule M is dualizable over D
(or dualizable on the right) if there is a (D,C)-bimodule M∗, a “coevaluation” map in the
homotopy category of (C,C)-bimodules

coev: C →M �DM∗

and an “evaluation” map in the homotopy category of (D,D)-bimodules

ev: M∗ �C M → D

such that the following composites give identity maps in the homotopy category of bimod-
ules:

M ' C �C M
coev�1 // M �DM∗ �C M

1�ev // M �D D 'M

M∗ 'M∗ �C C
1�coev // M∗ �C M �DM∗

ev�1 // D �DM∗ 'M∗

These are called the “triangle identities.” See Figure 4.1. Of course these triangle identities
could be written in the bar construction notation, it is just more cumbersome to read:

M ' B(C;C;M)
coev // B(B(M ;D;M∗);C;M) ∼= B(M ;D;B(M∗;C;M))

ev // B(M ;D;D) 'M

M∗ ' B(M∗;C;C)
coev // B(M∗;C;B(M ;D;M∗)) ∼= B(B(M∗;C;M);D;M∗)

ev // B(D;D;M∗) 'M∗

C

M

D

coev

C

M

D

M∗

C

M

D

ev

C

M

D

D

M∗

C

coev

D

M∗

C

M

D

M∗

C

ev

D

M∗

C

Figure 4.1

This is like duality in a symmetric monoidal category, except that the tensor product is
not commutative, so we are not free to switch terms past each other. However, if we use a
cyclic bar construction, then the Dennis-Waldhausen-Morita argument allows us to rotate
a module on one end around to the other end (Figure 3.8).

It turns out, this is just enough structure to define a trace. The trace of (the identity map
of) M is the composite described by the following symbols, or by the pictures in Figure 4.2.

〈〈C〉〉 coev // 〈〈M �M∗〉〉 oo
∼= // 〈〈M∗ �M〉〉 ev // 〈〈D〉〉

We give an equivalent picture in Figure 4.3. The author prefers this one because it gives
the intuition that M and M∗ are a “particle-antiparticle pair” that are created at the top,
travel around the circle to the bottom, and then collide and are annihilated.

We say the (C,D)-bimodule M is invertible if it is dualizable on the right and its co-
evaluation and evaluation maps are both equivalences of bimodules (i.e. isomorphisms in
the homotopy category). In particular, tensoring M with M∗ gives back either C or D,
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C

coev

C

M

D

M∗

∼

D

M∗

C

M

ev

D

Figure 4.2

C

coev

C

M

D

M∗

∼

C

M∗

D

M

ev
D

Figure 4.3

depending on which side the tensoring is performed. If M is invertible then its trace is an
equivalence of spectra, because each of the three steps is an equivalence.

Lemma 4.4. [Pon10, Appendix][PS12, Lem. 7.6] For any spectral functor F : C → D, the
base-change bimodule FD is dualizable on the right (over D). If in addition F is a Morita
equivalence then the bimodule FD is invertible.

Proof. The coevaluation and evaluation maps are essentially the maps induced by F that
we considered in Lemma 3.3. For the first triangle identity it suffices to show the outside
route of the following diagram gives the identity of FD. The unlabeled maps collapse bar
constructions and all the regions commute, proving the first triangle identity. The second
one is similar.

B(B(FD;D;DF );C; FD)

∼
��

oo
∼= // B(FD;D;B(DF ;C; FD))

B(1;1;ev)
��

B(C;C; FD)

B(coev;1;1)
44

B(F ;1;1) //

∼
**

B(FDF ;C; FD)

��

B(FD;D;D)

∼
ss

FD

By Lemma 3.3, if F is a Morita equivalence then the coevaluation and evaluation maps are
equivalences, hence by definition FD is invertible. �

The discussion beneath (3.9) proves:

Lemma 4.5. For any spectral functor F : C → D, the trace of the identity of FD is
homotopic to the map THH(C)→ THH(D) induced by F .
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If F is a Morita equivalence, then FD is invertible, hence its trace is an equivalence of
spectra (an isomorphism in the homotopy category). This is the conceptual proof of the
Morita invariance of THH (Theorem 2.1).

For the case with coefficients, we have to generalize the trace to handle coefficients. Let
P be a (C,C)-bimodule and let Q be a (D,D)-bimodule. Given a right dualizable (C,D)-
bimodule M , we can take the trace of any map in the homotopy category

ϕ : P �C M →M �D Q

by the rule

〈〈P〉〉 coev // 〈〈P �M �M∗〉〉 oo
∼= // 〈〈M∗ � P �M〉〉

φ // 〈〈M∗ �M �Q〉〉 ev // 〈〈Q〉〉.

This gives a map in the homotopy category THH(C;P )→ THH(D;Q). See also Figure 4.6.

P

C

coev
P

C

M

D

M∗

ϕ
Q

C

M∗

D

M

ev
Q

D

Figure 4.6

Continuing to let Q be a (D,D)-bimodule, let

• M = FD,
• P = FQF = FD �Q�DF ,

and let φ be the map

(4.7) (FD �Q�DF )� (FD)
1�1�ev // (FD)� (Q).

Then the trace of φ is depicted in Figure 4.8.

F

Q

F

D

C

coev

F

Q D

F

F

F

C

ev F

Q

F

D

C

ev
Q

D

Figure 4.8

The first two maps cancel by the triangle identity, leaving us with the map we depicted
earlier in Figure 3.11. Therefore our argument in the previous section (the homotopy
commutativity of (3.10)) actually proves:
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Lemma 4.9. The trace of (4.7) as a twisted self-map of FD, is homotopic to the map

THH(C; FQF )→ THH(D;Q)

induced by F .

If F is a Morita equivalence then (4.7) is an equivalence by Lemma 3.3, hence its trace
is an equivalence. This is a more elaborate, but more conceptual, way of proving Morita
invariance with coefficients.

One upshot of approaching the subject this way is that we can understand how various maps
on categories of perfect modules translate across the equivalence THH(A) ' THH(APerf).
Suppose A and B are ring spectra, and M is an (B,A)-bimodule that is dualizable over
B. (This is equivalent to asking that M be perfect as a left B-module, after forgetting the
A-action.) Then tensoring with M defines a functor

M ∧A − : APerf→ BPerf.

We might wonder what the effect of this is on THH, after simplifying down to THH(A)→
THH(B). It turns out it is exactly the trace of (the identity map of) M :

Proposition 4.10. The following diagram commutes up to homotopy:

THH(APerf)
M∧A− // THH(BPerf)

THH(A)

∼
OO

tr (idM ) // THH(B)

∼
OO

This was proven directly in [LM19] and more conceptually in [CP19]. The conceptual proof
is awesome: by Lemma 4.5, the map on the top and the Morita equivalences on the sides are
all given by traces. It follows formally that their composite must also be a trace, hence the
map along the bottom is the trace of something. It remains to walk through the definitions
and to see that it is just the trace of idM .

5. Homotopy invariance

Definition 5.1. A natural transformation η of two spectral functors F,G : C → D is an
assignment of each object a ∈ obC to a morphism η(a) : Fa → Ga in the underlying
category D0, satisfying the enriched naturality condition: for each pair a, b ∈ obC, the
following square of spectra commutes.

C(a, b)

G
��

F // D(Fa, Fb)

η(b)◦−
��

D(Ga,Gb)
−◦η(a)

// D(Fa,Gb)

We say η is a natural isomorphism if each η(a) is an isomorphism. The following is then a
corollary of the Morita invariance theorem.
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Corollary 5.2. If F and G are naturally isomorphic then they induce homotopic maps on
THH.

Proof. Let I = {0 ↔ 1} denote the category with two objects and just one isomorphism
between them. Similarly let C × I denote the spectral category with objects the pairs
(a, i) ∈ obC × {0, 1} and morphism spectra (C × I)((a, i), (b, j)) = C(a, b). We can check
that a natural isomorphism between F and G gives a functor C × I → D such that the
inclusion of each copy of C gives F and G, respectively. Clearly both inclusions C → C × I
and the projection C × I → C are Dwyer-Kan equivalences, so by by Theorem 2.1 they
induce equivalences on THH, as shown below.

THH(C)

∼

))

F

,,
THH(C) THH(C × I)

∼oo // THH(D)

THH(C)

∼

55

G

22

Therefore, in the homotopy category F and G both induce the same map as the zig-zag
along the center row of the diagram. Therefore they are homotopic. �

More generally, we say that the natural transformation η is a weak equivalence if each of
the maps of spectra

D(d, Fa)
η(a)◦−→ D(d, Fb), D(Ga, d)

−◦η(a)→ D(Fa, d)

is an equivalence. In this case the maps induced by F and G are still homotopic:

Theorem 5.3 (Homotopy invariance). If F and G are naturally weakly equivalent then
they induce homotopic maps on THH.

Morally, this is also a consequence of the Morita invariance theorem. However, on a technical
level, the above proof does not work here. It would require replacing C × I with C × [1],
where [1] = {0 → 1} is the category with one arrow that is not an isomorphism. It is not
hard to show that

THH(C × [1]) ' THH(C) ∨ THH(C),

and so on THH this does not induce a homotopy between the two maps given by F and G.
(In fact, it induces nothing more than the original two maps!) So C× [1] is not Dwyer-Kan
or Morita equivalent to C, and the proof fails.5

Remark 5.4. The cyclic nerve does not send natural transformations to homotopies, unlike
the ordinary nerve. In other words, both kinds of nerve send equivalences of categories to
homotopy equivalences, but this generalizes in different directions (to adjunctions for the
ordinary nerve, and to Morita equivalences for the cyclic nerve).

5The existence of such a homotopy would also imply THH(SPerf) ' ∗, since there is a natural trans-
formation from zero to the identity on the spectral category SPerf. But this contradicts the fact that
THH(SPerf) ' THH(S) ' S 6' ∗.
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One could say the above argument fails because it doesn’t use weak equivalences in any
way. To fix this, instead of replacing C by C × [1], replace D by a category that looks
like Hom([1], D). This fails to be Dwyer-Kan equivalent to D, as it must, because of the
counterexamples above. But, if we restrict to those arrows in D that are weak equivalences,
we get a smaller category w1D that is Dwyer-Kan equivalent to D. Then we can dualize
the above proof to show Theorem 5.3.

To define this Hom category, we take the objects to be arrows a→ b in D0. The spectrum
of maps from the arrow (a→ b) to the arrow (c→ d) is given by the homotopy pullback

D(a, c)×hD(a,d) D(b, d) = D(a, c)×D(a,d) D(a, d)I ×D(a,d) D(b, d).

Intuitively, a point in this mapping spectrum is a map from a to c, a map from b to d, and
a homotopy making the square commute:

a //

��

c

��
b // d

We then compose mapping spectra by composing the maps along the top and bottom of
the square, and concatenating the paths.

There is a small technical problem here. This does not define a spectral category, because
the composition of these paths is not associative. This is the same issue that occurs with
the loop space ΩX. As in that case, the composition of these paths is only associative up
to homotopy.

One way to fix this is to force the path to be length zero, in other words use the strict
pullback

D(a, c)×D(a,d) D(b, d).

This defines a spectral category that we call the strict end, Hom([1], D).

We could also fix this by a variant of the Moore path construction, letting the length of
the path vary and requiring that the path be constant when it is length zero. This makes
the composition strictly associative, so that we get an honest-to-god spectral category, but
the mapping spectra are equivalent to the homotopy pullback described above, so we know
their homotopy type. We call this construction the Moore end, F ([1], C).

More generally, we can define the strict end Hom(I, C) and Moore end F (I, C) for any
small category I and spectral category C. In both cases the objects are the I-diagrams in
C0. In the Moore end, the mapping spectra are given by a homotopy end of two diagrams,
so a point in such a spectrum is a map at each object of I, a homotopy for each arrow of I,
a 2-simplex of maps for each composable pair of arrows of I, and so on. The strict end is
the same except that all the homotopies have length zero, so everything strictly commutes.

We can black-box the construction of F (I, C) and just use the following facts about it:

• It is both a functor of C and a contravariant functor of I, i.e. a functor on the
product category Catop × SpCat→ SpCat.
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• It receives a natural map from the strict end which is the identity on objects (so
the object set is the collection of I-diagrams in C0).

• When I = [0] is the one-point category we get C = Hom([0], C)
∼−→ F ([0], C).

• More generally, when I = [k] = {0→ · · · → k} the mapping spectrum between two
diagrams φ, γ : [k]→ C0 is naturally equivalent to the homotopy limit of the zig-zag

C(φ(0), γ(0))

((

C(φ(1), γ(1))

vv ((

· · · C(φ(k), γ(k))

vv
C(φ(0), γ(1)) · · ·

• Even more generally, when I is a product of categories of the form [k], the mapping
spectra of F (I, C) are are the homotopy limit of the corresponding grid of zig-zags.

Proof of Theorem 5.3. Given two functors F,G : C → D and a weak equivalence η : F ⇒ G,
they define a map

C → Hom([1], D)→ F ([1], D).

This lands in the full subcategory w1D on those arrows in D that are weak equivalences.
We check using the homotopy pullback axiom for the Moore end that both of the projec-
tions w1D ⇒ D and the inclusion of identity morphisms D → w1D are all Dwyer-Kan
equivalences. Therefore we get the commuting diagram

THH(D)
55

∼

THH(C) //

F

22

G
,,

THH(w1D) oo
∼

THH(D)

THH(D)
))

∼

and deduce that the maps induced on THH by F and G are homotopic. �

6. Additivity

Now we are ready for the additivity theorem. Roughly, additivity says that any time three
functors F1, F2, F3 : C → D form a cofiber sequence F1 → F2 → F3, the map THH(C) →
THH(D) induced by F2 is homotopic to the sum of the maps induced by F1 and F3.

To make this precise, we need a notion of cofiber sequence for functors of spectral categories.
The following framework is a convenient one.

Recall that a Waldhausen category is a category C0 with cofibrations and weak equiva-
lences such that

(1) every isomorphism is both a cofibration and a weak equivalence,
(2) there is a zero object ∗ and every object is cofibrant,
(3) C0 has all pushouts along cofibrations (homotopy pushouts),
(4) the pushout of a cofibration is a cofibration, and
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(5) a weak equivalence of homotopy pushout diagrams induces a weak equivalence of
pushouts.

In particular, it is a category that has a notion of cofiber sequence. A cofiber sequence is a
pushout square of the following form (horizontal maps are cofibrations).

(6.1) a

��

// // b

��
∗ // // c

An exact functor C0 → D0 is a functor preserving the zero object, the cofibrations and
weak equivalences, and the pushouts along cofibrations. In particular it preserves these
cofiber sequences.

Following [CLM+a], we define a spectral Waldhausen category to be a spectral category
C and a Waldhausen category C0 on the same objects. It may be that C0 is the underlying
category of C, but this is not necessary; it is enough to have a map from C0 to the underlying
category of C that is the identity on objects. We require three compatibility conditions:

(1) The zero object of C0 is also a zero object for C.
(2) Every weak equivalence c→ c′ in C0 induces stable equivalences

C(c′, d)
∼→ C(c, d), C(d, c)

∼→ C(d, c′).

(3) For every pushout square in C0 along a cofibration

a

��

// // b

��
c // // d

and object e, the resulting two squares of spectra

C(a, e)
OO
oo C(b, e)

OO

C(c, e) oo C(d, e)

C(e, a)

��

// C(e, b)

��
C(e, c) // C(e, d)

are homotopy pushout squares.

Example 6.2. For any ring spectrum A, the category AMod of left A-modules and the
subcategory APerf of perfect A-modules are both spectral Waldhausen categories. More
generally, for any spectral category C, CMod and CPerf are spectral Waldhausen categories.

Note that THH(C) ' THH(CPerf) by Morita invariance. In other words, every spectral
category can be changed into a spectral Waldhausen category, without changing its THH.
Therefore, when we formulate the additivity theorem, there is no loss of generality if we
restrict attention to spectral Waldhausen categories.

A map of spectral Waldhausen categories (C,C0) → (D,D0) consists of an exact functor
F0 : C0 → D0 and a spectral functor F : C → D that agree along the inclusion of C0 and
D0 into the underlying categories of C and D.
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A natural transformation between two such maps F and G assigns each object a ∈ obC to
a morphism F (a)→ G(a) in D0, such that these morphisms give a natural transformation
both of ordinary functors F0 ⇒ G0 and of spectral functors F ⇒ G (Definition 5.1). A
cofiber sequence of functors is a commuting square of natural transformations

F1

��

// // F2

��
∗ // // F3

that is a pushout along a cofibration, when evaluated on each object a ∈ obC.

Theorem 6.3 (Additivity, first formulation). If F1 → F2 → F3 is a cofiber sequence of
functors of spectral Waldhausen categories C → D, then on THH, the map induced by F2

is homotopic to the sum of the maps induced by F1 and F3.

We prove this in the next section. We first list some corollaries and a second formulation.

Corollary 6.4 (Eilenberg Swindle). If the spectral Waldhausen category C has countable
direct sums then THH(C) ' ∗.

To be specific, we assume that the underlying Waldhausen category has countably infinite
coproducts

∨∞
i=1 ai, and that these are also coproducts for the spectral enrichment, in the

sense that the inclusions ai →
∨∞
i=1 ai induce an isomorphism6

C (
∨∞
i=1 ai, b)

∼= //
∏∞
i=1C(ai, b).

In particular, the category CMod of left C-modules always has such countably infinite
coproducts.

Proof. We define a spectral functor F : C → C taking a to
∨∞
i=1 a. On mapping spectra we

pick the map C(a, b)→ C(∨∞i=1a,∨∞i=1b) such that the composition

C(a, b) // C (
∨∞
i=1 a,

∨∞
i=1 b)

∼= //
∏
i≥1C (a,

∨∞
i=1 b) .

is the product of the maps that compose with each of the inclusions b→
∨∞
i=1 b. A straight-

forward diagram-chase verifies that this is a spectral functor. Furthermore the maps

a //
∨∞
i=1 a

//
∨∞
i=1 a

that include the first summand and that shift the summands one slot to the right, both
define spectral natural transformations.

This defines a cofiber sequence on the underlying Waldhausen category, hence by definition
we have a cofiber sequence id→ F → F of functors from C to itself. Therefore by additivity
(Theorem 6.3), the identity map on THH(C) is homotopic to the difference THH(F ) −
THH(F ), which is zero. �

Corollary 6.5. For any spectral category C, THH(CMod) ' ∗.

6By standard enriched category theory, the ordinary coproduct will automatically be an enriched coprod-
uct if C is not only enriched in spectra but also cotensored, see [Kel82, §3.8], [Shu06, §11].
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This is why we restrict to perfect modules when taking THH of a category of modules.

To prove Theorem 6.3 we will show it follows from a different formulation of additivity.
Recall the Moore end construction F (I, C) of the previous section. It makes sense for
any spectral Waldhausen category as well, by taking the objects to be diagrams I → C0

in the Waldhausen category C0. The underlying Waldhausen category of F (I, C) has the
pointwise cofibrations and weak equivalences, meaning the maps that are cofibrations or
weak equivalences, respectively, at each object i ∈ I.

Lemma 6.6. [CLM+b, 5.4] This respects Waldhausen structures, defining a functor

Catop × SpWaldCat→ SpWaldCat.

Taking I = [1]× [1] to be the commuting square category, we define the category of cofiber
sequences

S2C ⊆ F ([1]× [1], C)

to be the full subcategory on those commuting squares of the form (6.1).7 So the objects
are cofiber sequences a → b → c in C0, and the mapping spectrum from a → b → c to
a′ → b′ → c′ consists of points in various mapping spectra and homotopies between them,
as illustrated in Figure 6.7.

∗ C(c, c′)

C(b, b′)C(a, a′) C(a, b′)

C(b, c′)

∗

∗ C(a, c′)

Figure 6.7

Using Lemma 6.6, we get four maps of spectral Waldhausen categories

(6.8)

s : C → S2C i : C → S2C

a 7→ a→ a→ ∗ c 7→ ∗ → c→ c

d : S2C → C π : S2C → C

a→ b→ c 7→ a a→ b→ c 7→ c

such that d ◦ s and π ◦ i are the identity functor of C.

Theorem 6.9 (Additivity, second formulation). The functors s and i induce an equivalence

THH(C) ∨ THH(C)
∼ // THH(S2C).

7It’s not necessary to know this, but we also restrict the cofibrations so that they agree with the usual
cofibrations on S2C. This doesn’t change the fact that it’s a spectral Waldhausen category, since fewer
cofibrations means fewer conditions to check.
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Equivalently, d and π induce an equivalence to the product,

THH(S2C)
∼ // THH(C)× THH(C).

Morally, the two formulations of additivity we have described are equivalent to each other.
On a technical level, we will see this second version implies the first one.

This second formulation is the kind we use to give an explicit construction of the Dennis
trace. We define SnC similarly to S2C and use an inductive argument to get

n∨
THH(C) ' THH(SnC).

As n varies the categories SnC form a simplicial object in spectral Waldhausen categories.
By additivity, the resulting simplicial spectrum THH(S•C) is equivalent to S1

• ∧ THH(C),
hence on realizations we get

|THH(S•C)| ' ΣTHH(C).

Therefore “THH satisfies a property that K-theory satisfies universally,” so it receives a
trace from K-theory. In more detail, we define wmSnC by taking flags of weak equiv-
alences of objects in SnC, then we include the objects of wmSnC into the 0-skeleton of
THH(wmSnC) to get

obwmSnC0 → Ω∞THH(wmSnC).

After realizing, we get the map of spaces

|w•S•C0| → Ω∞ΣTHH(C)

and looping once more gives a map from the K-theory space to THH:

K(C0) = Ω|w•S•C0| → Ω∞THH(C)

By repeating this with iterates of the S• construction we can make this a map of spectra
K(C0)→ THH(C). See e.g. [BM11, DGM13, CLM+a] for more details.

7. Proof of additivity

We first describe how to recover the first formulation from the second. Any cofiber sequence
F1 → F2 → F3 of functors C → D defines a functor C → S2D (essentially because the strict
end maps into the Moore end), and then we have the commuting diagram in the homotopy
category

THH(C)

F1∨F3 ((

//

F2

,,
THH(S2D) // THH(D).

THH(D) ∨ THH(D)
��
∼
OO

id∨id

66

Therefore the map on THH induced by F2 is homotopic to the sum of the maps induced by
F1 and F3.
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To prove the second formulation, we start by observing that every cofiber sequence (x →
y → z) sits in a “cofiber sequence of cofiber sequences”

x // x

��

// ∗
��

x

��

// y

��

// z

∗ // z // z

.

Note that the outside cofiber sequences are obtained from (x → y → z) by applying the
functors s ◦ d and i ◦π from (6.8). Since S2C is a spectral Waldhausen category this means
for each cofiber sequence (a→ b→ c) we get a cofiber sequence of spectra

S2C(a→ b→ c, x = x→ ∗) // S2C(a→ b→ c, x→ y → z) // S2C(a→ b→ c, ∗ → z = z).

We would like to say that this gives a cofiber sequence of S2C-bimodules

S2Cs◦d // S2Cid
// S2Ci◦π,

using the pullback notation MF from previous sections. However this is not quite correct,
because the maps do not commute with the action of S2C on the right. To illustrate this,
observe that given two homotopy-coherent maps of cofiber sequences

a

��

// x x

��

// d

��
b

��

// x

��

y

��

// e

��
c // ∗ z // f

the following two composites are not identical, only homotopic:

a

��

// x // x

��

// d

��
b

��

// x

��

// y

��

// e

��
c // ∗ // z // f,

or

a

��

// x // d // d

��
b

��

// x

��

// d

��

// e

��
c // ∗ // ∗ // f.

To fix this, we thicken up the bimodule S2Cs◦d by taking the mapping spectrum from
(a → b → c) to (x → y → z) to be the spectrum of homotopy-coherent maps between the
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two diagrams

a

��

x

��

a

��

// x

b

��

y

��

b

��

// x

��

==

c z

c // ∗

;;

This is equivalent to the spectrum of maps from (a→ b→ c) to (x = x→ ∗), by restricting
to the front face, and maps forward to the spectrum of maps from (a→ b→ c) to (x→ y →
z), by restricting to the back face. All these operations give maps of spectral categories,
hence they give maps of S2C-bimodules. So in summary we get a zig-zag of maps of S2C-
bimodules

S2Cs◦d •∼oo // S2Cid,

equivalently a map in the homotopy category of bimodules.

Representing these maps in the homotopy category as dashed arrows, we therefore get a
cofiber sequence of bimodules

S2Cs◦d // S2Cid
// S2Ci◦π.

Hence we can take THH(S2C) with coefficients in these bimodules, giving a cofiber sequence
of spectra

THH(S2C;S2Cs◦d) // THH(S2C;S2Cid) // THH(S2C;S2Ci◦π).

Our next goal is to show that the outside terms simplify to THH(C), so that this cofiber
sequence takes the form

(7.1) THH(C) // THH(S2C) // THH(C).

To do this we expand out THH(S2C;S2Cs◦d) in pictorial form, rearrange the picture, and
use the fact that d◦s is the identity functor of C to cancel it out. See Figure 7.2. The same
argument applies with i ◦ π in the place of s ◦ d, because π ◦ i is also the identity of C.

d

sid

S2C

C ∼=

ds

S2C

C ∼= C

id

Figure 7.2
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The final goal is to show that the maps we get in this new cofiber sequence agree (in the
homotopy category) with the maps induced by s and π. To do this, we first observe that
the functors s and d form an adjunction on the underlying categories of C and S2C. A map
of cofiber sequences

x // a
��

x

��

// b

��
∗ // c

corresponds precisely to a map x → a. Then we observe that the same is true for the
spectral enrichments, up to equivalence. In other words, the spectrum of maps of cofiber
sequences depicted above is equivalent (though not isomorphic) to C(x, a):

S2C((x = x→ ∗), (a→ b→ c))
∼−→ C(x, a).

Rewriting this as an equivalence

S2C(s(x), (a→ b→ c))
∼−→ C(x, d(a→ b→ c))

we check that it respects the left action of C and the right action of S2C, hence is an
equivalence of (C, S2C)-bimodules

(7.3) sS2C
∼−→ Cd

Replacing all the instances of Cd with sS2C, the equivalence and then map

THH(C) ' THH(S2C;S2Cs◦d)→ THH(S2C)

becomes a composite illustrated in Figure 7.4.

S2C

s

sid

S2C

C∼

ss

S2C

C∼C

id

Figure 7.4

This looks suspiciously like the trace of the identity of the base-change bimodule sS2C as
in Figure 4.2.8 We omit the diagram chasing that confirms this is the case, but it can be
found in [CLM+a], and it is done completely using the black-boxed properties we gave for
the Moore end in Section 5.

Lemma 7.5. [CLM+a, Lem 5.14] Along the equivalence (7.3), the maps in the homotopy
category of bimodules constructed thus far

Cid

∼= // Cd◦s, S2Cs◦d // S2Cid

8Recall that by Lemma 4.4 this bimodule is dualizable, and that since s : C → S2C is a Dwyer-Kan
embedding, the coevaluation map is an equivalence but the evaluation map is not necessarily an equivalence.
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agree with the coevaluation and evaluation maps for the base-change bimodule from Lemma 4.4,

C
∼ //

sS2C �S2C S2Cs, S2Cs �C sS2C // S2C.

In summary, in our cofiber sequence from (7.1)

THH(C) // THH(S2C) // THH(C),

the first map is just the trace of the identity of the base-change bimodule sS2C. By
Lemma 4.5, this trace agrees with the map on THH induced by the spectral functor s.
A similar argument identifies the second map as induced by π, so we conclude that

THH(C)
s // THH(S2C)

π // THH(C)

is a cofiber sequence. The second map is split by i, so s and i induce an equivalence

THH(C) ∨ THH(C)
s∨i
∼
// THH(S2C).

This concludes the proof of additivity.
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