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This textbook provides an elementary, illustrated introduction to stable homotopy the-
ory. We cover much of the same material from Adams’ classical reference [Ada74, III]but
from a more modern, and hopefully simpler, point of view. We also include foundational
material on many of the developments in the subject since Adams’ time, including the
“higher algebra” of ring spectra and module spectra.

We intend to make the core ideas of the subject accessible to mathematicians and grad-
uate students in a wide variety of fields, not just those with an especially strong back-
ground in algebraic topology and category theory. We only assume some background
with the fundamental group and covering spaces, homology and cohomology, homo-
topy groups, and a basic familiarity with categories and functors. We do not assume
that the reader is familiar with model categories,∞-categories, or even simplicial sets.
We develop these concepts as they arise.

In particular, our treatment differs from existing ones such as [BR20, Sch16] in that we
develop the core theory without model categories or∞-categories, using only elemen-
tary point-set topology and algebraic topology in the first four chapters. We then give
a treatment of model categories in Chapter 5, and briefly introduce∞-categories in a
later chapter (not included in this draft), as we need the concepts for the more advanced
theory.
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0.1 Introduction

Algebraic topology is the study of topological spaces by algebraic invariants. What is
an algebraic invariant? You’ve seen them before – an algebraic invariant is a rule that
assigns each space to a group (or some other algebraic object), so that homeomorphic
spaces (or homotopy equivalent spaces) go to isomorphic groups. If you are reading this
book, then you have probably already seen:

• the fundamental group π1(X ),

• the homotopy groups πn (X ),

• the homology groups Hn (X ;G ), and

• the cohomology groups H n (X ;G ).

This list is common and familiar, but it is far from complete. There are many more alge-
braic invariants of spaces out there. For example:
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Example 0.1.1 (Bordism). For a topological space X , define the abelian group Nk (X ) by
taking equivalence classes of k -dimensional closed smooth manifolds M , and reference
maps f : M → X . Two such manifolds

f0 : M0→ X , f1 : M1→ X

are equivalent if there is a cobordism between them, a compact (k + 1)-dimensional
smooth manifold W whose boundary is the disjoint union M0⨿M1, and a map f : W →
X that restricts to f0⨿ f1 on the boundary.

The groupsN∗(X ) are an example of an extraordinary homology theory – they satisfy all
of the Eilenberg-Steenrod axioms for homology, save the dimension axiom, the one that
says that the homology of a point is concentrated in degree zero. In fact, N2(∗) = Z/2,
generated by the closed manifold RP2.

Example 0.1.2 (Topological K -theory). For a (paracompact) topological space X , define
the abelian group KU 0(X ) by taking isomorphism classes of complex vector bundles
over X , and formally completing the monoid of such into an abelian group. Equivalently,
we define

KU 0(X ) = [X ,Z×BU ]

where BU = colim
n→∞

BU (n ) is the classifying space for stable complex vector bundles, and

[−,−] denotes homotopy classes of maps. We similarly define

KU 2n (X ) = [X ,Z×BU ], KU 2n+1(X ) = [X ,U ].

The groups KU ∗(X ) are an example of an extraordinary cohomology theory, a con-
travariant theory that satisfies the Eilenberg-Steenrod axioms except the dimension ax-
iom. In fact, KU 2(∗) =Z.

Now, for ordinary homology and cohomology, we prove the basic properties by work-
ing in the category of chain complexes. For instance, to show that homotopic maps
f , g : X ⇒ Y induce the same map on homology, we first show that they induce a chain
homotopy between the maps f#, g# : C∗(X )⇒ C∗(Y ) on the associated chain complexes.
This study of chain complexes is the discipline of homological algebra.

It turns out that homological algebra is not sufficient for extraordinary homology and
cohomology. In general, we cannot give a chain complex whose homology is E∗(X ), for
a given extraordinary homology theory E . Instead, we have to use a new kind of homo-
logical algebra, where the objects are spectra instead of chain complexes.

This new kind of homological algebra is called stable homotopy theory. It’s also called
higher algebra, spectral algebra, or brave new algebra.

This is a richer theory than classical homological algebra, and it has a far greater reach.
The simplest way to illustrate this is to consider how many homomorphisms there are
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from Z/2 to Z/2. In ordinary algebra, there are two of them, the identity and the zero
map. In homological algebra, there are more: the group

Ext(Z/2,Z/2)∼=Z/2

gives an extra, “degree-shifting homomorphism” from Z/2 to Z/2.

In stable homotopy, there are many, many more. The homomorphisms fromZ/2 toZ/2
in this setting can be organized into the Steenrod algebraA , an infinite-dimensional
noncommutative graded Z/2-algebra. Each element of this algebra corresponds to a
natural transformation on cohomology H ∗(X ;Z/2)with Z/2 coefficients.

The tradeoff for this richness is that stable homotopy theory is more difficult to learn.
It is based on topological spaces or homotopy types, instead of chain complexes. This
makes the theory more subtle, and harder to master.

The goal of this book is to give a self-contained introduction to stable homotopy theory.
It is the author’s hope that the treatment here will make the subject more accessible to
mathematicians in fields where higher algebra plays an important role. These include:

• geometric topology (surgery theory),

• symplectic geometry (Floer homotopy theory),

• algebraic geometry (motivic homotopy theory),

• number theory (algebraic K -theory and higher algebra), and of course

• algebraic topology and homotopy theory.

To accomplish this, we present spectra in a “low-tech” way, giving much of the founda-
tional material before introducing simplicial methods and model categories. We also
accompany the treatment with pictures and schematics to get the main ideas across to
the busy, working mathematician.

0.2 Overview

In this section we briefly indicate what is in the book, and where to find it.

This book is about spectra. If you had to use a single phrase to say what spectra are, you
might say one of the following. Spectra are:

• topological spaces in which suspension Σ has been inverted,

• CW complexes with negative-dimensional cells,
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• abelian groups up to homotopy, or perhaps

• chain complexes with coefficients in the space of maps S n → S n .

There are actually two categories of spectra:

Sp Ho Sp

The point-set category of spectra, The homotopy category of spectra,

aka the model category of spectra, and aka the stable homotopy category.

We pass from Sp to Ho Sp by localizing, taking a certain class of maps called the “stable
equivalences” and turning them into isomorphisms. This has the effect of passing to
homotopy classes of maps, just like when we form the classical homotopy category of
spaces (i.e. CW complexes with homotopy classes of maps between them) or the derived
category of a ring R (projective chain complexes of R -modules and chain homotopy
classes of maps between them).

There are actually different versions of the point-set category Sp, that all give the same
homotopy category Ho Sp. We focus on three of them in this book: sequential spectra
(also called prespectra), symmetric spectra, and orthogonal spectra. These objects are
not the same up to isomorphism – they are only the same up to equivalence, and there-
fore they have the same homotopy category.

The category of spectra has a smash product operation X ∧ Y . In the analogy between
spectra and abelian groups, this plays the role of the tensor product X ⊗ Y . Using this
new tensor product, we can define rings and modules in the world of spectra. The study
of these objects constitutes the subject of spectral algebra, or higher algebra.

The most fundamental ring spectrum is the sphere spectrum S. Every spectrum is a
module over S, in the same way that every abelian group is a module over Z. There is
also a ring spectrum HZ, with the property that module spectra over HZ are essentially
the same thing as unbounded chain complexes of abelian groups.

Along the ring homomorphism S→HZ, every chain complex can be turned into a spec-
trum by “restriction of scalars,” and every spectrum can be turned into a chain complex
by “extension of scalars,” or “taking chains with Z coefficients.” This is the essence of
the relationship between homological algebra and stable homotopy theory. Because
the sphere spectrum S is to the left of HZ, stable homotopy theory has a “deeper base,”
and sees more information than homological algebra does.

Chapter 1 recalls basic facts from algebraic topology that we need to know before starting
into spectra. Most of this should be review, but the results on basic homotopy
colimits are worth looking over.
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Chapter 2 develops the category of sequential spectra Sp. We prove the basic properties di-
rectly, and show how spectra represent extraordinary homology and cohomology
theories.

Chapter 3 introduces homotopy categories and derived functors, allowing us to pass the re-
sults in Chapter 2 from the category of spectra Sp to the stable homotopy category
Ho Sp.

Chapter 4 introduces the smash product ∧ as a black box, and explains how this makes both
spectra Sp and the homotopy category Ho Sp into symmetric monoidal categories.
There is also some discussion of rings and modules in a general symmetric monoidal
category, along with duality and traces.

Chapter 5 develops the theory of model categories, and proves that Sp is a model category.
This is an important technical framework that is needed for the more sophisticated
mathematics that occurs in the second half of this book.

Chapter 6 defines symmetric spectra SpΣ, orthogonal spectra SpO , and their smash product.
The black-boxed properties from Chapter 4 are proven explicitly here. This relies
heavily on the technology of model categories from the previous chapter.

?? introduces simplicial sets, simplicial spaces, and more generally simplicial objects
in any category. We then define the bar construction. The bar construction allows
us to show that HZ is a ring spectrum, and plays a crucial role in the next couple
of chapters.

?? uses the bar construction to define homotopy colimits and limits of spectra in gen-
eral, and proves that they are the left- and right-derived functors of the ordinary
colimit and limit, respectively.

?? introduces operads and grouplike E∞ spaces, which we think of as “abelian groups
up to coherent homotopy.” Such spaces are equivalent to connective spectra, us-
ing the bar construction. This makes the idea precise that spectra are “essentially
the same thing” as abelian groups. In particular, this is how every bounded-below
chain complex creates a spectrum.

?? develops the higher algebra of ring spectra and module spectra. A fundamental
result is the Morita theorem that says every “stable” homotopy theory is equivalent
to modules over some ring spectrum. In particular, unbounded chain complexes
are equivalent to modules over the Eilenberg-Maclane spectrum HZ.

?? discusses how to construct spectral sequences, with a particular focus on the Serre,
homotopy orbits, and Adams spectral sequences. We don’t go especially far into
computational techniques in this book, especially those involving the Adams spec-
tral sequence and its generalizations – see e.g. [Rav86] for more in that direction.
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0.3 Why study spectra?

What are spectra good for?

We’ve already discussed how spectra are needed to work with extraordinary homology
theories. We want to indicate why such theories are important, beyond the ones with
obvious geometric content like bordism and K -theory. Even in the abstract, extraordi-
nary homology theories are a powerful tool in homotopy theory. Why is that?

The problem with ordinary homology H∗(X ) is that it has too few groups. It only has
a single group H0 when X is a point. This is a boon when we are trying to distinguish
spaces up to homotopy equivalence, but it is a curse when we are trying to count homo-
topy classes of based maps, [X , Y ]∗.

For instance, the set of homotopy classes [S 3,S 2]∗ is nonzero. But ordinary homology
can’t see that. Every map S 3 → S 2 must be zero on homology. Unpacking the reason
why, it is precisely because the homology of a sphere is concentrated in a single degree.
If we pass to extraordinary homology, then a map S 3→ S 2 induces a map

E3(S
3)−→ E3(S

2)

which could be (and in many cases is) nonzero.

Of course, there are limits to what even extraordinary homology can see. Since suspen-
sion is an isomorphism on homology, we can’t see the difference between maps [X , Y ]∗
and the limit of these maps under the suspension operation:

{X , Y }= colim
�

[X , Y ]∗ // [ΣX ,ΣY ]∗ // [Σ2X ,Σ2Y ]∗ // · · ·
�

.

These are the stable maps from X to Y . In the stable homotopy category Ho Sp, these
are exactly the maps that appear from X to Y . All of the “unstable” information from
the finite stages of this system has been thrown out.

It is far easier to compute these stable maps than the unstable ones [X , Y ]∗, in part be-
cause we have long exact sequences that parallel the ones from homological algebra.
Philosophically, these stable maps are a “linear approximation” of the unstable ones.
Or, to put it differently:

Spectra are to spaces what linear algebra is to algebra.

However, the computations are still difficult. Computing the stable homotopy groups
of spheres

πk (S) = {S k ,S 0}

is easier than computing the unstable groups πk+n (S n ), but is still an open problem.

Another motivation comes from differential topology. The Pontyagin-Thom isomor-
phism tells us that the homotopy groups of certain spectra classify manifolds up to
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cobordism. As a special case, the stable maps πd (S) = {S d ,S 0} described just above are
isomorphic to the set of closed framed d -dimensional manifolds, up to cobordisms that
respect the framing.

This means that any calculation of stable homotopy groups of spheres gives as an im-
mediate corollary a statement about framed manifolds. Our algebraic results have ge-
ometric consequences. More generally, variants of the Pontryagin-Thom isomorphism
result play a central role in surgery theory, and therefore in the classification of high-
dimensional manifolds.

Finally, and most importantly, spectra are interesting in their own right. They are a world
where topology and algebra merge, having some of the best features of chain complexes
and of spaces. The algebra of spectra is richer than classical algebra. Taking homology
with “exotic” coefficients in a spectrum is more powerful than being limited to “ordi-
nary” coefficients in an abelian group. This richness has striking and dramatic conse-
quences in many fields of mathematics, far beyond pure homotopy theory and algebraic
topology.

0.4 History

The history of spectra is somewhat backwards – the homotopy category Ho Sp was in-
vented before the point-set category Sp.

The homotopy category was first defined by Lima in [Lim58]; see also [SW53, SW55] for
early works anticipating the concept, and [Ada74] for the state of the art in the 1970s.
The original motivations for the homotopy category of spectra included

• using stable maps {X , Y } = colim
n→∞

[Σn X ,Σn Y ]∗ as a “linear approximation” to ho-

motopy classes of maps, in order to compute new homotopy groups of spheres,

• being able to “dualize” a topological space X in the way one dualizes a vector space
V ∗ =Homk (V , k ),

• classifying smooth manifolds up to cobordism, and

• working with extraordinary homology and cohomology theories.

On the other hand, the point-set category Sp took longer to develop. One might say the
basic foundations only came into place in the 1990s with the papers [HSS00, EKMM97,
MMSS01, MM02]. Before then, it was common to work with the stable homotopy cate-
gory, and the models for it were complicated and clunky. Peter May once remarked that
the situation was like knowing what the derived category of a ring is, without knowing
what an R -module is.
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The problem wasn’t how to define spectra, it was how to define the smash product. Like
the tensor product of vector spaces, the smash product is an operation that combines
two or more spectra together into a single spectrum, and it is supposed to be associative
and commutative up to isomorphism. In other words, it makes spectra into a symmetric
monoidal category. And the problem is that no one knew how to do this on the point-set
level (it was even believed to be impossible) until the groundbreaking works of Hovey,
Shipley, and Smith [HSS00], and Elmendorf, Kriz, Mandell, and May [EKMM97].

In the next few years these foundations were fleshed out by the work of many people, see
e.g. [HPS97, SS00, MMSS01, SS03], giving a fully-developed theory that could be gleaned
from research papers. In the past decade, this theory has been worked over and distilled
into more expository works, including the present one.

The theory of spectra has also experienced numerous significant developments and ap-
plications since then. It would be impossible to give a complete survey of these devel-
opments, but to name a few of them:

• The smash product of spectra allowed for an era of “trace methods” in algebraic
K -theory, greatly increasing our understanding and allowing for new calculations
that connect to both differential topology and to number theory.

• Goodwillie and others further developed the theory of functor calculus, explaining
how spectra emerge in the process of forming “linear approximations,” “quadratic
approximations,” and so on, to functors on spaces.

• The theory of∞-categories emerged as a new framework for understanding ho-
motopy theoretic constructions and extending their reach to new settings. Lurie
characterized the∞-category of spectra by a simple universal property.

• Chromatic homotopy theory saw spectacular further development, including the
creation of the ring spectrum of topological modular forms, allowing for further
computations and insight into the homotopy groups of spheres, arguably the most
fundamental problem in algebraic topology.

• Motivic homotopy theory and stable motivic homotopy theory were created, build-
ing new connections between the theory of spectra and algebraic geometry, im-
portant even to those who are only concerned with one of the two subjects.

• Floer homotopy theory created an increasingly important connection between
stable homotopy theory and symplectic geometry.

• The Kervaire invariant one problem was (almost completely) solved, and along
with it came a renaissance in equivariant stable homotopy theory (G -spectra),
built on the theory of orthogonal spectra discussed in this book. (See [HHR21].)
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• Higher algebra now plays an increasingly important role in classical algebra and
number theory, building on the fundamental idea that spectra are the next step of
the progression after chain complexes.
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Chapter 1

Preliminaries

This chapter is a fast review and a reference for concepts from algebraic topology and
homotopy theory. We give only definitions and theorem statements, no proofs. More
details can be found in standard algebraic topology texts such as [Hat02, May99, tD08,
Swi75, Spa66]. We expect that the reader has seen most of this already, but this chapter
might be helpful in filling in some gaps.

1.1 Basic operations on topological spaces

1.1.1 Elementary topology, CGWH spaces

A topological space X is a set equipped with a choice of which subsets are “open,” sub-
ject to the axioms that open sets are preserved by arbitrary unions (including empty
unions, hence ; is open) and finite intersections (including empty intersections, hence
X itself is open). A set is closed precisely when its complement is open.

A map f : X → Y is continuous if the preimage of every open set U ⊆ Y is open in X . f is
a homeomorphism if it is a bijection and its inverse is also continuous. f is an inclusion
if it is a homeomorphism onto its image; when the image is open or closed we call f an
open inclusion, respectively a closed inclusion.

There exist continuous bijections that are not homeomorphisms – for instance, the map
that winds the half-open interval [0, 1) bijectively around the circle S 1. However, if X is
compact and Y is Hausdorff then every continuous bijection X → Y is a homeomor-
phism, and therefore also every continuous injection is an inclusion.

A topological space X is compact if every open cover has a finite subcover, connected
if there does not exist a separation X = A ⨿ B into nonempty disjoint open sets, and
Hausdorff if every pair of points can be separated by a pair of disjoint open sets.

15
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A topological space X is compactly generated if for each subset C ⊆ X , C is closed
iff f −1(C ) ⊆ K is closed for every compact Hausdorff space K and continuous map
f : K → X . Furthermore X is weak Hausdorff if for each such f , the image f (K ) is
closed. Open and closed subspaces of Rn , along with just about every other space you
usually encounter, are compactly generated weak Hausdorff (CGWH). For those that
aren’t, there are standard operations that make them CGWH. See [Lew78, App A] and
[Str09] for a detailed treatment of the properties of these spaces. Or don’t. Most people
seem to just take on faith that these spaces behave the way you expect.

Convention: All spaces in this book are compactly generated weak Hausdorff (CGWH).

A product X × Y is the Cartesian product with a topology that ensures that a map Z →
X × Y is continuous iff the two factors Z → X and Z → Y are continuous. A subspace
A ⊆ X is a subset topologized so that a map Z → A is continuous iff the resulting map
Z → X is continuous.

Dually, a coproduct or disjoint union X ⨿ Y is the disjoint union with a topology that
ensures that X ⨿Y → Z is continuous iff each of the two summands X → Z and Y → Z is
continuous. A quotient X → Y is a surjective map (or what is the same thing, an equiv-
alence relation on X ), with Y topologized so that Y → Z is continuous iff the resulting
map X → Z is continuous. The universal properties of these constructions are shown in
Figure 1.1.1.

In CGWH spaces, the product and subspace have the same underlying set as the above,
but the topology is sometimes a little finer. The coproduct is the same. The quotient is
different – if the equivalence relation on X is not closed as a subspace of X × X (with
the CGWH product), then we have to take its closure first before modding out by the
relation. This ensures the quotient is CGWH.
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Z ∃! //

$$ ++

X ×Y

}} !!

X Y

X

!!
++

Y

}} $$
X ⨿Y ∃! // Z

X

��

Z

��

∃!
//

//

A

55

��

X set

Z set //

00

Aset

66

X
))

��

))Y

��

∃!
// Z

��

X set

(( ))
Y set // Z set

Figure 1.1.1: The defining properties of products, coproducts, subspaces, and quotients.

1.1.2 Colimits and limits

Topological spaces (that are CGWH) form a category, that we refer to as Top. This means
there is a collection of objects (the spaces), between every pair of spaces a set of mor-
phisms (the continuous maps), and a composition rule for the morphisms that is asso-
ciative and has identity morphisms.

The rule Top→ Set that assigns each space to its underlying set is an example of a func-
tor. That means that it assigns each object to an object (each space to a set), between two
objects it assigns each map to a map (forget that the map is continuous), and respects
composition of maps and identity maps. A functor is very much like a homomorphism
of groups, thinking of the maps in the category as the group elements. See [Mac71, Rie17]
for more discussion of categories in general.

Those familiar with categories will recognize the definitions in Figure 1.1.1 as universal
properties for products, cartesian arrows (over the forgetful functor to sets), coproducts,
and cocartesian arrows.

From these elementary operations we can define all lim-
its and colimits of diagrams of spaces. A diagram of
spaces is informally a collection of spaces and continu-
ous maps between them. Formally, it is a functor X : I→
Top where I is any small category, which we call an in-
dexing category. So we get a space X (i ) for each object
i ∈ ob I and a map X (i )→ X ( j ) for each morphism i → j ,
respecting composition. For instance, if I has four objects
and just enough morphisms to form a commuting square

•

��

// •

��

• // •
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Indexing category Colimit is called... Limit is called...

• • coproduct product

• //
// • coequalizer equalizer

•

��

// •

•

pushout (trivial)

•

��

• // •

(trivial) pullback

• // • // • // . . . sequential colimit (trivial)

. . . // • // • // • (trivial) sequential limit

Figure 1.1.2

then a diagram on I is the same thing as a commuting square of spaces. We illustrate
some common choices of indexing category I in Figure 1.1.2. In some of these cases the
colimit or limit is just one of the spaces in the diagram – see exercise 2.

The limit of a diagram X : I→ Top is the universal space Y that is equipped with maps
Y → X (i ) for all i ∈ ob I, commuting with each of the maps of the diagram. In other
words, if Y ′ is another such space, then there is a unique map Y ′→ Y commuting with
the map to X (i ) for each i ∈ ob I.

The limit can always be defined as the product
∏

i∈ob I X (i ), restricted to the subspace of
points that agree along all of the maps in the diagram:

lim
i∈I

X (i ) =
�

xi ∈ X (i ) ∀i ∈ ob I : f (xi ) = x j ∀ f : i → j
	

. (1.1.3)

The colimit of a diagram X : I→ Top is the universal space Z that is equipped with maps
X (i )→ Z , commuting with all the maps of the diagram. It can always be defined as the
coproduct (disjoint union) of the X (i ), modulo an identification along each morphism
f :

colim
i∈I

X (i ) =

�

∐

i∈ob I

X (i )

�

��

x ∼ f (x ) ∀ f : i → j , x ∈ X (i )
�

. (1.1.4)

In particular, a point in a colimit is defined by a point in one space X (i ), while a point in
a limit requires a point in every X i . For this reason colimits are often much simpler than
limits.
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Remark 1.1.5. In CGWH spaces, limits commute with the forgetful functor to sets. In
other words, you can define them by taking the limit of the underlying sets first, then
giving that limit a topology. For colimits, this is unfortunately not always true. However
it is true for the following kinds of colimits:

• coproducts,

• pushouts along a closed inclusion,

• sequential colimits along closed inclusions, and

• orbits under the action of a compact Hausdorff topological group.

So in these cases, you can argue in terms of the underlying set. Outside of these cases,
you should argue instead using the universal property. (It’s usually easier to use the uni-
versal property anyway.)

Pushouts and pullbacks have special names. For the two diagrams below, we denote the
pushout (colimit) of first by X ∪A Y , and the pullback (limit) of the second by X ×B Y .

A

��

// X X

��

Y Y // B

The further special case X ∪A{∗} is called the quotient or cofiber X /A. Note that X /;= X+
is X with a disjoint point added.

In CGWH spaces, so long as one of the two maps A→ X or A→ Y is a closed inclusion,
the pushout is the same as in ordinary spaces (and so it is a pushout on the underlying
set). The pullback is always what you expect on the underlying set.

Example 1.1.6. Let D n be the closed unit disc in Rn and S n−1 the closed unit sphere.
Then the pushout D n ∪S n−1 D n along the inclusions S n−1 ⊂ D n is homeomorphic to S n .
To prove this, you note that the pushout is compact and S n is Hausdorff, then you define
the continuous bijection directly.

Definition 1.1.7. Given a commuting square

A

��

f
// B

��

C g
// D ,

we say it is a pushout square if the induced map B ∪A C →D is a homeomorphism. We
also say that g is the pushout of the map f , and sometimes place the symbol ⌜ inside
the square.
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Similarly, the above square is a pullback square if the induced map A → B ×D C is a
homeomorphism. In this case we say that f is the pullback of the map g , and sometimes
place the symbol ⌟ inside the square.

1.1.3 Cell complexes and CW complexes

Definition 1.1.8. A cell complex is a space X that is the sequential colimit of a sequence
of spaces

;= X (−1) −→ X (0) −→ X (1) −→ X (2) −→ . . .−→ X (n−1) −→ X (n ) −→ . . .−→ X .

We also call X (−1) → X the countable composition of the smaller maps X (n−1) → X (n )

for n ≥ 0. Furthermore, we ask that each of the maps X (n−1) −→ X (n ) is a pushout of a
coproduct of “cells” S k−1→D k , with varying k ≥ 0:

∐

i S ki−1 //

��

∐

i D ki

��

X (n−1) // X (n ).

In the case that k = 0, the sphere S 0−1 is defined to be the empty set, and D 0 is a point.
So, attaching a 0-cell has the effect of taking disjoint union with a point.

Pictorially, we can imagine this process as follows.

We say that X is a CW complex if ki = n for all i . In other words, we only attach cells of
dimension n at stage n :
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A relative cell complex or relative CW complex A→ X is defined in the same way, except
that we take X (−1) = A. We sometimes abbreviate this by saying that “A → X is a cell
complex.”

Proposition 1.1.9. A product X × Y of CW (or cell) complexes is a CW (or cell) complex
with an (m +n )-cell for each pair of an m-cell in X and an n-cell in Y .

Remark 1.1.10. This proposition is actually not true in ordinary spaces, only in CGWH
spaces. This is one reason why the product in CGWH spaces is better than the ordinary
product topology.

1.1.4 Based spaces

A based space is a space X with a chosen basepoint x0. A based map f : X → Y is a
map sending x0 to y0. We often use the symbol ∗ to refer to the basepoint of every space,
and also to refer to a generic one-point space. A based cell complex is just a cell com-
plex relative to ∗. This is the same thing as a cell complex with a chosen 0-cell as the
basepoint.

Based spaces and based maps form a category Top∗. The limits in this category are the
same as those in unbased spaces. The colimits are slightly different – the colimit as com-
puted in unbased spaces may have multiple basepoints, and they have to be identified
back together in order to get the colimit in based spaces.



22 CHAPTER 1. PRELIMINARIES

As a special case, the coproduct in based spaces is the wedge
sum

X ∨Y = (X ⨿Y )/(x0 ∼ y0).

The general formula for a colimit in based spaces is the same
as (1.1.4) but with the disjoint unions replaced by wedge sums:

colim
I

(b )X (i ) =

�

∨

i∈ob I

X (i )

�

��

x ∼ f (x ) ∀ f : i → j , x ∈ X (i )
�

.

(1.1.11)

Usually this is just written as colim, without the (b) decoration, even though the based
and unbased colimits are not homeomorphic in general. See exercise 4.

Definition 1.1.12. The wedge sum X ∨ Y is a subspace of the
product X ×Y by including into X ×{y0} and {x0}×Y . The quo-
tient (X × Y )/(X ∨ Y ) is called the smash product X ∧ Y . The
smash product is essentially “Cartesian product of the com-
plements of the basepoints.”

1.1.5 Mapping spaces

For spaces X and Y the mapping space Map(X , Y ) = Y X is the set of continuous maps
X → Y , topologized so that continuous maps K →Map(X , Y ) are in bijection with con-
tinuous maps K × X → Y . In fact, this correspondence is continuous, giving a homeo-
morphism

Map(K ×X , Y )∼=Map(K , Map(X , Y )). (1.1.13)

If X and Y have basepoints then the based mapping space Map∗(X , Y ) = (Y ,∗)(X ,∗) is
the closed subspace of Map(X , Y ) of all maps preserving the basepoint. Then based
(continuous) maps K →Map∗(X , Y ) correspond to based (continuous) maps K ∧X → Y .
Again, this passes to a homeomorphism

Map∗(K ∧X , Y )∼=Map∗(K , Map∗(X , Y )). (1.1.14)
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1.2 Homotopies, cofibrations, and fibrations

1.2.1 Homotopies

Given two continuous maps f , g : X ⇒ Y , a homotopy is a (continuous) map

h : X × I → Y

such that h (−, 0) = f and h (−, 1) = g . This homotopy could equivalently be given by a
map X → Y I from X to the space of paths in Y . If X and Y are based, a based homotopy
is one in which the basepoint is constant. It can equivalently be described as a based
map X ∧ I+→ Y .

Homotopy is an equivalence relation on the maps from X to Y . We let [X , Y ] denote
the set of homotopy classes of maps. If X and Y are based we let [X , Y ]∗ denote based-
homotopy classes of based maps. In that case there is a map [X , Y ]∗→ [X , Y ] that is not
always a bijection.

Example 1.2.1. [S 1,S 1]∗ → [S 1,S 1] is a bijection and both are in bijection with Z by the
winding number.

Homotopy respects composition of maps. Therefore the sets [X , Y ] form the morphisms
of a category, the (classical) homotopy category hTop. Isomorphisms in this category are
the same thing as homotopy equivalences. Similarly the sets [X , Y ]∗ are the morphisms
of a category, the based (classical) homotopy category hTop∗. We typically only con-
sider the subcategory of these on the CW complexes, and denote them hCW = Ho CW
and hCW∗ =Ho CW∗, respectively. The “Ho” decoration refers to the fact that these cat-
egories have a universal property, see Definition 3.1.9 and Proposition 3.1.26.

1.2.2 Cofibrations

A map A→ X is called a cofibration if it has the homotopy extension property: for any
map X → Y , and any homotopy of the map on A, the homotopy can be extended to X .
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In other words, for each diagram as below, a dotted lift exists.

(A× I )∪A×{0} (X ×{0})

��

// Y

X × I

44

It suffices to check this for Y = (A× I )∪A×{0} (X ×{0}), so being a cofibration is equivalent
to having a retract of X × I back onto (A× I )∪A×{0} (X ×{0}).

Cofibrations are sometimes called “Hurewicz cofibrations” in order to distinguish them
from a different notion that appears later (Definition 5.1.18).

Lemma 1.2.2. Every relative cell complex is a cofibration. Any coproduct, pushout, count-
able composition, or retract of a cofibration is again a cofibration.

Every map f : A→ X can be replaced by an equivalent cofibration. Simply replace X by
the mapping cylinder

(A× I )∪A×{1} (X ×{1}),

and include A by the front end A×{0}.

The cofiber of A→ X is just the quotient X /A. The unbased homotopy cofiber C (u ) f is
the cofiber of A→ X , after replacing the map by a cofibration:

C (u ) f = ∗∪A×{0} (A× I )∪A×{1} X =C (u )A ∪A X .

Here C (u )A = (A× I )/(A×{0}) is the unbased cone on A.

Lemma 1.2.3. If f : A → X is a cofibration then the collapse map C (u ) f → X /A is a ho-
motopy equivalence.

If we then replace X →C (u ) f by a cofibration and take its cofiber, the result is equivalent
to the suspension

S A =C (u )A ∪A C (u )A ∼= (A× I ).
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Repeating this process indefinitely produces the unbased cofiber Puppe sequence

A
f
// X // C (u ) f // S A

−S f
// S X // SC (u ) f // S 2A

S 2 f
// S 2X // . . .

Here −S f refers to the map that applies f but then flips the two cones around.

The following lemma about products of cofibrations is especially important. To state
it, we recall that cofibrations A → X are always closed inclusions, so without loss of
generality we think of them as subspaces A ⊆ X .

Lemma 1.2.4. [May99, §6.4] If A ⊆ X and B ⊆ Y are cofibrations, then

(A×Y )∪(A×B ) (X ×B )⊆ X ×Y

is also a cofibration.

Definition 1.2.5. Suppose X has a basepoint. We say X is well-based or nondegener-
ately based if the inclusion of the basepoint ∗→ X is a cofibration.

Remark 1.2.6. By Lemma 1.2.4, if X and Y are well-based then (X ∨ Y ) ⊆ (X × Y ) is a
cofibration. Therefore the smash product X ∧ Y is equivalent to the homotopy cofiber
of (X ∨Y )⊆ (X ×Y ).

There is a based version of the homotopy extension property, where all spaces are based
and the homotopies preserve the basepoint. Every unbased cofibration of based spaces
is a based cofibration. Every based cofibration of well-based spaces is an unbased cofi-
bration.

Let C A be the based cone on A, the quotient of the unbased cone C (u )A by the interval
{∗}× I consisting of the basepoint of A times I :

C A =
�

∗∪A×{0} (A× I )
� �

({∗}× I )

Alternatively, it is the reduced cylinder A ∧ I+ modulo one endpoint, or just the smash
product A ∧ I if we give I the basepoint 0:

C A ∼= ∗∪A∧I+ (A ∧ I+)∼= A ∧ I .
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Let C f denote the based version of the homotopy cofiber,

C f =C A ∪A∧{1}+ X = (C (u ) f )/({∗}× I ).

Lemma 1.2.7. If f : A → X is a cofibration (in either sense) and both A and X are well-
based, then the collapse map C f → X /A is a homotopy equivalence.

Definition 1.2.8. A cofiber sequence is any diagram of based spaces of the form

A
f
−→ X −→C f ,

or anything weakly equivalent to it. In particular, if A→ X is a cofibration, then

A −→ X −→ X /A

is a cofiber sequence.

The based version of the cofiber Puppe sequence is the same, except that the cones and
suspensions are reduced, i.e. the segment ∗× I is collapsed to the basepoint. This pro-
duces

A
f
// X // C f // ΣA

−Σ f
// ΣX // ΣC f // Σ2A

Σ2 f
// Σ2X // . . .

where ΣA is the reduced suspension

ΣA = S 1 ∧A ∼= S A/S (∗).

We only consider this sequence when the spaces A and X are well-based.
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Proposition 1.2.9. For any based space Z , taking based homotopy classes of maps from
the Puppe sequence into Z produces a long exact sequence of pointed sets

[A, Z ]∗ [X , Z ]∗oo [C f , Z ]∗oo [ΣA, Z ]∗oo [ΣX , Z ]∗oo [ΣC f , Z ]∗oo . . .oo

By “long exact sequence of pointed sets,” we mean that every set has a basepoint ∗, and
that the “kernel” of each map (those points mapping to ∗) coincides with the image of
the previous map.

Remark 1.2.10. Starting at the term [ΣA, Z ]∗, the sets are all groups and the maps are
group homomorphisms. The group operation pinches the suspension in the middle
and adds two maps together:

ΣA
pinch

// ΣA ∨ΣA
( f ,g )

// Z .

Starting at [Σ2A, Z ]∗, these group structures are all abelian.

1.2.3 Fibrations

A map E → B is a Hurewicz fibration if it has the homotopy lifting property: any map
X → E and homotopy of the composite X → E → B , can be lifted to a homotopy of
X → E . In other words, for each diagram as below, a dotted lift exists.

E I

��

X

66

// E ×B B I

It suffices to check this for X = E ×B B I . So being a fibration is equivalent to having a
map E ×B B I → E I that lifts the identity of E ×B B I .

The lifting property could also be rearranged as follows:

X ×{0}

��

// E

��

X × I

::

// B .
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In other words, each path in B with a lift of the starting point to E , can be lifted to E .
Furthermore, the same can be done for an “X s worth” of paths in B , and lifts of the
starting point to E .

A Serre fibration is a map E → B that has the homotopy lifting property for X = D n ,
n ≥ 0, but not necessarily in general. So every square of the following form has a lift.

Recall that E → B is a fiber bundle if it is locally a product, i.e. B is covered by open sets
Uα on which the map is isomorphic to a projection Uα × F →Uα. A covering space is a
fiber bundle in which the fiber F is discrete.

Lemma 1.2.11. Every fiber bundle, in particular every covering space, is a Hurewicz fi-
bration. Every Hurewicz fibration is a Serre fibration. Any product, pullback, countable
inverse composition, or retract of a fibration is a fibration. (This statement applies to both
kinds of fibrations.)

For covering spaces, the path-lifting is actually unique. For general fibrations, the path
lifting turns out to be unique up to homotopy, but not unique on the nose.

Every map p : E → B can be replaced by an equivalent Hurewicz fibration. Simply re-
place E by the mapping co-cylinder E ×B B I , and project to B by evaluating at the op-
posite end of I . For each b ∈ B , the homotopy fiber Fb p is the fiber over b of this new
map:

Fb p = E ×B B I ×B {b }.

It is the space of points e ∈ E with paths from p (e ) ∈ B to b ∈ B . If B is a based space,
we denote the homotopy fiber over the basepoint by F p :

F p = E ×B B I ×B {∗}.
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Lemma 1.2.12. If p is a Hurewicz fibration then each inclusion p−1(b )→ Fb p is a homo-
topy equivalence. If p is a Serre fibration then p−1(b )→ Fb p is a weak homotopy equiva-
lence.

Definition 1.2.13. A fiber sequence is any diagram of based spaces of the form

F p −→ E
p
−→ B ,

or anything weakly equivalent to it. In particular, if E → B is a fibration of either kind,
then

p−1(∗)−→ E
p
−→ B

is a fiber sequence.

Assume that E → B is a map of based spaces, and when we take homotopy fiber, we
always take it over the basepoint.1 If we then replace F p → E by a fibration and take its
fiber, the result is equivalent to the space of based loops in B ,

ΩB =Map∗(S
1, B ).

1However our notion of “fibration” will remain unbased. There is a based notion of “fibration,” but it
rarely comes up in practice.
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Repeating this process indefinitely produces the fiber Puppe sequence

. . . // Ω2E
Ω2p
// Ω2B // ΩF p // ΩE

−Ωp
// ΩB // F p // E

p
// B .

Proposition 1.2.14. For any based space Z , taking based homotopy classes of maps from
Z into the Puppe sequence produces a long exact sequence of pointed sets

. . . // [Z ,ΩF p ]∗ // [Z ,ΩE ]∗ // [Z ,ΩB ]∗ // [Z , F p ]∗ // [Z , E ]∗ // [Z , B ]∗.

Remark 1.2.15. Starting at the term [Z ,ΩB ]∗, the sets are all groups and the maps are
group homomorphisms. The group operation concatenates the loops in B :

Z
( f ,g )

// ΩB ×ΩB concatenate // ΩB .

Starting at [Z ,Ω2B ]∗, these group structures are all abelian.

Remark 1.2.16. The long exact sequences of Proposition 1.2.9 and Proposition 1.2.14 are
to higher algebra what the snake lemma and zig-zag lemma are to homological algebra.
They are the basic tool that we use to build our long exact sequences.

1.3 Homology and cohomology

1.3.1 Homology

Let∆n be the convex hull of the standard basis vectors in Rn :

∆n =

¨

(t0, . . . , tn ) ∈Rn+1 :
∑

i

ti = 1, ti ≥ 0 ∀i

«

The case of n = 3 is pictured to the left.
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The i th face of∆n is the subspace of points in which ti = 0, which we identify
with∆n−1 in the obvious way (preserving the order of the coordinates). The
0th face of∆3 is pictured to the right.

Given a continuous map σ :∆n → X , we define its i th face diσ :∆n−1 → X
to be the restriction ofσ to this subspace.

Let G be any abelian group. (The most common examples areZ,Z/p , andQ.) A singular
n-chain in the space X is a formal linear combination of continuous maps σ :∆n → X ,
with coefficients in G . In other words, the group

Cn (X ;G ) =
⊕

∆n→X

G .

We define the boundary map

∂n : Cn (X ;G )→Cn−1(X ;G )

by sending each simplexσ to the alternating sum of its faces,

∂n (σ) =
n
∑

i=0

(−1)i diσ,

and extending to Cn (X ;G )by linearity. These form a chain complex, meaning that ∂n−1∂n =
0. The homology of this chain complex is the abelian group

Hn (X ;G ) = ker∂n/im∂n+1.

When G =Zwe simply write the chains as Cn (X ) and the homology as Hn (X ).

A pair (X , A) is a space X with a subspace A ⊆ X . A map of pairs (X , A)→ (Y , B ) is a map
f : X → Y such that f (A)⊆ B . We define the relative chains of (X , A)with G coefficients
to be the quotient

Cn (X , A;G ) =Cn (X ;G )/Cn (A;G ) =
⊕

σ :∆n→X , σ(∆n )̸⊆A

G .

This forms a chain complex and we denote its homology by Hn (X , A;G ), or just Hn (X , A)
if G =Z. When A = ;, this coincides with the “absolute” homology groups defined before.
When A = ∗, we refer to the homology Hn (X ,∗ ;G ) as the reduced homology with G
coefficients.

Homology satisfies the following properties, called the Eilenberg-Steenrod axioms.

Proposition 1.3.1 (Homotopy). Hn (−,−;G )defines a functor from pairs of spaces to abelian
groups. Homotopic maps of pairs induce the same map on homology.
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Proposition 1.3.2 (Exactness). For each pair there is a long exact sequence

. . . ∂ // Hn (A;G ) i // Hn (X ;G )
j
// Hn (X , A;G ) ∂ // Hn−1(A;G ) i // . . .

ending at H0(X , A;G ). The maps i and j are induced by the maps of pairs (A,;)→ (X ,;)→
(X , A). Every map in the sequence is natural with respect to maps of pairs.

Proposition 1.3.3 (Excision). If A → X is a cofibration then the collapse map (X , A) →
(X /A,∗) induces an isomorphism on homology.

Proposition 1.3.4 (Additivity). If X =
∐

αXα is a decomposition into subspaces that are
unions of path components, then the map

⊕

αHk (Xα) // Hk (X )

is an isomorphism.

Proposition 1.3.5 (Dimension). H0(∗ ;G )∼=G , and Hk (∗ ;G )∼= 0 for all k ̸= 0.

Remark 1.3.6. It follows that every cofiber sequence A→ X →C f induces a long exact
sequence on reduced homology groups.

Amazingly, the Eilenberg-Steenrod axioms determine H∗(X , A;G ) completely, at least on
pairs (X , A)where X is a CW complex and A is a subcomplex. For instance, it follows from
the exactness axiom that Hk (S n ,∗ ;G ) is G when k = n and 0 otherwise.

An ordinary homology theory is any functor from CW pairs to sequences of groups
hn (X , A), along with natural snake maps hn (X , A)→ hn−1(A), satisfying the above axioms.
For the dimension axiom, we fix the choice of isomorphism h0(∗) ∼= G and ask that any
map between two such theories respect this choice.

Theorem 1.3.7. Any two ordinary homology theories with coefficients in the same group
G , are canonically naturally isomorphic.

See e.g. [May99]. The proof proceeds by showing that each such theory is isomorphic to
cellular homology. Cellular homology for a CW complex X is constructed by taking an
existing ordinary homology theory (such as singular homology), defining a new chain
complex by

C C W
n (X ;G ) =Hn (X

(n ), X (n−1);G )∼=
⊕

n-cells

G ,

with boundary maps given by

Hn (X (n ), X (n−1);G ) δ // Hn−1(X (n−1);G )
j
// Hn−1(X (n−1), X (n−2);G ).
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We then show that the starting homology theory is canonically isomorphic to cellular
homology. However, the description of cellular homology turns out to be independent
of which homology theory we used to construct it, and so all ordinary homology theories
are canonically isomorphic to each other.

If X is any well-based space then the cofiber sequence X → C X → C X /X ≃ ΣX gives
a long exact sequence on homology. Since the homology of (C X ,∗) vanishes in every
degree, we therefore get a natural isomorphism

Hn+1(ΣX ,∗ ;G )∼=Hn (X ,∗ ;G ).

For abelian groups A and B , take any presentation of A, i.e. a short exact sequence

0 // P1
// P0

// A // 0,

and define
Tor(A, B ) := ker(P1⊗B → P0⊗B ).

This is independent of the choice of presentation and Tor(A, B ) ∼= Tor(B , A). It is zero if
either A or B is free, and otherwise describes their “common torsion.”

Theorem 1.3.8 (Universal coefficient theorem for homology). There is a natural short
exact sequence

0 // Hn (X ;Z)⊗G // Hn (X ;G ) // Tor(Hn−1(X ;Z),G ) // 0

and similar sequences with the reduced and relative homology groups. The sequence
splits, but not naturally.

Theorem 1.3.9 (Künneth theorem for homology). For any pair of spaces X and Y there
is a natural short exact sequence

0 //
⊕

i+ j=n Hi (X )⊗H j (Y )
× // Hn (X ×Y ) //

⊕

i+ j=n−1 Tor(Hi (X ), H j (Y )) // 0.

that splits, but not naturally. For based spaces we also get

0 //
⊕

i+ j=n Hi (X ,∗)⊗H j (Y ,∗) × // Hn (X ∧Y ,∗) //
⊕

i+ j=n−1 Tor(Hi (X ,∗), H j (Y ,∗)) // 0.

For field coefficients, there are isomorphisms

⊕

i+ j=n Hi (X ; k )⊗k H j (Y ; k ) × // Hn (X ×Y ; k ),

⊕

i+ j=n Hi (X ,∗ ; k )⊗k H j (Y ,∗ ; k ) × // Hn (X ∧Y ,∗ ; k ).
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The maps labeled × are called the cross product maps on homology. They are easy to
define on the cellular chain complex, using the fact that a product of CW complexes is a
CW complex. If X has a multiplication µ: X ×X → X that is associative and unital up to
homotopy, we define the Pontryagin product on H∗(X ) as the composite

Hi (X )⊗H j (X )
× // Hi+ j (X ×X )

µ∗ // Hi+ j (X )

and this makes H∗(X ) into a graded ring. For instance, concatenation of loops makes
H∗(ΩX ) into a ring.

1.3.2 Cohomology

We define the cohomology of X with G coefficients by applying Hom(−,G ) to the chain
complex Cn (X ) to get

C n (X ;G ) :=Hom(Cn (X ),G ).

As n varies, this forms a cochain complex, which is just a chain complex whose differ-
ential raises degree. Taking kernel mod image gives the cohomology groups H n (X ;G ).
Doing the same to the chain complexes Cn (X , A) =Cn (X )/Cn (A) gives the relative coho-
mology groups H n (X , A;G ).

Cohomology satisfies a dual version of the above axioms for homology.

Proposition 1.3.10 (Homotopy). H n (−,−;G ) defines a contravariant functor from pairs
to abelian groups. Homotopic maps induce the same map on cohomology.

Proposition 1.3.11 (Exactness). For each pair there is a long exact sequence

. . . oo ∂ H n (A;G ) oo i H n (X ;G ) oo
j

H n (X , A;G ) oo ∂ H n−1(A;G ) oo i . . .

ending at H 0(X , A;G ). The maps i and j are induced by the maps of pairs (A,;)→ (X ,;)→
(X , A). Every map in the sequence is natural with respect to maps of pairs.

Proposition 1.3.12 (Excision). If A → X is a cofibration then the collapse map (X , A)→
(X /A,∗) induces an isomorphism on cohomology.

Proposition 1.3.13 (Additivity). If X =
∐

αXα is a decomposition into subspaces that are
unions of path components, then the map

H k (X ) //
∏

αH k (Xα)

is an isomorphism.

Proposition 1.3.14 (Dimension). H 0(∗ ;G )∼=G , and H k (∗ ;G )∼= 0 for all k ̸= 0.
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Any two such theories on CW complexes are canonically naturally isomorphic, because
they are isomorphic to cellular cohomology. We again get, as consequence of homotopy
and exactness, a suspension isomorphism

H n+1(ΣX ,∗ ;G )∼=H n (X ,∗ ;G ).

For abelian groups A and B , take any presentation of A as above

0 // P1
// P0

// A // 0,

and define
Ext(A, B ) :=Hom(P1, B )/im Hom(P0, B ).

Theorem 1.3.15 (Universal coefficient theorem for cohomology). There is a natural short
exact sequence

0 // Ext(Hn−1(X ),G ) // H n (X ;G ) // Hom(Hn (X ),G ) // 0.

and similar sequences with the reduced and relative cohomology groups. The sequence
splits, but not naturally.

We say that a space Y is finite type if its chain complex is equivalent to one that is a
finitely generated free abelian group at each level. In particular, a CW complex with
finitely many cells in each dimension will be of finite type.

Theorem 1.3.16 (Künneth theorem for cohomology). For any space X and any finite type
space Y , there is a natural short exact sequence

0 //
⊕

i+ j=n H i (X )⊗H j (Y ) × // H n (X ×Y ) //
⊕

i+ j=n+1 Tor(H i (X ), H j (Y )) // 0.

that splits, but not naturally. For based spaces we also get

0 //
⊕

i+ j=n H i (X ,∗)⊗H j (Y ,∗) × // H n (X ∧Y ,∗) //
⊕

i+ j=n+1 Tor(H i (X ,∗), H j (Y ,∗)) // 0.

For field coefficients, there are isomorphisms
⊕

i+ j=n H i (X ; k )⊗k H j (Y ; k ) × // H n (X ×Y ; k ).

⊕

i+ j=n H i (X ,∗ ; k )⊗k H j (Y ,∗ ; k ) × // H n (X ∧Y ,∗ ; k ).

Again the maps labeled× are called the cross product on cohomology. They are defined
for all X and Y , but the theorem only holds if Y is finite type. For any space X , we
define the cup product as the composite of the cross product and the diagonal map
∆: X → X ×X :

H i (X )⊗H j (X ) × // H i+ j (X ×X ) ∆∗ // H i+ j (X ).

It is defined on reduced cohomology similarly. This makes the cohomology of any space
H ∗(X ), and also with ring coefficients H ∗(X ; R ), into a graded ring in a natural way, and
the cross product map H i (X )⊗H j (Y )→ H n (X × Y ) is a ring homomorphism. This is
because the diagonal map is “coassociative” and “counital.”
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1.3.3 Poincaré duality

There is another product of this flavor called the cap product:

H i (X )⊗H j (X )
∩ // H j−i (X ).

It is defined, not at the homology level, but at the chain level, by applying the diagonal
map to homology and then pairing off one of the resulting factors with cohomology. The
way to remember how ∩ interacts with ∪ is, ∪makes H ∗ into a ring, and ∩makes H∗ into
a module over that ring.

A n-dimensional manifold M is a Hausdorff space that can be covered with countably
many open sets, each homeomorphic to an open subset of Rn . A manifold is closed if
it is compact. It also has to have no boundary, but already none of the manifolds here
have boundary.2

By excision, the homology groups Hn (M , M − {x }) are all isomorphic to Hn (D n , D n −
{0})∼=Z. These can be linked together for nearby points, so they form a bundle of abelian
groups over M with fiber Z that we call eZ. An orientation of M is a continuous choice
of generator for each group in this bundle.

Proposition 1.3.17. Orientations of M are in natural bijection with generators of Hn (M ).

Therefore we represent an orientation by a class [M ] ∈ Hn (M ) called the fundamental
class.

Theorem 1.3.18 (Poincaré duality). If M is a closed connected n-dimensional manifold,
with orientation [M ], then cap product with [M ] gives an isomorphism

H i (M ;Z)
∼= // Hn−i (M ;Z).

Even when M fails to have an orientation, there is still a mod 2 fundamental class [M ] ∈
Hn (M ;Z/2) and capping with [M ] gives isomorphisms

H i (M ;Z/2)
∼= // Hn−i (M ;Z/2).

1.4 Homotopy groups and homotopy theory

1.4.1 Homotopy groups and relative homotopy groups

2A more general definition would permit M to be locally homeomorphic to Rn−1 × [0,∞), and the
points identified with Rn−1×{0}would be the boundary points.
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π∗(X ) π∗(S 2) π∗(T 2)

π0(X )

π1(X )

π2(X )

π3(X )

...

Z

Z

...

Z×Z

For any based space X , the nth homotopy group
πn (X ) is the set of homotopy classes of based maps
S n → X . Equivalently, homotopy classes of maps
of pairs

(I n ,∂ I n )→ (X ,∗)

where I n = I ×. . .×I is the n-dimensional cube and
∂ I n is its boundary.

When n = 0, π0(X ) is the set of path components.
For n ≥ 1 we can make πn (X ) into a group as fol-
lows.

Say that an embedding I n → I n is nice if it is an n-fold product
of linear embeddings i (x ) = a x +b with a > 0. Intuitively, it is
an embedding that scales and translates each coordinate, but
does not otherwise rotate or stretch.

We add two elements f , g ∈ πn (X ) maps by picking any two
disjoint nice embeddings i , j : I n → I n , and defining the map
f +g to be f ◦ i−1 inside the image of i , g ◦ j −1 in the image of
j , and ∗ at all other points. This definition varies continuously
as we vary the embeddings.

When n ≥ 2, all pairs of disjoint embeddings are homotopic, so this gives a well-defined
operation on πn (X ) that is commutative. It is also associative and unital, making πn (X )
into an abelian group. When n = 1, the space of pairs of disjoint embeddings is not
connected. In other words, when we compose paths, the order matters. Thereforeπ1(X )
is a not-necessarily-abelian group, the fundamental group of X .

Proposition 1.4.1. Any two based maps that are based homotopic induce the same map
on πn . Homotopy equivalences (not necessarily respecting basepoints) induce isomor-
phisms on πn .

Theorem 1.4.2 (van Kampen). If X is a union of path-connected open sets (or subcom-
plexes) Aα containing the basepoint, and if the double intersections Aα ∩ Aβ and triple
intersections Aα ∩Aβ ∩Aγ are path-connected, then π1(X ) is the free group on the groups
π1(Aα)modulo the obvious relations coming from each double intersection Aα ∩Aβ .

Corollary 1.4.3. For a connected CW complex X , π1(X ) is computed by contracting a
spanning tree of X (1) to a point, then taking a generator for each remaining 1-cell and
a relation for each 2-cell.

There is no such neat formula for πn in general, making these groups hard to compute
for finite complexes, even for spheres.
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For any subspace A ⊆ X containing the basepoint we de-
fine πn (X , A) to be homotopy classes of maps of triples
(D n ,S n−1,∗)→ (X , A,∗). Equivalently, maps of triples

(I n ,∂ I n , J n−1)→ (X , A,∗)

where J n−1 ⊂ ∂ I n is the boundary with the interior of the bot-
tom face removed. The group operation here is parametrized
by embeddings of I n−1 into I n−1, so it is an abelian group if
n ≥ 3, a group if n = 2, a set if n = 1, and undefined if n = 0.
Note that πn (X ,∗)∼=πn (X ).
More generally, for any based map f : A→ X we defineπn (X , A) to be commuting squares
of based maps

S n−1

��

⊆
// D n

��

A
f
// X

up to based homotopies of the vertical maps that make the square commute at each
time in the homotopy.

Theorem 1.4.4. There is a natural long exact sequence of sets

. . . ∂ // πn (A)
f
// πn (X ) // πn (X , A) ∂ // πn−1(A)

f
// . . .

The maps in this sequence come from the maps of pairs

(A,∗)−→ (X ,∗)−→ (X , A),

and the restriction of a map

(D n ,S n−1)−→ (X , A)

to S n−1 → A. The maps in the sequence are group homomorphisms up until π1(A) →
π1(X ), after which π1(X , A) is a set.

There is an action of π1(A) on every term in this long exact sequence, by “attaching a
string to each balloon.” One might call this action “conjugation” since the resulting ac-
tion of π1(A) on itself is in fact the conjugation action

g ·a := g a g −1.

Every map of the long exact sequence commutes with π1(A)-conjugation, and so is a
map of Z[π1(A)]-modules.
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Remark 1.4.5. More generally, for maps B → A → X there is a natural long exact se-
quence of sets

. . . ∂ // πn (A, B )
f
// πn (X , B ) // πn (X , A) ∂ // πn−1(A, B )

f
// . . .

Theorem 1.4.6. If E → B is a Serre fibration with fiber F , there is natural long exact
sequence of sets

. . . ∂ // πn (F ) // πn (E ) // πn (B )
∂ // πn−1(F )

f
// . . .

The connecting homomorphism is through the identificationπn (E , F )∼=πn (B ) induced
by (E , F )→ (B ,∗).

When E → B is a covering space, F is discrete and this sequence becomes

πn (E )
∼= // πn (B ) ∀n ≥ 2, 0 // π1(E ) // π1(B ) // F // ∗.

Setting G =π1(E ) and H to be the image ofπ1(B ) in G , we therefore get that the set G /H
is isomorphic to the fiber F of the covering space. When H is normal, this is a group,
and is isomorphic to the group of deck transformations of the covering space. (A deck
transformation is a homeomorphism E ∼= E commuting with the map to B .)

A universal cover of a connected CW complex X is a simply-connected covering space
p : eX → X . These exist and are unique up to isomorphism over X . By the previous re-
sults, π1(X ) can be identified with both the fiber p−1(x0) and with the deck group of eX .
Note that along these identifications the fiber is G =π1(X ), the deck group is multipica-
tion on one side, and the path-lifting action is multiplication on the other side.

1.4.2 Cells and connectivity

A map of CW complexes f : X → Y is cellular if f (X (n ))⊆ Y (n ) for all n .

Proposition 1.4.7 (Cellular approximation). Every map of CW complexes is homotopic
to a cellular map.

Corollary 1.4.8. πi (S n ) = 0 for i < n. More generally, attaching an n-cell does not affect
πi for i < (n −1).

A map A→ X is n-connected if it is surjective onπn , and an isomorphism onπi for i < n .
Equivalently, it is surjective on π0 and the relative groups πi (X , A) vanish for i ≤ n .

A space is n-connected if the map ∗ → X is; equivalently, πi (X ) vanishes for i ≤ n . A
0-connected space is path-connected, and a 1-connected space is simply-connected.
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A weak homotopy equivalence, or just weak equivalence, is a map A→ X inducing iso-
morphisms on πn for all n . Equivalently, it is n-connected for all n . Two spaces are
weakly equivalent if they are connected by a zig-zag of weak equivalences. Every homo-
topy equivalence is a weak equivalence, but not vice-versa.

Proposition 1.4.9 (Cell attachment). For any map A→ X and any element

α ∈πn (X , A),

one can attach an n-cell to A to get a factorization A→ A′→ X , such that

πi (X , A)→πi (X , A′)

is an isomorphism for i < n, and surjective for i = n, with kernel containing α.

Informally, this means that attaching an n-cell to A makes

πn (A)→πn (X ) more surjective,

πn−1(A)→πn−1(X ) more injective, and

πk (A)→πk (X ) unchanged for k < n −1.

See also Remark 2.6.21.

Corollary 1.4.10. A→ X is n-connected iff it is weakly equivalent to a relative CW com-
plex A→ X ′ in which every cell has dimension ≥ (n +1).

Corollary 1.4.11 (Cofibrant replacement). Every map A → X factors into a relative CW
complex A→ B and a weak equivalence B → X .

This replacement can be done in a functorial way, so each commuting square as shown
on the left gives a commuting diagram as on the right.

A

��

// X

��

A

��

// B

��

// X

��

A′ // X ′ A′ // B ′ // X ′

In particular, there is a functor Q : Top→ Top taking each space X to a weakly equivalent
CW complex Q X

∼→ X .

Theorem 1.4.12 (Whitehead). Every weak equivalence between CW complexes is a ho-
motopy equivalence. If A ⊆ X is the inclusion of a weakly equivalent subcomplex, then X
deformation retracts onto A.
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Taken together, these results tell us that studying all spaces up to weak equivalence is
essentially the same as studying CW complexes up to homotopy equivalence.

Cell attachment is also used to build the Postnikov tower, a functorial sequence of spaces
under each path-connected space X

X // · · · // Pn X // Pn−1X // · · · // P2X // P1X // P0X = ∗

such that X → Pn X is an isomorphism on πi for i ≤ n , and the remaining homotopy
groups of Pn X vanish.

Finally, we relate homotopy groups back to homology and cohomology groups. There is
a natural Hurewicz homomorphism πn (X )→Hn (X )which takes each element S n → X
to the image of the generator of Hn (S n ) in Hn (X ). We also get a similar map for pairs
πn (X , A)→Hn (X , A), which is a homomorphism when n ≥ 2.

Proposition 1.4.13. Every weak equivalence induces an isomorphism on singular homol-
ogy and cohomology.

Proposition 1.4.14 (Hurewicz). The Hurewicz map induces

• an isomorphism π1(X )ab ∼=H1(X ) if X is path-connected,

• an isomorphism πn (X )∼=Hn (X ) if X is (n −1)-connected, and

• an isomorphism πn (X , A) ∼= Hn (X , A) if (X , A) is (n − 1)-connected, n ≥ 2, and A is
1-connected.

As a result, for simply-connected spaces, the lowest nonzero homotopy group of a space
or map is controlled by the lowest nonzero homology group.

Corollary 1.4.15. A map of simply-connected CW complexes X → Y is a homotopy equiv-
alence iff H∗(X )→ H∗(Y ) is an isomorphism. A map of connected CW complexes X → Y
is a homotopy equivalence iff π1(X )→π1(Y ) and H∗( eX )→H∗( eY ) are both isomorphisms.
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1.4.3 Eilenberg-Maclane spaces and the Yoneda lemma

Definition 1.4.16. An Eilenberg-Maclane space K (G , n ) is a CW
complex with only one nonzero homotopy group, πn = G . We fix
the identification between πn (K (G , n )) and G .

Lemma 1.4.17. Eilenberg-Maclane spaces are unique up to homo-
topy equivalence. Taking homotopy groups gives a bijection between
based homotopy classes of maps [K (G , n ), K (H , n )]∗ and group ho-
momorphisms G →H .

Corollary 1.4.18. We have canonical weak equivalences

K (G , n )≃ΩK (G , n +1).

π∗(X )

...

πn−1(X ) = 0

πn (X ) =G

πn+1(X ) = 0

...

Theorem 1.4.19 (Brown representability). There is a natural isomorphism

H n (X , A;G )∼= [X /A, K (G , n )]∗

for each CW complex X and subcomplex A, each abelian group G , and each n ≥ 0. (See
Theorem 2.5.24 for a proof.)

Moreover, we can reconstruct the long exact sequence for the cohomology of a cofiber
sequence A→ X →C f from Proposition 1.2.9 and the isomorphisms

[ΣX , K (G , n )]∗ ∼= [X ,ΩK (G , n )]∗ ∼= [X , K (G , n −1)]∗.

Brown representability is powerful when combined with the Yoneda Lemma. For any
category C and object X ∈ ob C, let F : Cop→ Set be the functor represented by X :

F (Y ) =C(Y , X ).

Let G : Cop→ Set be any other functor to sets.

Lemma 1.4.20 (Yoneda). Natural transformations η: F ⇒ G correspond bijectively to
elements of the set G (X ). The bijection takes each η to the element η(idX ).

Corollary 1.4.21. If F is represented by X and G is represented by Y , natural transfor-
mations η: F ⇒G correspond to morphisms X → Y in C. Natural isomorphisms F ∼=G
correspond to isomorphisms X ∼= Y in C.

We apply this to the category hCW of CW complexes and homotopy classes of maps.
Cohomology H n (−;G ) is the functor hCW∗→Ab represented by K (G , n ):

H n (X ;G )∼=H n (X+,∗ ;G )∼= [X+, K (G , n )]∗ ∼= [X , K (G , n )].
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Therefore, any natural transformation from cohomology to cohomology, must arise from
a map of Eilenberg-Maclane spaces in the homotopy category hCW. For instance, the
cup product

H m (−; R )×H n (−; R ) ∪ // H m+n (−; R )

is represented by a map of spaces

K (R , m )×K (R , n ) // K (R , m +n ).

1.5 Basic homotopy colimits and limits

We get a long exact sequence on homology for every short exact sequence of spaces

A // X // X /A,

provided the quotient X /A is nice. What does “nice” mean? In Section 1.2, we phrased it
by saying that f : A→ X is a cofibration. This implies that X /A is homotopy equivalent
to the homotopy cofiber C f =C A ∪A X .

The same phenomenon happens for other kinds of colimits. There is a “correct” ho-
motopy type for the colimit, that allows us to compute its homology groups from the
homology groups of the pieces X (i ). But the colimit doesn’t always have this correct
homotopy type.

It is possible to “fix” the colimit by thickening it up so that it always has the correct ho-
motopy type. The resulting space is called the homotopy colimit. The ordinary colimit
is “correct” if it is equivalent to the homotopy colimit.

To be more specific, recall from Section 1.1 that the colimit of a diagram X : I→ Top is
constructed as the disjoint union

∐

i∈ob I X (i ), modulo an identification x ∼ f (x ) for each
of the maps f in the diagram. In the homotopy colimit, this construction is thickened
up by creating a path from x to f (x ), instead of gluing them directly together. If the
diagram is sufficiently complicated, we have to create additional paths between these
paths.

In this section, we restrict our attention to the three basic homotopy colimits:

• coproducts,

• homotopy pushouts, and

• homotopy sequential colimits.
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These three cases are especially important, in part because all other homotopy colimits
can be built out of them. The reader interested in the case of a general homotopy col-
imit may skip ahead to Definition 5.3.20 or ??. The expository paper [Dug08] is also an
excellent reference.

1.5.1 Homotopy colimits of unbased spaces

As mentioned above, there are three basic homotopy colimits.

The first is the coproduct, or disjoint union,
∐

αXα. This is
the colimit of a diagram of spaces {Xα} that has no nontrivial
morphisms. It is also the homotopy colimit of {Xα} – since
there are no additional morphisms, there are no homotopies
to add.

So in this case, the homotopy colimit and the actual colimit
are the same thing. In other words, coproducts are always
correct.

The next example is the pushout.

Definition 1.5.1. The homotopy pushout of X and Y along A is defined as the double
mapping cylinder

X ∪h
A Y := X ∪(A×{0}) (A× I )∪(A×{1}) Y .

Collapsing away the cylinder gives a map to the ordinary pushout X ∪A Y .

Lemma 1.5.2. This collapse map is a weak equivalence if

• X and Y are open subsets of a topological space and A is their intersection, or

• X and Y are CW complexes sharing a common subcomplex A, or more generally

• either A→ X or A→ Y is a cofibration.

So the ordinary pushout is correct under any of these assumptions.
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Example 1.5.3. The unbased homotopy cofiber C u f and unreduced suspension S X
from Section 1.2 can be expressed as homotopy pushouts

A

��

f
// X

��

∗ // C u f

X

��

// ∗

��

∗ // S X .

The last basic colimit is the colimit of a sequence of maps

X0
f1 // X1

f2 // X2
// . . .

We take the homotopy colimit in this case by forming successive mapping cylinders.

Definition 1.5.4. The mapping telescope is formed by taking a cylinder on each space
Xn and gluing the ends together along the maps fn :

hocolim
n→∞

Xn :=
∐

n≥0

(Xn × [0, 1])
��

(xn , 1)∼ ( fn+1(xn ), 0)
�

Collapsing down the telecope gives a map to the ordinary colimit, colim
n→∞

Xn .

Lemma 1.5.5. This collapse map is a weak equivalence if

• the Xn are all open subsets of a topological space,

• the Xn are all subcomplexes of a CW complex, or more generally

• the maps fn : Xn → Xn+1 are closed inclusions.3

What properties does the “correct” homotopy type have? We can give more detail in each
of these three examples:

3This relies on the assumption that we are in CGWH spaces. Without this, we’d have to make the
stronger assumption that the maps fn are cofibrations.
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• For coproducts
∐

αXα, the correct homotopy type gives a direct sum on homology
(Proposition 1.3.4), and on homotopy gives the homotopy groups of each of the
spaces Xα, depending on where we pick our basepoint.

On cohomology, and more generally on homotopy classes of maps [−, Y ], we get a
product:

�

∐

α

Xα, Y

�

∼=
∏

α

[X , Y ].

• For pushouts X ∪A Y , the correct homotopy type gives the Mayer-Vietoris exact
sequence on homology

. . . ∂ // Hn (A)
i // Hn (X )⊕Hn (Y )

j
// Hn (X ∪h

A Y ) ∂ // Hn−1(A)
i // . . .

where the map i is induced by the given maps A→ X and A→ Y , and j is similar
except that one of the two maps is negated. On cohomology we get the same se-
quence with maps reversed, while on [−, Z ] we get the weaker statement that the
map to the fiber product

[X ∪h
A Y , Z ] // // [X , Z ]×[A,Z ] [Y , Z ]

is surjective. On the fundamental group π1, the van Kampen theorem applies. In
the case where A, X , and Y are connected, this givesπ1(X ∪h

A Y ) as the free product
π1(X ) ∗π1(Y )modulo relations from π1(A). On πn , we get the homotopy excision
or Blakers-Massey theorem, which says that the map

πn (X , A)→πn (X ∪h
A Y , Y )

is an isomorphism in a range, depending on the connectivity of the maps A→ X
and A→ Y .

• For sequential colimits, the correct homotopy type is the one in which the colimit
passes to the homology and homotopy groups:

Hk

�

hocolim
n→∞

Xn

�

∼= colim
n→∞

Hk (Xn ), πk

�

hocolim
n→∞

Xn

�

∼= colim
n→∞

πk (Xn ).

More generally, the colimit commutes with [Y ,−] if Y is finite CW, see Exercise 23.
On the other hand, for cohomology we get a lim1 exact sequence

0 // lim1

n→∞
H k−1(Xn ) // H k

�

hocolim
n→∞

Xn

�

// lim
n→∞

H k (Xn ) // 0. (1.5.6)

Recall that lim1 is the first derived functor of the limit:
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Definition 1.5.7. For any inverse system of abelian groups

. . . // A2
f2 // A1

f1 // A0

we define the map of products

∏

n An
1− f
//
∏

n An

by sending the infinite tuple (an )n≥0 to (an − fn+1(an+1))n≥0. Essentially, it is the identity
map, minus the map that applies fn to each An . The limit of the system is the kernel of
(1− f ). We define lim1 to be its cokernel:

0 // lim
n→∞

An
//
∏

n An
1− f
//
∏

n An
// lim1

n→∞
An

// 0.

It is well known that lim1

n→∞
An vanishes:

• when the maps fn are isomorphisms for all sufficiently large n , or more generally

• when the maps fn are surjective for all sufficiently large n , or more generally

• when for each m , the image of the map An → Am becomes constant for all suffi-
ciently large n (the Mittag-Leffler condition).

Remark 1.5.8. If the term “correct homotopy type” seems irritatingly vague, you can
make it more precise by saying that we seek the left-derived functor of the colimit. See
Definition 3.3.15 and Definition 3.4.10.

Remark 1.5.9. Recall that the homotopy category of spaces hTop is the one in which the
morphisms are homotopy classes of maps [X , Y ]. This category does not have pushouts
or sequential colimits. As a result, the homotopy colimit is not the colimit of the diagram
in the homotopy category.

The following is a fundamental theorem about homotopy colimits. For the three basic
homotopy colimits, it can be deduced from our description of how the homotopy colimit
interacts with homology and homotopy groups.

Theorem 1.5.10. Any map of diagrams X → Y that gives a weak equivalence

X (i ) ∼ // Y (i )

for each i , gives a weak equivalence of homotopy colimits

hocolim
i

X (i ) ∼ // hocolim
i

Y (i ).
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Corollary 1.5.11. The smash product of spaces (X , Y ) 7→ X ∧Y preserves weak homotopy
equivalences, if X and Y are well-based topological spaces.

In other words, if X → X ′ and Y → Y ′ are weak equivalences of well-based spaces, then
X ∧Y → X ′ ∧Y ′ is a weak equivalence.

Proof. By Remark 1.2.6, since X and Y are well-based, the smash product is equivalent
to the homotopy cofiber of X ∨ Y → X × Y . By Theorem 1.5.10, this homotopy cofiber
preserves equivalences.

1.5.2 Homotopy colimits of based spaces

Suppose now that we have a diagram X in which the spaces X (i ) are based, and the maps
preserve the basepoints.

Definition 1.5.12. The based homotopy colimit is defined by first making the spaces
X (i ) well-based, in other words, making ∗ → X (i ) is a cofibration. Then we take the
quotient of the unbased homotopy colimit by the subspace of all the basepoints and the
paths between them:

hocolim(b )X (i ) =
�

hocolim(u )X (i )
���

hocolim(u ) ∗
�

.

If the spaces X (i ) are not well-based, then the above construction
is not the homotopy colimit, because it may have the wrong ho-
motopy type.

Theorem 1.5.10 applies to based homotopy colimits as well – they
preserve all weak equivalences of diagrams.

In particular, the based homotopy coproduct is the wedge sum
∨

αXα, assuming Xα is well-based. The special case of two spaces
X ∨Y is is illustrated to the right.

The based homotopy pushout is

X ∪(A×{0}) [(A× I )/({∗}× I )]∪(A×{1}) Y , (1.5.13)

assuming A, X , and Y are well-based. This is also illustrated to the
right – it is the double mapping cylinder with the subspace {∗}× I
in the cylinder collapsed to a point.

Similarly, the based mapping telescope is
∐

n≥0

[(Xn × [0, 1])/({∗}× [0, 1])]
��

(xn , 1)∼ ( fn+1(xn ), 0)
�

. (1.5.14)
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Lemma 1.5.15. • If A, X , and Y are well-based then the collapse map from the un-
based homotopy pushout of Definition 1.5.1 to the based homotopy pushout in (1.5.13)
is a homotopy equivalence.

• The collapse map from the unbased mapping telescope of Definition 1.5.4 to the
based mapping telescope in (1.5.14) is always a weak equivalence.4 (Exercise 24)

Example 1.5.16. The homotopy cofiber C f and reduced suspensionΣX from Section 1.2
are the based homotopy pushouts of the same diagrams from Example 1.5.3:

A

��

f
// X

��

∗ // C f

X

��

// ∗

��

∗ // ΣX .

Remark 1.5.17. It is an unfortunate fact that we use the same notation to denote both
the based and unbased version of homotopy colimits. We sometimes use decorations
(u ) to distinguish the unbased ones, as we did with C (u ) f , but for the most part we follow
historical convention and use the same notation for both. We are at least partly justified
in doing this by Lemma 1.5.15.

1.5.3 Homotopy limits

The dual of a homotopy colimit is a homotopy limit. Since the universal property of a
limit is stated using maps into X (i ), we add homotopies to this limit by using path spaces
X (i )I =Map(I , X (i )) instead of cylinders X (i )× I . As with colimits, we have three basic
homotopy limits:

• products,

• homotopy pullbacks, and

• homotopy sequential limits.

The first of these is the product
∏

αXα. As before, this is already a homotopy limit, so
products are always correct.5

The next case is the pullback. Suppose we have a pullback diagram

X
f
��

Y
g
// B .

4This is isn’t true if we move away from (CGWH) spaces. If phrased for general spaces, we also need
the Xn to be well-based.

5It is a bit of a surprise that in spectra, infinite products are not always correct – the factors have to be
made into Ω-spectra first.
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Definition 1.5.18. The homotopy pullback is the homotopy fiber product

X ×h
B Y = X ×B B I ×B Y

=
�

x ∈ X , y ∈ Y ,γ: I → B : f (x ) = γ(0), g (y ) = γ(1)
	

.

Here the two maps B I ⇒ B are the evaluation at the two endpoints of I .

The inclusion of constant paths B → B I gives a map from the ordinary fiber product
X ×B Y to homotopy pullback X ×h

B Y .

Lemma 1.5.19. The inclusion X ×B Y → X ×h
B Y is a weak equivalence if X → B or Y → B

is a Serre fibration.

Example 1.5.20. The homotopy fiber F p and based loopspaceΩX from Section 1.2 can
be expressed as homotopy pullbacks

F p

��

// E
p
��

∗ // B

ΩX

��

// ∗

��

∗ // X .

Definition 1.5.21. We take the sequential homotopy limit of a sequence of maps

. . . // X2
f2 // X1

f1 // X0

as the infinite homotopy fiber product

holim
n→∞

Xn = . . .×X2
X I

2 ×X1
X I

1 ×X0
X I

0

=
�

γn : I → Xn ∀n ≥ 0 : fn (γn (1)) = γn−1(0)
	

.
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The ordinary limit includes into this homotopy limit, as the subspace in which all of the
paths are constant.

Lemma 1.5.22. This inclusion map is a weak equivalence if all of the maps fn are Serre
fibrations.

In each of these cases, the homotopy limit captures the correct homotopy type:

• For products, the correct homotopy type is the one that gives a product on homo-
topy groups, and more generally on [Y ,−]:

�

Y ,
∏

α

Xα

�

∼=
∏

α

[Y , X ].

On homology, we get the Künneth formula (Theorem 1.3.9).

• For pullbacks, the correct homotopy type is the one in which we get the homotopy
Mayer-Vietoris sequence

. . . // πn (X ×h
B Y ) // πn (X )⊕πn (Y ) // πn (B ) // πn−1(X ×h

B Y ) // . . . ,

see exercise 18. More generally, we get a surjective map

[Z , X ×h
B Y ] // // [Z , X ]×[Z ,B ] [Z , Y ]

and similarly with based homotopy classes of maps. On homology and cohomol-
ogy, we get the Eilenberg-Moore spectral sequence, and when Y = ∗ we get the
Serre spectral sequence (see ??).

• For sequential homotopy limits, the correct homotopy type is the one in which we
get a lim1 exact sequence

0 // lim1

n→∞
πk+1(Xn ) // πk

�

holim
n→∞

Xn

�

// lim
n→∞

πk (Xn ) // 0. (1.5.23)

See Definition 1.5.7 for a recollection of lim1 .
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The homology of the homotopy limit has no relation to the homology of the spaces
Xn in general. The most we can say is that if the maps fn : Xn → Xn−1 have connec-
tivity increasing to ∞, then the sequential limit commutes with homology and
cohomology. So,

Hk

�

holim
n→∞

Xn

�

∼= lim
n→∞

Hk (Xn ) if the connectivity of fn goes to∞.

The dual of Theorem 1.5.10 is the following.

Theorem 1.5.24. Any map of diagrams X → Y that gives a weak equivalence

X (i ) ∼ // Y (i )

for each i , gives a weak equivalence of homotopy limits

holim
i

X (i ) ∼ // holim
i

Y (i ).

Remark 1.5.25. There is no based version of homotopy limits. Or rather, there is, but it
is always the same as the unbased version, so there is no need to distinguish them, as
for homotopy colimits.

1.6 Adjunctions

Recall from Section 1.1 that there is a bijection between continuous maps

K ×X → Y and K →Map(X , Y ).

This is an example of an “adjunction” from category theory.

Definition 1.6.1. An adjunction between categories C and D is a pair of functors

C D,
L

R

and for each object X in C and Y in D, a bijection between the sets of morphisms

{ f : L X → Y }↔{ ef : X →RY },

or in other words D(L X , Y ) ∼= C(X , RY ), that are natural in X and Y . The functor L is
called the left adjoint and R is called the right adjoint. The maps f and ef are adjunct.
We often say that (L ⊣R ) or (L , R ) is an adjoint pair.
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Adjunctions are a simple manipulation: whenever you want, you can pull
the L off the source of a map and stick an R to the target, without gaining
or losing information.

The naturality means that if we have another map g : X ′ → X , then the
maps

L X ′
L (g )
// L X

f
// Y

X ′
g
// X

ef
// RY

are adjunct – in other words å( f ◦ L (g )) = ( ef ) ◦ g . We also have a similar condition for
composing with maps h : Y → Y ′.

Remark 1.6.2. You can remember the naturality statement by thinking of the adjunction
as giving you a natural notion of “a map across categories” from X ∈ C to Y ∈ D. This
notion is captured either by a map L X → Y or by X → RY . They mean the same thing.
The “action” of an arrow in C on this map has two possible interpretations, but those two
interpretations produce the same “map across categories.” That is what the naturality
statement really says.

Example 1.6.3. In unbased spaces Top, we have an adjoint pair in which K ×− is the left
adjoint and Map(K ,−) is the right adjoint.

In based spaces Top∗, we have an adjoint pair in which K ∧ − is the left adjoint and
Map∗(K ,−) is the right adjoint.

Corollary 1.6.4. Suspension and loops are adjoint: based mapsΣX → Y are in canonical
correspondence with based maps X →ΩY .

This means any time we have a map ΣX → Y , we can immediately substitute for it a
map X → ΩY . This particular case can be visualized explicitly: each point in x ∈ X
gives a loop through ΣX , that traverses the segment I ×{x } inside I ×X . Giving a based
map ΣX → Y is the same thing as sending each of these loops to a based loop in Y , in a
continuous way. That’s the same thing as a based map X →ΩY .

Corollary 1.6.5. For all based spaces B ,

πn (B )∼=πn−1(ΩB )∼= · · · ∼=π0(Ω
n B ).
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This could also be deduced from Proposition 1.2.14 or Theorem 1.4.6 by taking the map
∗→ B and making it into a fibration – the homotopy fiber is then ΩB .

Example 1.6.6. The forgetful functor from based spaces to unbased spaces

Top∗→ Top

is a right adjoint. Its left adjoint is the functor that adds a disjoint basepoint, (−)+. In
other words, based maps X+→ Y correspond to unbased maps X → Y .

Example 1.6.7. The forgetful functor from unbased spaces to sets

Top→ Set

is a right adjoint. Its left adjoint is the functor that gives each set S the discrete topology.
If X is a space, then continuous maps S → X with this topology correspond to maps of
sets S → X .

Example 1.6.8. The forgetful functor from abelian groups to sets

Ab→ Set

is a right adjoint. Its left adjoint is the free abelian group functor, taking each set S to the
direct sum

⊕

s∈S Z. Maps of abelian groups
⊕

s∈S

Z→ A

correspond to maps of sets S → A.

Theorem 1.6.9. Left adjoints preserve colimits. Given any left adjoint L : C→D and dia-
gram X : I→C, we have a canonical isomorphism

colim L (X )∼= L (colim X ) .

Similarly, right adjoints preserve limits:

lim R (X )∼=R (lim X ) .

Example 1.6.10. This theorem explains why limits are the same in unbased spaces,
based spaces, sets, and abelian groups, but colimits are different. It also explains why in
spaces, the based colimit and unbased colimit don’t agree, but they do commute with
the functor (−)+ that adds a disjoint basepoint.

Example 1.6.11. Taking Cartesian product K ×− commutes with colimits of unbased
spaces:

K × colim(u )X (i )∼= colim(u ) (K ×X (i )).

Taking smash product K ∧− commutes with colimits of based spaces:

K ∧ colim(b )X (i )∼= colim(b ) (K ∧X (i )).
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Theorem 1.6.12. Left adjoints are unique. If L1, L2 : C→D are two functors that are both
left adjoint to the same functor R : D → C, then there is a unique natural isomorphism
L1
∼= L2 that agrees with the identifications

D(L1X , Y )∼=C(X , RY )∼=D(L2X , Y ).

The dual statement for right adjoints also holds.

This is an incredibly useful result because it allows us to define something as a left ad-
joint, and know that the definition is unique. See exercise 27 for a proof.

The unit of an adjunction (L ⊣R ) is the map

η: X →R L X

adjunct to the identity map L X → L X . The counit is the map

ε: LRY → Y

adjunct to the identity RY →RY . These are natural transformations, satisfying the “tri-
angle identities”

L X
Lη
// LR L X

εL
��

L X ,

RY
ηR
// R LRY

Rε
��

RY .

If you know the unit and counit, you can reconstruct the adjunction: the map f : L X → Y
is adjunct to the composite

X
η
// R L X

R f
// RY ,

and ef : X →RY is adjunct to the composite

L X
L ef
// LRY ε // Y .

Going back and forth gives the same map back! See [Rie17, Ch. 4] for an extensive dis-
cussion.

1.7 Exercises

1. Verify that the formulas (1.1.4) and (1.1.3) for the colimit and limit of a diagram of
spaces, have the required universal properties.



56 CHAPTER 1. PRELIMINARIES

2. (a) Show that the limit of a diagram of the form

X0
// X1

// X2
// . . .

is isomorphic to the first term X0. Therefore the limit is not very interesting,
only the colimit is interesting.

(b) Explain in a similar way the trivial colimits and limits that appear in Fig-
ure 1.1.2.

(c) How would you generalize these examples? (Recall that an object a in a cat-
egory I is initial if a admits a unique map to each object b ∈ I, and a is ter-
minal if it admits a unique map from each object b ∈ I.)

3. Suppose G is a group and X is a space with a continuous left action by G . The
space of orbits XG is the quotient of X by the relation x ∼ g x for every x ∈ X
and g ∈ G . Explain how the orbit space is an example of a colimit. What is the
corresponding limit?

4. Suppose X : I→ Top∗ is a diagram of based spaces and basepoint-preserving maps
between them. By forgetting the basepoints, it also defines a diagram of unbased
spaces X : I→ Top.

(a) Explain why the colimit of X could change when the universal property is
phrased in the category of based spaces Top∗, instead of the category of un-
based spaces Top.

(b) Prove that it does change in the case of a coproduct: the based and unbased
coproducts are not homeomorphic to each other.

(c) Prove that the unbased colimit and based colimit agree if I is connected,
meaning every pair of objects is related by a finite zig-zag of morphisms

• // • oo • // . . . oo •.

In particular, the definition of a pushout and of a sequential colimit has the
same formula in based spaces that it had in unbased spaces.

(d) Prove that, on the other hand, limits always have the same formula in both
based spaces and unbased spaces.

5. A topological space X is discrete if its points are open; equivalently, if every subset
is open.

(a) Prove that the colimit of any diagram of discrete spaces X (i ) is discrete. In
particular, this is true for sequential colimits.
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(b) Show by example that the limit of a diagram of discrete spaces X (i )may not
be discrete. In other words, “inverse limits can create a topology.”

You might consider the 2-adic integers, defined as the limit of the setsZ/(2nZ)
along the surjective homomorphisms

Z/(2nZ) 1 // // Z/(2n−1Z).

Here the “1” means that the map multiplies by 1, i.e. it sends a 7→ a for each
a ∈Z/(2nZ).

6. Let Ab denote the category of abelian groups and group homomorphisms. If A : I→
Ab is a diagram of abelian groups and homomorphisms, show that its colimit is
given by the same formula as (1.1.4), except the disjoint unions are replaced by
direct sums:

colim
I

A(i ) =

�

⊕

i∈ob I

A(i )

�

��

a ∼ f (a ) ∀ f : i → j , a ∈ A(i )
�

.

On the other hand, its limit is given by the same formula as for spaces, (1.1.3).

7. Suppose we have a sequential diagram in an arbitrary category C

X0
f1 // X1

f2 // X2
f3 // . . .

and that the diagram stabilizes, i.e. the maps fi are isomorphisms from Xn on-
wards. Prove that the colimit of this diagram is isomorphic to Xn .

8. The system of abelian groups

Z ·1
// Z ·2

// Z ·3
// Z ·4

// Z // . . . // Z ·n
// Z // . . .

does not stabilize. Prove that its colimit in abelian groups is isomorphic to the
rational numbersQ.

9. Recall that the forgetful functors Top∗→ Top→ Set and Ab→ Set are right adjoints.
Use this to explain why the limits are preserved in exercises 4 and 6 but not in
exercise 5.

10. Let X , Y , Z ∈ Top∗ be based topological spaces.

(a) Let S (X , Y ) be the collection of set maps (not necessarily continuous) from
X to Y . Explain why there is a bijection between set maps Z → S (X , Y ) and
set maps Z ×X → Y .
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(b) The defining feature of the mapping space topology is that this correspon-
dence passes to continuous maps Z →Map(X , Y ) and continuous maps Z ×
X → Y . Prove that along this correspondence, the based continuous maps
Z → Map∗(X , Y ) landing in the subspace Map∗(X , Y ) of based continuous
maps, correspond to the continuous maps Z ×X → Y that factor through the
smash product Z ∧X (Definition 1.1.12).

(c) Explain why a homotopy of maps X ⇒ Y preserving the basepoint is the same
thing as a map X ∧ I+→ Y .

11. Explain how the definition of a fibration is similar to the definition of a cofibration.
We informally say that the definitions are dual to each other.

12. Prove that for any map f : A→ X , the inclusion of A×{0} into the mapping cylinder

A× I ∪A×{1} X

is a cofibration. Dually, for any map p : E → B , prove that the projection

E ×B B I → B , { (e ,γ) ∈ E ×B I : p (e ) = γ(0) } 7→ γ(1)

is a fibration.

13. Recall that hCW is defined to have objects the CW complexes and morphisms the
homotopy classes of maps. Prove that every homotopy equivalence is an isomor-
phism in hCW. Conversely, prove that any functor CW → D sending homotopy
equivalences to isomorphisms must factor through a functor hCW→D. In other
words, inverting homotopy equivalences is the same thing as passing to homotopy
classes of maps. (See also Proposition 3.1.26).

14. Prove that the pushout or pullback of an isomorphism is an isomorphism. Prove
that the pushout of a cofibration (Definition 1.1.7) is a cofibration. Prove that the
pullback of a fibration is a fibration.

15. Prove that in the definition of a fibration, the dotted lift is in general not unique,
but it is unique up to homotopy. (The homotopy should be through lifts that make
the diagram commute!)

16. If C f is the based homotopy cofiber of f : A → X , and everything is well-based,
prove that the based homotopy cofiber of X → C f is equivalent to ΣA. Dually,
prove that the homotopy fiber of F p → E is equivalent to ΩB .

17. Give an example of two spaces that are weakly equivalent but not homotopy equiv-
alent. (Hint: One approach is to use the topologist’s sine curve.)
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18. Prove the following claim from Section 1.5. Suppose the commuting square

A
h
��

f
// B

k
��

C g
// D

is a homotopy pullback square. In other words, the induced map from A to the
homotopy pullback

A→ B ×D C → B ×h
D C

is a weak equivalence. Prove that there is a homotopy Mayer-Vietoris sequence

. . . // πn+1(D )
∂ // πn (A)

( f∗,h∗) // πn (B )⊕πn (C )
(k∗,−g∗) // πn (D ) // . . .

(Hint: You might try computing the homotopy fiber of A→ B ×C .)

19. Prove that E → B is both a Serre fibration and a weak equivalence, if and only if a
lift exists for every commuting square of the following form.

S n−1

⊆
��

// E

��

D n //

::

B

20. Prove the claim that if the connectivity of the maps fn : Xn → Xn−1 increases to∞,
then the formation of the homotopy limit commutes with homology and coho-
mology. You might want to use the lim 1 exact sequence for homotopy groups.

21. (a) Suppose f : A → X is a cofibration and Y is any space. Composing with f
gives a continuous map

(−) ◦ f : Map(X , Y )→Map(A, Y ).

Prove that this map is a fibration.

(b) Suppose p : E → B is a fibration and Y is any space. Composing with p gives
a continuous map

p ◦ (−): Map(Y , E )→Map(Y , B ).

Prove that this map is a fibration.

22. Use the Yoneda Lemma to prove the homeomorphism (1.1.13) from the bijection
on the underlying sets. (Hint: What functor is represented by each side? Can you
show that the two functors are isomorphic?)
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23. Suppose we have an infinite sequence of closed inclusions (of CGWH spaces)

X0
f1 // X1

f2 // X2
// . . .

and Y is any compact topological space.

(a) Prove that every map Y → colim
n→∞

Xn factors through some finite stage Xn . (Re-

call that all spaces in this book are assumed weak Hausdorff, and this implies
they are T1. In other words, their points are closed.)

(b) Prove that homotopy classes of maps commute with the colimit,

h

Y , colim
n→∞

Xn

i

∼= colim
n→∞

[Y , Xn ].

Similarly if Y and all Xn are based we get [Y , colim
n→∞

Xn ]∗ ∼= colim
n→∞

[Y , Xn ]∗.

(c) Use the Yoneda lemma (Lemma 1.4.20) to get a homeomorphism

Map
�

Y , colim
n→∞

Xn

�

∼= colim
n→∞

Map(Y , Xn )

and in the based case

Map∗

�

Y , colim
n→∞

Xn

�

∼= colim
n→∞

Map∗(Y , Xn ).

In particular, based loopspace commutes with the colimit,

Ω
�

colim
n→∞

Xn

�

∼= colim
n→∞

ΩXn .

(d) Show by counterexample that these fail if Y is not compact.

24. As in the previous exercise, suppose we have an infinite sequence of maps, not
necessarily closed inclusions this time

X0
f1 // X1

f2 // X2
// . . .

and Y is any compact topological space.

(a) Explain how the unbased mapping telescope hocolim
n→∞

Xn is the colimit of a

sequence of closed inclusions. Conclude that

h

Y , hocolim
n→∞

Xn

i

∼= colim
n→∞

[Y , Xn ].
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(b) If Y and all Xn are based, explain how both the unbased and based mapping
telescopes are colimits along closed inclusions. Use this to prove

h

Y , hocolim
n→∞

Xn

i

∗
∼= colim

n→∞
[Y , Xn ]∗

using either the based or unbased version of the mapping telescope. Con-
clude that the collapse map from the unbased telescope to the based tele-
scope is always a weak equivalence, proving part of Lemma 1.5.15.

(c) Show that there is a canonical weak equivalence

hocolim
n→∞

ΩXn
∼ // Ω

�

hocolim
n→∞

Xn

�

,

using the based version of the mapping telescope.

25. Similarly to the previous exercises, but easier, assume we have a sequence of maps

X0
f1 // X1

f2 // X2
// . . .

and Z is any topological space, not necessarily compact.

(a) Prove that there is a homeomorphism

Map
�

colim
n→∞

Xn , Z
�

∼= lim
n→∞

Map(Xn , Z )

and in the based case

Map∗

�

colim
n→∞

Xn , Z
�

∼= lim
n→∞

Map∗(Xn , Z ).

(b) Explain why this does not in general give a bijection on homotopy classes of
maps

h

colim
n→∞

Xn , Z
i

̸∼= lim
n→∞

[Xn , Z ].

(It does give a lim 1 sequence if we take based maps and Z is a loop space,
so that the maps form an abelian group. In particular, this gives the lim 1 se-
quence for cohomology of a homotopy colimit.)

26. Adapt Example 1.6.11 from strict colimits to the homotopy colimits defined in Sec-
tion 1.5: K ×− commutes with unbased homotopy colimits, and K ∧− commutes
with based homotopy colimits.

27. Prove that left adjoints are unique (Theorem 1.6.12). (This follows almost imme-
diately from the Yoneda Lemma, Lemma 1.4.20, which you’ve hopefully been able
to practice in the last few exercises.)
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Chapter 2

Spectra

In this chapter we’ll define spectra and prove their fundamental properties. We study
spectra up to stable equivalence, just like how in homotopy theory, we study spaces up to
weak homotopy equivalence. We’ll save the discussion of the homotopy category Ho Sp
until the next chapter.

2.1 Definition and basic examples

2.1.1 Spectra and stable homotopy groups

Definition 2.1.1. A spectrum X is a sequence of based spaces {Xn}n≥0 and bonding
maps (or structure maps)

ξn : ΣXn −→ Xn+1.

A map of spectra f : X → Y is a sequence of maps fn : Xn → Yn such that each square of

63
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the following form commutes.

ΣXn
ξn //

Σ fn

��

Xn+1

fn+1

��

ΣYn
υn // Yn+1

It is important to say right away that we only care about the limiting behavior of the
spaces Xn as n →∞. To capture this idea, we define the homotopy groups of a spec-
trum as a colimit (direct limit) of the homotopy groups of the spaces Xn . Because of the
suspensions, the homotopy groups shift in degree as we go from each level to the next.

Definition 2.1.2. If X is a spectrum, for each k ∈ Z, the k th stable homotopy group
πk (X ) is defined as the colimit of the system of abelian groups

· · · // πk+n (Xn )
σ // πk+n+1(ΣXn )

ξn // πk+n+1(Xn+1) // · · ·

where each homotopy group is taken at the basepoint. The operationσ suspends each
map S k+n → Xn to produce a map S k+n+1→ Xn+1. When k is negative, the system is only
defined for n ≥ |k |.

(See Section 1.7, exercise 6 for a discussion of colimits of abelian groups.)

Remark 2.1.3. In the literature, spectra of this form are sometimes called sequential
spectra or prespectra. In this book, we will call them sequential spectra when we want
to distinguish them from the diagram spectra that occur in Chapter 6.

Intuitively, what is going on in this
definition is that every sphere in Xn

becomes a sphere in Xn+1 of one di-
mension higher. The stable homotopy
groups are counting these spheres up
to homotopy, in the limit where n →
∞. The dimension of the sphere is
therefore going to∞, but the difference
between this dimension and the index
of Xn stays at a constant value k ∈Z.

X0

π0(X0)

π1(X0)

π2(X0)

...

X1

π0(X1)

π1(X1)

π2(X1)

π3(X1)

...

X2

π0(X2)

π1(X2)

π2(X2)

π3(X2)

π4(X2)

...

· · ·

· · ·

· · ·

· · ·

· · ·

π−2(X )

π−1(X )

π0(X )

π1(X )

π2(X )

...

...

We’ll sometimes draw the homotopy groups of each level Xn as blue dots, connected by
vertical blue lines. The bonding maps of the spectrum X create maps between these
homotopy groups that shift degree by one. We depict this by drawing the levels of a
spectrum in staggered formation, so that the maps between the homotopy groups go
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straight to the right. We then draw the stable homotopy groups all the way on the right-
hand side.

Before proceeding further, it’s helpful to fix some conventions. There are many homeo-
morphic models for the n-sphere, but we’ll define it as the one-point compactification
of Rn :

S n :=Rn ∪{∞}.

Let X ∧Y denote the smash product (Definition 1.1.12). We define the reduced suspen-
sion to be ΣX = X ∧ S 1, with the S 1 on the right-hand side of X . Similarly, the n-fold
suspension is Σn X = X ∧S n . We’ll always use this convention for the suspensions that
occur in the bonding maps of a spectrum.

The smash product of two spheres is always a sphere, S m ∧S n ∼= S m+n . To see this, we re-
call that the smash product of two spaces is, away from the basepoint, just the Cartesian
product:

(X ∧Y )−{∗} ∼= (X −{∗})× (Y −{∗}).

Therefore S m ∧S n minus its basepoint is identified with the product Rm ×Rn .

Definition 2.1.4. The canonical isomorphism S m ∧S n ∼= S m+n is the one that, after re-
moving the basepoints, becomes the concatenation map

Rm ×Rn
∼= // Rm+n

(x1, . . . , xm ), (y1, . . . , yn )
� // (x1, . . . , xm , y1, . . . , yn ).

We can now add more precision to the definition of the stable homotopy groups in Def-
inition 2.1.2. We define σ to be the operation that takes each map φ : S k+n → Xn to the
composite map

S k+n+1
∼= //

σ(φ)

33S k+n ∧S 1 φ∧id
// Xn ∧S 1,

where the isomorphism is the canonical isomorphism of Definition 2.1.4.

Remark 2.1.5. We might say that an element of X of degree k is a map φ : S k+n → Xn ,
up to the relation that φ is identified with σ(φ). This is the correct notion of “degree k
points” in the spectrum X . The k th homotopy group πk (X ) is the set of degree k ele-
ments up to homotopy.
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2.1.2 Suspension and desuspension spectra

Example 2.1.6. The sphere spectrum S has nth level S n and bonding maps the canon-
ical homeomorphisms

S n ∧S 1 ∼= S n+1.

Following Definition 2.1.4, this isomorphism is given away from the basepoint by the
formula

Rn ×R
∼= // Rn+1

(x1, . . . , xn ), (y1)
� // (x1, . . . , xn , y1).

The first few stable homotopy groups of S are shown below.

S 0

S 0

S 1

Z

S 2

Z

Z

Z/2

Z/2

...

S 3

Z

Z/2

Z/2

Z/12

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

π−2(S)∼= 0

π−1(S)∼= 0

π0(S)∼=Z

π1(S)∼=Z/2

π2(S)∼=Z/2

π3(S)∼=Z/24

...

The negative homotopy groups are all zero, sinceπk+n (S n ) = 0 when k < 0 (Corollary 1.4.8).
But, we don’t know all of its positive homotopy groups! Computing them is one of the cen-
tral problems of homotopy theory, and to this day, it continues to be an open problem.
It’s strange, but in homotopy theory, we work frequently with groups that we cannot
compute. It adds an air of mystery and adventure to the subject.
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Example 2.1.7. If A is any based space,
the suspension spectrumΣ∞A is a spec-
trum whose nth level is Σn A = A ∧S n .

The bonding map is the canonical home-
omorphism A ∧ S n ∧ S 1 ∼= A ∧ S n+1. Its
first two homotopy groups (assuming A
is well-based) are:

π0(Σ
∞A)∼=H0(A,∗ ;Z),

π1(Σ
∞A)∼=H0(A,∗ ;Z/2)⊕H1(A,∗ ;Z).

A

π0(A)

π1(A)

π2(A)

...

ΣA

π1(ΣA)

π2(ΣA)

π3(ΣA)

...

Σ2A

π2(Σ2A)

π3(Σ2A)

π4(Σ2A)

...

· · ·

· · ·

· · ·

· · ·

· · ·

π0(Σ∞A)

π1(Σ∞A)

π2(Σ∞A)

...

The negative homotopy groups are zero. Note that the sphere spectrum S is the suspen-
sion spectrum Σ∞S 0.

If B is an unbased space, we define its unbased suspension spectrum by adding a dis-
joint basepoint and then taking the suspension spectrum. The resulting spectrum is
denoted either Σ∞B+ or Σ∞+ B . So we have S=Σ∞+ (∗), and

π0(Σ
∞
+ B )∼=H0(B ;Z), π1(Σ

∞
+ B )∼=H0(B ;Z/2)⊕H1(B ;Z).

Returning to the case where A is a based space, suppose we replace A by its d -fold sus-
pension Σd A for some d ≥ 0. Then the suspension spectrum Σ∞(Σd A) has the same
homotopy groups as Σ∞A, but shifted up d slots. In spectra, we can give an inverse to
this operation:

Example 2.1.8. For any integer
d ≥ 0, the shift desuspension
spectrum Fd A is a spectrum
whose nth level is the one-point
space ∗ when n < d , and Σn−d A
when n ≥ d . The bonding maps
are again canonical homeomor-
phisms. The spectrum F1A is
illustrated to the right.

∗

A

π0(A)

π1(A)

π2(A)

...

ΣA

π1(ΣA)

π2(ΣA)

π3(ΣA)

...

· · ·

· · ·

· · ·

· · ·

π−1(F1A)∼=π0(Σ∞A)

π0(F1A)∼=π1(Σ∞A)

π1(F1A)∼=π2(Σ∞A)

...

The spectrum Fd A is also sometimes denotedΣ−d A orΣ∞−d A. Its homotopy groups are
those of Σ∞A, but shifted down d slots.

Example 2.1.9. As a special case, the (−d )-sphere spectrum S−d := Fd S 0 is the spectrum
that at level n is the sphere S n−d , so long as n is large enough that n−d ≥ 0. For positive
d we define the d -sphere spectrum as Sd = F0S d =Σ∞S d .

The category of spectra is delightful – it allows us to formally define negative-dimensional
objects, without having access to any actual negative-dimensional geometry. The (−d )-
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sphere is an object that, after suspending d times, becomes the 0-sphere. This is philo-
sophically similar to how the integers Z are defined from the natural numbers N: an
integer is an object that, if you add a large enough natural number to it, becomes a nat-
ural number.

2.1.3 Stable equivalences

Let Sp denote the category of spectra defined by Definition 2.1.1. For each k ∈ Z, the
stable homotopy group πk forms a functor from spectra to abelian groups,

Sp
πk // Ab.

To spell this out: each map of spectra f : X → Y induces a map of colimit systems

. . . // πk+n (Xn )

fn

��

σ // πk+n+1(ΣXn )

Σ fn

��

ξn // πk+n+1(Xn+1)

fn+1

��

// . . .

. . . // πk+n (Yn )
σ // πk+n+1(ΣYn )

υn // πk+n+1(Yn+1) // . . .

which in turn gives a map on the colimits, f∗ : πk (X )→πk (Y ). It is easy to check this rule
respects identity maps of spectra, and composition of maps of spectra. This is what we
mean when we say that π∗ is a functor.

Definition 2.1.10.

• A stable equivalence, or π∗-isomorphism, is a map of spectra X → Y inducing an

isomorphism πk (X )
∼=→πk (Y ) for all k ∈Z.

• A level equivalence is a map of spectra X → Y that at each level Xn → Yn is a weak
homotopy equivalence. So it induces isomorphisms on the homotopy groupsπk+n (Xn )
at all basepoints of Xn .

• A homotopy equivalence is a map of spectra f : X → Y such that there exists an-
other map g : Y → X and homotopies of maps of spectra g ◦ f ∼ idX , f ◦ g ∼ idY .
(See Definition 2.3.11.)

• Spectra X and Y are stably equivalent if they are connected by any zig-zag of sta-
ble equivalences. Level equivalent and homotopy equivalent spectra are defined
similarly.
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...

π−1(X )

π0(X )

π1(X )

π2(X )

...Stable homotopy theory is the study of spectra up to stable equivalence. We
consider two stably equivalent spectra to be “essentially the same.” This
is similar to homological algebra, where we consider chain complexes up
to quasi-isomorphism, i.e. maps inducing isomorphisms on homology. In
the pictures we been drawing, this means that we focus on the blue line at
the far right. It is a mathematical object that can have homotopy groups in
every degree.

We have the implications

homotopy equivalence ⇒ level equivalence ⇒ stable equivalence,

so homotopy and level equivalences are a stricter notion than stable equivalences. For
certain classes of nice spectra, the implications can be reversed, see Lemma 2.2.5 and
Corollary 2.6.17.

Example 2.1.11. If X is any spectrum, we
can cut off everything before level d to
make a new spectrum X ′. To be precise,

X ′n =







∗ if n < d

Xn if n ≥ d ,

and bonding maps the same as X , start-
ing at level d . The inclusion X ′ ⊆ X is
a stable equivalence. In other words, we
can always throw away finitely many of
the levels of X , without changing its sta-
ble homotopy type.

∗

∗

X2

π0(X2)

π1(X2)

π2(X2)

π3(X2)

π4(X2)

...

· · ·

· · ·

· · ·

· · ·

· · ·

π−2(X )

π−1(X )

π0(X )

π1(X )

π2(X )

...

...

Example 2.1.12. The zero spectrum ∗ has every level the one-point space ∗, and every
bonding map is the unique map

Σ(∗)∼= ∗ −→∗.

Every spectrum X admits a unique maps of spectra ∗ → X → ∗. We say X is weakly
contractible if one (equivalently both) of these maps are stable equivalences. This is
also equivalent to having vanishing homotopy groups, πk (X )∼= 0 for all k ∈Z.

Given two spectra X and Y , the zero map X → Y is the unique map of spectra that
factors through ∗. At level n it is the map Xn → Yn sending everything to the basepoint.
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2.1.4 Thom spectra

The next few examples will use several concepts from the theory of fiber bundles, see
e.g. [Ste51, MS74, Coh98, Hat03].

If B is an unbased space, the n-fold suspension Σn
+B =Σn B+ = B+∧S n can be visualized

as a collection of n-spheres, one for each b ∈ B , that share a common basepoint.

For example, the one-fold suspension of B = S 1 can be written as a
square with edges identified as shown, and the top and bottom edges
collapsed to the basepoint ∗. Each point in B gives a circle, which is a
single vertical line in this picture, but the circles are glued together con-
tinuously, giving the whole square. The resulting space Σ+S 1 is homeo-
morphic to S 2 with two points identified, and homotopy equivalent to
S 1 ∨S 2.
One might imagine trying to modify this suspension by spinning the
spheres around as we rove around B . For instance, the one-fold suspen-
sion of B = S 1 can be twisted like a Möbius strip. The resulting “twisted
suspension” of S 1 is written as a square with edges identified as shown,
and is homeomorphic to the projective plane RP2.

To accomplish this in general, we pick a vector bundle E → B . This is a continuous map
whose fibers are vector spaces, and that is locally a product projection U ×Rn →U . We
define the E -suspension of B to be like the n-fold suspension, except that the spheres
twist according to the bundle E :

Definition 2.1.13. The Thom space of the bundle E → B is denoted Th(E ), ΣE B , or
B E . We construct it by taking one-point compactification of the fibers, giving a bundle
S E → B whose fibers are spheres S n . Then, we collapse to a point the subspace B∞ ⊆ S E

containing all the newly-created points at infinity.

Intuitively, Th(E ) is just the vector bundle E with a single additional point, which we can
reach by going to∞ in any of the fibers of E → B .

Lemma 2.1.14. There is a homeomorphism Th(E ) ∼= D (E )/S (E ), where D (E ) is the unit
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disc bundle and S (E ) ⊆ D (E ) is the unit sphere bundle, for any fixed choice of metric on
E .

Example 2.1.15. When E is a trivial bundle B ×Rn , the Thom space is

(B ×S n )/(B ×{∞})∼= (B ×D n )/(B ×S n−1)∼=Σn
+B .

So when E is nontrivial, we think of the Thom space as a twisted suspension of B .

We observe that adding a trivial bundle to E has the effect of suspension,

Th(E ⊕ε1)∼= Th(E ×R)∼=ΣTh(E ), (2.1.16)

see exercise 5. Therefore, if we make a spectrum by formally de-suspending Th(E ), this
should correspond to subtracting off a trivial bundle.

Example 2.1.17. Suppose we have a virtual bundle ζ, that is, a formal difference of vec-
tor bundles E − E ′, over a compact space B . Without loss of generality, it is a nontrivial
bundle E minus a d -dimensional trivial bundle εd = B ×Rd :

ζ= E −εd . (2.1.18)

We define the Thom spectrum of ζ as

Th(ζ) := Fd (Th(E )).

That is, we take the Thom space for E , and then take its shift desuspension spectrum.
This spectrum is also denoted ΣζB or B ζ.

Intuitively, ζ is a mathematical object that is not a vector bundle, but if we add enough
trivial line bundles to it, it becomes a vector bundle. We can visualize the definition of
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its Thom spectrum as an iterative process: at each step, add a trivial line bundle. If the
result is not a vector bundle yet, take the zero space ∗. If the resulting object is a vector
bundle, take its Thom space Th(ζ⊕εn ).

Put another way, the “Thom space” Th(ζ)does not exist as a geometric object, but it does
exist if suspended enough times, and this is enough to define a spectrum out of it.

Example 2.1.19. Suppose M is a closed manifold with tangent bundle τ. The virtual
bundle−τ can be presented as ν−εd , where ν is the normal bundle of some embedding
M →Rd . Therefore its Thom spectrum is

Th(−τ) =Σ−τM =M −τ := Fd (Th(ν)).

Example 2.1.20. There is a universal Thom spectrum MO whose base is the space BO
classifying all stable real vector bundles. To build it, we use space BO (n ) at spectrum
level n , so that as n→∞we get BO as the base space.

In more detail, let BO (n ) denote the space of n-dimensional subspace ofR∞, and γn →
BO (n ) be the tautological bundle whose fiber over each point consists of all the vectors
in that n-dimensional subspace.

We define the spectrum MO by letting MOn = Th(γn ). To define the bonding maps, we
take the maps BO (n )→ BO (n + 1) that add a fixed line to the subspaces. The pullback
of γn+1 along this map is γn ⊕ε1, so we get maps

ΣMOn =ΣTh(γn )∼= Th(γn ⊕ε1)→ Th(γn+1) =MOn+1.

These define the bonding maps of MO . Intuitively, MO is a suspension spectrum of
BO (n )with n→∞, but the spheres are twisted according to the vector bundles γn .

The Pontryagin-Thom isomorphism says that for each d ≥ 0, the stable homotopy group
πd (MO ) is isomorphic to the group of d -dimensional closed manifolds M d up to cobor-
dism. See [Wes96, Kup17, Mil94, Sto68, Coh20] for more details.

Warning 2.1.21. The bonding maps matter! Given any sequence {Xn}, we can form the
spectrum X in which the bonding maps are all zero,

ΣXn −→∗−→ Xn+1.

Then X is weakly contractible, i.e. X →∗ is a stable equivalence.

2.2 Ω-spectra and infinite loop spaces

Recall from Corollary 1.6.4 that the reduced suspension Σ: Top∗ → Top∗ and the based
loopspace Ω: Top∗ → Top∗ are adjoint. This is a fancy way of saying that continuous
based maps ΣX → Y are the same thing as continuous based maps X →ΩY .
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Applying this to Definition 2.1.1, we see that a spectrum is equivalently described as a
sequence of based spaces Xn and based maps

eξn : Xn →ΩXn+1.

In other words, each point in Xn creates a loop in the next space Xn+1. We call eξn the
adjunct bonding map.

Definition 2.2.1. A fibrant spectrum or Ω-spectrum is a spectrum X in which the ad-
junct bonding maps Xn →ΩXn+1 are weak homotopy equivalences.

The zeroth space X0 of an Ω-spectrum is also called an infinite loop space.

Intuitively, this means that not only does a sphere in Xn create a sphere in Xn+1 of one
dimension higher, but having a sphere in Xn is equivalent to having a sphere in Xn+1 of
one dimension higher.

When ΣXn → Xn+1 is a weak equivalence, its adjunct Xn → ΩXn+1 is usually not a weak
equivalence, and vice-versa. For instance, the adjunct of S 2 ∼= S 2 is a map S 1 → ΩS 2

that is not a weak equivalence. Having a two-sphere in S 1 is not equivalent to having a
three-sphere in S 2.

So the sphere spectrum S is not an Ω-spectrum. In fact, almost none of the suspension
spectra and Thom spectra of the previous section are Ω-spectra.

Example 2.2.2. Let G be an abelian group. Recall that an Eilenberg-Maclane space
K (G , n ) is a CW complex whose nth homotopy group is identified with G and all other
homotopy groups are zero (Definition 1.4.16). Define an Eilenberg-Maclane spectrum
H G by

(H G )n = K (G , n ),

and bonding maps the canonical equivalences K (G , n )≃ΩK (G , n +1).
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By construction, this is an Ω-
spectrum with only one stable
homtopy group,

πk (H G ) =







G k = 0

0 k ̸= 0,

K (G , 0)

G

K (G , 1)

G

K (G , 2)

G · · ·
π∗(H G )

G

just like the Eilenberg-Maclane spaces K (G , n ). In the exercises we will see that this
property defines H G uniquely, up to stable equivalence. Since (H G )0 =G , we conclude
that every abelian group is an infinite loop space.

Example 2.2.3. Let U = colim
n→∞

U (n ) be the infinite unitary group and BU = colim
n→∞

BU (n )
its classifying space. The spaceZ×BU classifies stable complex vector bundles, and the
Bott periodicity theorem [Bot59] tells us that

Ω(Z×BU )≃U , ΩU ≃Z×BU .

The complex K -theory spectrum
KU has every even level KU 2n =
Z × BU , every odd level KU 2n+1 =
U , and adjunct bonding maps given
just above. The stable homotopy
groups follow a periodic pattern, al-
ternating between Z and 0:

πk (KU ) =







Z k = 2n

0 k = 2n +1.

Therefore Z× BU is also an infinite
loop space.

Z×BU

Z

0

Z

0

Z

...

U

Z

0

Z

0

Z

...

Z×BU

Z

0

Z

0

Z

0

Z

...

U

Z

0

Z

0

Z

0

Z

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

Z

0

Z

0

Z

0

Z

...

π∗(KU )

Lemma 2.2.4. When X is an Ω-spectrum, the map from each group πk+n (Xn ) to the col-
imit πk (X ) is always an isomorphism.

Proof. The definition of πk (X ) can be rearranged to the colimit of

. . . // πk+n (Xn )
eξn // πk+n (ΩXn+1)

∼= // πk+n+1(Xn+1) // . . .
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Here the isomorphism comes from the adjunction betweenΣ and Ω, see Corollary 1.6.5.
If X is an Ω-spectrum then all the maps of this system are isomorphisms, hence the map
from any one term to the colimit is also an isomorphism.

Lemma 2.2.5. Between Ω-spectra, every stable equivalence is a level equivalence.

Proof. By the previous lemma, if f : X → Y is a stable equivalence of Ω-spectra, then for
any n ≥ 0, fn+1 : Xn+1→ Yn+1 is an isomorphism on all homotopy groups at the basepoint.
Therefore it is a weak equivalence on basepoint components, so Ω fn+1 : ΩXn+1→ΩYn+1

is a weak equivalence. Since X and Y are Ω-spectra, this is equivalent to fn : Xn → Yn so
fn is a weak equivalence for every n ≥ 0.

We next show that every spectrum is stably equivalent to an Ω-spectrum. We first do the
sphere spectrum as a special case.

Example 2.2.6. The fibrant sphere spectrum f S has nth level equal to the colimit of the
spaces

S n
eξn // ΩS n+1 Ωeξn+1 // Ω2S n+2 Ω2

eξn+2 // Ω3S n+3 Ω3
eξn+3 // . . .

where each map is the adjunct of the identity map of a sphere. We call this colimit
Ω∞Σ∞S n . It is also sometimes called QS n after Quillen. Intuitively, Ω∞Σ∞S n is the
space of based maps S k → S n+k , but stabilized so that k →∞. It is also the space of
“elements” of degree n in S, in the sense of Remark 2.1.5.

(We could have also taken the homotopy colimit, or mapping telescope, instead of the
strict colimit. The homotopy colimit is equivalent to the strict colimit, because of Lemma 1.5.5
and the fact that the maps Ωk

eξn+k are closed inclusions.)

To define the adjunct bonding map, we use Section 1.7 exercise 23 to rewrite Ω∞Σ∞S n+1

as the colimit along the bottom row of the following diagram. We form a homeomor-
phism between this colimit and Ω∞Σ∞S n using identity maps:

S n

eξn
��

eξn // ΩS n+1

id
ww

Ωeξn+1 // Ω2S n+2

idvv

Ω2
eξn+2 // . . .

id
xx

// Ω∞Σ∞S n

∼=
��

ΩS n+1

Ωeξn+1

// Ω2S n+2

Ω2
eξn+2

// Ω3S n+3

Ω3
eξn+3

// . . . // ΩΩ∞Σ∞S n+1

This defines the adjunct bonding maps for f S. The inclusion of the first term of each
colimit system gives maps S n →Ω∞Σ∞S n , commuting with these bonding maps, giving
a map of spectra S→ f S. We will see shortly that it is a stable equivalence.

Remark 2.2.7. In the previous example, it is possible to follow several different conven-
tions when defining the maps Ωk

eξn+k . We adopt the following one. The k -fold loop
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space is defined as Ωk X := Map∗(S
k , X ). When we take Ωk of a map Xn+k → ΩXn+k+1,

the extra loop in the target goes to the right of the existing k loops. The resulting map

Ωk
eξn+k : Ωk Xn+k →Ωk+1Xn+k+1

takes
�

φ : S k → Xn+k

�

∈Ωk Xn+k to the composite

S k+1
∼= //

σ(φ)

33
S k ∧S 1 φ∧id

// Xn+k ∧S 1 ξn // Xn+k+1.

Example 2.2.8. Similarly to the last example, we may define a fibrant suspension spec-
trum of a space A by setting level n to be Ω∞Σ∞Σn A, the colimit of

Σn A
eξn // ΩΣn+1A

Ωeξn+1 // Ω2Σn+2A
Ω2
eξn+2 // Ω3Σn+3A

Ω3
eξn+3 // . . .

This is stably equivalent to Σ∞A.

We can generalize the construction of the last two examples to any spectrum X . The
only problem is that the colimit is not always a homotopy colimit (Section 1.5), so it may
have the wrong homotopy type. The following proof fixes this by using the homotopy
colimit instead.

Proposition 2.2.9. To each spectrum X , we may assign an Ω-spectrum R X and a stable
equivalence X →R X in a natural way.

We sometimes call R X a fibrant replacement of X . The naturality part of the statement
is that R is a functor and the maps X →R X define a natural transformation. So for each
map X → Y , the following square commutes.

X

��

// R X

��

Y // RY

Proof. We define (R X )n to be the based homotopy colimit of the spaces

Xn

eξn // ΩXn+1
Ωeξn+1 // Ω2Xn+2

Ω2
eξn+2 // Ω3Xn+3

// . . .

where Ωk
eξn+k is defined as in Remark 2.2.7. We map Xn → (R X )n by including the first

term into the colimit. The commuting grid of maps

Xn

eξn

��

eξn // ΩXn+1

Ωeξn+1
��

Ωeξn+1 //

id
ww

Ω2Xn+2

Ω2
eξn+2

��

Ω2
eξn+2 //

idww

Ω3Xn+3

Ω3
eξn+3

��

Ω3
eξn+3 //

idww

· · ·

ΩXn+1
Ωeξn+1

// Ω2Xn+2
Ω2
eξn+2

// Ω3Xn+3
Ω3
eξn+3

// Ω3Xn+4
Ω4
eξn+4

// · · ·
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induces a map of homotopy colimits. It is homotopic to the map induced by the dashed
arrows, and is therefore a weak equivalence. Composing with the weak equivalence from
Section 1.7, exercise 24 gives a composite map

hocolim
m→∞

Ωm Xn+m
∼ // hocolim

m→∞
Ω1+m Xn+1+m

∼ // Ω
�

hocolim
m→∞

Ωm Xn+1+m

�

.

We define the adjunct bonding map (R X )n
∼−→ Ω(R X )n+1 to be this composite. Since it

is a weak equivalence, R X is an Ω-spectrum.

It remains to show that the map X →R X induces isomorphisms on the stable homotopy
groups. To do this we form a commuting grid in which the maps are all induced by
Ωm

eξn+m :

πk+n (Xn )

��

// πk+n (ΩXn+1)

��

// πk+n (Ω2Xn+2)

��

// · · · // πk+n (R Xn )
∼=
��

πk+n+1(Xn+1)

��

// πk+n+1(ΩXn+2)

��

// πk+n+1(Ω2Xn+3)

��

// · · · // πk+n+1(R Xn+1)
∼=
��

πk+n+2(Xn+2)

��

// πk+n+2(ΩXn+3)

��

// πk+n+2(Ω2Xn+4)

��

// · · · // πk+n+2(R Xn+2)
∼=
��

...

��

...

��

...

��

...
∼=
��

πk (X )
∼= // A1

∼= // A2

∼= // · · ·
∼= // πk (R X ).

Along the left-hand column, this gives the colimit system defining the stable homotopy
groups of X . In each row, it gives the colimit system defining the homotopy groups of a
mapping telescope, and therefore gives the homotopy groups of each level (R X )n+k . The
induced vertical maps between these define the stable homotopy groups of R X itself, so
πk (R X ) is the colimit of the entire grid.

By the above argument, the maps of colimits on the right-hand side are isomorphisms.
By the same argument, the maps along the bottom are isomorphisms. Since the colimits
in both directions commute, πk (R X ) is the colimit of a system of isomorphisms starting
with πk (X ). Therefore the map πk (X )→πk (R X ) is an isomorphism.

Remark 2.2.10. In the literature one sometimes finds strict Ω-spectra in which the ad-
junct maps Xn → ΩXn+1 are homeomorphisms, see e.g. [LMSM86, EKMM97]. For in-
stance, the fibrant sphere spectrum of Example 2.2.6 is a strict Ω-spectrum. In these
cases, X0 is quite literally a loop space of a loop space of a loop space... and so on ad
infinitum. Every spectrum is equivalent to a strict Ω-spectrum, but the replacement
requires two steps: we first make the maps eξn into closed inclusions, then we take the
strict colimit of the maps Ωm

eξn+m , as in Example 2.2.6. Note that this is equivalent to
the homotopy colimit construction we used in the proof above.
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As in the Whitehead theorem for spaces (Theorem 1.4.12), the results of this section
imply that studying spectra up to stable equivalence is the same thing as studying Ω-
spectra up to level equivalence. Sometimes this is a good idea, but sometimes it’s a bet-
ter idea to leave our spectra alone – suspension spectra are much easier to think about
than their fibrant replacements.

Definition 2.2.11. If X is any spectrum, its infinite loop space Ω∞X is the 0th space of
any Ω-spectrum R X receiving a stable equivalence from X .

For example, the infinite loop space of the sphere spectrum
is

Ω∞S≃Ω∞Σ∞S 0 = colim
n→∞

ΩnS n .

By the above results,

πk (Ω
∞X )∼=πk (X ), k ≥ 0.

So the infinite loop space captures everything about X that
happens at π0 and above. It can be visualized by taking the
bi-infinite sequence of homotopy groups of a spectrum, and
cutting it off below 0 to form a space again.

X
...

π−1(X )

π0(X )

π1(X )

π2(X )

...

Ω∞X

π0(X )

π1(X )

π2(X )

...

Remark 2.2.12. The infinite loop space of X is unique up to weak equivalence. We will
prove this in Example 3.4.9 after characterizing Ω∞X as the right-derived 0th space of
X .

2.3 Operations on spectra

We’re ready now to define the basic operations on spectra, just like we did for spaces in
Section 1.1.

Definition 2.3.1. Given spectra X and Y , their wedge sum or coproduct X ∨ Y is the
spectrum whose nth level is the wedge sum Xn ∨Yn and whose bonding maps are

Σ(Xn ∨Yn ) oo
∼= // (ΣXn )∨ (ΣYn )

ξn∨υn // Xn+1 ∨Yn+1.

The map on the left is a canonical isomorphism (Example 1.6.11). It arises from the
inclusions ΣXn →Σ(Xn ∨Yn ) and ΣYn →Σ(Xn ∨Yn ).

Similarly, the product X ×Y is the spectrum whose nth level is the product Xn ×Yn and
whose bonding maps are

Σ(Xn ×Yn ) // (ΣXn )× (ΣYn )
ξn×υn // Xn+1×Yn+1.
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The map on the left arises from the projectionsΣ(Xn ×Yn )→ΣXn andΣ(Xn ×Yn )→ΣYn .
Alternatively, the adjunct bonding map is the composite

Xn ×Yn

eξn×eυn // (ΩXn+1)× (ΩYn+1) oo
∼= // Ω(Xn+1×Yn+1).

Example 2.3.2. A wedge sum of suspension spectra is a suspension spectrum,

Σ∞A ∨Σ∞B ≃Σ∞(A ∨B ), Σ∞+ A ∨Σ∞+ B ≃Σ∞+ (A⨿B ).

A product of Eilenberg-Maclane spectra is an Eilenberg-Maclane spectrum,

H G1×H G2
∼=H (G1×G2).

Definition 2.3.3. Given a spectrum X , a subspectrum A ⊆ X is a sequence of subspaces
An ⊆ Xn such that ξn (An )⊆ An+1. This makes the spaces An into a spectrum as well.

Definition 2.3.4. For any integer d ∈ Z, the d -fold shift operator sends each spectrum
X to the spectrum shd X whose nth level is the (n +d )th level of X ,

(shd X )n = Xd+n ,

with the same bonding maps as X . When n +d < 0, we define (shd X )n = ∗. Clearly shd

has the effect of shifting the homotopy groups,

πk (shd X ) =πk−d (X ).

Example 2.3.5. The d -sphere Sd of Example 2.1.9 can be re-interpreted as shd S. Shift-
ing a suspension spectrum Σ∞A makes a suspension spectrum Σ∞Σd A if d ≥ 0, and a
desuspension spectrum Fd A if d ≤ 0. Shifting an Eilenberg-Maclane spectrum creates a
spectrum shd H G in which the only nonzero homotopy group is πd =G .

Definition 2.3.6. If X is a spectrum and K is a based space, we form the tensor or smash
product K ∧ X by smashing K with every level of X . So K ∧ X is the spectrum whose
nth level is K ∧Xn and whose bonding maps are

K ∧Xn ∧S 1 id∧ξn // K ∧Xn+1.

We call this the tensor because it distributes over direct sums, see exercise 10.

As a special case, the reduced suspension is ΣX := S 1 ∧X . This is just the reduced sus-
pension on each spectrum level, but with the new S 1 is on the left of X , while the bonding
maps put an S 1 on the right. If one is less careful and puts them on the same side, it is
necessary to apply a shuffle map S 1 ∧S 1 ∼= S 1 ∧S 1 when defining the bonding maps.1

1If you don’t apply the shuffle maps, you do get a well-defined spectrum, it’s just hard to relate it to
anything else because it’s not a special case of the more general construction K ∧X .
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We sometimes put the “extra” suspension in bold, to emphasize which one is on the left
of X . Then the bonding map is then written as

ΣΣXn
∼=ΣΣXn

Σξn // ΣXn+1

where the isomorphism is the shuffle that switches the two copies of the circles that are
being smashed with X .

Example 2.3.7. The suspension spectrum Σ∞A is isomorphic to the tensor A ∧S.

Definition 2.3.8. If X is a spectrum and K is a based space, we form the cotensor or
function spectrum F (K , X ) by applying Map∗(K ,−) to every spectrum level of X . So
F (K , X ) is the spectrum whose nth level is the space of based maps Map∗(K , Xn ). The
bonding maps are

Map∗(K , Xn )
Map∗(K ,ξn )

//Map∗(K ,ΩXn+1) oo
∼= // ΩMap∗(K , Xn+1).

where the last isomorphism is deduced from (1.1.14).

As a special case, the based loops are ΩX := F (S 1, X ). This is just the based loops on
each spectrum level. As in the suspension example, the bonding maps involve a shuffle:

ΩXn
Ωeξn // ΩΩXn+1

∼=ΩΩXn+1.

It is an exercise to check that the operations K ∧− and F (K ,−) are adjoint functors on
spectra. (Exercise 15.)

Warning 2.3.9. The group A1 from the end of the proof of Proposition 2.2.9 is not canon-
ically identified with πk (ΩX ). The two colimit systems differ by shuffles applied to the
spheres that map to Xk+n . The colimits are still isomorphic, but choosing an isomor-
phism requires us to make choices about how to add in shuffle maps. See also exercise
19c.

Example 2.3.10. For each based finite CW complex X , its Spanier-Whitehead dual is
the function spectrum F (X ,S). This is formally like the linear dual of a vector space,
V ∗ =Homk (V , k ), only using the sphere spectrum as the ground ring. It is a theorem of
Spanier and Whitehead that when M is a smooth closed manifold, the Thom spectrum
Σ−τM from Example 2.1.19 is stably equivalent to the dual F (M+,S), see Theorem 4.2.18.

Definition 2.3.11. A homotopy of maps of spectra X → Y is a map h : I+ ∧ X → Y ,
where ∧ is the tensor from Definition 2.3.6, or equivalently X → F (I+, Y ), where F is
the cotensor from Definition 2.3.8. This is the same as asking for homotopies of based
maps Xn → Yn that agree along the bonding maps.
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Definition 2.3.12. For spectra X and Y , we define the mapping space Map∗(X , Y ) as the
subspace

Map∗(X , Y ) =
�

fn ∈Map∗(Xn , Yn ) ∀n : fn+1 ◦ξn =υn ◦ (Σ fn )
	

⊆
∏

n≥0

Map∗(Xn , Yn )

of all tuples of maps ( fn ) that commute with the bonding maps of X and Y . This can
also be written as an equalizer (i.e. the limit of a diagram of the following form):

Map∗(X , Y )−→
∏

n≥0

Map∗(Xn , Yn )⇒
∏

m≥0

Map∗(ΣXm , Ym+1)

Of the two parallel maps, one composes with the bonding map for X , and the other
suspends and then composes with the bonding map for Y .

It is an exercise to check that a point in Map(X , Y )
is precisely a map of spectra X → Y , and a path in
Map(X , Y ) is a homotopy. More generally, a map
K →Map(X , Y ) corresponds to both a map from
the tensor K ∧X → Y and a map to the cotensor
X → F (K , Y ) (exercise 15).

Let I be a small category. As in Section 1.1, we
say that a diagram of spectra indexed by I is a
functor X : I → Sp. In particular, we get a spec-
trum X (i ) for each object i ∈ ob I and a map
X (i ) → X ( j ) for each morphism i → j . This
is the same thing as, for each n ≥ 0, a dia-
gram of spaces X (i )n , along with bonding maps
ΣX (i )n → X (i )n+1 commuting every map of the
diagram X (i )n → X ( j )n , as illustrated on the
right.

Definition 2.3.13. The colimit of the diagram X : I→ Sp is formed by taking the based
colimit from (1.1.11) at each spectrum level n . The structure map is

Σcolim
I

(b )X (i )n oo
∼= // colim

I

(b )ΣX (i )n
colim

I

(b )ξ(i )n
// colim

I

(b )Xn+1,

where the canonical isomorphism is as in Example 1.6.11. Usually we drop the (b) dec-
oration.

Example 2.3.14. The wedge sum of Definition 2.3.1 is an example of a colimit of spectra.
Another example is the pushout X ∪A Y , formed from two maps of spectra A→ X , A→ Y
by taking the pushout at each spectrum level, Xn ∪An

Yn .
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Definition 2.3.15. Similarly the limit of the diagram X : I→ Sp is formed by taking the
limit (1.1.3) at each spectrum level. The adjunct structure map is

lim
I

X (i )n
lim eξ(i )n // lim

I
ΩX (i )n+1

oo
∼= // Ωlim

I
X (i )n+1.

Example 2.3.16. The product from Definition 2.3.1 is an example of a limit. Another
example is the pullback X ×B Y , formed from two maps of spectra X → B , Y → B by
taking the pullback at each spectrum level, Xn ×Bn

Yn .

It is an exercise to check that the spectra defined in Definition 2.3.13 and Definition 2.3.13
have the universal property of the colimit, respectively the limit, in the category of spec-
tra (see exercise 13).

Definition 2.3.17. For any diagram of spectra X : I→ Sp, the homotopy colimit is formed
by taking the based homotopy colimit at each spectrum level n . The bonding map is

Σhocolim
I

(b )X (i )n oo
∼= // hocolim

I

(b )ΣX (i )n
hocolim

I

(b )ξ(i )n
// hocolim

I

(b )Xn+1.

We usually we drop the (b) decoration.

Since we have not introduced general homotopy colimits yet, we focus on the basic ex-
amples. The homotopy pushout of a diagram of spectra

A

��

// X

Y

is formed at each level as the based mapping cylinder,

(X ∪h
A Y )n = Xn ∪h

A Yn = Xn ∪(An∧{0}+) (An ∧ I+)∪(An∧{1}+) Yn .

The homotopy colimit of a sequence of maps of spectra

X (0)
f1 // X (1)

f2 // X (2) // . . .

is formed at each level as the based mapping telescope,
�

hocolim
I

(b )X (i )
�

n
=
∨

k≥0

(X (k )n ∧ I+)/
�

(xk , 1)∼ ( fk+1(xk ), 0)
�

.

Remark 2.3.18. One might worry, because of Lemma 1.5.15, that we need to assume
the levels of these spectra are well-based spaces, so that the based homotopy colimit
has the correct homotopy type. It is a minor miracle that this isn’t necessary: in spectra,
this model of the homotopy colimit always has the correct homotopy type, up to stable
equivalence. This will be proven in ??.



2.3. OPERATIONS ON SPECTRA 83

Example 2.3.19. For any map of spectra f : X → Y , the homotopy pushout ∗ ∪h
X Y is

called the homotopy cofiber C f . At each spectrum level, it is the based mapping cone
from Section 1.2,

(C f )n =C ( fn ) =C Xn ∪Xn
Yn .

This can also be described as (I ∧Xn )∪Xn
Yn , if consider the interval I to be a based space

with basepoint 0. The bonding maps arise from commuting Σwith the mapping cone.

Definition 2.3.20. For any diagram of spectra X : I→ Sp, the homotopy limit is formed
by replacing all the X (i ) by Ω-spectra R X (i ), then taking the homotopy limit at each
spectrum level n . The adjunct bonding map is

holim
I
(R X (i ))n

∼ // holim
I
Ω(R X (i ))n+1

oo
∼= // Ωholim

I
(R X (i ))n+1.

Warning 2.3.21. We could define a spectrum by just taking the homotopy limit at each
spectrum level:

holim
I

X (i )n
lim eξ(i )n // holim

I
ΩX (i )n+1

oo
∼= // Ωholim

I
X (i )n+1.

However, this is only the homotopy limit in spectra in the following cases:

• The spectra X (i ) are all Ω-spectra, or

• the category I is homotopy finite, meaning it has finitely many objects and finitely
many strings of composable non-identity morphisms.

If neither of these conditions hold, then this is not the correct way to define the ho-
motopy limit. The issue is that stable equivalences X (i )→ Y (i ) don’t necessarily give a
stable equivalence on this spectrum. In particular, an infinite product of spectra some-
times has the wrong homotopy type. (See exercise 25.)

In particular, the homotopy pullback of a diagram of spectra

X

��

Y // B

is formed at each level as the homotopy fiber product,

(X ×h
B Y )n = Xn ×h

B Yn = Xn ×Bn
B I

n ×Bn
Yn .

This will always have the correct homotopy type.
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Example 2.3.22. For any map of spectra f : X → Y , the homotopy pullback ∗ ×h
Y X is

called the homotopy fiber F f . At each spectrum level, it is the pullback

(F f )n = F ( fn ) = Xn ×Yn
P Yn

where P Yn =Map∗(I , Yn ) is the based path space, the space of paths in Yn whose end-
point 0 ∈ I is sent to the basepoint of Yn . So a point in F fn is a point in Xn , and a path
from its image in Yn to the basepoint of Yn .

Definition 2.3.23. For spectra X and Y , define the handicrafted smash product X ∧Y
by

(X ∧Y )n = Xpn
∧Yqn

,

for any sequence of pairs of the form (pn , qn ) with the following conditions: (p0, q0) =
(0, 0), at every stage either pn or qn increases by one, and both pn and qn increase without
bound as n→∞. The bonding maps are as follows:

Xp ∧Yq ∧S 1
id∧υq

// Xp ∧Yq+1

Xp ∧Yq ∧S 1
∼= // Xp ∧S 1 ∧Yq

(−1)q
// Xp ∧S 1 ∧Yq

ξp∧id
// Xp+1 ∧Yq ,

where (−1)q is the map S 1→ S 1 that flips the circle if q is odd.

Remark 2.3.24. This version of the smash product is not well-defined – it depends on
the choice of sequence (pn , qn ). Any two sequences turn out to give stably equivalent re-
sults, but the proof of this fact is complicated, and will not be used in this book. Instead,
in Chapter 6 we will pass to an equivalent model of spectra where this smash product
becomes well-defined and independent of choices.

The sign in Definition 2.3.23 can be explained as follows. Consider all possible smash
products of the levels of X and Y :

...
...

...

X0 ∧Y2 X1 ∧Y2 X2 ∧Y2 . . .

X0 ∧Y1 X1 ∧Y1 X2 ∧Y1 . . .

X0 ∧Y0 X1 ∧Y0 X2 ∧Y0 . . .

The suspension of each space in this grid maps to the space above it, and also to the
space to its right. However, if we traverse the grid using different choices of sequence
(pn , qn ), the different routes do not commute, for reasons of applying the suspensions in
a different order. The sign convention fixes this.
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As a result, if we take the maps on homotopy groups induced by these bonding maps,
the resulting grid of homotopy groups commutes. (The (−) decorations denote those
maps where the flip S 1→ S 1 is applied in the definition of the bonding map. For k < 0,
the grid is only defined once we move sufficiently far up or to the right.)

...
...

... colim =πk (X ∧Y )

πk+3(X0 ∧Y3)

+

OO

− // πk+4(X1 ∧Y3)

+

OO

− // πk+5(X2 ∧Y3)

+

OO

− // · · ·

πk+2(X0 ∧Y2)

+

OO

+ // πk+3(X1 ∧Y2)

+

OO

+ // πk+4(X2 ∧Y2)

+

OO

+ // · · ·

πk+1(X0 ∧Y1)

+

OO

− // πk+2(X1 ∧Y1)

+

OO

− // πk+3(X2 ∧Y1)

+

OO

− // · · ·

πk (X0 ∧Y0)

+

OO

+ // πk+1(X1 ∧Y0)

+

OO

+ // πk+2(X2 ∧Y0)

+

OO

+ // · · ·

The choice of sequence (pn , qn ) gives a path through this grid that is cofinal, meaning
any other term in the grid maps to something in this path. It follows that πk (X ∧ Y ) is
isomorphic to the colimit of this grid of abelian groups.

Example 2.3.25. The smash product of a spectrum X with a suspension spectrumΣ∞K
is stably equivalent to the tensor,

(Σ∞K )∧X ≃ K ∧X .

The smash product of two suspension spectra is also equivalent to a suspension spec-
trum,

(Σ∞A)∧ (Σ∞B )≃Σ∞(A ∧B ).

More generally, the smash product of two shift desuspensions is equivalent to the shift
desuspension,

(Fd A)∧ (Fe B )≃ Fd+e (A ∧B ).

Remark 2.3.26. The constructions in this section are all functors, meaning that they can
also be applied to maps of spectra or maps of diagrams of spectra. For instance, a map
X → X ′ will also give a map on the suspensions ΣX →ΣX ′, and a pair of maps X → X ′,
Y → Y ′ gives a map X ∨Y → X ′∨Y ′. The definition of these maps is usually obvious, so
we don’t spell them out explicitly.
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2.4 Stability theorems

Homotopy theorists often find that spectra are easier to work with than spaces. The
reason for this is “stability,” a property similar to excision for homology. Stability can be
formulated in a few different ways:

• Σ and Ω are inverses up to stable equivalence.

• Cofiber and fiber sequences of spectra are the same, up to stable equivalence.

• Homotopy pushout and homotopy pullback squares of spectra are the same, up
to stable equivalence.

In this section, we prove these claims and deduce some standard corollaries.

2.4.1 Suspension and loops

Proposition 2.4.1. For any spectrum X there are natural isomorphisms

πk+1(ΣX )∼=πk (X )∼=πk−1(ΩX ).

Proof. We take the colimit definingπk (X ) in Definition 2.1.2, and restrict to the terms of
the formπk+2n+1(ΣX ) =πk+2n+1(X2n∧S 1). We similarly take the colimit definingπk+1(S 1∧
X ) and restrict to the terms πk+1+2n (S 1 ∧ X2n ). We form an isomorphism between the
colimit systems by the symmetry isomorphism X2n ∧S 1 ∼= S 1 ∧X2n .

To check this isomorphism commutes with the maps of the colimit system, it suffices to
show the following diagram commutes up to homotopy.

X2n ∧S 1 ∧S 1 ∧S 1

∼=
��

ξ2n∧id∧id
// X2n ∧S 1 ∧S 1 ξ2n∧id

// X2n ∧S 1

∼=
��

S 1 ∧X2n ∧S 1 ∧S 1 id∧ξ2n∧id
// S 1 ∧X2n ∧S 1 id∧ξ2n // S 1 ∧X2n .

The two branches do not strictly agree, because different copies of S 1 are “fed” into the
bonding maps ξ. However, the two branches differ by a self-map of S 3 = S 1 ∧ S 1 ∧ S 1

that applies a 3-cycle to the copies of S 1. As a map S 3 → S 3, this has degree 1, so it is
homotopic to the identity. Therefore the diagram commutes up to homotopy, which is
enough to conclude it commutes on homotopy groups.

The isomorphismπk (X )∼=πk−1(ΩX ) is constructed in the same way, using the version of
the colimit system from Lemma 2.2.4.

Remark 2.4.2. One can use this to prove that that ΣX ≃ sh X . See exercise 19.
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Corollary 2.4.3. For a map of spectra f : X → Y , the following are equivalent:

• f : X → Y is a stable equivalence.

• Σ f : ΣX →ΣY is a stable equivalence.

• Ω f : ΩX →ΩY is a stable equivalence.

Proof. The isomorphisms of Proposition 2.4.1 are natural, meaning that f induces com-
muting diagrams

πn+1(ΣX )

(Σ f )∗
��

oo
∼= // πn (X )

f∗
��

oo
∼= // πn−1(ΩX )

(Ω f )∗
��

πn+1(ΣY ) oo
∼= // πn (Y ) oo

∼= // πn−1(ΩY ).

Therefore f∗ is an isomorphism for all n iff (Σ f )∗ is an isomorphism for all n , iff (Ω f )∗ is
an isomorphism for all n .

Remark 2.4.4. If f : A → B is a weak equivalence of spaces, then Ω f : ΩA → ΩB is also
weak equivalence, but Σ f : ΣA → ΣB is only a weak equivalence if A and B are well-
based. So it is surprising that Corollary 2.4.3 doesn’t require us to assume that the levels
Xn and Yn are well-based.

Corollary 2.4.5. There are natural stable equivalences X →ΩΣX and ΣΩX → X .

In fact, these are the unit and counit maps of the adjunction (Σ,Ω) on the category of
spectra.

Proof. If we compose together the two isomorphisms from Proposition 2.4.1

πk (X )∼=πk+1(ΣX )∼=πk (ΩΣX ),

we see that it takes each map S k+2n → X2n to its suspension ΣS k+2n → ΣX2n , then its
adjunct S k+2n →ΩΣX2n . This is the same as the composite

S k+2n −→ X2n −→ΩΣX2n

where the second map is the unit of the adjunction (Σ,Ω). Therefore the unit map is a
stable equivalence. The proof for the counit map is the same but composes the isomor-
phisms in a different order, πk (X )∼=πk−1(ΩX )∼=πk (ΣΩX ).

Therefore Σ is invertible up to stable equivalence, and its inverse is Ω.
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2.4.2 Cofiber and fiber sequences

Next we show that cofiber and fiber sequences of spectra coincide. We first give the two
definitions.

Definition 2.4.6. Informally, a cofiber sequence is anything of the form

X
f
// Y // C f ,

where C f is the homotopy cofiber from Example 2.3.19.

A fiber sequence is anything of the form

F g // Y
g
// Z ,

where F g is the homotopy fiber from Example 2.3.22.

To define these more formally, consider three spectra X , Y , Z , two maps

X
f
// Y

g
// Z ,

and a homotopy h : X ∧ I → Z from the zero map to g ◦ f . This homotopy induces maps

h ∪ g : C f −→ Z , f ×h : X −→ F g .
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We say that (X , Y , Z , f , g , h ) is a cofiber sequence if C f → Z is a stable equivalence, and
a fiber sequence if X → F g is a stable equivalence.

A map of cofiber or fiber sequences consists of three maps X → X ′, Y → Y ′, and Z → Z ′

commuting with f , g , and h .

Remark 2.4.7. There are many other equivalent ways to define cofiber and fiber se-
quences. For instance, we could ask for any stable equivalence C f → Z , instead of
asking for one that comes from a homotopy. See exercise 22 for another equivalent def-
inition.

One benefit of our definition is that both notions have the same data, only the condi-
tion is different. This makes it easier to prove that cofiber and fiber sequences coincide
(Proposition 2.4.12).

Lemma 2.4.8. For each fiber sequence we may construct a long exact sequence

. . . // πk (X )
f∗ // πk (Y )

g∗ // πk (Z )
∂ // πk−1(X ) // . . .

so that maps of fiber sequences give maps of long exact sequences.

Proof. Without loss of generality, X → F g is an isomorphism. Then for each n , the fiber
sequence of spaces Xn → Yn → Zn gives a three-term exact sequence

πk+n (Xn )
f∗ // πk+n (Yn )

g∗ // πk+n (Zn ).

Sequential colimits preserve exact sequences, so this passes to a three-term sequence
of stable homotopy groups

πk (X )
f∗ // πk (Y )

g∗ // πk (Z )

that is exact at πk (Y ). Finally, just as in Proposition 1.2.14, we can continue to take ho-
motopy fibers to get two more fiber sequences

ΩZ ∂ // X
f
// Y , ΩY

−Ωg
// ΩZ ∂ // X .

Repeating the same argument with these two sequences and identifyingπk (ΩZ )∼=πk+1(Z )
shows that the desired sequence is exact. (Strictly speaking, we get a sequence in which
some signs are negated, but this does not change exactness.)

Lemma 2.4.9. For each cofiber sequence we may construct a long exact sequence

. . . // πk (X )
f∗ // πk (Y )

g∗ // πk (Z )
∂ // πk−1(X ) // . . .

so that maps of cofiber sequences give maps of long exact sequences.
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Remark 2.4.10. This lemma, unlike the previous one, is not true for spaces. It only holds
for highly connected spaces in a range, by the homotopy excision theorem.

Proof. Again we may assume that C f → Z is an isomorphism. As in the previous lemma,
it suffices to prove that

πk (X )
f∗ // πk (Y )

g∗ // πk (C f )

is exact in the middle. It is clear that the composite is zero. Going the other way, suppose
α ∈πk (Y ) and g∗(α) = 0 inπk (C f ). An element that is zero in the colimit must attain zero
at some finite stage, so there is a representative αn ∈ πk+n (Yn ) such that (gn )∗(αn ) = 0 in
πk+n (C fn ). Concretely, this means the composite

S k+n αn // Yn
gn // C fn

is nullhomotopic. It therefore extends to a map αn : C S k+n → C fn . Now define βn+1 to
be the composite

S k+n+1 oo
∼= // C S k+n ∪S k+n C S k+n Cαn∪αn // C Yn ∪Yn

C fn
∼ // ΣXn

ξn // Xn+1

where the second-to-last map is the usual identification in the Puppe sequence that col-
lapses C Yn to a point. Let β ∈πk (X ) be the corresponding element in the stable homo-
topy of X . The proof will be complete once we show that f∗(β ) =±α.

To prove this, consider the map ϕ : C fn → C Yn that applies fn to the cone on Xn . This
map fits into a commuting diagram

C S k+n ∪S k+n C S k+n Cαn∪αn // C Yn ∪Yn
C fn

id∪ϕ
��

∼ // ΣXn

Σ fn

��

ξn // Xn+1

fn+1

��

C Yn ∪Yn
C Yn

∼ // ΣYn
υn // Yn+1

in which both ∼ maps collapse the first C Yn . The composite along the bottom route
of the diagram is υn ◦Σαn = αn+1, possibly up to a flip of the suspension coordinate.
Therefore f∗(β ) =±α.

Lemma 2.4.11. For each map of spectra f : X → Y there is a natural stable equivalence
ε: ΣF f →C f , or equivalently eε: F f →ΩC f .

Proof. Inside this proof, we use the definition S 1 = I /{0, 1}, so that the reduced suspen-
sion ΣX is a quotient of I ×X . We define ε: ΣF f →C f by the formula

ε :Σ(X ×Y P Y )−→ Y ∪X C X
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ε(t , x ,γ) =







γ(2t ) t ≤ 1/2

(x , 2−2t ) t ≥ 1/2.

In other words, given a point x ∈ Xn and a path γ: I → Yn from ∗ to f (x ), we create a
loop in C fn by composing the path γ in Yn with the path that traverses I × {x } in the
cone C Xn .

We check that the following squares of spectra commute up to homotopy, where the
top row is the suspension of the fiber Puppe sequence for f , and the bottom row is the
cofiber Puppe sequence for f , and the vertical maps on the left are the counit maps from
Corollary 2.4.5.

ΣΩX
ΣΩ f
//

��

ΣΩY //

��

Σ(X ×Y P Y ) //

ε

��

ΣX
Σ f
//

flip

��

ΣY

flip

��

X
f

// Y // Y ∪X C X // ΣX
Σ f
// ΣY

The top row forms an exact sequence on stable homotopy groups, by Lemma 2.4.8 and
Proposition 2.4.1. The bottom row forms an exact sequence on stable homotopy groups
by Lemma 2.4.9. The two vertical maps to the left of ε are π∗-isomorphisms by Corol-
lary 2.4.5, while the two maps to the right are π∗-isomorphisms by direct inspection. By
the five-lemma, ε is a π∗-isomorphism as well.

Proposition 2.4.12. The data (X , Y , Z , f , g , h ) describes a cofiber sequence iff it describes
a fiber sequence.

Proof. We check that the squares in the following diagram commute up to homotopy,
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and that the composite ε ◦Σ( f ×h ) is equal to h ∪C f .

Y // C X ∪X Y //

h∪g
��

C X ∪X C X
Σ f

//

h∪C f
��

Σ( f ×h )
%%

ΣY

Y
g

// Z // Z ∪Y C Y // ΣY

Σ(Y ×Z F (I , Z ))

ε≃

OO

Each row describes a long exact sequence of homotopy groups, so we get the implica-
tions

(X , Y , Z , f , g , h ) is a cofiber sequence⇔ h ∪ g is a stable equivalence

⇔ h ∪C f is a stable equivalence

⇔Σ( f ×h ) is a stable equivalence

⇔ f ×h is a stable equivalence

⇔ (X , Y , Z , f , g , h ) is a fiber sequence.

2.4.3 Pushout and pullback squares

Definition 2.4.13. Given a commuting square of spectra

A
h
��

f
// B

k
��

C g
// D ,

we say it is a homotopy pushout square if the induced map B ∪h
A C → D is a stable

equivalence. It is a homotopy pullback square if the induced map A → B ×h
D C is a

stable equivalence.

The following is left as an exercise (exercise 20).

Lemma 2.4.14. A square is homotopy pushout iff the induced map of homotopy cofibers
C f → C g is a stable equivalence. It is a homotopy pullback iff the induced map of ho-
motopy fibers F f → F g is a stable equivalence.

Of couse, since the definition of homotopy pushout is symmetric, the homotopy cofibers
and fibers could be taken along the vertical maps h and k instead. Combining Lemma 2.4.11
and Lemma 2.4.14 gives:
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Corollary 2.4.15. A commuting square of spectra is homotopy pushout iff it is homotopy
pullback.

This finishes the proof of the stability theorems. We conclude with some corollaries.

2.4.4 Wedge sums are equivalent to products

Let X and Y be spectra. The inclusions Xn ∨Yn ⊆ Xn ×Yn give a map of spectra

X ∨Y // X ×Y . (2.4.16)

Composing with the inclusions of X and Y into X ∨Y , and the projection of the product
X ×Y onto each of its factors, we get maps on homotopy groups

πk (X )⊕πk (Y ) // πk (X ∨Y ) // πk (X ×Y ) // πk (X )×πk (Y ). (2.4.17)

Proposition 2.4.18. All three maps in (2.4.17) are isomorphisms. Therefore the inclusion
X ∨Y → X ×Y from (2.4.16) is a stable equivalence.

Proof. The last map is left to exercise 25. It suffices to prove the first map is an isomor-
phism, since the composite of all three maps clearly is. Observe that

C (X → X ∨Y )→ Y

is a level equivalence of spectra, and therefore there is a cofiber sequence of the form

X // X ∨Y // Y .

The second of these maps is split by the inclusion Y → X ∨ Y , and therefore the asso-
ciated long exact sequence is split. We conclude that πk (X )⊕πk (Y )→ πk (X ∨ Y ) is an
isomorphism.

2.4.5 Retracts are summands

Suppose that X is a spectrum, and A is a retract of X , in the rather weak sense that we
can find maps

A i // X
p
// A′

whose composite is a stable equivalence. Then A is a summand of X ,

X ≃ A ∨ (?).

To make this precise, let F p be the homotopy fiber of p , and h : I ∧F p → A′ the canonical

homotopy from the composite F p
j
→ X

p
→ A′ to the zero map.
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Proposition 2.4.19. The map j ∨ i : F p ∨A −→ X is a stable equivalence.

Proof. We form the map of cofiber/fiber sequences

F p //

=
��

F p ∨A

j∨i
��

// (I ∧ F p )∨A

h∨(p◦i )
��

F p
j
// X

p
// A′.

Both squares commute. In addition, the nullhomotopy h for the top composite is carried
to the nullhomotopy for the bottom composite. We therefore get a commuting map of
long exact sequences of homotopy groups. Since I ∧F p is contractible, the two outside
vertical maps are π∗-isomorphisms, therefore so is the map in the middle.

The complementary summand could also be described as C i , so that X ≃ A ∨C i , see
exercise 23. Using Proposition 2.4.18, we conclude:

Corollary 2.4.20. If X contains A as a retract, then

π∗(X )∼=π∗(A)⊕π∗(F p )∼=π∗(A)⊕π∗(C i ).

2.4.6 Smash products and cofiber sequences

Finally we explain how the smash product interacts with cofiber sequences.

Lemma 2.4.21. If X → Y →C f is a cofiber sequence of spaces or spectra, smashing with
a space or spectrum W produces another cofiber sequence

X ∧W → Y ∧W →C f ∧W .

Dually, the cotensors F (−,−) also preserve cofiber and fiber sequences, see exercise 30.

Proof. For spectra, this quickly reduces to checking the statement for spaces. It suffices
to check that the operation−∧W commutes with the formation of the based homotopy
cofiber C f . This occurs because −∧W is a left adjoint, so it preserves pushouts (Ex-
ample 1.6.11), and it also commutes with smash products because the smash product is
associative:

C (X ∧W → Y ∧W ) = (I ∧X ∧W )∪(X ∧W ) (Y ∧W )
∼=
�

(I ∧X )∪X Y
�

∧W

=C (X → Y )∧W .

See also Section 1.7, exercise 26.
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Remark 2.4.22. If X → Y → Z is a cofiber sequence and Z is only equivalent to C f , not
isomorphic, then we might want

X ∧W → Y ∧W → Z ∧W

to be a cofiber sequence too. This will work, but we have to be a little careful – we should
make sure that Z ∧W is also equivalent to C f ∧W . This will happen so long as all the
spaces or spectrum levels are well-based.

The statement of Lemma 2.4.21 doesn’t require anything to be well-based to work. This
has the following surprising consequence:

Corollary 2.4.23. If f : X → Y is a stable equivalence of spectra, with no conditions on
basepoints, and K is a based CW complex, then K ∧X → K ∧Y is also a stable equivalence.

Proof. Let K (n ) be the nth level of the skeletal filtration of K . Inductively, we show that

id∧ f : K (n ) ∧X → K (n ) ∧Y

is a stable equivalence. For n = 0, this is a wedge of copies of f , so it follows from exercise
29. For larger n , we take the cofiber sequence

K (n−1) i // K (n ) // C i ∼=
∨

αS n

and smash with X and Y to get two cofiber sequences, using Lemma 2.4.21:

K (n−1) ∧X

id∧ f∼
��

i∧id // K (n ) ∧X

id∧ f

��

//
∨

αΣ
n X

Σn f∼
��

K (n−1) ∧Y i∧id // K (n ) ∧Y //
∨

αΣ
n Y

This induces a map of long exact sequences by Lemma 2.4.9. Since the outside maps are
stable equivalences, so is the map in the middle.

Finally, by exercise 27 the stable homotopy groups of K ∧X are the colimit of the stable
homotopy groups of K (n ) ∧ X . Since a colimit of isomorphisms is an isomorphism, the
induced map π∗(K ∧X )→π∗(K ∧Y ) is an isomorphism.

2.5 Extraordinary homology and cohomology

2.5.1 Extraordinary homology

Recall that a CW pair (X , A) is a choice of CW complex X and subcomplex A ⊆ X . A map
of pairs (X , A)→ (Y , B ) is a continuous map X → Y sending A into B .
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Definition 2.5.1. An extraordinary homology theory is any sequence of functors Ek (−,−)
from CW pairs to abelian groups, along with a natural “boundary map”

Ek (X , A) δ // Ek−1(A,;),

satisfying the first four Eilenberg-Steenrod axioms (Propositions 1.3.1–1.3.4), but not
necessarily the fifth axiom (Proposition 1.3.5). The coefficient group is the graded abelian
group E∗(∗,;).

For instance, bordism theory Nk (X ) from Example 0.1.1 is an extraordinary homology
theory. Stable homotopy groups πk (Σ∞+ X ) are another.

Definition 2.5.2. For an unbased space X , the unreduced E -homology of X is

Ek (X ) = Ek (X ,;).

For a based space X , the reduced E -homology of X is

Ek (X ) = Ek (X ,∗)

Reduced homology is sometimes denoted eEk (X ) to distinguish it from unreduced ho-
mology, but it is more common to use the same notation for both, using the word “unre-
duced” or “reduced” to indicate which one we mean.

Lemma 2.5.3. There is a canonical splitting for based spaces X

Ek (X ,;)∼= Ek (X ,∗)⊕Ek (∗,;),

therefore the unreduced and reduced groups always differ by Ek (∗,;).

Proof. This follows from the exactness axiom and the fact that the map Ek (∗,;)→ Ek (X ,;)
is split by the map from X back to a point.

Lemma 2.5.4. The reduced homology groups have suspension isomorphisms

Ek (X ,∗)∼= Ek+n (Σ
n X ,∗)

for all n ≥ 0 and all values of k .

Proof. Using Lemma 2.5.3, we get a long exact sequence on reduced homology for any
cofiber sequence of based CW complexes A → X → X /A. We apply this to the cofiber
sequence X →C X →ΣX to get suspension isomorphisms Ek+1(ΣX ,∗)∼= Ek (X ,∗).

Remark 2.5.5. In Definition 2.5.1, it does not matter whether the functors Ek are defined
only for k ≥ 0 or for all k ∈ Z. Any theory only defined for k ≥ 0 can be canonically
extended to negative k using the above two lemmas. See exercise 2.
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Remark 2.5.6. The direct limit axiom for an extraordinary homology theory E∗ states
that if X is a CW complex, the natural map from the colimit over all the finite subcom-
plexes of X ,

colim
K ⊆X finite

En (K )
∼= // En (X ),

is an isomorphism. This holds whether we use reduced or unreduced E -homology. This
axiom actually follows from the other axioms given in Propositions 1.3.1–1.3.4. See ex-
ercise 4.

Every spectrum E represents an extraordinary homology theory E∗. This is actually a
straightforward corollary of the stability theorems from the previous section:

Proposition 2.5.7. For any spectrum E , the E -homology groups

Ek (X , A) :=πk ((X /A)∧E )

form an extraordinary homology theory, whose coefficient group is π∗(E ).

Here the smash product is the tensor spectrum from Definition 2.3.6. Recalling that
X /; = X+, the unreduced homology groups in this theory are given by πk (X+ ∧ E ), and
the reduced groups are given by πk (X ∧ E ). By Corollary 2.4.23, a stable equivalence
E → E ′ gives an isomorphism on the extraordinary homology groups.

Proof. For simplicity we focus on the reduced homology groups of based CW complexes
– the proof can be easily adapted to pairs. Let A → X → X /A be a cofiber sequence of
based CW complexes. Since A→ X is a cofibration, X /A is homotopy equivalent to C f ,
the homotopy cofiber of A→ X . Taking the smash product with E creates a sequence of
spectra

A ∧E // X ∧E // C f ∧E . (2.5.8)

By Lemma 2.4.21, this is a cofiber sequence. The long exact sequence and boundary map
for E∗ therefore come from Lemma 2.4.9. The additivity axiom follows from exercise 29
at the end of this section. The homotopy and excision axioms are immediate.

Example 2.5.9. The sphere spectrum therefore represents an extraordinary homology
theory, stable homotopy. The reduced version of this theory is

πS
k (X ) :=πk (Σ

∞X ),

while the unreduced version is πk (Σ∞+ X ). In particular, we get additivity and long exact
sequences on stable homotopy groups, unlike the case of ordinary homotopy groups.
The coefficient group is the stable homotopy groups of spheres,

π∗(S) = · · · 0 0 0 Z Z/2 Z/2 Z/24 · · ·
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Example 2.5.10. The Eilenberg-Maclane spectrum H G also represents a homology the-
ory. Its coefficient group is

π∗(H G ) = · · · 0 0 0 G 0 0 0 · · ·

Since these coefficients are concentrated in degree 0, the dimension axiom is satisfied,
so we have defined an ordinary homology theory with G coefficients. By the uniqueness
of ordinary homology (Theorem 1.3.7), we conclude:

Corollary 2.5.11. There is a canonical natural isomorphism

πk ((X /A)∧H G )∼=Hk (X , A;G )

for CW pairs (X , A) and abelian groups G .

Remark 2.5.12. The spectral definition of homology should remind you of the definition
of homology with G coefficients:

πk ( X+ ∧ E )

Hk ( C∗(X ) ⊗ G )

The smash product with E plays the role of tensoring with G . We have gone from tak-
ing homology with coefficients in an ordinary abelian group G to homology with exotic
coefficients in a spectrum E . You might even want to write “X+⊗ E ” to strengthen this
analogy.

We highlight a theorem that we will prove later in the book, due to G.W. Whitehead
[Whi62]. It states that every extraordinary homology theory arises by the recipe given
in Proposition 2.5.7.

Theorem 2.5.13 (Whitehead representability). If h∗ is any extraordinary homology the-
ory, there is a spectrum E and a natural isomorphism of homology theories E∗ ∼= h∗, where
E∗ is defined as in Proposition 2.5.7. Furthermore E is unique up to stable equivalence.

For example, bordism theory Nk (X ) is isomorphic to MOk (X ) where MO is the Thom
spectrum from Example 2.1.20, see also Example 2.5.36. We will give the proof of Theo-
rem 2.5.13 in Theorem 4.2.23.

2.5.2 Extraordinary cohomology

We next turn to extraordinary cohomology, by considering contravariant functors (i.e.
ones that reverse the direction of maps).
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Definition 2.5.14. An extraordinary cohomology theory is any sequence of contravari-
ant functors E k (−,−) from CW pairs to abelian groups, along with natural boundary
maps

E k (X , A) E k−1(A,;),δoo

satisfying the first four Eilenberg-Steenrod axioms (Propositions 1.3.10–1.3.13), but not
necessarily the fifth axiom (Proposition 1.3.14). The coefficient group is the graded abelian
group E ∗(∗,;).

As before, this has both a reduced and an unreduced version, but they are equivalent.
Without loss of generality, the groups are defined for all k ∈Z.

Remark 2.5.15. There is no direct limit axiom for extraordinary cohomology. Instead,
there is a lim1 exact sequence for countable sequential limits, as in (1.5.6). See Sec-
tion 3.5, exercise 16.

Proposition 2.5.16. For any Ω-spectrum E , the E -cohomology groups

E k (X , A) :=π−k (F (X /A, E ))

∼= [X /A, Ek ]∗ for k ≥ 0

form an extraordinary cohomology theory, whose coefficient group is π−∗(E ).

Here F (X /A, E ) is the cotensor or function spectrum from Definition 2.3.8. The proof of
Proposition 2.5.16 is left to exercise 31 at the end of the chapter.

Note that, compared to Proposition 2.5.7, the condition on E was made stronger, but we
also get a description in terms of the levels Ek of the spectrum E that wasn’t possible for
homology. This version of the theorem is really the more natural one.

Example 2.5.17. Taking the fibrant sphere spectrum f S fro Example 2.2.6, we get a co-
homology theory called stable cohomotopy, whose reduced version is

πk
S (X ) := colim

n→∞
[Σn X ,S k+n ]∗.

Its coefficient group isπ−∗(S). So it has the stable homotopy groups of spheres in negative
degrees, and is zero in positive degrees.

Example 2.5.18. The Eilenberg-Maclane spectrum H G also represents a cohomology
theory, whose coefficients are simply G in degree 0. Again by uniqueness of ordinary
cohomology, we conclude:

Corollary 2.5.19. There is a canonical natural isomorphism

π−k (F (X /A, H G ))∼=H k (X , A;G )

for CW pairs (X , A) and abelian groups G .
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Remark 2.5.20. The spectral definition of cohomology should remind you of the defi-
nition of cohomology with G coefficients:

π−k ( F ( X+ , E ) )

H−k ( Hom ( C∗(X ) , G ) )

The function spectrum into E plays the role of taking cochains with coefficients in G .
You might even want to write “Hom(X+, E )” to strengthen this analogy.

When E is an Ω-spectrum, the reduced homology and cohomology groups it represents
can be drawn as follows. Note that for cohomology each functor E k corresponds to a
single spectrum level, whereas for homology each spectrum level corresponds to a single
sphere S k .

E0

E0(S 0)

E1(S 0)

E2(S 0)

...

E1

E0(S 1)

E1(S 1)

E2(S 1)

E3(S 1)

...

E2

E0(S 2)

E1(S 2)

E2(S 2)

E3(S 2)

E4(S 2)

...

· · ·

· · ·

· · ·

· · ·

· · ·

π−2(E )

π−1(E )

π0(E )

π1(E )

π2(E )

...

...

Figure 2.5.21: An Ω-spectrum represent-
ing a homology theory. All homology
groups are reduced.

E0

E 0(S 0)

E 0(S 1)

E 0(S 2)

...

E1

E 1(S 0)

E 1(S 1)

E 1(S 2)

E 1(S 3)

...

E2

E 2(S 0)

E 2(S 1)

E 2(S 2)

E 2(S 3)

E 2(S 4)

...

· · ·

· · ·

· · ·

· · ·

· · ·

π−2(E )

π−1(E )

π0(E )

π1(E )

π2(E )

...

...

Figure 2.5.22: The same Ω-spectrum rep-
resenting a cohomology theory. All coho-
mology groups are reduced.

Remark 2.5.23. The minus signs on the homotopy groups in Proposition 2.5.16 arise
because cohomology is traditionally graded with the boundary maps going up in degree.
This convention is called cohomological grading. If one is willing to make the opposite
convention of homological grading, the minus sign goes away, and the figure on the right
changes to become the figure on the left. But then one must define the functors for all
k ∈ Z, not just k ≥ 0, because the functors that determine the theory are now the ones
with negative k .

The converse of Proposition 2.5.16 is the following classical theorem of Brown [Bro62,
Bro65], that every extraordinary cohomology theory can be constructed this way.

Theorem 2.5.24 (Brown representability). If h ∗ is any extraordinary cohomology theory,
then there is an Ω-spectrum E and a natural isomorphism of cohomology theories E ∗ ∼=
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h ∗, where E ∗ is defined as in Proposition 2.5.16. Furthermore E is unique up to stable
equivalence.

Proof. We give a moderately detailed sketch – a version with much more detail can be
found in e.g. [Hat02, Thm 4E.1], [May99]. By the excision axiom, it is enough to focus
on the reduced groups h k (X ,∗). It suffices to build for each k ≥ 0 a CW complex Ek

and an isomorphism h k (X ,∗) ∼= [X , Ek ]∗. By the Yoneda Lemma (Lemma 1.4.20), the
space Ek is unique up to homotopy equivalence, and the suspension isomorphisms in
the cohomology theory are represented by weak equivalences Ek−1 ≃ΩEk , making these
spaces into an Ω-spectrum.

The main part of the argument is therefore actually building the spaces Ek . We know Ek

will be a loopspace, and we have the adjunction [X ,ΩEk+1]∗ ∼= [ΣX , Ek+1], where ΣX is
always connected. Therefore it suffices to build the connected component of the base-
point of Ek+1, and to prove it represents h k+1(−,∗) on the category of connected based
CW complexes.

Simplifying notation, we are given a “set-valued cohomology theory,” in other words a
functor F from connected based CW complexes to sets, such that

• [Homotopy axiom] F takes homotopic maps to the same map of sets,

• [Wedge axiom] F takes wedge sums to products, in particular F (∗) = ∗, and

• [Mayer-Vietoris axiom] for each homotopy pushout X ∪A Y , any pair of elements in
F (X ) and F (Y ) that agree when restricted to F (A), must come from some element
of F (X ∪A Y ).

Our goal is to build a connected based CW complex C and a cohomology class α ∈ F (C )
such that the map

[X , C ]∗ // F (X )
f � // f ∗(α)

(2.5.25)

is an isomorphism for all connected based CW complexes X .

Inductively, we can build a C and α ∈ F (C ) such that (2.5.25) is an isomorphism for
X = S i , 1 ≤ i < n , and surjective when X = S n . In the inductive step, we kill the ker-
nel of (2.5.25) for X = S n−1 by attaching n-cells, using the Mayer-Vietoris axiom to ex-
tend α to the result. When X is a sphere, the pinch maps S i → S i ∨S i make the maps
(2.5.25) into group homomorphisms, so killing this kernel has the effect of making the
map injective. We then make (2.5.25) surjective for X = S n by taking a wedge sum with n-
spheres, using the wedge axiom to extendα to the result. These steps don’t affect (2.5.25)
for lower-dimensional spheres because a map that attaches n-cells is (n −1)-connected
(Proposition 1.4.9).
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At the end, we have produced a space C and α ∈ F (C ) such that (2.5.25) is an isomor-
phism whenever X is a sphere. For arbitrary X , if x ∈ F (X ) is any cohomology class,
we can apply the above induction again, starting with X ∨C , and attaching cells. This
creates a new space Cx , and a cohomology class αx ∈ F (Cx ) restricting to x ∈ F (X ) and
α ∈ F (C ), such that pulling backαx gives isomorphisms [S n , Cx ]∗ ∼= F (S n ) for every n ≥ 1.
The inclusion C →Cx is therefore a weak equivalence. By Theorem 1.4.12, Cx deforma-
tion retracts to C . Composing the inclusion of X with this retraction produces a map
f : X → C such that f ∗(α) = x . This shows that (2.5.25) is surjective for any connected
based CW complex X .

For any pair of maps f , g : X ⇒ C giving the same class x ∈ F (X ), we consider the
based double mapping cylinder (X ∧ I+)∨X ∧{0,1}+ C . Since f ∗(α) = g ∗(α) = x , the Mayer-
Vietoris axiom produces a cohomology class on this cylinder that restricts to α ∈ F (C ).
We once again apply our inductive procedure, starting with this double mapping cylin-
der and producing a space C f ,g that deformation retracts to C . The inclusion of X ∧I+→
C f ,g composed with this retraction produces a homotopy between f and g . Therefore
(2.5.25) is injective for any connected based CW complex X .

The above proof can be improved, at the expense of additional headaches involving in-
verse limits, to a statement that only requires the cohomology theory h ∗ to be defined
on finite complexes [Ada71, Thm 1.6].

Theorem 2.5.26 (Brown representability for finite complexes). If h ∗ is any extraordinary
cohomology theory, defined only on finite complexes, then there is an Ω-spectrum E and
a natural isomorphism of cohomology theories E ∗ ∼= h ∗. Furthermore E is unique up to
stable equivalence.

2.5.3 More examples

We finish this section with several more interesting examples of extraordinary homology
and cohomology theories.

Example 2.5.27. Complex K -theory from Example 0.1.2 is an unreduced cohomology
theory, represented by the spectrum KU defined in Example 2.2.3. In particular, for
unbased spaces X the theory gives

KU 0(X ) := KU 0(X ,;)∼=π0(F (X+, KU ))∼= [X ,Z×BU ].

There is also a connective version ku ∗(X ), represented by a spectrum ku in which π2k =
Z for all k ≥ 0, and all other homotopy groups are zero.
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Example 2.5.28. Similarly, we may take real K -theory, the K -theory of real vector bun-
dles. This is represented by an Ω-spectrum K O whose infinite loop space isZ×BO , the
classifying space for stable real vector bundles:

K O 0(X ) := K O 0(X ,;)∼=π0(F (X+, K O ))∼= [X ,Z×BO ].

There is also a connective version ko ∗(X ), represented by ko , with the same homotopy
groups in the nonnegative degrees only.

Example 2.5.29. Let p be a prime. We define sphere spectrum mod p by

S/p = Fn M (Z/p , n )

where the Moore space M (Z/p , n ) is the homotopy cofiber of the degree p map

S n p
// S n //M (Z/p , n ).

The value of n is irrelevant – it does not affect S/p up to stable equivalence.

We define “stable homotopy mod p ” to be the reduced homology theory represented by
this spectrum:

πS
k (X ;Z/p ) :=πk (X ∧S/p ).

The cofiber sequence defining M (Z/p , n ) gives a long exact sequence

· · · // πS
k (X )

·p
// πS

k (X )
// πS

k (X ;Z/p ) // πS
k−1(X )

// · · ·

just like the long exact sequence for homology with mod p coefficients. Alternatively,
this can be presented by a short exact sequence

0 // πS
k (X )⊗Z/p // πS

k (X ;Z/p ) // Tor(πS
k−1(X ),Z/p ) // 0.

Example 2.5.30. We define the rational sphere spectrum by

SQ = Fn M (Q, n )

where the Moore space M (Q, n ) is the homotopy colimit of the maps

S n 1 // S n 2 // S n 3 // S n · · · ////M (Q, n ).

Rational stable homotopy is the reduced homology theory represented by this spectrum:

πS
k (X ;Q) :=πk (X ∧SQ).

The homotopy colimit defining M (Q, n ), together with exercise 27, can be used to show
that πS

k (X ;Q)∼=πS
k (X )⊗Q. It turns out that SQ ≃HQ (see exercise 39), so rational stable

homotopy is isomorphic to rational homology,

πS
k (X )⊗Q∼=Hk (X ,∗ ;Q).
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Example 2.5.31. We define the sphere spectrum localized at p by

S(p ) = Fn M (Z(p ), n )

where the Moore space M (Z(p ), n ) is the homotopy colimit of the maps in Example 2.5.30,
except we only take those maps whose degrees are not multiples of p . We define stable
homotopy localized at p by taking the associated homology theory, giving πS

k (X ;Z(p )) ∼=
πS

k (X )⊗Z(p ).

Example 2.5.32. We can similarly define the sphere spectrum completed at p to be the
homotopy inverse limit of S/(p k ) as k →∞. This can be defined by

S∧p = shn F (M (Z/(p∞), n ), f S),

where f S is the Ω-sphere spectrum of Example 2.2.6, F is the cotensor or function spec-
trum of Definition 2.3.8, and M (Z/(p∞), n ) is the Moore space whose homology is the
Prüfer group Z/(p∞) = colim

k→∞
Z/(p k ) in degree n .

For finite CW complexes X , the associated homology theory is πS
k (X )

∧
p
∼= πS

k (X ) ⊗ Z
∧
p ,

where Z∧p = lim
k→∞
Z/(p k ) is the p -adic integers. (For infinite CW complexes X , it’s a little

more natural to take the p -completion of the suspension spectrum (Σ∞X )∧p , rather than
taking the smash product X ∧ (S∧p ).)

Example 2.5.33. The previous four examples can be applied to any spectrum E . We
define

E /p = E ∧S/p ≃ sh−n M (Z/p , n )∧E ,

E(p ) = E ∧S(p ) ≃ sh−n M (Z(p ), n )∧E ,

EQ = E ∧SQ ≃ sh−n M (Q, n )∧E ,

E ∧p = F (S/(p∞), R E )≃ shn F (M (Z/(p∞), n ), R E ).

We call homology theory associated to E /p the “E -homology mod p ,” E∗(X ;Z/p ). The
cofiber sequence defining M (Z/p , n ) gives an exact sequence

0 // Ek (X )⊗Z/p // Ek (X ;Z/p ) // Tor(Ek−1(X ),Z/p ) // 0.

The next two spectra define the p -local E -homology E∗(X ;Z(p ))and rational E -homology
E∗(X ;Q). Using exercise 27 we get isomorphisms

Ek (X ;Z(p ))∼= Ek (X )⊗Z(p ), Ek (X ;Q)∼= Ek (X )⊗Q.

Applying these constructions to ordinary homology recovers the usual notion of homol-
ogy with coefficients in Z/p , Z(p ), orQ (exercise 40).



2.5. EXTRAORDINARY HOMOLOGY AND COHOMOLOGY 105

The last construction defines (on finite CW complexes) p -complete E -homology, which
fits into a short exact sequence

0 // Ext(Z/(p∞), Ek (X )) // Ek (X )∧p
// Hom(Z/(p∞), Ek−1(X )) // 0.

When the groups E∗(X ) are finitely generated, this simplifies to

Ek (X )
∧
p
∼= Ek (X )⊗Z∧p .

On infinite complexes, it is a little better to complete the smash product (X ∧E )∧p , rather
than taking the smash product X ∧ (E ∧p ), though the two agree if X is finite CW.

Example 2.5.34. The complex K -theory spectrum KU from Example 2.2.3 and Exam-
ple 2.5.27 becomes simpler after rationalizing – it becomes a wedge sum of shifted copies
of HQ:

KU Q ≃
∨

n∈Z
Σ2n HQ.

In fact, this is true for every spectrum E : the rationalization EQ is a wedge sum of shifted
copies of HQ. In particular, this means that the topological K -theory of CW complexes
is rationally nothing more than shifted copies of ordinary homology:

KU 0(X )⊗Q∼=
⊕

n≥0

H 2n (X ;Q).

This isomorphism is called the Chern character.

Example 2.5.35. Suppose we only localize the spectrum KU at a prime p , rather than
rationalizing. The resulting spectrum KU (p ) decomposes into a wedge sum of shifted
copies of a single spectrum L called the Adams summand:

KU (p ) ≃ L ∨Σ2L ∨ . . .∨Σ2p−4L .

Its homotopy groups are:

πn (L ) =







Z(p ) if n ≡ 0 mod 2p −2,

0 otherwise.

Similarly, when p ̸= 2 the p -localized real K -theory spectrum K O (p ) splits into half as
many summands

K O (p ) ≃ L ∨Σ4L ∨ . . .∨Σ2p−6L .

More generally, as soon as 2 is inverted, KU is equivalent to K O ∨Σ2K O .
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Example 2.5.36. Bordism theory Nk (X ) from Example 0.1.1 is an unreduced homology
theory, represented by the Thom spectrum MO from Example 2.1.20:

Nk (X )∼=πk (X+ ∧MO ).

The proof of this uses the Pontryagin-Thom isomorphism, see [Wes96, Kup17, Mil94,
Sto68, Coh20]. The spectrum MO has homotopy groups the underlying abelian group
of the graded Z/2-algebra

π∗(MO )∼= (Z/2)[ xn : n ̸= 2k −1 ] = (Z/2)[x2, x4, x5, x6, x8, . . .], |xn |= n .

In particular, the first few homotopy groups are Z/2, 0,Z/2, 0,Z/22, . . .. As a spectrum, it
is a theorem that MO is equivalent to a wedge of Eilenberg-Maclane spectra

MO ≃
∨

α

ΣnαH (Z/2),

one for eachZ/2 summand in the graded abelian group π∗(MO ). It follows that the bor-
dism groups of a space X are calculated as

Nk (X )∼=π∗(MO )⊗Z/2 H∗(X ;Z/2).

In particular, bordism is determined by mod 2 homology.

Example 2.5.37. There is similarly a theory of complex cobordism MU∗(X ), see [Rav86,
Mil94]. It is represented by a spectrum MU , that is built just as MO is built in Exam-
ple 2.1.20, but with complex vector bundles. The universal classifying space is BU (n ),
with tautological bundle γn → BU (n ). Since the the compactification of C is a two-
sphere, the structure maps have the form

Σ2Th(γn )→ Th(γn+1). (2.5.38)

We therefore let the Thom space for γn be spectrum level 2n , rather than spectrum level
n . We interpolate between these using suspensions

MU2n = Th(γn ), MU2n+1 =ΣTh(γn ), , MU2n+2 = Th(γn+1), · · ·

and use the map (2.5.38) to define the bonding map ΣMU2n+1 →MU2n+2. Again, intu-
itively, MU is a twisted suspension spectrum of the classifying space BU = colim

n→∞
BU (n ).

The coefficient group is the underlying abelian group of the graded Z-algebra

π∗(MU )∼=Z[x1, x2, x3, . . .], |xn |= 2n .
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Example 2.5.39. The spectrum MU does not split quite as nicely as MO , but after lo-
calizing at a prime p , it splits into shifted copies of a single spectrum B P called the
Brown-Peterson spectrum. Its homotopy groups are the underlying abelian group of
the graded ring

π∗(B P ) =Z(p )[v1, v2, . . .], |vn |= 2(p n −1).

There are a number of other interesting spectra, distilled out of MU , that play an im-
portant role in computations in stable homotopy theory. They are derived from B P by
killing some elements of π∗ and inverting others:

π∗(B P 〈n〉) =Z(p )[v1, v2, . . . , vn ]

π∗(E (n )) =Z(p )[v1, v2, . . . , vn , v −1
n ]

π∗(K (n )) = (Z/p )[vn , v −1
n ]

The last one in particular, Morava K -theory, is very computable – it acts like homology
with field coefficients, for every value of n . As n varies, it interpolates between rational
homology K (0) =HQ and mod p homology K (∞) =HZ/p . The first theory K (1) is also
equivalent to L/p , where L is the Adams summand of Example 2.5.35.

These spectra allow us to pick out phenomena inπ∗(S) that occur at one prime p and one
“frequency” 2(p n −1), like separating light into colors using a prism. For this reason, the
study of stable homotopy category from this point of view is called chromatic homotopy
theory. See e.g. [Rav86, Rav92, Lur10] for references in this direction.

Remark 2.5.40. The analog of the universal coefficient theorem for extraordinary ho-
mology is called the Atiyah-Hirzebruch spectral sequence, which for unreduced homol-
ogy is written

Hp (X ; Eq (∗))⇒ Ep+q (X ),

and for cohomology

H p (X ; E q (∗))⇒ E p+q (X ).

See ??. The much more impressive Adams spectral sequence makes it possible to go
from cohomology of a spectrum to homotopy groups, at least after localizing or com-
pleting at a prime p – see ??.
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2.6 Cellular and CW spectra

CW spectra are essentially CW complexes with negative-dimensional
cells. Every spectrum is stably equivalent to a CW spectrum, so we can
think of spectra as complexes with negative-dimensional cells. When
thinking this way, we draw the cells as black dots and connect them
with lines as shown.

This is a satisfying intuition, and it’s useful on a technical level too. We
can use it to prove versions of the Whitehead theorem, cellular approx-
imation, Postnikov towers, and the Hurewicz theorem for spectra.

...

-1-cells

0-cells

1-cells

2-cells

...

2.6.1 Definition

Recall from Definition 1.1.8 that a cell complex X is a space that is built by repeatedly
attaching discs, of varying dimensions. If X is a based space, we ask that the basepoint
be one of the cells. A CW complex is a cell complex in which we only attach n-cells to
cells of lower dimension.

Lemma 2.6.1. If X is a based cell complex, then ΣX is a
based cell complex in a natural way, with one (n + 1)-cell
for each n-cell of X other than the basepoint.

Proof. For each n-cell D n → X , we write the map as a map of based spaces D n
+ → X and

then take the reduced suspension, giving ΣD n
+ → ΣX . The space ΣD n

+ is a quotient of
I ×D n ∼= D n+1 by an equivalence relation along its boundary. We therefore get a map
D n+1→ΣX , in other words an (n +1)-cell in ΣX . It is now straightforward to check that
ΣX is homeomorphic to the disjoint union of these cells modulo their attaching maps,
making ΣX into a cell complex.

Definition 2.6.2. The spectrum X is a cellular spectrum if each space Xn can be given
the structure of a based cell complex, so that each bonding mapΣXn → Xn+1 is the inclu-
sion of a subcomplex. A CW spectrum is the same except that each Xn is a CW complex.
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If X is a cellular spectrum and k ∈ Z,
a stable k -cell in X is a non-basepoint
(k +n )-cell in Xn for any n ≥ 0. This is
identified with the corresponding cell
of dimension (k +n +1) in ΣXn ⊆ Xn+1,
and so on as n→∞.

As we did with the stable homotopy
groups, we can depict these stable cells
by drawing the levels of the spectrum in
a staggered formation. Then each cell
creates a cell immediately to its right,
and the limit of this process at the far
right is the set of stable cells of X .

X0

0-cells

1-cells

2-cells

...

X1

0-cells

1-cells

2-cells

3-cells

...

X2

0-cells

1-cells

2-cells

3-cells

4-cells

...

· · ·

· · ·

· · ·

· · ·

· · ·

stable -2-cells

stable -1-cells

stable 0-cells

stable 1-cells

stable 2-cells

...

...

Σ∞+ RP
2 stable 0-cell

stable 1-cell

stable 2-cell
Example 2.6.3. If K is a based cell or CW complex then its sus-
pension spectrum Σ∞K is a cellular or CW spectrum, respec-
tively. It has a stable k -cell for every k -cell of K , other than the
basepoint. More generally, the free spectrum Fn K is cellular,
with a stable (k −n )-cell for every k -cell of K , other than the
basepoint.

Example 2.6.4. As a special case of the previous example, for any
d ∈ Z, the d -sphere spectrum Sd from Example 2.1.9 is character-
ized by the fact that it has a single stable d -cell.

Sd stable d -cell

Example 2.6.5. If B is an unbased cell or CW complex and ζ is a virtual bundle over B
then the Thom spectrum Th(ζ) constructed in Example 2.1.17 is a cellular or CW spec-
trum, respectively. The Thom spectrum MO from Example 2.1.20 and MU from Exam-
ple 2.5.37 are both CW spectra.

Example 2.6.6. When building the Eilenberg-Maclane spectrum H G from Example 2.2.2,
we may choose each level K (G , n ) to be a CW complex, and iteratively replace K (G , n+1)
with the mapping cylinder of the map ΣK (G , n )→ K (G , n +1), so as to make the entire
spectrum into a CW spectrum.

You should picture cellular spectra as built by an iterative process. At the first step, we
start with the zero spectrum, and attach cells (of all dimensions) to spectrum level 0 to
make X0. As we do this, we’re also attaching the suspensions of these cells to all the
higher spectrum levels. At the end, we’ve made the suspension spectrum Σ∞X0.
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X0 cells attached at level 0

ΣX0 Σ(cells attached at level 0)

Σ2X0 Σ2(cells attached at level 0)
...

...

Then, we attach cells to spectrum level 1, and all of their suspensions to the higher levels.
At level 1, this makes a space X1 that looks likeΣX0 with more cells attached, and we get
the suspensions of this space at all the higher levels:

X0 cells attached at level 0

X1 Σ(cells attached at level 0) cells attached at level 1

ΣX1 Σ2(cells attached at level 0) Σ(cells attached at level 1)

Σ2X1 Σ3(cells attached at level 0) Σ2(cells attached at level 1)
...

...
...

At level 2, attach more cells to ΣX1 to make X2, and their suspensions, and so on.

X0 cells attached at level 0

X1 Σ(cells attached at level 0) cells attached at level 1

X2 Σ2(cells attached at level 0) Σ(cells attached at level 1) cells attached at level 2
...

...
...

...

Clearly, we can do this whole process relative to some fixed starting spectrum A. We
attach cells to A0 to form X0, and also attach their suspensions to the higher levels of A,
giving the spectrum in the second column just below. Then we attach cells to A1∪ΣA0

ΣX0

to form X1, and their suspensions to the higher levels, giving the third column below, and
so on:
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to start after one step after two steps after three steps

A0 X0 X0 X0

A1 A1 ∪ΣA0
ΣX0 X1 X1

A2 A2 ∪Σ2A0
Σ2X0 A2 ∪ΣA1

ΣX1 X2

A3 A3 ∪Σ3A0
Σ3X0 A3 ∪Σ2A1

Σ2X1 A3 ∪ΣA2
ΣX2

...
...

...
...

Definition 2.6.7. For a map of spectra f : A → X the nth relative bonding map is the
map

An ∪ΣAn−1
ΣXn−1→ Xn (2.6.8)

given by fn and ξn−1. For n = 0, it is just the map f0 : A0→ X0.

The map f is a relative cellular spectrum if each of the relative bonding maps is a rela-
tive cell complex of spaces. A relative CW spectrum is defined the same way.

Of course, ∗→ X is a relative cellular spectrum when X is a cellular spectrum.

2.6.2 Stable cell attachments

This iterative process can be described more holistically. When we attach a cell to one
spectrum level of A, and all of its suspensions to the higher levels, we are really attaching
a free spectrum Fn D k+n

+ to A.

To explain this further, recall that for a unbased space K , the shift desuspension spec-
trum Fn K+ is the one-point space at every level until n , then K+ at level n , then suspen-
sions of K+ after that:

Fn K+ = {∗ ∗ . . . ∗ K+ Σ(K+) Σ
2(K+) . . .}

We call this the free spectrum on the space K at level n , for the following reason:

Lemma 2.6.9. A map of spectra Fn K+→ X is the same data as a map of unbased spaces
K → Xn .

In other words, Fn (−)+ is the left adjoint of the operation evn that takes every spectrum
X to its nth space Xn and forgets the basepoint of Xn (see exercise 17).

Definition 2.6.10. For any spectrum A and any mapϕ : S (k−1)+n → An , we attach a k -cell
to A along ϕ by taking the pushout spectrum

A′ = (Fn D k+n
+ )∪Fn (S

(k−1)+n
+ ) A.
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At each spectrum level m ≥ n , using Lemma 2.6.1, this gives the pushout

A′m = (Σ
m−n D k+n

+ )∪Σm−n (S (k−1)+n
+ ) Am

∼=D k+m ∪S (k−1)+m Am .

In other words, it is Am with a (k +m )-cell attached. So, this operation attaches a single
stable k -cell (in the sense of Definition 2.6.2) to the spectrum A.

We illustrate just below the process of attaching a stable (−2)-cell to A, by attaching a
1-cell to spectrum level 3, and all of its suspensions to the higher spectrum levels.

Proposition 2.6.11. The map f : A→ X is a relative cellular spectrum if and only if it is a
countable composition

A = X (−1) −→ X (0) −→ X (1) −→ X (2) −→ . . .−→ X ( j−1) −→ X ( j ) −→ . . .−→ X

in which each map X ( j−1)→ X ( j ) attaches an arbitrary number of cells of varying dimen-
sions:

∨

i Fni
S (ki−1)+ni
+

//

��

∨

i Fni
D ki+ni
+

��

X ( j−1) // X ( j ).

Proof. This is mainly an exercise in bookkeeping. It is clear that any f of this form at-
taches cells and their suspensions as described earlier in this section, though it may
attach cells to the levels in different orders. Still, it is enough to see that the relative
bonding maps are all cell complexes, so f is a relative cellular spectrum. Conversely,
if f is a relative cellular spectrum, the procedure described just before Definition 2.6.7
expresses f as a countable composition of stable cell attachments. Strictly speaking, it
is a countable composition of countable compositions of cell attachments, but this can
be re-indexed by attaching each cell earlier in the process, to make a single countable
composition. See exercise 28.

Recall from Theorem 2.6.12 that any map of topological spaces A → X factors into a
relative CW complex A→ B , followed by a weak equivalence B → X . As a consequence,
every topological space X is weakly equivalent to a CW complex Q X . We now prove the
same fact for spectra.
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Theorem 2.6.12. If f : A→ X is any map of spectra, it can be factored into a relative CW
spectrum A→ B and a level equivalence B → X .

Corollary 2.6.13. Every spectrum X is level equivalent to a CW spectrum Q X , and stably
equivalent to a CW Ω-spectrum Q R X . (That is, Q R X is a CW spectrum and also an Ω-
spectrum.)

Proof of Theorem 2.6.12. By Corollary 1.4.11, the map A0→ X0 can be factored into a CW
complex followed by an equivalence,

A0
// B0

∼ // X0. (2.6.14)

The reduced suspension of (2.6.14) fits in with the structure maps of A and X in the
following way:

ΣA0
//

��

ΣB0
//

��

ΣX0

��

A1
// A1 ∪ΣA0

ΣB0
// X1

The dotted-arrow map is induced from our original map f1 : A1→ X1 and the suspension
of the map B0 → X0 that we constructed in the previous step. We may factor it into a
relative cell complex followed by a weak equivalence, giving a new space we call B1:

A1 ∪ΣA0
ΣB0

// B1
∼ // X1

Notice that B1 is equipped with compatible maps coming in from A1 and ΣB0, and a
map going out to X1. By construction, the relative bonding map A1 ∪ΣA0

ΣB0 → B1 is a
cell complex and B1→ X1 is a weak equivalence.

Repeating this procedure for each spectrum level gives a spectrum B and the maps A→
B and B → X with the desired properties.

Remark 2.6.15. The factorization in Theorem 2.6.12, just as the one in Corollary 1.4.11,
can be defined naturally, so that it is a functor. In particular, we get a functor Q : Sp→ Sp
that replaces each spectrum X by a CW spectrum Q X , and a natural level equivalence
Q X → X . See also Section 5.1.

Next we prove the Whitehead theorem for spectra.

Proposition 2.6.16. If f : X → Y is a level equivalence of cellular spectra, then it is a
homotopy equivalence, in the sense that there is a map g : Y → X and homotopies from
f ◦ g and g ◦ f to the identity.

Corollary 2.6.17 (Whitehead theorem for spectra). If X and Y are cellular Ω-spectra
then f : X → Y is a stable equivalence iff it is a homotopy equivalence.
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Proof of Proposition 2.6.16. Replace Y with the mapping cylinder M = (X ∧ I+)∪X Y . It
suffices to show that M deformation retracts onto X as a spectrum. Since f is a level
equivalence and both Xn and Yn are cell complexes, Mn is a cell complex that deforma-
tion retracts onto the subcomplex Xn .

The complex Mn also contains ΣMn−1 as a subcomplex, and the intersection with Xn is
exactly ΣXn−1. We therefore have inclusions of cell complexes

Xn −→ Xn ∪ΣXn−1
ΣMn−1 −→Mn . (2.6.18)

The second map here is the relative bonding map for X →M from Definition 2.6.7.

The first map of (2.6.18) is a homotopy equivalence, since ΣMn−1 deformation retracts
onto ΣXn−1. The composite is also a homotopy equivalence. Therefore the second in-
clusion is a homotopy equivalence as well. We conclude that Mn deformation retracts
onto the pushout Xn ∪ΣXn−1

ΣMn−1.

Composing (n+1) of these deformation retractions together gives a deformation retrac-
tion

Mn → Xn ∪ΣXn−1
ΣMn−1→ Xn ∪Σ2Xn−2

Σ2Mn−2→ ·· ·→ Xn ∪Σn X0
Σn M0→ Xn .

We make these into a single homotopy by having the last deformation happen from time
1/2 to 1, the next to last happen from time 1/4 to 1/2, and so on, until the first deforma-
tion which happens from time 1/2n+1 to 1/2n . We take the constant homotopy at the
identity map of Mn from time 0 to 1/2n+1.

These formulas give a continuous homotopy of maps M → M at each spectrum level
n , and our choices of parametrization ensure that they agree along the bonding maps.
This gives a homotopy from the identity of M to a map that retracts onto X .

Remark 2.6.19. We will later give a second proof of this using the abstract theory of
model categories. See also Section 3.5, exercise 8.

Remark 2.6.20. The Whitehead theorem is named after J.H.C. Whitehead, while White-
head representability is named after G.W. Whitehead.

2.6.3 Relative homotopy groups

To get Postnikov towers and the Hurewicz theorem, we will have to make cellular ap-
proximations of spectra in a different way, that does not proceed one level at a time. As
before, we attach cells to kill the relative homotopy groups. But, we’re going to think of
the relative homotopy groups of the spectrum as a whole, not on each level separately.
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Recall from Chapter 1 that for a map f : A→ X of topological spaces, the relative homo-
topy group πn (X , A) describes commuting squares of based maps

S n−1

��

⊆
// D n

��

A
f
// X

up to homotopies of the vertical maps. Each element α ∈πn (X , A) therefore gives a way
to attach an n-cell to A, and to extend the map A → X to the new, larger version of A
that has this cell attached. By Proposition 1.4.9, this has the effect of killing α ∈πn (X , A)
without changing π<n (X , A).

Remark 2.6.21. By the long exact sequence on homotopy groups, this means that at-
taching an n-cell changes π∗(A) in a way that makes

πn (A)→πn (X ) more surjective,

πn−1(A)→πn−1(X ) more injective, and

πk (A)→πk (X ) unchanged for k < n −1.

Applying this process iteratively, we can make A larger and larger, and agree up to πn

with X for progressively larger values of n .

We want to do the same process in spectra. It is surprisingly straightforward; we just
have to define relative homotopy groups of spectra as the colimit of relative homotopy
of the levels, and attach cells to spectra using Definition 2.6.10.

Definition 2.6.22. If f : A→ X is a map of spectra, and k ∈Z, we define the k th relative
stable homotopy group πk (X , A) as the colimit of the system

. . . // πk+n (Xn , An )
σ // πk+n+1(ΣXn ,ΣAn )

ξn // πk+n+1(Xn+1, An+1) // . . .

The map σ is defined as in Definition 2.1.2. To make the definitions agree as nicely as
possible, we defineπm (Xn , An ) to mean maps of pairs (D m ,S m−1)→ (Xn , An ), where S m−1

is the one-point compactification of Rm−1 and D m is the one-point compactification of
[0,∞)×Rm−1.

Proposition 2.6.23. For any map of spectra f : A→ X there is a long exact sequence

. . . // πk (A)
f∗ // πk (X ) // πk (X , A) ∂ // πk−1(A) // . . .

and a natural isomorphism πk (X , A)∼=πk (C f ).
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Proof. This follows by taking the colimit of the corresponding exact sequences at each
spectrum level (Theorem 1.4.4). See exercise 14.

Each element of πk (X , A) can be represented by a commuting diagram of based spaces
as shown, for any sufficiently large n .

S (k−1)+n //

∂ αn
��

D k+n

αn
��

An
fn // Xn

(2.6.24)

Thinking of this as a diagram of unbased spaces, we can therefore attach a k -cell to A
along ∂ αn , as in Definition 2.6.10. It is easy to see that up to stable equivalence, the
result only depends on ∂ α ∈πk−1(A), and not on n .

Proposition 2.6.25. For any map of spectra f : A→ X , any integer k ∈Z, and any element
α ∈πk (X , A), this produces a factorization A→ A′→ X such that

πi (X , A)→πi (X , A′)

is an isomorphism for i < k , and surjective for i = k , with kernel containing α.

Proof. By Proposition 1.4.9, this happens at each spectrum level n for sufficiently large
n . In other words, the map πi+n (Xn , An ) → πi+n (Xn , A′n ) is an isomorphism for i < k ,
and surjective for i = k , with kernel containing αn . Taking the colimit over n gives the
result.

Remark 2.6.26. We can do the same with any collection of elements α ∈ πk (X , A), or
even the entire group. This has the effect of killing πk (X , A) while preserving all of the
lower homotopy groups.

As discussed in Remark 2.6.21, attaching stable k -cells to A makes

πk (A)→πk (X ) more surjective,

πk−1(A)→πk−1(X ) more injective,

and doesn’t affect the lower homotopy groups. Proceeding up one value of k at a time,
we can therefore make the map A→ X an isomorphism on homotopy groups, one group
at a time.

But we have to start somewhere. In spectra, there could be homotopy groups in infinitely
many negative degrees, which would make it impossible to start.
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Definition 2.6.27. A spectrum X is (n−1)-connected or n-connective if
πi (X ) = 0 for i < n . Similarly a map of spectra A→ X is (n−1)-connected
if πi (X , A) = 0 for i < n .

A (−1)-connected spectrum X is also called connective. A spectrum is
bounded below if it is (n −1)-connected for some n ∈Z.

Example 2.6.28. Every suspension spectrum Σ∞K and Eilenberg-
Maclane spectrum H G is connective. Every Thom spectrum Th(ζ) is
bounded below by the dimension of the virtual bundle ζ. In particular,
MO and MU are connective. The complex K -theory spectra KU and
K O are not bounded below.

...

πn−1(X )

πn (X )

πn+1(X )

πn+2(X )

...

Repeated application of Proposition 2.6.25 and Proposition 2.6.23 gives:

Proposition 2.6.29. The spectrum X is (n−1)-connected iff it is stably equivalent to a CW
spectrum with stable cells in dimension n and above.

The map A → X is (n − 1)-connected iff it is stably equivalent to a relative CW spectrum
with stable cells in dimension n and above.

This gives a second way to replace spectra by CW spectra, different than Theorem 2.6.12.

X

...

πn−1(X )

πn (X )

πn+1(X )

...

Pn X

...

πn−1(X )

πn (X )

Definition 2.6.30. For any spectrum X and any integer
n , we construct the nth Postnikov stage X → Pn X as
follows. We attach all possible stable (n + 1)-cells to the
map X →∗, then all possible (n + 2)-cells, and so on. In
other words, we use a cell for every diagram of spectra
of the form (2.6.24), with the appropriate stable dimen-
sion. This produces a relative CW spectrum X → Pn X .

By Proposition 2.6.25, the map X → Pn X is an isomor-
phism on homotopy up to degree n , while above degree
n the homotopy of Pn X is zero.

Example 2.6.31. The 0th Postnikov stage of the sphere spectrum P0S has only aZ in de-
gree zero. By uniqueness of Eilenberg-Maclane spectra (exercise 38), it is therefore sta-
bly equivalent to HZ. We therefore have constructed a map (up to stable equivalences)
S→HZ, giving an isomorphism onπ0. We could also construct such a map more simply
by taking S 0 → K (Z, 0) by taking the non-basepoint to the point 1 ∈ Z, and then taking
its suspensions.

Example 2.6.32. More generally, if X is any connective spectrum, the 0th Postnikov
stage is a map of spectra X → H (π0X ) that is an isomorphism on π0. So for instance
we get a map MO →HZ/2, and MU →HZ.
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Lemma 2.6.33. For each n ∈Z there is a canonical map Pn+1X → Pn X giving an isomor-
phism on homotopy groups up to degree n.

Proof. Each of the cells that we attach to form Pn+1X is also a cell that we used for Pn X ,
since we took all possible cells when killing πn+2 and higher. This gives the map, and
since it commutes with the map in from X , it gives an isomorphism on the lower homo-
topy groups.

Definition 2.6.34. The above construction and lemma define the Postnikov tower of X ,
a bi-infinite tower of the following form.

X −→ . . .−→ P2X −→ P1X −→ P0X −→ P−1X −→ P−2X −→ . . .

The cofiber or fiber of each map Pn X → Pn−1X has homotopy concentrated in a sin-
gle degree. By exercise 38, it is therefore a shift of an Eilenberg-Maclane spectrum. We
therefore get a fiber Puppe sequence

Σn Hπn (X ) // Pn X // Pn−1X // Σn+1Hπn (X ).

In contrast to the case with spaces, sometimes this tower is bottomless. There is a lowest
stage precisely when X is bounded below.

Example 2.6.35. The last three stages of the Postnikov tower for the sphere spectrum
have the following homotopy groups:

...
...

...
...

π3 0 0 0

π2 Z/2 0 0

π1 Z/2 Z/2 0

π0 Z Z Z

P2S P1S P0S

Since P0S has only one homotopy groupZ in degree 0, it is stably equivalent to HZ. (See
exercise 38.)

We also form the tower of connective covers or Whitehead tower of X by defining X 〈n〉
to be the homotopy fiber of X → Pn−1X . This gives a bi-infinite tower mapping to X

. . .−→ X 〈2〉 −→ X 〈1〉 −→ X 〈0〉 −→ X 〈−1〉 −→ X 〈−2〉 −→ . . .−→ X ,

where X 〈n〉 is n-connective and the map X 〈n〉 → X is an isomorphism on π≥n . If X is
bounded below, then this tower is eventually the constant tower at X .



2.5. EXTRAORDINARY HOMOLOGY AND COHOMOLOGY 119

2.6.4 Homology of spectra

Now that cellular spectra are in place, we can take their homology groups, and prove the
Hurewicz theorem. There are actually two equivalent ways to define the k th homology
group Hk (X ;G ) of the spectrum X :

Definition 2.6.36. • As in Definition 2.1.2, define Hk (X ;G ) as the colimit of the sys-
tem

. . . // Hk+n (Xn ,∗ ;G ) σ // Hk+n+1(ΣXn ,∗ ;G )
ξn // Hk+n+1(Xn+1,∗ ;G ) // . . .

The mapσ is the composite

Hk+n (Xn ,∗ ;G ) oo δ
∼=

σ

22
Hk+n+1(C Xn , Xn ;G ) // Hk+n+1(ΣXn ,∗ ;G ).

It is an isomorphism if Xn is well-based, so that ΣXn has the right homotopy type.
But it is defined even if Xn is not well-based.

• As in Proposition 2.5.7, define

Hk (X ;G ) =πk (X ∧H G )

where the ∧ is the handicrafted smash product of Definition 2.3.23. We assume
that the levels of X and H G are CW complexes, so that Xp ∧ (H G )q has the correct
homotopy type.

It is an easy exercise to generalize these definitions to the E -homology of a spectrum X ,
for any extraordinary homology theory E . See also Example 3.2.16 and Example 3.2.21
for the definition of cohomology of spectra.

The first definition of homology is il-
lustrated to the right. As for homotopy
groups, what we really care about is the
limiting behavior, so we focus on the
single line of homology groups at the
far right. The rest of the figure is just a
presentation of those groups.

The following result is true for E -
homology, but we state and prove it just
for ordinary homology.

X0

H0(X0)

H1(X0)

H2(X0)

...

X1

H0(X1)

H1(X1)

H2(X1)

H3(X1)

...

X2

H0(X2)

H1(X2)

H2(X2)

H3(X2)

H4(X2)

...

· · ·

· · ·

· · ·

· · ·

· · ·

H−2(X )

H−1(X )

H0(X )

H1(X )

H2(X )

...

...
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Proposition 2.6.37. The above two definitions give isomorphic homology groups Hk (X ;G ).
Furthermore, any stable equivalence X → Y induces an isomorphism on homology Hk (X ;G )∼=
Hk (Y ;G ) for all k ∈Z.

Proof. The homotopy groups of the handicrafted smash product are given by the colimit
of the following grid.

...
...

...

πk+2(X0 ∧ (H G )2)

+

OO

+ // πk+3(X1 ∧ (H G )2)

+

OO

+ // πk+4(X2 ∧ (H G )2)

+

OO

+ // . . .

πk+1(X0 ∧ (H G )1)

+

OO

− // πk+2(X1 ∧ (H G )1)

+

OO

− // πk+3(X2 ∧ (H G )1)

+

OO

− // . . .

πk (X0 ∧ (H G )0)

+

OO

+ // πk+1(X1 ∧ (H G )0)

+

OO

+ // πk+2(X2 ∧ (H G )0)

+

OO

+ // . . .

The colimit along the i th column isπk+i (X i∧H G )∼=Hk+i (X i ,∗). Passing to the (i+1)st row
induces the map Hk+i (X i ,∗)→Hk+i+1(X i+1,∗) from Definition 2.6.36. Taking the colimit
of these gives the first definition of homology from Definition 2.6.36. But their colimit is
equal to the colimit of the entire grid of abelian groups, which is the second definition
of homology from Definition 2.6.36. Therefore the two definitions are isomorphic.

To prove that homology respects stable equivalences, we take colimits along the rows in-
stead. The colimit along the j th row is isomorphic toπk+ j ((H G ) j ∧X ). Any stable equiv-
alence X → Y induces isomorphisms on these groups by Corollary 2.4.23, and therefore
an isomorphism on the colimit of the entire grid.

Example 2.6.38. The homology of a suspension spectrum is just the homology of the
underlying space:

Hn (Σ
∞
+ A)∼=Hn (A).

More generally, if ζ→ B is an oriented virtual bundle of dimension d then

Hn (Th(ζ))∼=Hn−d (B ).

See exercise 7.

Warning 2.6.39. The homology of a spectrum X is not the same as the homology of its
infinite loopspace Ω∞X , even though they have the same homotopy:

πn (Ω
∞X )∼=πn (X ), Hn (Ω

∞X ) ̸∼=Hn (X ) or Hn (X ,∗).
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For instance, if X = sh2n HQ is a shifted rational Eilenberg-Maclane spectrum, its ho-
mology is just aQ in degree 2n, but the homology of its infinite loop space K (Q, 2n ) has
aQ in every degree that is a multiple of 2n :

(0) · · · (2n −1) (2n ) (2n +1) · · · (4n −1) (4n ) (4n +1) · · · (6n ) · · ·

H∗(X ) = 0 · · · 0 Q 0 · · · 0 0 0 · · · 0 · · ·

H∗(Ω∞X ) = Z · · · 0 Q 0 · · · 0 Q 0 · · · Q · · ·

If we shifted HQ to an odd degree, the infinite loop space K (Q, 2n + 1) would have the
same reduced homology as the spectrum sh2n+1 HQ, just aQ in degree 2n +1:

(0) · · · (2n ) (2n +1) (2n +2) · · ·

H∗(X ) = 0 · · · 0 Q 0 · · ·

H∗(Ω∞X ) = Z · · · 0 Q 0 · · ·

In general, H∗(X ;Q) is the indecomposables of H∗(Ω∞X ;Q) as an algebra, or the primi-
tives of H∗(Ω∞X ;Q) as a coalgebra. See ?? for more details.

Remark 2.6.40. If X is a CW spectrum, there is a third way to define the homology of X .
Define the cellular chain complex C∗(X ) by taking Ck (X ) to be the free abelian group on
the stable k -cells of X , for all k ∈ Z. This is a colimit of the cellular chain complexes of
the levels Xn :

Ck (X ) = colim
n→∞

Ck+n (Xn ,∗).

The cellular boundary maps of the spaces Xn give well-defined boundary maps on C∗(X ),
and we define H∗(X ;G ) to be the homology of C∗(X )⊗G . Since this is defined using the
colimit of the chain complexes C∗(Xn ), on homology we get the colimit of the homology
of the levels, so this is isomorphic to the first definition in Definition 2.6.36.

Definition 2.6.41. For any spectrum X and k ∈ Z, the Hurewicz map πk (X ) → Hk (X )
is defined by applying the space-level Hurewicz maps to the colimit system in Defini-
tion 2.6.36. Equivalently, take any map of spectra S→HZ that is an isomorphism onπ0,
and smash with X to get

πk (X ∧S)−→πk (X ∧HZ).

Theorem 2.6.42 (Hurewicz theorem for spectra). If the spectrum X is (k − 1)-connected
then πk (X )→Hk (X ) is an isomorphism.
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Proof. By Proposition 2.6.29, X admits a stable equiva-
lence from a spectrum Y that has stable cells only in de-
gree k and above. By Proposition 2.6.37, the map Y → X
induces an isomorphism on homology, so we just have
to show that πk (Y ) → Hk (Y ) is an isomorphism. Since
Y has only stable cells of degree k and higher, Yn only
has cells (other than the basepoint) of dimension (k +n )
and higher. By the Hurewicz theorem for spaces, Propo-
sition 1.4.14, πk+n (Yn )→ Hk+n (Yn ,∗) is an isomorphism.
Taking the colimit of these isomorphisms gives the de-
sired isomorphism.

π∗(X )

πk (X )

πk+1(X )

...

H∗(X )

...
Hk+1(X )

Hk (X )

Corollary 2.6.43. If X and Y are bounded below then the map f : X → Y is a stable
equivalence iff it induces an isomorphism on homology groups.

As a result, we frequently use ordinary homology to tell whether a map is a stable equiva-
lence. This is great because homology is often easier to compute than stable homotopy.

2.7 Exercises

1. Modify the definition of spectra by allowing levels Xn for all n ∈ Z. Explain why
the theory of such spectra is equivalent to the theory of spectra presented in this
chapter.

2. Similarly to the last problem, prove that extraordinary homology theories En de-
fined with n ∈ Z can be recovered up to isomorphism from their restrictions to
n ≥ 0.

3. In this chapter we defined extraordinary homology theories as functors on CW
pairs. One can similarly define reduced homology theories as functors on based
CW complexes, or unreduced theories on unbased CW complexes. Write out the
variant of the Eilenberg-Steenrod axioms in each of these cases. Show how to go
back and forth between these versions without changing the homology theory, up
to isomorphism.

4. (*) Suppose h∗ is an extraordinary homology theory on based CW complexes, de-
fined as in exercise 3. In this exercise we show that h∗ also satisfies the reduced
version of the direct limit axiom from Remark 2.5.6.

(a) Define a new homology theory c∗ on each CW complex X by the formula

cn (X ) = colim
K ⊆X finite

hn (K ).
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Prove that c∗ is a functor on the category of based CW complexes and con-
tinuous based maps, and that it satisfies the axioms for an extraordinary ho-
mology theory. (You’ll need to use the fact that filtered colimits preserve exact
sequences.)

(b) There is a canonical natural transformation c∗ → h∗. Observe that this is an
isomorphism on all finite complexes. Prove that it is also an isomorphism on
arbitrary n-dimensional CW complexes, for each n ≥ 0, by induction on n .
You might find the usual cofiber sequence helpful:

X (n−1) // X (n ) //
∨

S n .

(c) Given an arbitrary CW complex X , write it as a mapping telescope of n-dimensional
CW complexes X (n ), and use the cofiber sequence

∨

n≥0 X (n ) // hocolim
n→∞

X (n ) //
∨

n≥0ΣX (n )

to show that c∗→ h∗ is an isomorphism on X as well. Conclude that h∗ satis-
fies the direct limit axiom.

5. (a) Prove that adding a trivial line bundle to a vector bundle E has the effect of
suspending its Thom spaces, as in (2.1.16).

(b) More generally, given two vector bundles E1→ B1 and E2→ B2, form the ex-
ternal product bundle by taking their Cartesian product

E1×E2→ B1×B2.

Prove that this goes to the smash of the Thom spaces,

Th(E1×E2)∼= Th(E1)∧Th(E2).

6. A virtual bundle ζ can be presented in several equivalent ways. If

ζ= E1−εm = E2−εn

are two presentations of the same virtual bundle, then for some k we have an iso-
morphism of bundles

E1⊕εn+k ∼= E2⊕εm+k .

(Hereεn = B×Rn is a trivial bundle.) Verify that for any two such presentations, the
resulting constructions of the Thom spectrum Th(ζ) are stably equivalent. There-
fore Th(ζ) is a well-defined spectrum up to stable equivalence.
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7. The Thom isomorphism says that if E → B is an orientable vector bundle of di-
mension d , then

Hn+d (Th(E ),∗)∼=Hn (B ).

See e.g. [Coh98, Hat03]. Use this to prove a similar result for the Thom spectrum
of a virtual bundle ζ= E −εn , if E is orientable. (See Example 2.6.38.)

8. Combine the constructions of Example 2.1.17 and Example 2.1.20 to define the
Thom spectrum of a virtual bundle ζ over a non-compact base space B . In other
words, start with the data of a virtual bundleζ|A over each finite subcomplex A ⊆ B ,
agreeing along intersections.

9. (a) Prove that a product of Ω-spectra
∏

αXα is again an Ω-spectrum. More gen-
erally, show that any limit of Ω-spectra is an Ω-spectrum.

(b) Prove that if E is an Ω-spectrum and A is a CW complex then F (A, E ) is also
an Ω-spectrum. Conclude that the homotopy fiber of any map of Ω-spectra
is an Ω-spectrum.

10. Prove that X ∧ (Y ∨ Z ) ∼= (X ∧ Y ) ∨ (X ∧ Z ). Here X could be a based space or a
spectrum, and Y and Z could likewise both be based spaces, or both be spectra.

11. Consider a system of abelian groups

. . . // Ai−1
fi−1 // Ai

fi // Ai+1
// . . .

Define a new system by taking B1 = Ai1
for some i1, B2 = Ai2

for some i2 > i1, and so
on. Define the maps Bk → Bk+1 by composing the maps fi . This is usually called a
cofinal subsystem. Prove that

colim
i

Ai
∼= colim

k
Bk .

Explain how this is being implicitly used in the proof of Proposition 2.4.1.

12. Consider the functor ev0 that sends a spectrum X to its 0th space X0, in the cate-
gory of based spaces. Prove that the suspension spectrum functorΣ∞, from based
spaces to spectra, is the left adjoint. How does this change if we think of ev0 as a
functor to unbased spaces instead?

13. (a) Prove that the coproduct X ∨Y satisfies the universal property of the coprod-
uct in the category of spectra. More generally, prove that the colimit of spec-
tra satisfies the universal property of the colimit.

(b) Prove that the two bonding maps we defined for the product spectrum X ×Y
actually agree.
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(c) Prove that the product X × Y satisfies the universal property of the product
in the category of spectra. More generally, prove that the limit of spectra sat-
isfies the universal property of the colimit.

14. Prove that the relative stable homotopy groups πk (X , A) from Definition 2.6.22 fit
into a natural long exact sequence

. . . // πk (A) // πk (X ) // πk (X , A) // πk−1(A) // . . .

and more generally for two maps A→ B → X a long exact sequence

. . . // πk (B , A) // πk (X , A) // πk (X , B ) // πk−1(B , A) // . . .

Define a natural map πk (X , A) → πk (C f ) and prove it is an isomorphism. (You
may find Lemma 2.4.9 and its proof helpful.)

15. Recall the tensor K ∧− from Definition 2.3.6, the cotensor F (K ,−) from Defini-
tion 2.3.8, and the mapping space Map∗(−,−) from Definition 2.3.12.

(a) Prove that for any based space K , the functors K ∧− and F (K ,−) on spectra
form an adjoint pair. (The idea is to deduce this from the same statement for
based spaces.)

(b) Prove that for any spectrum X , the functors−∧X and Map(X ,−) form an ad-
joint pair between spaces and spectra. In summary, for spaces K and spectra
X and Y , we get bijections

K →Map∗(X , Y ) ↔ K ∧X → Y ↔ X → F (K , Y ).

(c) Use the Yoneda Lemma (Lemma 1.4.20) to upgrade these to homeomorphisms
of topological spaces

Map∗(K , Map∗(X , Y ))∼=Map∗(K ∧X , Y )∼=Map∗(X , F (K , Y )).

16. Prove that the un-shift functor sh−1(−) and the shift functor sh(−) form an adjoint
pair. It is easy to see that, like Σ and Ω, they are inverses up to stable equivalence.

17. (a) Show that the free spectrum functor Fn : Top∗ → Sp is the left adjoint of the
forgetful map evn : Sp→ Top∗ that sends each spectrum X to its nth level Xn .
As a special case, Σ∞ is the left adjoint of ev0.

(b) Show the same for the functor Fn (−)+ : Top → Sp and the forgetful map to
unbased spaces Sp→ Top.
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18. Suppose X and Y are spectra. A weak map f : X ⇝ Y consists of based maps
fn : Xn → Yn and homotopies ΣXn ∧ I+→ Yn+1, from fn+1 ◦ξn to υn ◦Σ fn , for each
n ≥ 0.

Show that a weak map gives a zig-zag X ← X ′→ Y of actual maps of spectra, where
X ′→ X is a level equivalence and the maps X ′n → Yn are in the homotopy class of
fn . (Hint: Take X ′n to be the mapping telescope of Σn X0→Σn−1X1→ . . .→ Xn .)

19. Let X be any spectrum. By Proposition 2.4.1, the spectraΣX and sh X (see Defini-
tion 2.3.6 and Definition 2.3.4) have isomorphic homotopy groups.

(a) Find a zig-zag of stable equivalences between ΣX and sh X . You may find
exercise 18 helpful.

(b) Use this to conclude that ΩX and sh−1 X are also stably equivalent.

(c) Take the homotopy colimit of the stable equivalences X → Ω sh X , to get a
second construction of R X from Proposition 2.2.9. It is not homeomorphic
to the first construction, only equivalent, but along the bottom of the last grid
in the proof, we now get the groups πk+m (Ωm X ) instead of Am .

20. Prove Lemma 2.4.14.

21. Prove that for any homotopy pushout/pullback square of spectra as in Defini-
tion 2.4.13, there is a homotopy Mayer-Vietoris sequence as in Section 1.7, exercise
18:

. . . // πk (A)
( f∗,h∗) // πk (Y )⊕πk (Z )

k∗−g∗ // πk (W )
∂ // πk−1(X ) // . . .

22. Consider the following alternate definition of cofiber sequence of spectra. A cofiber
sequence of spectra X → Y → Z is a homotopy pushout square

X

��

f
// Y

g
��

C // Z

where C is weakly contractible, i.e. C →∗ is a stable equivalence. Prove that every
cofiber sequence in our sense is a cofiber sequence in this sense. Conversely, prove
that every cofiber sequence in this sense can be changed up to stable equivalence
to be a cofiber sequence in our sense. (You may find it helpful to make the spectra
into CW Ω-spectra and to use the Whitehead theorem.)

23. Dualize the proof of Proposition 2.4.19 to get the following: when the composite

A
i→ X

p
→ A′ is a stable equivalence, the canonical map X →C i ×A′ is also a stable

equivalence. Conclude that the composite F p → X → C i is a stable equivalence.
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So when we have a retract in spectra, the complementary piece is both the cofiber
of the inclusion, and the fiber of the projection.

24. Define the free loop spectrum L X of a spectrum X by the cotensor

L X = F (S 1
+, X ).

• Check that on each spectrum level this takes the space of unbased loops.

• Show that L X is stably equivalent to the product X ×ΩX .

• Show that L (Σ∞+ A) is not equivalent to Σ∞+ L A for any nonempty unbased
space A.

25. (a) Fill in the missing step of Proposition 2.4.18 by proving that homotopy groups
preserve finite products:

πk

�

n
∏

i=1

X (i )

�

∼=
n
∏

i=1

πk (X (i )),

for any spectra X (1), ..., X (n ) and k ∈Z.

(b) Prove that stable homotopy groups preserve infinite products of Ω-spectra:

πk

�

∏

α

X (α)

�

∼=
∏

α

πk (X (α)),

for any collection of Ω-spectra {X (α)}α∈A and k ∈Z.

(c) Show that stable homotopy groups do not preserve infinite products in gen-
eral. (This is what we mean by infinite products having the wrong homotopy
type.) (You might consider taking a product of infinitely many copies of a
colimit system that does not stabilize, such as the one in exercise 39.)

26. Dualize the proof of Corollary 2.4.23 and prove that if K is a finite CW complex,
then the cotensor F (K ,−) preserves all stable equivalences. What goes wrong if K
is infinite? (Consider exercise 25.)

27. Use Section 1.7, exercise 23 to prove that stable homotopy groups commute with
sequential homotopy colimits of spectra:

πk

�

hocolim
n→∞

X (n )
�

∼= colim
n→∞

πk (X (n )).

They also commute with the strict colimit, provided the maps X (n )→ X (n+1) are
closed inclusions at each spectrum level.
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28. Recall from Section 1.7, exercise 23 that if Y is compact and

X (−1) −→ X (0) −→ X (1) −→ X (2) −→ . . .−→ X

is a sequence of closed inclusions with colimit X , then any map Y → X factors
through some X ( j ).

(a) Prove that the composite of two relative cell complexes is a relative cell com-
plex. (Either in spaces or in spectra; the argument is the same.)

(b) Prove that the composite of countably many relative cell complexes is a rel-
ative cell complex. (This is also true for larger transfinite compositions, we
would just need more set theory to define and work with them.)

29. (a) Suppose S is a compact (CGWH) space, and
∨

αK (α) is a wedge sum of based
(CGWH) spaces. Prove that any map

S −→
∨

α∈A

K (α)

must factor through a finite wedge, i.e.
∨

α∈F K (α) for some finite subset F ⊆
A. (This is similar to Section 1.7 exercise 23.)

(b) Prove that stable homotopy groups preserve infinite coproducts:

πk

�

∨

α

X (α)

�

∼=
⊕

α

πk (X (α)),

for any collection of spectra {X (α)}α∈A and k ∈ Z. This finishes the proof of
Proposition 2.5.7, that spectra define extraordinary homology theories.

30. (a) Prove that for any spectrum E , the cotensor F (−, E ) sends coproducts of based
spaces

∨

αXα to products of spectra. More generally, it sends colimits to lim-
its.

(b) Prove also that the cotensor F (−, E ) sends cofiber sequences of CW com-

plexes A
f
→ X →C f to fiber sequences of spectra.

(c) Switching to the other slot, prove that the cotensor F (A,−) sends fiber se-
quences of spectra F f → E → B to fiber sequences of spectra.

We have to be a little careful in this exercise – if we have a cofiber sequence of
spaces A→ X →C , where C is only equivalent to the cofiber, not isomorphic, then
F (−, E )may not respect that equivalence, so applying F (−, E )may not give a fiber
sequence. This can be corrected by taking the right-derived functor of F (A, E ),
in other words, by making A a CW complex and making E an Ω-spectrum before
feeding them into F . See Definition 3.3.15.
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31. Let E be any Ω-spectrum. Prove thatπ−∗(F (X /A, E )) satisfies the Eilenberg-Steenrod
axioms for a cohomology theory (Proposition 2.5.16). Explain how the proof fails
if E is not an Ω-spectrum. (You may find it helpful to use exercises 9, 25, and 30.)

32. Prove that the homology theory defined in Proposition 2.5.7 extends to all pairs
(X , A) in which A→ X is a cofibration, and preserves all weak equivalences of such
pairs.

On the other hand, the cohomology theory in Proposition 2.5.7 does not extend
this way, because weak equivalences X → X ′ do not always induce weak equiv-
alences on Map(−, Y ). Instead, we extend it by replacing an arbitrary pair (X , A)
by an equivalent CW pair (Q X ,Q A) and then feeding it into the earlier definition.
In other words, we have to right-derive cohomology to extend it to all spaces (see
Definition 3.3.15).

33. Suppose X and Y are based CW complexes.

(a) Prove that Σ∞X+ is stably equivalent to the wedge sum S∨Σ∞X .

(b) Prove that Σ∞(X ×Y ) is stably equivalent to the wedge sum

Σ∞X ∨Σ∞Y ∨Σ∞(X ∧Y ).

(c) How does this generalize to Σ∞(X1× · · ·×Xn )?

34. (a) Prove that the suspension spectrum of a cofiber sequence of based spaces is
a cofiber sequence of spectra.

(b) Show by counterexample that the suspension spectrum of a fiber sequence
of spaces may not be a fiber sequence of spectra. (Hint: Use exercise 33.)

(c) Check that the right adjoint ev0 preserves fiber sequences of Ω-spectra. Does
it also preserve cofiber sequences?

35. Check that H∗(Σ∞A)∼=H∗(A,∗)when A is well-based.

36. Explain why a cofiber/fiber sequence of spectra X → Y → Z gives a long exact
sequences on homology:

· · · // Hn (X ) // Hn (Y ) // Hn (Z ) // Hn−1(X ) // · · ·

Does this work for extraordinary homology as well?

37. A spectrum X is n-connected if πk (X ) = 0 for k ≤ n ; it is n-connective if πk (X ) = 0
for k < n . Suppose we have a cofiber/fiber sequence X → Y → Z .

(a) If X and Z are n-connected, prove that Y is n-connected.
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(b) If X and Y are n-connected, what does this imply about Z ? What if Y and Z
are n-connected?

38. (Uniqueness of Eilenberg-Maclane spectra) Fix an abelian group G . Suppose X is
a spectrum such that π0(X ) ∼= G and all other homotopy groups are zero. Prove
there is a stable equivalence H G

∼−→ X . This shows that Eilenberg-Maclane spec-
tra are unique up to stable equivalence. (Hint: Make sure you already know the
corresponding argument for topological spaces. Then think carefully about how
to build H G as a cellular spectrum.)

39. (a) Let A be any abelian group and let A
n→ A be the map that multiplies by n ∈Z.

Prove that the colimit of the maps

A 1 // A 2 // A 3 // · · ·

is the rationalization A⊗Q. (This gets easy if you know that −⊗Q commutes
with colimits.)

(b) Recall that the rational homotopy groups of spheres πk (S n )⊗Q are

πn (S
n )⊗Q=Q, π4n−1(S

2n )⊗Q=Q,

and zero otherwise. Use this to prove that the Moore space M (Q, n ) from
Example 2.5.30 is an Eilenberg-Maclane space K (Q, n )when n is odd.

(c) Using exercise 38, prove that the rational sphereSQ := Fn M (Q, n ) is equivalent
to the Eilenberg-Maclane spectrum HQ.

40. (a) Prove that the mod p version of ordinary homology, in the sense of Exam-
ple 2.5.33, agrees with homology withZ/p coefficients. In other words, show
that HZ∧S/p ≃H (Z/p ).

(b) Similarly, prove that the rationalization of HZ agrees with HQ.

(c) Argue that the Hurewicz map from stable homotopy to homology comes from
a map of spectra S→ HZ. Show that this map is an equivalence after ratio-
nalization, but not before.

41. Prove that the following conditions are equivalent. We say the spectrum X is finite
if these conditions hold.

(1) X is stably equivalent to a cellular spectrum with finitely many stable cells.

(2) X is stably equivalent to a free spectrum Fk A on a finite cell complex A.

(3) the direct sum of the homology groups
⊕

k Hk (X ;Z) is finitely generated.
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(For (3)⇒ (1), you’ll have to use the long exact sequence on homology, and the fact
that any subgroup of Z⊕n is isomorphic to Z⊕k for some k .)

42. Define spectra in simplicial sets, using∆[1]/∂∆[1] as the circle. Define a geometric
realization functor to spectra in topological spaces, and a singular complex functor
coming back. Prove these are inverses up to stable equivalence.

43. Use the Hurewicz theorem and exercise 33 to verify the calculations of π0 and π1

of suspension spectra from Example 2.1.7:

π0(Σ
∞A)∼=H0(A,∗ ;Z),

π1(Σ
∞A)∼=H0(A,∗ ;Z/2)⊕H1(A,∗ ;Z).
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Chapter 3

The stable homotopy category

Let X and Y be spectra. In Proposition 2.4.18 we showed that the map

X ∨Y → X ×Y

is a stable equivalence. We therefore bravely declare that X ∨Y and X ×Y are “the same
spectrum.”

It is easy enough to say this, but not so easy to put those words into practice. For ex-
ample, suppose we define a map from a third spectrum Z into X × Y . Then it should
be possible to lift it to a map to the wedge, Z → X ∨ Y . After all, X ∨ Y is “the same” as
X × Y . But how would we actually construct such a lift? The inclusion X ∨ Y → X × Y
isn’t actually an isomorphism, so we can’t compose with its inverse.

The simplest way to solve this problem is to take the category of spectra Sp and formally
turn the stable equivalences into isomorphisms. This gives a new category called the
stable homotopy category, or Ho Sp for short. It has the same objects as Sp, but different
morphisms. In particular, the map X ∨Y → X ×Y turns into an isomorphism.

In this chapter we give all of the fundamental properties of the stable homotopy cate-
gory, save for those that involve the smash product ∧, which we put off to Section 4.1.
With these properties, we can now effectively work with spectra up to stable equivalence.

3.1 Three equivalent definitions

3.1.1 First definition: zig-zags

Our first definition of Ho Sp will have the same objects as Sp, but the maps will be zig-
zags of maps of spectra.

133
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Definition 3.1.1. The stable homotopy category Ho Sp= Sp[s−1] has an object for every
spectrum X . The morphisms from X to Y , denoted [X , Y ]s , are equivalence classes of
zig-zags of maps from X to Y . We require that the backwards-pointing maps are all
stable equivalences. For instance:

X // X1 X2
∼oo X3

∼oo // X4 X5
∼oo // X6 Y∼oo

Two zig-zags give the same morphism if they can be related by the following moves:

• compose two maps pointing in the same direction,

• cancel any identity map, or

• cancel out any pair of the form
f
−→

f
←− or

f
←−

f
−→.

We compose two zig-zags by concatenating them. The identity is the empty zig-zag of

maps from X to X , equivalently the one-term zig-zag
�

idX−→
�

. We letδ : Sp→Ho Sp denote

the functor that takes each map f to the one-term zig-zag
�

f
−→

�

.

Intuitively, Ho Sp is the category that turns the stable
equivalences into isomorphisms, and does as little else as
possible. To see why this gives zig-zags, consider the fig-
ure to the right. The blob represents the category of spec-
tra. The blue morphism in the center is a stable equiv-
alence, so we give it a formal inverse, drawn as a blue
dashed arrow.

However, once this morphism exists, we can compose it
with existing morphisms. So for instance we can get the
zig-zag that follows the green dashed arrow along the top
of the figure.

Example 3.1.2. We can define a “degree n” map S→ S in the stable homotopy category
by taking the following zig-zag.

S F1S 1∼oo // S

S 0 ∗oo // S 0

S 1 S 1
∼=oo n // S 1

S 2 S 2
∼=oo n // S 2

S 3 S 3
∼=oo n // S 3

...
...

...
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Note that this does not define a morphism in Sp, because there is no map of spaces
S 0 → S 0 that suspends to give the degree n map S 1 → S 1, unless n = 0 or 1. It only
defines a morphism in Ho Sp.

In fact, every map S→ S in the stable homotopy category is of this form, for some n ∈Z,
by Example 3.1.35. This is hard to prove right now though. You would have to show that
any zig-zag from S to S can be simplified to the one above.

Example 3.1.3. The Hopf map η: S 3→ S 2 passes to a map in the stable homotopy cate-
gory S1→ S0. Informally, this is because suspension is invertible. Formally, we take the
following zig-zag.

S1 F2S 3∼oo
F2η // F2S 2 ∼ // S0

S 1 ∗oo 0 // ∗ // S 0

S 2 ∗oo 0 // ∗ // S 1

S 3 S 3
∼=oo

η
// S 2

∼= // S 2

S 4 S 4
∼=oo

Ση
// S 3

∼= // S 3

S 5 S 5
∼=oo

Σ2η
// S 4

∼= // S 4

...
...

...
...

Again, η does not define a morphism in the category of spectra Sp, only the homotopy
category Ho Sp. We had to pass to the homotopy category, to be able to cut off a few
levels from S1 and then define the map on the rest.

Example 3.1.4. For any spectrum X , we can define a degree n map X
n−→ X in many

ways, including the following:

X
(id,...,id)

//
∏n

i=1 X
∨n

i=1 X∼oo
(id,...,id)

// X

X sh−1ΣX∼oo S 1 n→S 1
// sh−1ΣX X∼oo

X sh1ΩX∼oo S 1 n→S 1
// sh1ΩX X .∼oo

These all define the same map in the stable homotopy category by exercise 11.
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Example 3.1.5. If f : X → Y is a stable equivalence, thenδ( f ) =
�

f
−→

�

is an isomorphism

in Ho Sp. Its inverse is the zig-zag
�

f
←−

�

:

�

f
−→

��

f
←−

�

=
�

f
−→

f
←−

�

= (idX ) ,
�

f
←−

��

f
−→

�

=
�

f
←−

f
−→

�

= (idY ) .

In fact, Ho Sp is the universal category in which the stable equivalences in Sp become
isomorphisms.

Proposition 3.1.6. Suppose F : Sp→ D is any functor taking stable equivalences to iso-
morphisms. Then there is a unique functor making this triangle commute:

Ho Sp

Ho F (or just F )
��

Sp
δ 66

F (( D

(3.1.7)

Proof. We define the functor Ho F by sending X to F (X ), and sending each zig-zag to
the composite of F of the morphisms (inverted when they point backwards). This gives
the desired commuting triangle. Any other functor making the triangle commute would
have to agree with Ho F on objects and one-term zig-zags. But then it follows that it
agrees on every zig-zag.

Example 3.1.8. By definition, each stable equivalence X → Y gives an isomorphism on
the stable homotopy groups πk (−). By Proposition 3.1.6, πk therefore defines a functor
on the stable homotopy category, Ho Sp→Ab. By Proposition 2.6.37, homology Hk (−;G )
also defines a functor Ho Sp→Ab.

It is clear that the proof of Proposition 3.1.6 has nothing to do with spectra.

Definition 3.1.9. Given any category C, and any collection of morphisms W that we call
the “weak equivalences” in C, we form the category Ho C=C[W −1] by taking the objects
of C, and defining the morphisms to be equivalence classes of zig-zags with backwards
maps in W , as in Definition 3.1.1. We may as well assume that W is closed under com-
position, so that we can compose arrows pointing to the left. Considering one-term
zig-zags, we see there is a functor

δ : C // C[W −1].

Theorem 3.1.10. [GZ67, 1.1] Any functor F : C→D that sends weak equivalences to iso-
morphisms, must factor uniquely through C[W −1].

Definition 3.1.11. The homotopy category of unbased spaces Ho Top = Top[w −1] is
formed from Top by inverting the weak homotopy equivalences. A morphism in Ho Top
is a zig-zag of maps of unbased spaces, where the maps pointing to the left are weak
homotopy equivalences.
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Definition 3.1.12. The homotopy category of based spaces Ho Top∗ = Top∗[w
−1] is formed

from Top∗ by inverting the weak homotopy equivalences. A morphism in Ho Top∗ is a
zig-zag of based maps of based spaces, where the maps pointing to the left are weak
homotopy equivalences.

Example 3.1.13. Singular homology Hk (−;G ) preserves weak equivalences. By Theo-
rem 3.1.10, it therefore defines a functor on the homotopy category Ho Top→Ab.

Remark 3.1.14. There is a size issue in these constructions: for any two objects X and Y
in C, the collection of morphisms from X to Y in Ho C may be so large that it is not a set,
but rather a proper class. This is addressed by allowing the homotopy category to have
sets lying in a larger universe. In the examples we actually encounter, such as Ho Sp, the
morphisms do in fact form a set, so this set-theory workaround isn’t necessary. We won’t
worry so much about this issue here.

We end with a lemma about the homotopy category that will be useful when comparing
it to other models. Recall that two maps of spectra f , g : X ⇒ Y are homotopic if they
extend to a map of spectra h : I+ ∧X → Y .

Lemma 3.1.15. If f and g are homotopic, then δ( f ) =δ(g ) in Ho Sp. The same is true for
spaces: homotopic maps of spaces give the same morphism in Ho Top.

Proof. Let i0, i1 : X ⇒ I+ ∧X be the inclusion of the top and bottom of the cylinder, and
let p : I+ ∧X → S 0 ∧X ∼= X be the projection. Then in Ho Sp,

�

f
−→

�

=
�

i0−→ h−→
�

=
�

i0−→
p
−→

p
←− h−→

�

=
�

p
←− h−→

�

=
�

i1−→
p
−→

p
←− h−→

�

=
�

i1−→ h−→
�

=
� g
−→

�

.

Definition 3.1.16. For spectra X and Y , we let

• [X , Y ]s denote the set of maps from X to Y in Ho Sp, i.e. zig-zags up to the equiv-
alence relation of Definition 3.1.1, and

• [X , Y ]h denote maps of spectra X → Y up to homotopy.

Remark 3.1.17. By Lemma 3.1.15, there is a well-defined map [X , Y ]h → [X , Y ]s . But
this is often not a bijection. For instance, [S,S]h = {0, 1}, but we will prove later that
[S,S]s ∼=Z.
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3.1.2 Equivalences of categories and a second definition

In this section we give several definitions of Ho Sp that are equivalent to the one in Def-
inition 3.1.1. We first recall what an equivalence of categories is.

Definition 3.1.18. A functor F : C→D is an isomorphism of categories if it is a bijection
on objects and on morphisms. The functor F is an equivalence of categories if it is a
bijection on isomorphism classes of objects

ob C/isom
∼= // ob D/isom (3.1.19)

and a bijection on morphisms between any pair of objects,

C(X , Y )
∼= // D(F (X ), F (Y )). (3.1.20)

Implicit in this definition is the fact that any functor F induces a function (3.1.19) on
isomorphism classes of objects. This is because every functor preserves isomorphisms,

X ∼= Y ⇒ F (X )∼= F (Y ).

We say F : C→D is fully faithful if (3.1.20) is a bijection. Informally, this means C and D
have “the same morphisms.” By exercise 1, this implies that (3.1.19) is injective.

We say that F is essentially surjective if every Z ∈ ob D is isomorphic to F (X ) for some
X ∈ ob C. Of course, this is the same thing as saying that (3.1.19) is surjective. Putting
this all together:

Lemma 3.1.21. F is an equivalence of categories iff it is both fully faithful and essentially
surjective.

The distinction between “isomorphism” and “equivalence” of categories is very much
like the difference between a homeomorphism and a homotopy equivalence of topo-
logical spaces. A homeomorphism X → Y gives a bijection on the underlying set. A
homotopy equivalence only gives a bijection on the path components and the homo-
topy groups. The following standard lemma takes this analogy further.

Lemma 3.1.22. Let F : C→D be a functor. If there exists a second functor G : D→ C and
natural isomorphisms G F X ∼= X and F G Y ∼= Y for all X ∈ ob C and Y ∈ ob D, then F
is an equivalence of categories. The converse holds as well, modulo issues of size and the
axiom of choice.

Example 3.1.23. Let A⊆C be a full subcategory. That is, we select some objects from C,
and take all morphisms between them:

A(X , Y ) :=C(X , Y ).
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The inclusion A ⊆ C is obviously fully faithful. So, it is an equivalence of categories if A
contains at least one object in each isomorphism class. In this case the inverse func-
tor G : C → A from Lemma 3.1.22 can be chosen to be the identity on A, so that it is a
“deformation retract” of categories.

Example 3.1.24. If A is a skeleton of C, containing exactly one object in each isomor-
phism class, then A⊆C is an equivalence of categories.

To give a common example from linear algebra, let C be the category of finite-dimensional
real vector spaces, and A ⊆ C be the full subcategory consisting of the vector space Rn

for each n ≥ 0. Then A is a skeleton of C, and is therefore equivalent to C. Choosing a
deformation retract of C onto A amounts to choosing a basis for each finite-dimensional
vector space.

Definition 3.1.25. Define Ho CW = CW[w −1] to have objects the CW complexes, and
maps the zig-zags of CW complexes as in Definition 3.1.1, where the backwards maps
are weak homotopy equivalences. Define hCW to have objects the CW complexes, and
morphisms the homotopy classes of maps.

By Lemma 3.1.15, homotopic maps give the same zig-zag, so we have functors

hCW // Ho CW=CW[w −1] // Ho Top= Top[w −1].

Proposition 3.1.26. These functors are equivalences of categories.

Proof. hCW and Ho CW have the same objects, so we just have to show they have the
same morphisms. The easiest way to do this is to show that hCW satisfies the universal
property of Ho CW: given any map F : CW→ D taking weak homotopy equivalences to
isomorphisms, it factors uniquely through hCW.

By the Whitehead theorem (Theorem 1.4.12), weak homotopy equivalences between CW
complexes are homotopy equivalences. Therefore CW → hCW does in fact take weak
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homotopy equivalences to isomorphisms. Furthermore, if F : CW→ D takes weak ho-
motopy equivalences to isomorphisms, then for homotopic maps f , g we have

F ( f ) = F (h ) ◦ F (i0) = F (h ) ◦ F (p )−1 = F (h ) ◦ F (i1) = F (g )

where p , i0, and i1 are defined as in Lemma 3.1.15. Therefore F factors through hCW in
a unique way. This verifies the universal property, so hCW∼=Ho CW.

For the second part of the proof, we know that Ho CW→Ho Top is essentially surjective,
because every space is weakly equivalent to a CW complex. So we just have to show these
categories have the same morphisms. In other words, for two CW complexes X and Y ,
we have to show we get a bijection between zig-zags of CW complexes, and zig-zags of
all spaces.

Let Q (−) be a functor that replaces spaces by equivalent CW complexes. To each zig-zag
of arbitrary spaces between X and Y , we apply Q and get a commuting diagram

X // X1 X2
∼oo // X3 X4

∼oo // X5
// Y

Q X

∼

OO

//Q X1

∼

OO

Q X2
∼oo

∼

OO

//Q X3

∼

OO

Q X4
∼oo

∼

OO

//Q X5

∼

OO

//QY .

∼

OO

We define the inverse function Ho Top(X , Y )→Ho CW(X , Y ) by taking the zig-zag along
the top to the zig-zag along the bottom and sides. This is an inverse to the map Ho CW(X , Y )→
Ho Top(X , Y ) by exercise 6, so we have a bijection on the morphism sets.

Definition 3.1.27. Let

• SpC W ⊆ Sp be the full subcategory of CW spectra,

• SpΩ ⊆ Sp be the full subcategory of Ω-spectra, and

• SpC W ,Ω ⊆ Sp be the full subcategory of CW Ω-spectra.

We take the homotopy category of each of these by inverting the stable equivalences.
We also let hSpC W ,Ω have the same objects as SpC W ,Ω, but the morphisms are maps of
spectra up to homotopy, [X , Y ]h .

Proposition 3.1.28. The inclusions of categories

SpC W ,Ω

��

// SpΩ

��

SpC W // Sp
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induce equivalences of homotopy categories

hSpC W ,Ω oo
∼= // Ho SpC W ,Ω

∼
��

∼ // Ho SpΩ

∼
��

Ho SpC W ∼ // Ho Sp

Proof. The proof is the same as in Proposition 3.1.26. For the first part, we use the White-
head theorem (Corollary 2.6.17) to show that stable equivalences go to isomorphisms in
hSpC W ,Ω. For the second part, we use the CW replacement functor Q constructed in
Theorem 2.6.12 and the Ω-spectrum replacement functor R from Proposition 2.2.9.

Proposition 3.1.28 tells us that if X and Y are CW Ω-spectra, then the map

[X , Y ]h → [X , Y ]s

is a bijection. This is not true for arbitrary X and Y , as mentioned in Remark 3.1.17. See
exercise 5.

Proposition 3.1.28 gives us four more models for the stable homotopy category. The
most interesting of these is the one on the far left – we restrict our attention to CW Ω-
spectra, but now we just take single maps (not zig-zags) up to homotopy. This is our
second definition of the stable homotopy category.

Remark 3.1.29. We can give an explicit inverse to the inclusion Ho SpC W ⊆ Ho Sp. Let
Q : Sp→ SpC W be the functor that replaces each spectrum X by a stably equivalent CW
spectrum. Since Q is stably equivalent to the identity, composing Q with the inclusion
Ho SpC W ⊆ Ho Sp (in either order) is isomorphic to the identity. Therefore Q gives the
inverse equivalence of categories Ho Sp→Ho SpC W .

We can similarly use R to go back toΩ-spectra. So we have a diagram of equivalences of
categories

hSpC W ,Ω oo
∼= // Ho SpC W ,Ω

∼
��

∼
// Ho SpΩ

Q
rr

∼
��

Ho SpC W ∼ // Ho Sp
Q

kk

R

YY

We conclude that there is a bijection

[X , Y ]s ∼= [Q R X ,Q RY ]h .

Example 3.1.30. The degree n map of the sphere from Example 3.1.2 can be described in
hSpC W ,Ω by taking the mapΩ∞Σ∞S 0→Ω∞Σ∞S 0 that applies the degree n map to every
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sphere in the colimit system after S 0. With a fair amount of effort, this can be extended
to the rest of the fibrant sphere spectrum f S from Example 2.2.6. We then have to apply
the CW replacement functor Q to both sides, and we arrive at a map in hSpC W ,Ω.

Phew! Hopefully this example demonstrates that it is usually not practical to define
maps of CW Ω-spectra directly.

3.1.3 Third definition: cells now, maps later

We have now seen two definitions of the stable homotopy category. The first definition
takes zig-zags of maps up to an equivalence relation. This is convenient because it is
easy to name a single morphism explicitly. But it is inconvient because it is very hard
to count how many morphisms there are from X to Y . Literally any object in the entire
category could show up in the zig-zag!

The second definition takes CW Ω-spectra and homotopy classes of maps. In principle,
this makes it easier to count how many morphisms there are. In practice, though, this is
not actually very useful. CW Ω-spectra are too complicated.

We can now give a third definition that captures the best of both worlds.

Definition 3.1.31. Let X be a CW spectrum. A cofinal subspectrum X ′ ⊆ X consists of a
subcomplex X ′n ⊆ Xn on each level, such that ξn (ΣX ′n )⊆ X ′n+1, and such that every stable
cell of X has a representative in X ′.

Example 3.1.32. The sphere spectrum S has the shift desuspension FnS n as a cofinal
subspectrum, for each n ≥ 0. The suspension spectrum Σ∞RP2 has a stable 1-cell e1

and a stable 2-cell e2. We could form a cofinal spectrum by taking e1 at spectrum level
15, where it is a 16-cell, and e2 at spectrum level 18, where it is a 20-cell attached to the
19-cell representing e1.

Definition 3.1.33. Suppose X is a CW spectrum and Y is a spectrum. An eventually-
defined map X → Y is a cofinal subspectrum X ′ ⊆ X and a map of spectra X ′→ Y . In
other words, the map is defined on each stable cell, but not right away – we may wait
several levels before the map becomes defined.

Given two eventually-defined maps (X ′, f : X ′→ Y ) and (X ′′, g : X ′′→ Y ), an eventually-
defined homotopy is a third cofinal subspectrum X ′′′ ⊆ X ′∩X ′′ and a homotopy from f
to g on X ′′′.

Let [X , Y ]e denote the set of eventually-defined maps up to eventually-defined homo-
topy.

The above definition was famously summarized by Adams as “cells now, maps later.”
See [Ada74].
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Definition 3.1.34. The category e SpC W has an object for each CW spectrum. The mor-
phisms from X to Y are [X , Y ]e , the eventually-defined maps up to eventually-defined
homotopy. In particular, we can always restrict f to a smaller cofinal subspectrum X ′′ ⊆
X ′ without changing the resulting morphism in [X , Y ]e .

We compose two morphisms

(X ′ ⊆ X , f : X ′→ Y ), (Y ′ ⊆ Y , g : Y ′→ Z )

by taking any cofinal X ′′ ⊆ X ′ whose image is contained in Y ′, and taking the composite
g ◦ f on X ′′. Such an X ′′ exists because each stable cell of X has image in Y contained in
finitely many stable cells, and hence is eventually contained in Y ′. It is straightforward
to check that this rule is well-defined on homotopy classes of maps.

Example 3.1.35. The maps [S,S]e are easily computed. The sphere has just one stable
0-cell, so a cofinal subspectrum must be of the form FnS n for some n . The set of maps
[S n ,S n ]∗ is Z so long as n ≥ 1. It follows that [S,S]e ∼=Z.

Similarly, using the fact that [S n+1,S n ]∗ ∼= Z/2 for n ≥ 3, we can compute that [S1,S0]e ∼=
Z/2. The nonzero element is the Hopf map η, defined as in Example 3.1.3 by waiting
until spectrum level two and then taking the Hopf map S 3→ S 2.

We will prove that e SpC W is equivalent to the other models of the homotopy category,
extending the diagram from Remark 3.1.29 to the following.

hSpC W ,Ω

∼
��

oo
∼= // Ho SpC W ,Ω

∼
��

∼
// Ho SpΩ

Q
rr

∼
��

e SpC W oo
∼= // Ho SpC W ∼ // Ho Sp

Q

kk

R

YY
(3.1.36)

Lemma 3.1.37. The inclusion of a cofinal subspectrum X ′→ X is a stable equivalence.

Proof. To show that πk (X ′)→ πk (X ) is surjective, we take any element and represent it
by a map S k+n → Xn . Since S k+n is compact, the image of this map is contained in a finite
subcomplex. If n is sufficiently large then all the cells of this complex are contained in
X ′n , so the map lifts to X ′. The proof of injectivity is the same argument with homotopies
S k+n ∧ I+→ Xn .

Proposition 3.1.38. Every stable equivalence of CW spectra f : X → Y is an isomorphism
in e SpC W ; it has an eventually-defined homotopy inverse.

Proof. We factor f into the mapping cylinder X →M and then the homotopy equiva-
lence of spectra M → Y . The fully-defined homotopy equivalence M ≃ Y is clearly an
isomorphism in e SpC W . So, we just need to show that X →M is an isomorphism as well.
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We do this by defining an eventually-defined deformation retract of M onto X . We de-
fine this on a cofinal subspectrum of I+∧M , working one stable cell of M at a time. For
each k -cell of M , represented by a disc D k+n → Mn for all n sufficiently large, we are
required to define a map of pairs

(D k+n × I , D k+n ×0)→ (Mn , Xn )

that is already specified on the top D k+n × {1} (as the identity of Mn ) and on the sides
∂ D k+n×I (by the previously defined cells), when n is sufficiently large. Since the top and
sides of D k+n × I are homeomorphic to D k+n , we get a class αn ∈ πk+n (Mn , Xn ), and the
extension exists if this class is zero. Sinceπk (M , X ) = 0, the classαn is zero for sufficiently
large n . Therefore, after possibly waiting longer to define the deformation retract on this
cell, the required extension exists. Repeating for each cell, we get the desired eventually-
defined deformation retract.

Theorem 3.1.39. There is an isomorphism of categories e SpC W ∼=Ho SpC W .

Proof. We define a functor F : e SpC W −→Ho SpC W , in other words maps

[X , Y ]e → [X , Y ]s ,

by taking the eventually-defined map (X ′ ⊆ X , f : X ′→ Y ) to the zig-zag

X X ′
⊆
oo

f
// Y .

Passing to a further cofinal subspectrum X ′′ ⊆ X ′ gives the same morphism in [X , Y ]s by
examining the commuting diagram

X ′⊆
uu

f

))⊆
��

X Y .

X ′⊆

ii

f |X ′′

55

If we change f by a homotopy, we also get the same morphism in [X , Y ]s by Lemma 3.1.15.

We check that this respects compositions of maps, so that it defines a functor. Given a
second morphism Y −→ Z defined on Y ′ ⊂ Y , F (g ◦ f ) becomes the top branch of the
diagram

X ′′

∼
��

// Y ′

∼
��

// Z

X X ′∼
oo // Y

while F (g ) ◦ F ( f ) is the bottom branch. Since the diagram commutes in SpC W , it also
commutes as a diagram in Ho SpC W , so these two routes give the same morphism of
Ho SpC W .
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To show that F is an isomorphism, we define its inverse G : Ho SpC W → e SpC W . There
is an obvious functor SpC W → e SpC W . By Proposition 3.1.38, this functor takes sta-
ble equivalences to isomorphisms. Therefore it factors through the homotopy category
Ho SpC W , giving our desired functor G : Ho SpC W → e SpC W .

The composite G ◦ F takes each eventually-defined map (X ′ ⊆ X , f : X ′→ Y ) to the in-
verse of X ′ ⊆ X , composed with f : X ′→ Y . The inverse of the inclusion is the eventually-
defined map X → X ′ that is just the identity map on X ′. Composing this with f gives
the original map back, (X ′ ⊆ X , f : X ′→ Y ), so G ◦ F is the identity functor.

The composite F ◦G only has to be calculated on SpC W , by the universal property of
Ho SpC W . For each map of spectra f : X → Y , it is sent to the eventually-defined map
(X = X , f : X → Y ), and then back to f : X → Y again. So F ◦G is the identity functor.

In summary, all of the models of the stable homotopy category from the last three sec-
tions are equivalent to each other. We are free to use whichever one is the most conve-
nient at the moment:

[X , Y ]s ∼= [X , Y ]h when X and Y are both CW Ω-spectra, and

[X , Y ]s ∼= [X , Y ]e when X and Y are both CW spectra.

It will be helpful to weaken these hypotheses a little more. Notice that eventually-defined
maps [X , Y ]e make sense if X is CW, but Y is arbitrary. In this setting we have three maps

[X , Y ]h → [X , Y ]e → [X , Y ]s ,

which are not necessarily bijections.

Proposition 3.1.40. If X is CW and Y is an Ω-spectrum, both of the maps [X , Y ]h →
[X , Y ]e → [X , Y ]s are bijections.

Proof. Let QY be the CW replacement of Y . The level equivalence QY → Y gives a
commuting diagram

[X ,QY ]h

��

// [X ,QY ]e
(2)
��

∼= // [X ,QY ]s
∼=
��

[X , Y ]h
(1)

// [X , Y ]e // [X , Y ]s .

The isomorphism in the top row is by Theorem 3.1.39, while the isomorphism on the
right is because QY → Y is an isomorphism in Ho Sp. To finish proving the claim, it is
enough to show that the maps (1) and (2) are isomorphisms.
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To show that (1) is surjective, we show each eventually-defined map f : X ′→ Y , defined
on a cofinal subspectrum X ′ ⊆ X , is homotopic to an actual map g : X → Y . In other
words, we seek to define a map of spectra

X ∧{0}+ ∪X ′∧{0}+ X ′ ∧ I+ // Y

that agrees with f along X ′ ∧ {1}+. As in the proof of Proposition 3.1.38, we define this
extension one cell of X at a time. Suppose we have a stable k -cell in X , first appearing
in X as as D k+m → Xm . For each n ≥m , this gives a cell

D k+n →Σn−m D k+m
+ → Xn .

Since X ′ is cofinal in X , there is a first value of n on which f is defined on this cell,

Σn−m D k+m
+ → Yn .

This rearranges to a map D k+m →Ωn−m Yn , and our goal is to modify this map up to ho-
motopy to a map that lifts to Ym . Furthermore, this homotopy has already been defined
on the boundary ∂ D k+m , because we have already defined the homotopy on the lower-
dimensional cells. All together, this defines a class in πk+m (Ωn−m Yn , Ym ). Since Y is an
Ω-spectrum, this relative homotopy group is zero, so the desired extension exists.

This proves that (1) is surjective. The proof of injectivity is similar: we define a map

X ∧ (I ×{0})+ ∪X ′∧(I×{0})+ X ′ ∧ (I × I )+ // Y

that is already defined on the top and sides of I × I . Again, we do this one cell of X at a
time, and the required extensions exist because Y is an Ω-spectrum. The proof that (2)
is an isomorphism is similar but somewhat easier than the proof of (1), and is left as an
exercise (exercise 9).

Proposition 3.1.41. If X is CW, then [X , Y ]e → [X , Y ]s is a bijection.

Proof. This follows from the fact that the map (2) in the previous proof is an isomor-
phism. The proof (exercise 9) does not require us to assume that Y is anΩ-spectrum.

Remark 3.1.42. Throughout this section and the last, we have used CW spectra for sim-
plicity. In fact, all of the definitions and results also work for the larger category of cellular
spectra. In particular, [X , Y ]s ∼= [X , Y ]h if X is cellular and Y is an Ω-spectrum. We will
give another proof of this using model categories in Theorem 5.2.11 and Theorem 5.2.26.

3.2 Fundamental properties

We have now defined three equivalent models for the stable homotopy category:
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• All spectra, with maps [X , Y ]s defined as zig-zags,

• CW spectra, with homotopy classes of eventually-defined maps [X , Y ]e , and

• CW Ω-spectra, with homotopy classes of actual maps [X , Y ]h .

These are equivalent categories – they have the same objects up to isomorphism, and
the same morphisms between those objects. In fact, we have bijections

[X , Y ]s ∼= [X , Y ]h when X is CW and Y is an Ω-spectrum, and

[X , Y ]s ∼= [X , Y ]e when X is CW.

In this section, we begin moving past the definition of the stable homotopy category and
start proving its fundamental properties. These properties are somewhat parallel to the
stability theorems and their corollaries from Section 2.4.

3.2.1 Suspension, coproducts, and additive structure

Proposition 3.2.1. Σ and Ω define inverse equivalences of categories

Ho Sp

Σ
))

∼ Ho Sp.

Ω

ii

In particular,
[ΣX ,ΣY ]s ∼= [X , Y ]s ∼= [ΩX ,ΩY ]s .

Proof. Both suspension and loopspace preserve all stable equivalences by Corollary 2.4.3.
Therefore by the universal property of the homotopy category (Proposition 3.1.6), they
descend to functors on the homotopy category. The natural isomorphisms from Corol-
lary 2.4.5 relate each composite back to the identity in the homotopy category.

For the next proposition, let {X (α)}α∈A be any collection of spectra and let Y be any spec-
trum.

Proposition 3.2.2. The canonical map that restricts the sum to each summand
�

∨

α

X (α), Y

�

s

→
∏

α

[X (α), Y ]s

is a bijection. Furthermore the canonical map that projects the product to each factor
�

Y ,
∏

α

X (α)

�

s

→
∏

α

[Y , X (α)]s

is a bijection, if either the product is finite or every X (α) is an Ω-spectrum.
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Proof. For the first claim, we replace each X (α)by the CW spectrum Q X (α). Since Q X (α)
is stably equivalent to α, and wedge sums preserve stable equivalences (Section 2.7, ex-
ercise 29), this gives an isomorphism on [−,−]s . (See also exercise 4.) Similarly we re-
place Y by the Ω-spectrum RY .

Once we have done this, the wedge sum
∨

αQ X (α) is a CW spectrum and RY is an Ω-
spectrum, so by Proposition 3.1.40, the maps in the stable category agree with homotopy
classes of maps [−,−]h . We therefore have the following isomorphisms.

[
∨

αQ X (α), RY ]h
∼=
��

//
∏

α[Q X (α), RY ]h
∼=
��

[
∨

αQ X (α), RY ]s
∼=
��

//
∏

α[Q X (α), RY ]s
∼=
��

[
∨

αX (α), Y ]s //
∏

α[X (α), Y ]s .

The top horizontal map in this diagram is an isomorphism, by the universal property of
the coproduct applied to maps and to homotopies. Therefore all of the horizontal maps
are isomorphisms, which proves the first claim.

The same argument applies to products, except that we use Section 2.7, exercise 25 to
show that replacing the X (α) by Ω-spectra induces an equivalence on the product.

Remark 3.2.3. Proposition 3.2.2 tells us that the wedge sum
∨

is the coproduct both in
the category of spectra Sp and in the homotopy category Ho Sp. On the other hand, the
product

∏

in spectra is only the product in the homotopy category if it is a finite product,
or if the inputs areΩ-spectra. To get the product in Ho Sp in general, we replace the X (α)
by Ω-spectra first, and then take their product.

Corollary 3.2.4. The zero spectrum ∗ is a zero object in Ho Sp: for any spectrum X , there
is a unique map X →∗ and a unique map ∗→ X in Ho Sp.

Proof. The proof of Proposition 3.2.2 works perfectly well for empty coproducts and
empty products, both of which give ∗.

Theorem 3.2.5. The stable homotopy category Ho Sp is additive:

• the sets [X , Y ]s are abelian groups,

• the composition maps [X , Y ]s × [Y , Z ]s → [X , Z ]s are bilinear,

• Ho Sp has all finite coproducts and products, and a zero object ∗, and

• the canonical map X ∨Y → X ×Y is an isomorphism.
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Proof. The statements about coproducts, products, and the zero object are already han-
dled by the above results and Proposition 2.4.18.

To define the abelian group structure, for each spectrum X we pick another spectrum
X ′ and a stable equivalence X ≃ΣX ′. For instance, X ′ could be ΩX , or sh−1 X .

We also pick a map of spaces p : S 1→ S 1∨S 1 that pinches the circle in the middle, or any
other map whose degree is (1, 1). By Section 2.7, exercise 10, this gives a “pinch map” in
the stable homotopy category

S 1 ∧X ′ −→ (S 1 ∨S 1)∧X ′

∼= (S 1 ∧X ′)∨ (S 1 ∧X ′)

ΣX ′ −→ΣX ′ ∨ΣX ′

X −→ X ∨X .

By abuse of notation, we also let p : X → X ∨X denote this pinch map. This is a map in
the homotopy category Ho Sp, not an actual map of spectra.

Suppose f , g ∈ [X , Y ]s are two morphisms in the homotopy category, in other words, zig-
zags of morphisms of spectra. We can form a map ( f , g ): X ∨ X → Y in the homotopy
category, because ∨ is the coproduct, by Proposition 3.2.2. Concretely, this map applies
the zig-zags to each summand separately to end at Y ∨Y , then maps each of these to Y
by idY .

We define the sum ( f + g ) ∈ [X , Y ]s by composing ( f , g )with p :

X

f +g

66

p
// X ∨X

( f ,g )
// Y .

The usual proof that π1(X ) is a group applies here and shows that the zero map X →
∗ → Y is the identity for +, and that the inverse of a map f is formed by flipping the
suspension coordinate of ΣX ′ ≃ X . See exercise 10.

To show this rule is well-defined and abelian, it will be helpful to write it a different way.
The diagram of spaces

S 1 ∨S 1

⊆
��

S 1

p
88

(idS1 ,idS1 )
// S 1×S 1

commutes up to homotopy. It follows using Lemma 3.1.15 that the diagram of zig-zags
of maps of spectra

X ∨X

⊆
��

X

p
88

(idX ,idX )
// X ×X
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commutes in Ho Sp. Therefore our addition rule f + g is equal to either route through
the following commuting diagram in Ho Sp.

X ∨X
∼=
��

f ∨g
// Y ∨Y

∼=
��

(idY ,idY ) // Y

X
(idX ,idX ) // X ×X

f ×g
// Y ×Y

(3.2.6)

It is a straightforward diagram-chase to check this is bilinear, in other words h ◦( f +g ) =
(h ◦ f ) + (h ◦ g ), and similarly ( f + g ) ◦h = ( f ◦h ) + (g ◦h ); see exercise 10.

To show that + is commutative, we let f △g denote any other rule for adding two maps
together in Ho Sp. Given two more maps f ′, g ′ : X ⇒ Y , the map ( f △ f ′)+(g△g ′) is given
by the composite

X ∨X

∼
��

( f △ f ′)∨(g△g ′)
// Y ∨Y

∼
��

(idY ,idY ) // Y

X
(idX ,idX ) // X ×X

( f △ f ′)×(g△g ′)
// Y ×Y

We have the equality ( f △ f ′)∨ (g△g ′) = ( f ∨g )△( f ′∨g ′), because both give f △ f ′ when
restricted to the first copy of X , and g△g ′ when restricted to the second copy of X . By
the bilinearity of△, we can compose this with the remaining maps of the diagram and
see that the result is ( f + g )△( f ′+ g ′). All together, this proves the interchange law

( f △ f ′) + (g△g ′) = ( f + g )△( f ′+ g ′).

We now apply the Eckmann-Hilton argument [], and conclude that the two operations
+ and△ are equal to each other, and are abelian.

The last step of the proof of Theorem 3.2.5 shows:

Proposition 3.2.7. The abelian group structure in Theorem 3.2.5 is unique.

Example 3.2.8. The isomorphism [S,S]s ∼= Z is an isomorphism of abelian groups, be-
cause the rule from Theorem 3.2.5 for adding two maps S→ S agrees with the usual rule
for addition in πn (S n )∼=Z.

Example 3.2.9. We can describe the addition f +g in yet another way. For each spectrum
Y , we pick another spectrum Y ′ and a stable equivalence Y ≃ΩY ′. Then the composi-
tion mapΩY ′×ΩY ′→ΩY ′ gives a map in the stable homotopy category Y ×Y → Y that
we call c . We add f and g by the rule

X
( f ,g )

// Y ×Y c // Y .
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To prove this agrees with the operation of Theorem 3.2.5, we could prove it is bilinear
and then use Proposition 3.2.7, but it is a little faster to argue that the following square
of spectra commutes:

Y ∨Y
∼=
��

(idY ,idY ) // Y

Y ×Y

c

77

Sticking this onto the right-hand side of (3.2.6), we see that this rule agrees with the pre-
vious one.

Example 3.2.10. The category of of abelian groups Ab is also additive, as is the category

R Mod of left modules over a ring R . In both cases, the morphisms form abelian groups,
and the finite coproducts and finite products are isomorphic to each other.

It is common to write finite coproducts in an additive category with the notation

X1⊕ . . .⊕Xn ,

also so we will sometimes use this notation when working in the stable homotopy cate-
gory.1 We can also denote maps between direct sums

X1⊕ . . .⊕Xn → Y1⊕ . . .⊕Ym

using matrix notation, every entry of the matrix being an element of one of the abelian
groups [X j , Yi ]s . The composition of maps is given by matrix multiplication.

Example 3.2.11. [S⊕S,S⊕S]s is isomorphic to the abelian group M2×2(Z)of 2×2 matrices
over Z. The composition is by matrix multiplication. See also exercise 12.

3.2.2 Computing the morphism sets [X , Y ]s

Recall from the beginning of Section 3.2 that we have bijections

[X , Y ]s ∼= [X , Y ]h when X is CW and Y is an Ω-spectrum, and

[X , Y ]s ∼= [X , Y ]e when X is CW.

These are bijections of abelian groups, if we write X as a suspension and use the usual
formula for addition in [ΣX ′, Y ]∗ to add two maps together. The description as eventually-
defined maps [X , Y ]e is useful for actually computing these sets, at least when X only
has a few cells.

1Note that the point-set category of spectra, Sp, is not additive. So we have to continue to use the
notation ∨ or × if we are not working in the homotopy category.
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To move to larger examples, recall that for a based space A, the free spectrum Fk A has
the property that maps of spectra Fk A→ Y are the same as maps of based spaces A→ Yk ,
see Lemma 2.6.9. The same applies to homotopies, so we get

Lemma 3.2.12. There is a canonical bijection [Fk A, Y ]h ∼= [A, Yk ]∗.

Corollary 3.2.13. We get the following bijections:

[Fk A, Y ]s ∼= [A, Yk ]∗ when A is CW and Y is an Ω-spectrum,

[Fk A, Y ]s ∼= colim
n→∞

[Σn A, Yk+n ]∗ when A is finite CW and Y is any spectrum, and

[Fk A, FℓB ]s ∼= colim
n→∞

[Σn−k A,Σn−ℓB ]∗ when A is finite CW and B is any space.

Proof. The first bijection is because [Fk A, Y ]s ∼= [Fk A, Y ]h by Proposition 3.1.40. For the
second bijection, we replace Y by the Ω-spectrum RY . By Section 1.7, exercise 24, we
have

[A, RYk ]∗ ∼= colim
n→∞

[A,Ωn Yk+n ]∗ ∼= colim
n→∞

[Σn A, Yk+n ]∗.

Alternatively, we could use Proposition 3.1.40 and argue that because A has only finitely
many cells, any eventually-defined map becomes actually defined at level n for suffi-
ciently large n . The same argument gives the third bijection as well.

Remark 3.2.14. Recall that a spectrum is finite if it is stably equivalent to Fk A for a finite
CW complex A. The subcategory of finite spectra Ho Spfin ⊆Ho Sp is called the Spanier-
Whitehead category. By Corollary 3.2.13, the morphisms of this category are stabilized
maps of spaces colim

n→∞
[Σn−k A,Σn−ℓB ]∗. See Proposition 4.2.12 for more details.

Recall from Example 2.1.9 that the d -dimensional sphere in spectra is

Sd = shd S=







F0S d ∼=ΣdS when d ≥ 0,

F|d |S
0 ≃Ω|d |S when d ≤ 0.

These are equivalent by Section 2.7, exercise 19.

Corollary 3.2.15. For any spectrum X , there is a natural isomorphism

[Sk , X ]s ∼= colim
n→∞

πk+n (Xn ) =πk (X ).

This is an isomorphism of abelian groups, using the pinching definition of addition from
Theorem 3.2.5. A category theorist would describe this result by saying thatπk : Ho Sp→
Ab is “co-represented” by Sk .
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Example 3.2.16. If X is any spectrum and G is an abelian group, then

[X ,Σk H G ]s ∼=H k (X ;G ).

This is really a definition rather than a theorem – it generalizes Proposition 2.5.16 from
the cohomology of spaces to the cohomology of spectra. However when X is a suspen-
sion spectrum of a well-based space A, we do recover the cohomology of A, by Corol-
lary 2.5.19:

[Σ∞A,Σk H G ]s ∼=H k (A,∗ ;G ).

We similarly get for any spectrum E an isomorphism

[X ,Σk E ]s ∼= E k (X ).

Example 3.2.17. Note that for any X we have [S, X ]h = π0(X0). This is isomorphic to
π0(X ) if X is an Ω-spectrum. This is consistent with the claim that [S, X ]s ∼= [S, X ]h if S is
CW and X is an Ω-spectrum.

Example 3.2.18. Since maps between finite wedges/products are given by products of
mapping groups, we get

[S2 ∨S3, Y ]s ∼= [S2, Y ]s × [S3, Y ]s ∼=π2(Y )×π3(Y ),

[X , Y ∨Z ]s ∼= [X , Y ×Z ]s ∼= [X , Y ]s × [X , Z ]s .

Every spectrum is equivalent to a cellular spectrum, and every cellular spectrum is built
by piecing together free spectra. So to go from Corollary 3.2.13 to any spectrum X , we
only have to know how to glue these descriptions together. The following two results are
the essential pieces to this process.

Proposition 3.2.19. If (X , Y , Z , f , g , h ) is a cofiber/fiber sequence of spectra and W is any
fourth spectrum then there are long exact sequences

. . . // [W , X ]s
f ◦−
// [W , Y ]s

g ◦−
// [W , Z ]s

∂ ◦− // [W ,ΣX ]s // . . .

. . . // [ΣX , W ]s
−◦∂ // [Z , W ]s

−◦g
// [Y , W ]s

−◦ f
// [X , W ]s // . . .

Proof. For the first case, since X , Y , and Z form a fiber sequence, we can make Y and Z
intoΩ-spectra and replace X by the homotopy fiber, which is also anΩ-spectrum. Then
we can make W a CW spectrum, so that [−,−]s is the same as [−,−]h .

After these replacements, the proof is identical to the proof of the long exact sequence
from Proposition 1.2.14: the sequence is exact at [W , Y ]s because a nullhomotopy of the
composite W → Y → Z is exactly the data you need to extend the map to the homotopy
fiber X .
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For the second case, we instead make X and Y CW, replace Z by the homotopy cofiber,
which is also CW, and make W an Ω-spectrum, so that [−,−]s is the same as [−,−]h .
Then we apply the proof of Proposition 1.2.9: the sequence is exact at [Y , W ]s because a
nullhomotopy of the composite X → Y →W is exactly the data you need to extend the
map to the homotopy cofiber Z .

Proposition 3.2.20. If X is the colimit of a sequence of relative cellular or CW spectra

∗ −→ X (0) −→ X (1) −→ . . .−→ colim
n→∞

X (n ) = X ,

and Y is another spectrum, then there is a short exact sequence

0 // lim 1[ΣX (n ), Y ]s // [X , Y ]s // lim [X (n ), Y ]s // 0.

In particular, if the maps [X (n ), Y ]s → [X (n−1), Y ]s are surjective for sufficiently large n,
then [X , Y ]s ∼= lim [X (n ), Y ]s .

Proof. This is deferred to exercise 15.

Example 3.2.21. If X is a spectrum and E ∗(−) is any reduced extraordinary cohomology
theory, the cohomology groups E k (X ) = [X ,Σk E ]s as defined in Example 3.2.16 fit into
a short exact sequence

0 // lim1

n→∞
E k+n−1(Xn ) // E k (X ) // lim

n→∞
E k+n (Xn ) // 0.

This follows by applying Proposition 3.2.20 to the filtration of X in which we attach the
cells one spectrum level at a time. Note the similarity to (1.5.6), except that the degrees
of the cohomology groups are increasing as we increase the spectrum level, because we
are using the suspension isomorphisms to go from each level to the next.

We also recall (Definition 2.6.36) that E -homology is given by the simpler formula

Ek (X )∼= colim
n→∞

Ek+n (Xn ).

Example 3.2.22. The previous example lets us compute maps between Eilenberg-Maclane
spectra [H G1,Σk H G2]s as the stable cohomology of Eilenberg-Maclane spaces,

[H G1,Σk H G2]s ∼= lim
n→∞

H k+n (K (G1, n );G2)∼= lim
n→∞

[K (G1, n ), K (G2, k +n )]∗.

In particular, [H G1, H G2]s ∼=Hom(G1,G2), and the graded abelian group [HZ/2,Σk HZ/2]s
is isomorphic to the Steenrod algebraA . This is a graded algebra whose k th level is the
abelian group of stable operations on mod 2 cohomology

H n (−;Z/2)⇒H k+n (−;Z/2), n >> 0.

It is generated by operations Sqk called the Steenrod squares, subject to relations called
the Adem relations. See [] for more details.
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In a broad sense, the above results tell us that if we know the
cells of X , and the homotopy groups of Y , then we have a good
shot at computing [X , Y ]s . For instance, if X has a single cell, it
is a shift of the sphere spectrum, so we get

[ΣkS, Y ]s ∼=πk (Y ).

If X has just a few cells, we can use the cofiber sequence from
Proposition 3.2.19 to patch together these copies ofπk (Y ) to get
[X , Y ]s . ΣkS

...

Z

...

X

...

πk (X )

...

Example 3.2.23. The suspension spectrum Σ∞RP2 can be defined as the homotopy
cofiber of the degree two map S1→ S1. We therefore get a long exact sequence

. . . // π2(W )
2 // π2(W ) // [Σ∞RP2, W ]s // π1(W )

2 // π1(W ) // . . .

On the other hand, suppose Y has a single nonzero homotopy group.

Lemma 3.2.24. If πn (Y ) = 0 for n ̸= k , then [X , Y ]s ∼=H k (X ;πk (Y )).

Proof. Y is stably equivalent to the Eilenberg-Maclane spec-
trum Σk H (πk (Y )) by Section 2.7, exercise 38. The conclusion
follows from the definition in Example 3.2.16.

For instance,
[X ,Σk HZ]s ∼=H k (X ).

Using the Postnikov tower of Y from Definition 2.6.34, we can
stitch these results together to get [X , Y ]s if Y has just a few
nonzero homotopy groups.

X

...

Hk (X )

...

Σk HZ

...

Z

...

Both of these approaches can be further formalized into a spectral sequence. In fact,
they both give the same spectral sequence. It starts from H ∗(X ;π∗(Y )) and converges to
[X , Y ]s . See ?? for the construction. An important special case is when X is a suspension
spectrum, where this is called the cohomology Atiyah-Hirzebruch spectral sequence,
see ??.

You can get pretty far with the intuition that the cells or homology groups of X “hook
onto” the homotopy groups of Y to create [X , Y ]s . So the maps from X to Y are “gen-
erated” by levels in which X has homology and Y has homotopy. This is admittedly
rather rough intuition, but it is enough to get a start on understanding how many maps
there should be from X to Y . The examples in Figure 3.2.25 illustrate this idea in a few
examples that we have seen so far.
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[S,S]s ∼=Z [HZ, HZ]s ∼=Z

S

Z

0

0

...

S

Z

Z/2

Z/2

...

HZ

Z

0

Z/2

...

HZ

Z

0

0

...

[S, HZ]s ∼=Z [HZ,S]s ∼= ?

S

Z

0

0

...

HZ

Z

0

0

...

HZ

Z

0

Z/2

...

S

Z

Z/2

Z/2

...

Figure 3.2.25

3.2.3 Symmetric monoidal structure

The stable homotopy category Ho Sp is an example of a symmetric monoidal category.
This will be discussed further in Chapter 4. For now, we’ll just mention that there is a
product on this category called the smash product, ∧: Ho Sp×Ho Sp→Ho Sp. You can
get a rough feel for what the smash product does from the following facts:

• The smash product preserves wedge sums, cofiber sequences, homotopy pushouts,
and sequential compositions in each variable separately. So if Y is built out of cells,
then X ∧Y is built in the same way out of X smashed with each of those cells.

• We have Sm∧Sn ∼= Sm+n . More generally, each m-cell in X and n-cell in Y becomes
an (m +n )-cell in X ∧ Y . Morally, this is enough to tell you the homotopy type of
the smash product of every pair of spectra.

• We have

X ∧S∼= X , X ∧Y ∼= Y ∧X , (X ∧Y )∧Z ∼= X ∧ (Y ∧Z ).
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• The map induced on morphisms by the smash product is bilinear, so it induces
maps out of the tensor product

[X , Y ]s ⊗ [W , Z ]s −→ [X ∧W , Y ∧Z ]s .

In particular, the smash product puts a ring structure on [S,S]s ∼=Z, that is the usual ring
structure on the integers. We’ll develop these and many more properties in Chapter 4.

3.3 Functors on the homotopy category

3.3.1 Homotopy functors

Now that we have proven the fundamental properties of Ho Sp, it’s time to start defining
more operations on this category. For instance:

• homotopy groups πk : Ho Sp→Ab,

• homology groups Ek : Ho Sp→Ab,

• cohomology groups E k : Ho Spop→Ab,

• suspension and loops Σ,Ω: Ho Sp→Ho Sp,

• wedge sums
∨

: Ho Sp×A→Ho Sp,

• finite products
∏

: Ho Sp×n →Ho Sp,

• infinite products of Ω-spectra
∏

: (Ho SpΩ)×A→Ho Sp,

• shift shd : Ho Sp→Ho Sp,

• evaluate at level n , evn : Ho Sp→Ho Top∗,

• homotopy cofiber and fiber C , F : Ho Sp(•→•)→Ho Sp,

• smashing with a cell complex −∧K : Ho Sp→Ho Sp, and

• maps from a finite complex F (K ,−): Ho Sp→Ho Sp.

We define these using the universal property of the homotopy category from Theorem 3.1.10.
Any functor Sp→D that sends stable equivalences to isomorphisms, must factor through
Ho Sp. In most of the above cases, the target category is itself a homotopy category Ho D.
When this happens, it’s better to phrase the universal property this way:
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Definition 3.3.1. If C and D are categories with weak equivalences, a functor F : C→D
is homotopical, or a homotopy functor, if it takes each weak equivalence in C to a weak
equivalence in D.

Lemma 3.3.2. If F is a homotopy functor then it extends in a unique way to functor of
homotopy categories making the following square commute.

C

δ
��

F // D

δ
��

Ho C
Ho F (or just F )

// Ho D

Proof. This follows immediately from the universal property of Ho C in Theorem 3.1.10.
The composite C→ D→ Ho D sends weak equivalences to isomorphisms, so it factors
through Ho C. Concretely, this factorization takes each zig-zag in Ho C and applies F to
every object and map in the zig-zag.

We need F to be homotopical for this to work – otherwise a backwards-pointing weak
equivalence may turn into a backwards map that is not a weak equivalence, so we fail to
get a valid zig-zag.

By a standard abuse of notation, we simply say F instead of Ho F . In this case F is play-
ing “double duty” by defining a functor both on C and on Ho C.

Example 3.3.3. The reduced suspension functor Σ: Sp → Sp preserves stable equiva-
lences by Corollary 2.4.3. By Lemma 3.3.2, it therefore gives a functor Ho Sp→ Ho Sp.
We already observed this in Proposition 3.2.1.
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Example 3.3.4. Smashing with a CW complex K is a homotopy functor by Corollary 2.4.23.
Taking maps from a finite complex K , F (K ,−), is a homotopy functor by Section 2.7, ex-
ercise 26. Therefore these both define functors on the stable homotopy category, Ho Sp→
Ho Sp.

Example 3.3.5. Let Ch be the category of unbounded (Z-graded) chain complexes of
abelian groups. The weak equivalences are the quasi-isomorphisms, maps C → D in-

ducing isomorphisms on homology H∗(C )
∼=−→H∗(D ). The homotopy category Ho Ch is

also called the derived categoryD(Z).

Taking tensor product with the rationals

(−)⊗Q: Ch→Ch

preserves quasi-isomorphisms, becauseQ is flat. Therefore it induces a functor

(−)⊗Q:D(Z)→D(Z).

Of course, the same is true for the category of nonnegatively graded chain complexes
Ch≥0 and its homotopy categoryD≥0(Z).

Example 3.3.6. The wedge sum of spectra preserves equivalences by Section 2.7, ex-
ercise 29. But this isn’t a functor from spectra to spectra – it is a functor from pairs of
spectra to spectra.

Let Sp×Sp be the product category whose objects are pairs of spectra (X , Y ) and whose
maps are pairs of maps ( f : X → X ′, g : Y → Y ′). The weak equivalences are those pairs
where both f and g are stable equivalences. By exercise 18, inverting these gives the
product of homotopy categories,

Ho(Sp×Sp)∼= (Ho Sp)× (Ho Sp).

The wedge sum is a functor∨: Sp×Sp→ Sp, that sends all pairs of equivalences to equiv-
alences. By Lemma 3.3.2 it therefore passes to a functor

∨: Ho Sp×Ho Sp // Ho Sp.

Alternatively, we could deduce this from its universal property (Proposition 3.2.2).

Example 3.3.7. If A is any set, the A-indexed wedge sum
∨

: Ho Sp×A→Ho Sp

is defined on the homotopy category as in the previous example. For the product, how-
ever, we either have to restrict to A finite, or restrict the spectra to SpΩ. This ensures that
the product preserves weak equivalences, by Section 2.7, exercise 25.
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Example 3.3.8. Cohomology is a contravariant functor. So it is a functor on the opposite
category, where the morphisms are reversed:

E k : Spop→Ab.

An equivalence in Spop is just the reverse of an equivalence in Sp. By exercise 19, invert-
ing these gives the opposite of the homotopy category:

Ho(Spop) = (Ho Sp)op.

Therefore cohomology defines a functor E k : (Ho Sp)op→Ab.

Definition 3.3.9. For any small category I, let SpI be the category of I-diagrams of spec-
tra. A map of diagrams X (−)→ Y (−) is a pointwise equivalence if for every i ∈ ob I the
map of spectra X (i )→ Y (i ) is a stable equivalence. Inverting the pointwise equivalences
of diagrams gives a homotopy category Ho SpI.

Warning 3.3.10. In general, this homotopy category of I-diagrams of spectra is not the
same as I-diagrams in Ho Sp:

Ho(SpI)
̸∼=
// (Ho Sp)I.

This only really happens if I is discrete: products of categories give products of homo-
topy categories (exercise 18). Beyond this case, the above functor is not an isomorphism
of categories, because not every diagram in Ho Sp lifts to a diagram in Sp, and if it does,
the lift may not be unique.

We usually prefer to use Ho(SpI). In other words, consider diagrams of actual spectra.
Then, invert the equivalences between such diagrams.

Example 3.3.11. Taking I = {•→ •}, we get the category of arrows of spectra. An object
is a map X → Y and a morphism is a commuting square. The homotopy cofiber C from
Example 2.3.19 defines a functor

C : Sp(•→•)→ Sp.

By the long exact sequence of Lemma 2.4.9, any weak equivalence of arrows gives a weak
equivalence of homotopy cofibers:

X
∼
��

f
// Y
∼
��

// C f
∼
��

X ′
g
// Y ′ // C g .

Therefore C is a homotopy functor. By Lemma 3.3.2 it therefore passes to a functor

C : Ho(Sp(•→•)) // Ho Sp.

The same is true of the homotopy fiber F , using the long exact sequence of Lemma 2.4.8.
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Remark 3.3.12. The homotopy cofiber C f can also be defined if f is only a map in the
homotopy category, see exercise 20. However, it does not define a functor (Ho Sp)(•→•)→
Ho Sp, only a function on the objects of the two categories. This makes Ho Sp into a
triangulated category, see e.g. [Nee01, HPS97]. When using this language, we call each
sequence of maps of the form

X
f
// Y // C f // ΣX

a distinguished triangle. Since cofiber and fiber sequences coincide, these can equiva-
lently be described as sequences of the form

ΩZ // F p //W
p
// Z

modulo a funny issue about signs, see [May01] for more details.

This point of view is appealing for some applications, but it has serious shortcomings
when we want to build anything more elaborate than a cone. We can’t form more gen-
eral kinds of homotopy colimits, for instance. It is often better to be biased towards
taking diagrams of actual spectra, and then passing to the homotopy category of such
diagrams. Use Ho(SpI), not (Ho Sp)I.

3.3.2 Derived functors

The list in Section 3.3.1 is missing several important operations. For instance, there
ought to be a suspension spectrum functor

Σ∞ : Ho Top∗→Ho Sp,

an infinite product functor
∏

: Ho Sp×A→Ho Sp,

and so on.

The problem is that these functors don’t preserve equivalences. For instance, the infinite
product

∏

: Sp×A → Sp is does not send A-indexed families of stable equivalences to
stable equivalences (see Proposition 3.2.2 and Section 2.7, exercise 25).

However, the infinite product does preserve stable equivalences, if we start with a family
of Ω-spectra. And every spectrum is equivalent to an Ω-spectrum. So, if we first replace
everything by an equivalent Ω-spectrum, then take the product

∏

α∈A

R X (α),
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we get a well-defined functor on the homotopy category! We call this the right-derived
product

R(
∏

): Ho Sp×A // Ho Sp.

To give another example, recall from Corollary 1.5.11 that the smash product ∧ defines
a homotopy functor on well-based spaces

Topw b
∗ ×Topw b

∗ → Topw b
∗ ,

but not on all based spaces.

But this is fine! Every space X is equivalent to a space Q X that is a CW complex, and
therefore well-based. So, just replace our spaces by CW complexes, and then take their
smash product. We call this the left-derived smash product:

X ∧L Y :=Q X ∧QY .

This preserves all weak homotopy equivalences, so it gives a functor on the homotopy
category,

∧L : Ho Top∗×Ho Top∗ // Ho Top∗.

If you have seen homological algebra, this is not so different from taking a projective res-
olution to compute Tor groups, or an injective resolution to compute Ext groups. Here’s
a way to put them under a common umbrella.

Definition 3.3.13. Suppose C is a category with weak equivalences W . We say that W
satisfies the 2 out of 3 property if for any two maps f and g whose composite g ◦ f is
defined, if two of the maps f , g , and g ◦ f are in W , then so is the third.

Example 3.3.14. Isomorphisms always have the 2 out of 3 property. More generally, if
F : C→ D is any functor, the collection of maps in C that go to isomorphisms in D, has
the 2 out of 3 property. Applying this to the functor that takes all of the homotopy groups
of a spectrum

π∗ : Sp→
∏

k∈Z

Ab,

we see that the stable equivalences in Sp satisfy 2 out of 3.

Definition 3.3.15. Suppose C and D are categories with weak equivalences satisfying 2
out of 3, and F : C→D is any functor.

A left deformation of F is

• a functor Q : C→C,

• a natural transformation Q ⇒ id, and
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• a full subcategory A⊆C containing Q (C),

such that

• Q X
∼→ X is a weak equivalence for all X in C, and

• F is homotopical (preserves weak equivalences) in the subcategory A⊆C.

We call LF = F ◦Q the left-derived functor of F .

Similarly, a right deformation of F is

• a functor R : C→C,

• a natural transformation id⇒R , and

• a full subcategory A⊆C containing R (C),

such that

• X
∼→R X is a weak equivalence for all X in C, and

• F is homotopical in A.

We call RF = F ◦R the right-derived functor of F .

To summarize, the left-derived functor LF is formed by sampling the behavior of F on
A, and extending that behavior to the rest of C. We replace each object X by something
equivalent in A, then apply F to it.

Remark 3.3.16. We call Q a “deformation” because it replaces each object X by an object
Q X that is “almost the same” as X . It’s almost the same because Q X → X is a weak
equivalence. We call LF the “derived functor” because it is formed by taking F and
changing the input just a little bit, so that the output is better behaved.

Think of the objects in A as the “nice” objects, because that’s where F preserves weak
equivalences. If X ∈ A then F (X ) is “good.” If X ̸∈ A then F (X ) is possibly bad. Though
we’re not sure. It’s like a fruit that might be rotten, but you don’t really want to bite into
it to find out.
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We want to keep F as it is on the good objects, but change it on the bad objects, so that it
is good everywhere. This is precisely what the left-derived functorLF does – it is “good”
all the time, and is essentially the same as F when F is behaving well, but it fixes up the
times that F behaves badly. The next two lemmas make this precise.

Lemma 3.3.17. If X ∈A, then LF (X ) is equivalent to F (X ).

Proof. The map Q X → X is a weak equivalence of objects in A, so applying F gives a
weak equivalence F (Q X )

∼→ F (X ).

Lemma 3.3.18. If F has a left- or right-derived functor, the derived functor preserves weak
equivalences. It therefore induces a map of homotopy categories Ho C→Ho D.

Proof. We do the left-derived case. Since Q is a functor and Q X → X is a natural trans-
formation, for any weak equivalence X

∼→ Y , we get a commuting diagram

Q X

��

∼ // X
∼
��

QY ∼ // Y .

Applying the 2 out of 3 property, twice, we see that Q X → Y is a weak equivalence, and
therefore Q X →QY is a weak equivalence. (In fact, we’ve just shown that Q is homo-
topical – it preserves weak equivalences.)

Since Q X and QY both lie in A, F (Q X )→ F (QY ) is a weak equivalence in D. Therefore
LF = F ◦Q preserves weak equivalences.

We give one more illustration, of how LF gives a well-defined map on zig-zags, and
therefore on the homotopy category, even though F does not.
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We now turn to the examples.

Example 3.3.19. The simplest example is when F is already a homotopy functor. Then
its left-derived functor is just F itself. We see this by taking

• Q : C→C to be the identity functor,

• Q ⇒ id to be the identity natural transformation, and

• A=C.

Similarly, the right-derived functor of F is just F itself. This preserves equivalences, so
we get

F : Ho C // Ho D.

Example 3.3.20. For any set A, the A-indexed product of spectra
∏

: Sp×A → Sp has a
right deformation:

• R : Sp×A→ Sp×A replaces every spectrum in the tuple with anΩ-spectrum, in other
words it applies R from Proposition 2.2.9 to each slot,

• id⇒R is in each slot the natural map from X (α) to its replacement R X (α), and

• A is the category of A-tuples of Ω-spectra.

The map (X (α))α∈A → (R X (α))α∈A is an equivalence of A-tuples, because it is a stable
equivalence in each slot. We know by Section 2.7, exercise 25 that the infinite product
preserves equivalences on A. Therefore the right-derived functor is

R
�

∏

α∈A

�

X (α) =
∏

α∈A

R X (α).

We emphasize the two conclusions again: one, the right-derived product preserves equiv-
alences, so it gives a map of homotopy categories

R(
∏

): Ho Sp×A // Ho Sp.

Two, the right-derived product is equivalent to the product if the product is nice. We
only changed the product in the bad cases. So the right-derived product is exactly the
functor we want.
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3.3.3 Examples of left-derived functors

Example 3.3.21. The smash product of two spaces ∧: Top∗×Top∗→ Top∗ has a left de-
formation:

• Q : Top∗×Top∗→ Top∗×Top∗ replaces every pair of spaces (X , Y )by CW complexes
(Q X ,QY ),

• Q ⇒ id is in each slot the natural map from Q X to X , and

• A is the category of pairs of well-based spaces.

The map (Q X ,QY )→ (X , Y ) is an equivalence of pairs. We know by Corollary 1.5.11 that
the smash product preserves equivalences on A. Therefore the left-derived functor is

X ∧L Y :=Q X ∧QY .

This preserves all weak homotopy equivalences, so it gives a functor on the homotopy
category,

∧L : Ho Top∗×Ho Top∗ // Ho Top∗.

Example 3.3.22. To give an analogous example from homological algebra, as in Exam-
ple 3.3.5, let Ch be the category of unbounded chain complexes and let D(Z) be its ho-
motopy category. The tensor product

⊗: Ch×Ch→Ch

does not preserve quasi-isomorphisms. However, it does preserve quasi-isomorphisms
if at least one of the chain complexes has free abelian groups in every degree. Letting
Q C

∼→ C denote a replacement by a levelwise free complex, we therefore get a left-
derived functor

C ⊗LD :=Q C ⊗LQ D ,

giving a product on the derived category

⊗L :D(Z)×D(Z)→D(Z).

The homology of this chain complex has the same Künneth theorem as the homology of
a product of spaces (Theorem 1.3.9). Taking a derived tensor product of one-term chain
complexes A and B and taking homology gives the Tor groups Tori (A, B ).

Example 3.3.23. The suspension spectrum functor Σ∞ : Top∗→ Sp has a left deforma-
tion. As in Example 3.3.21, we take Q to be CW replacement and A ⊆ Top∗ to be well-
based spaces.
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We have to check that Σ∞ preserves equivalences on A. If K → L is a weak equivalence
of spaces, the map K ∧S n → L∧S n is an equivalence by Corollary 1.5.11, soΣ∞K →Σ∞L
is a level equivalence of spectra. Therefore Σ∞ sends weak equivalences in A to stable
equivalences in Sp.

Therefore we get a left-derived suspension spectrum functor

LΣ∞K :=Σ∞Q K ,

which defines a map of homotopy categories

LΣ∞ : Ho Top∗→Ho Sp.

,

Example 3.3.24. The tensor∧: Top∗×Sp→ Sp is interesting. To derive K ∧X , it is enough
to replace K by a CW complex, by Corollary 2.4.23. On the other hand, we could decide
to replace both K and X by CW objects. This gives two different left-derived functors
that are equivalent to each other:

Q K ∧X ≃Q K ∧Q X .

We will see in Proposition 3.4.2 that this always happens – any two left-derived functors
of F are equivalent.

Collecting the previous examples together, and adding a few more that follow the same
argument:

Proposition 3.3.25. The following functors can be left-derived:

• smash product ∧: Top∗×Top∗→ Top∗,

• smash product with a well-based space K ∧ (−): Top∗→ Top∗,

• reduced suspension Σ: Top∗→ Top∗,

• suspension spectrum Σ∞ : Top∗→ Sp,

• free spectrum Fn : Top∗→ Sp,

• tensor ∧: Top∗×Sp→ Sp, and

• handicrafted smash product ∧: Sp×Sp→ Sp.

In every case, the functor can be derived by making the spaces CW complexes, and the
spectra into CW spectra. See exercise 22.
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Example 3.3.26. Let Top{•←•→•} be the category of diagrams of the form

X Aoo // Y . (3.3.27)

A weak equivalence of diagrams is a map that gives an equivalence on each space sepa-
rately:

X
∼
��

Aoo

∼
��

// Y
∼
��

X ′ A′oo // Y ′.

The colimit, or pushout of the diagram, defines a functor Top{•←•→•} → Top. We claim
that its left-derived functor is the homotopy pushout X ∪A (A × I ) ∪A Y , from Defini-
tion 1.5.1.

To see this, let A be the subcategory of diagrams in which the maps A → X and A →
Y are cofibrations. By Lemma 1.5.2 and Theorem 1.5.10, weak equivalences between
diagrams of this form go to weak equivalences of pushouts. Let Q be the operation that
replaces (3.3.27) with the diagram

X ∪A (A× [0, 1/2]) A×{1/2}oo // (A× [1/2, 1])∪A Y . (3.3.28)

By Section 1.7, exercise 12, the maps of this diagram are cofibrations, so Q lands in
A. Collapsing away the cyliders gives a weak equivalence back to the original diagram
(3.3.27). Therefore, the left-derived pushout is the pushout of (3.3.28), which is the ho-
motopy pushout X ∪A (A× I )∪A Y .

The same applies to pushouts of based spaces and spectra, and to the mapping telescope
Top{•→•→...}→ Top. See exercises 23 and 24.

Remark 3.3.29. More generally, the colimit of a diagram of any shape can be left-derived,
and the left-derived functor is equivalent to the homotopy colimit:

Lcolim ≃ hocolim .

For spectra, this is the homotopy colimit at each spectrum level. We will prove this in
general in ??, but see Example 3.3.26 and exercises 23 and 24 for special cases.
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Remark 3.3.30. The reduced suspension of spacesΣ: Top∗→ Top∗ does not preserve all
equivalences, see exercise 21. So it has to be left-derived. It is a bit of a miracle that the
reduced suspension of spectra Σ: Sp→ Sp preserves all equivalences (Corollary 2.4.3),
and doesn’t have to be left-derived. It has to do with the fact that the definition of π∗ of
a spectrum has Σ baked into it.

3.3.4 Examples of right-derived functors

We now turn to right-derived functors. We have already seen that the infinite product
can be right-derived.

Example 3.3.31. The evaluation functor evn : Sp → Top∗ has a right deformation. We
take R to be Ω-spectrum replacement and A ⊆ Sp to be the Ω-spectra. Since a stable
equivalence of Ω-spectra is a level equivalence (Lemma 2.2.5), every stable equivalence
in A gives an equivalence after evn .

Therefore we get a right-derived evaluation functor

Revn := evn R X ,

which defines a map of homotopy categories

Revn : Ho Sp→Ho Top∗.

In the special case n = 0, Rev0 is also called Ω∞ (Definition 2.2.11).

We can also right-derive the mapping space Map(X , Y ) from Definition 2.3.12, by re-
placing X by a CW spectrum Q X , and replacing Y by an Ω-spectrum RY . This re-
ally is a right deformation because the maps Q X → X and Y → RY give a single map
(X , Y )→ (Q X , RY ) in the category Spop×Sp.

Lemma 3.3.32. On the subcategory of pairs (X , Y ) in which X is CW and Y is an Ω-
spectrum, the mapping space Map(−,−) preserves all equivalences.

Proof. The key observation is that

πk (Map(X , Y ))∼=π0(Map(S k ∧X , Y ))∼= [Σk X , Y ]h ,

using Section 2.7, exercise 15. By Proposition 3.1.40, this sends stable equivalences X →
X ′ and Y → Y ′ to bijections, so long as X and X ′ are CW and Y and Y ′ areΩ-spectra. (It is
also enough to takeπk at the basepoint of Map(X , Y ), because Map(X , Y )≃ΩMap(X , sh1 Y )
is a loop space, so its homotopy groups at all basepoints are isomorphic.)

Proposition 3.3.33. The following functors can be right-derived:
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• evaluation evn : Sp→ Top∗,

• mapping spaces Map(−,−): Topop×Top→ Top,

• based mapping spaces Map∗(−,−): Topop
∗ ×Top∗→ Top∗,

• cotensors F (−,−): Topop
∗ ×Sp→ Sp,

• cotensor with a fixed CW complex, F (K ,−): Sp→ Sp, and

• mapping spaces Map∗(−,−): Spop×Sp→ Sp.

In every case, we use Ω-spectra, and if we are taking maps out of some object then we
make it a CW object.

Example 3.3.34. This example is the dual of Example 3.3.26. Let Top{•→•←•} be the cate-
gory of diagrams of the form

X // B Y .oo (3.3.35)

A weak equivalence of diagrams is a map that gives an equivalence on each space sepa-
rately:

X
∼
��

// B
∼
��

Yoo

∼
��

X ′ // B ′ Y ′.oo

The limit, or pullback of the diagram, defines a functor Top{•→•←•}→ Top. We claim that
its right-derived functor is the homotopy pullback X ×B B I ×B Y , from Definition 1.5.18.

To see this, let A be the subcategory of diagrams in which the maps X → B and Y → B are
fibrations. By Lemma 1.5.19 and Theorem 1.5.24, weak equivalences between diagrams
of this form go to weak equivalences of pushouts. Let R be the operation that replaces
(3.3.27) with the diagram

X ×B B [0,1/2] // B B [1/2,1]×B Y ,oo (3.3.36)

where the fiber products are taken over 0 and 1, and the maps to the B in the middle
evaluate at 1/2.
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By Section 1.7, exercise 12, the maps of this diagram are fibrations, so R lands in A. Col-
lapsing away the cyliders gives a weak equivalence back to the original diagram (3.3.35).
Therefore, the right-derived pullback is the pullback of (3.3.36), which is the homotopy
pullback X ×B B I ×B Y

The same applies to pullbacks of based spaces and spectra, and to sequential limits. See
exercise 25.

Remark 3.3.37. More generally, the limit of a diagram of any shape can be right-derived,
and the right-derived functor is equivalent to the homotopy limit:

Rlim ≃ holim .

For spaces, this is constructed in ??. For spectra, the homotopy limit is defined by mak-
ing the terms of the diagram into Ω-spectra, and then taking the homotopy limit of the
spaces at each spectrum level. See exercise 25.

Example 3.3.38. There is a hom functor on unbounded chain complexes

Hom(−,−): Chop×Ch→Ch.

It can be right-derived by making the first chain complex projective, or the second chain
complex injective. Either way, applying this to one-term chain complexes and taking
homology of the result gives the Ext groups Exti (A, B ).

Example 3.3.39. Let (Sp,S ) be the category of spectra with the stable equivalences. Let
(Sp,Q) be the category of spectra with the rational equivalences – these are the maps
inducing isomorphisms on the rational stable homotopy groupsπ∗(X )⊗Q. Clearly every
stable equivalence is a rational equivalence, so the identity functor

(Sp,S ) id // (Sp,Q).

is a homotopy functor. Therefore we get a map of homotopy categories Ho(Sp,S ) →
Ho(Sp,Q). Going the other way, the identity functor

(Sp,Q) id // (Sp,S )

is not homotopical. However, it can be right-derived by the construction XQ of Exam-
ple 2.5.33, or see Section 2.7, exercise 39. The subcategory A ⊆ (Sp,Q) consists of those
spectra whose homotopy groups are already rational, so thatπ∗(X )→π∗(X )⊗Q is an iso-
morphism. We therefore get a map of homotopy categories Ho(Sp,Q)→Ho(Sp,S ) given
by the right-derived identity functor, in other words the rationalization functor XQ.

Going back and forth

(Sp,Q) Rid // (Sp,S ) id // (Sp,Q)
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is equivalent to the identity, so that rational spectra sit inside spectra as a retract. The
composite the other way

(Sp,S ) id // (Sp,Q) Rid // (Sp,S )

is the rationalization functor XQ. It defines the retract onto this subcategory of rational
spectra. See Example 5.7.8 for more examples of this kind.

3.4 Advanced properties of derived functors*

3.4.1 Uniqueness of derived functors

In this section we explain how derived functors are unique. They won’t be unique on the
nose – different choices of left deformation Q will lead to weakly equivalent functors F ◦
Q , not isomorphic ones. So to capture this uniqueness, we’ll have to consider functors
up to weak equivalence.

Definition 3.4.1. Let C and D be categories with weak equivalences, satisfying 2 out of 3.
The functor category F(C, D) has an object for each functor F : C→D, and a morphism
for each natural transformation F →G .

We say a map of functors F →G in F(C, D) is a weak equivalence of functors if for each
X ∈C, the map F (X )→G (X ) is a weak equivalence in D.

This gives the functor category F(C, D) a class of weak equivalences, so we can take its
homotopy category Ho F(C, D). Note that a map in this homotopy category is a zig-zag
of functors, e.g.

F // F1 F2
∼oo F3

∼oo // F4
// G .

A homotopy functor is a functor F : C→ D that sends weak equivalences of objects of
C, X

∼→ Y , to weak equivalences F (X )
∼→ F (Y ).

Proposition 3.4.2. If F has a left-derived functor LF , then in Ho F(C, D), the functor LF
is terminal among homotopy functors mapping to F . Dually, a right-derived functorRF
is initial among homotopy functors receiving a map from F .

In other words, if G is any other homotopy functor, and G → F is any zig-zag of natural
transformations from G to F , then there is a unique zig-zag G →LF making this triangle
commute:

G

$$
∃!
��

LF // F.
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So LF is the “closest homotopy functor to F ” on the left.

Dually, if F has a right-derived functorRF , then any zig-zag from F to a homotopy func-
tor G gives a unique zig-zag RF →G making this triangle commute:

F //

$$

RF
∃!
��

G .

So RF is the “closest homotopy functor to F ” on the right.

Proof. We do the left-derived case in detail. The right-derived case is the same except
we reverse all the arrows.

Let q : Q X → X denote the weak equivalence from Q back to the identity, and letϕ : G →
F denote the zig-zag from G to F . Since this is a zig-zag of natural transformations, on
the map q : Q X → X it gives a commuting square in the homotopy category of functors,

G ◦Q

G ◦q∼=
��

ϕ◦Q
// F ◦Q

F ◦q
��

G
ϕ

// F.

The maps G (Q X ) → G (X ) are weak equivalences, so the left-hand vertical map in the
above square is an isomorphism in the homotopy category. The left-hand vertical and
top horizontal map give the desired zig-zag from G to LF .

To show this is unique, let γ: G → F ◦Q be any other zig-zag commuting with q : F ◦Q →
F . Applying these zig-zags to the map q produces the following commuting diagram in
the homotopy category of functors.

G ◦Q

G ◦q∼=
��

ϕ◦Q

((γ◦Q
// F ◦Q ◦Q

F ◦Q◦q∼=
��

F ◦q◦Q
∼=

// F ◦Q

F ◦q
��

G
ϕ

66

γ
// F ◦Q

F ◦q
// F.

The vertical isomorphisms are because G and F ◦Q are homotopy functors. For the
isomorphism in the top row, q ◦Q : QQ X →Q X is a weak equivalence of objects in A, so
F sends it to a weak equivalence, hence an isomorphism in the homotopy category.

As a map in the homotopy category, γ is therefore equal to a composite of ϕ ◦Q with
some fixed isomorphisms. The map γ is therefore determined byϕ, so it is unique.2

2This version of the argument is inspired by the proof in [Goo03, 1.8], see also [Rie17, 6.4.11].
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Corollary 3.4.3. Any two left-derived functors of F are canonically equivalent by a zig-zag
of equivalences of functors. The same is true for right-derived functors.

There is a similar universal property that LF enjoys as a functor on Ho C, see exercise
29.

Corollary 3.4.4. The two maps QQ X ⇒Q X that cancel either the first or second copy of
Q , give the same map in Ho C.

Proof. Take F = idC to be the identity functor and G = QQ . The two maps QQ X ⇒
Q X are natural transformations G → LF that commute with the map back to F , so by
Proposition 3.4.2 they are equal in the homotopy category.

Example 3.4.5. The smash product of spaces ∧: Top∗×Top∗→ Top∗ can be left-derived
by replacing the inputs (X , Y ) by CW complexes. It can also be derived by “whiskering”
the inputs: attach one end of an interval I to the basepoint of X , and let the other end of
I be the new basepoint. This space I ∪∗X is well-based, and collapsing I gives an equiv-
alence back to X . By Corollary 3.4.3, these two derived smash products are equivalent
to each other:

Q X ∧QY ≃ (I ∪∗ X )∧ (I ∪∗ Y ).

A similar argument applies when smashing a space K with a spectrum X , though whisker-
ing a spectrum is a little harder to do because of the bonding maps – you have to itera-
tively replace each map ΣXn → Xn+1 by its mapping cylinder.

Example 3.4.6. As in Example 3.3.24, the tensor ∧: Top∗ × Sp → Sp can be derived by
making both K and X CW, or by making just K CW. These are equivalent by Corol-
lary 3.4.3. This is also easy to see directly: since Q K ∧− preserves all equivalences, we
have an equivalence

Q K ∧Q X ≃Q K ∧X .

Example 3.4.7. In Example 3.3.26, we left-derived the pushout X ∪A Y by replacing the
maps A→ X and A→ Y by their mapping cylinders. We could, instead, replace them by
relative CW complexes A→ X ′ ≃ X and A→ Y ′ ≃ Y using Corollary 1.4.11. This gives a
different model for the left-derived pushout, but by Corollary 3.4.3, the two models are
canonically equivalent to each other.

Example 3.4.8. The hom functor on chain complexes Hom: Chop × Ch → Ch can be
right-derived by replacing the source by a projective chain complex, or the target by an
injective one. By Corollary 3.4.3, these produce equivalent results. In particular, we get
the standard result in homological algebra that Exti (A, B ) can be computed by taking a
projective resolution of A, or by taking an injective resolution of B , before applying Hom
and taking the cohomology of the result.
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Example 3.4.9. In Definition 2.2.11 we define the infinite loop spaceΩ∞X of a spectrum
X to be the right-derived functor of ev0 on X . By Corollary 3.4.3, this is independent of
the method we use to replace X by an Ω-spectrum.

3.4.2 “Correct” homotopy types

We can now explain what we meant by the “correct” homotopy type in Section 1.5.

Definition 3.4.10. Suppose F has a left-derived functor LF . We say that F is correct
on X or “has the correct homotopy type on X ” if LF (X )→ F (X ) is a weak equivalence.
Correct for right-derived functors is defined similarly.

Since derived functors are unique, this doesn’t depend on how we deform F .

Remark 3.4.11. F preserves all equivalences whenever it is correct. Therefore, if we take
all values of X for which F is correct, we get the largest possible choice of subcategory
A that we can use when deriving F .

Example 3.4.12. The smash product of spaces X ∧Y is correct if X and Y are CW com-
plexes. It is also correct if X and Y are well-based. The tensor K ∧X is correct if K is a
CW complex. It is also correct if K and all the spectrum levels Xn are well-based.

The pushout X ∪A Y is correct if one of the maps A → X or A → Y is a cofibration
(Lemma 1.5.2). The sequential colimit is correct if the maps of the system are closed
inclusions (Lemma 1.5.5). The pullback X ×B Y is correct if one of the maps X → B or
Y → B is a fibration (Lemma 1.5.19). The sequential limit is correct if the maps of the
system are fibrations (Lemma 1.5.22).

The coproduct of spectra
∨

αX (α) is always correct. The product of spectra
∏

αX (α) is
correct if it is a finite product, or if the inputs are Ω-spectra.

3.4.3 Composites of derived functors

Suppose we have functors on categories with weak equivalences that can be composed,

C1
F1 // C2

F2 // C3,

and that

• F1 has a left-deformation Q1 landing in A1 ⊆C1,

• F2 has a left-deformation Q2 landing in A2 ⊆C2, and
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• F1(A1)⊆A2.

Lemma 3.4.13. Under these hypotheses, Q1 is also a left deformation for the composite
F2 ◦ F1, and we have a weak equivalence of functors

L(F2 ◦ F1)≃ (LF2) ◦ (LF1).

A similar statement holds for composites of right-derived functors.

Proof. This is actually pretty easy. Any weak equivalence in A1 goes to a weak equiva-
lence in F (A1) ⊆ A2, and therefore goes to a weak equivalence in F (A2) ⊆ C3. Therefore
Q1 is a left deformation of F2◦F1. Since F2 preserves equivalences on A2, we get an equiv-
alence

(LF2)(LF1)(X ) = F2Q2F1Q1X ∼ // F2F1Q1X =L(F2 ◦ F1)(X ).

For right-derived functors the same argument applies. The equivalence looks like:

R(G2 ◦G1)(X ) =G2G1R1X ∼ // G2R2G1R1X = (RG2)(RG1)(X ).

Remark 3.4.14. The above can be summarized as “left-derived functors compose, if
the deformations are compatible with each other.” They do not compose in general if
F1(A1) ̸⊆A2, see Example 3.4.19.

Example 3.4.15. The suspension spectrum and disjoint basepoint functors

Top
(−)+ // Top∗

Σ∞ // Sp

satisfy the hypotheses of Lemma 3.4.13. Therefore the left-derived functors compose:

Ho Top

L(Σ∞+ )

55

(−)+ // Ho Top∗
LΣ∞ // Sp

The same applies to the right adjoints (exercise 30).

Example 3.4.16. The suspension functor commutes with suspension spectrum, up to
isomorphism:

Top∗

Σ
��

Σ∞ // Sp

Σ
��

Top∗
Σ∞ // Sp

Thinking of this as two different factorizations of Σ∞ ◦Σ ∼= Σ ◦Σ∞, the hypotheses of
Lemma 3.4.13 are satisfied, so we get

(LΣ∞)(LΣ)≃L(Σ∞ ◦Σ)∼=L(Σ ◦Σ∞)≃ (LΣ)(LΣ∞).
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In other words, the corresponding square of left-derived functors on the homotopy cat-
egory also commutes, up to isomorphism:

Ho Top∗

LΣ
��

LΣ∞ // Ho Sp

LΣ=Σ
��

Ho Top∗
LΣ∞ // Ho Sp

Example 3.4.17. As in the previous exercise, the loopspace functor commutes with eval-
uation

Top∗

Ω
��

oo
ev0 Sp

Ω
��

Top∗ oo
ev0 Sp,

giving a commuting square of right-derived functors

Ho Top∗

Ω
��

Ω∞ // Ho Sp

Ω
��

Ho Top∗
Ω∞ // Ho Sp

Example 3.4.18. The smash product of based spaces is associative, (X ∧ Y )∧Z ) ∼= X ∧
(Y ∧Z ). We can draw this as a commuting square (up to isomorphism) of functors

Top∗×Top∗×Top∗

∧×id
��

id×∧ // Top∗×Top∗

∧
��

Top∗×Top∗
∧ // Top∗.

The hypotheses of Lemma 3.4.13 are satisfied, so we get a commuting square of left-
derived smash products

Ho Top∗×Ho Top∗×Ho Top∗

∧L×id
��

id×∧L // Ho Top∗×Ho Top∗

∧L
��

Ho Top∗×Ho Top∗
∧L // Ho Top∗

giving an isomorphism on the homotopy category

(X ∧L Y )∧L Z )∼= X ∧L (Y ∧L Z ).

If we proceed this way with the unit isomorphisms S 0 ∧ X ∼= X and symmetry isomor-
phisms X ∧Y ∼= Y ∧X , we can prove that Ho Top∗ is a symmetric monoidal category. See
Lemma 4.1.7. The argument will apply to Ho Sp as well, as soon as we actually have a
smash product of spectra that has isomorphisms (X ∧ Y )∧Z ) ∼= X ∧ (Y ∧Z ), S∧X ∼= X ,
and X ∧Y ∼= Y ∧X . See Section 6.2.
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Example 3.4.19. The colimit of a diagram of spaces X : I→ Top can be defined in two
stages, by first forming the coequalizer diagram

∐

i→ j

X (i )⇒
∐

i

X (i )

and then taking its colimit. In other words, a colimit can always be built out of coprod-
ucts and coequalizers:

TopI

colimit

44

coproducts
// Top{•⇒•}

coequalizer
// Top

However, the homotopy colimit is not the homotopy coequalizer of the same diagram.
In other words, we do not have an agreement up to isomorphism between the following
functors:

Ho(TopI)

L(colimit)

33

L(coproducts)
// Ho(Top{•⇒•})

L(coequalizer)
// Ho Top.

In particular, this means the conditions of Lemma 3.4.13 are not satisfied.

3.4.4 Adjunctions between derived functors

Another common situation is that left and right deformable functors come in adjoint
pairs. When this happens, their derived functors also form an adjoint pair:

Proposition 3.4.20. Suppose that (F ⊣G ) is a pair of adjoint functors

F : C→D, G : D→C,

that F has a left deformation, and that G has right deformation. Then the derived func-
tors

LF : Ho C→Ho D, RG : Ho D→Ho C

are adjoint as well.

Proof. Recall that an adjunction can be described by a pair of natural transformations

η: idC→G F, ε: F G → idD,

satisfying the “triangle identities”

F
1η
// F G F

ε1
��

F,

G
η1
// G F G

1ε
��

G .
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We define maps in the homotopy category of functors

eη: idC→RGLF =G ◦R ◦ F ◦Q , eε: F ◦Q ◦G ◦R =LFRG → idD,

satisfying the same triangle identities in the homotopy category. We define them as the
zig-zags

idC
q
←−Q

ηQ
−→G F Q

G r F Q
−→ G R F Q , F QG R

q
−→ F G R

εR−→R
r←− idD.

We check that the two diagrams below commute in the homotopy category of func-
tors, which verifies the triangle identities in the homotopy category. The two possi-
ble descriptions of the map F QQ → F Q are equal by Corollary 3.4.4, and similarly for
G R →G R R in the second diagram.

F QQ

1q=q 1∼
��

η
// F QG F Q r //

q

��

F QG R F Q

q

��

F Q
η
// F G F Q r //

ε
��

F G R F Q

ε
��

F Q r
∼

// R F Q

QG R

q∼
��

η
// G F QG R

q
��

r // G R F QG R

q
��

G R
η
// G F G R r //

ε
��

G R F G R

ε
��

G R 1r=r 1
∼

// G R R

Example 3.4.21. This gives the following adjunctions of homotopy categories. (K must
be a CW complex.)

Left adjoint Right adjoint

Left-derived suspension
LΣ: Ho Top∗→Ho Top∗

Loopspace Ω: Ho Top∗→Ho Top∗

Disjoint basepoint (−)+ : Ho Top→ Top∗ Forget basepoint U : Ho Top∗→ Top
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Left adjoint Right adjoint

Suspension Σ: Ho Sp→Ho Sp Loopspace Ω: Ho Sp→Ho Sp

Left-derived suspension spectrum
LΣ∞ : Ho Top∗→Ho Sp

Right-derived 0th space
Ω∞ =Rev0 : Ho Sp→Ho Top∗

Left-derived suspension spectrum
LΣ∞+ : Ho Top→Ho Sp

Right-derived 0th space
UΩ∞ =R(U ev0): Ho Sp→Ho Top

Left-derived free spectrum
LFn : Ho Top∗→Ho Sp

Right-derived nth space
Revn : Ho Sp→Ho Top∗

Left-derived free spectrum
LFn (−)+ : Ho Top→Ho Sp

Right-derived nth space
R(U evn ): Ho Sp→Ho Top

Tensor K ∧ (−): Ho Sp→Ho Sp (K is a CW
complex)

Right-derived cotensor
RF (K ,−): Ho Sp→Ho Sp

Left-derived tensor
(−)∧L X : Ho Top∗→Ho Sp (X is a CW

spectrum)

Right-derived mapping space
RMap∗(X ,−): Ho Sp→Ho Sp

The last two can be summarized like this: for any space K and spectra X and Y , there
are bijections

[X ,RF (K , Y )]s ∼= [K ∧L X , Y ]s ∼= [K ,RMap∗(X , Y )]∗. (3.4.22)

In other words, the tensor has two right adjoints, depending on which variable we focus
on, and the left-derived tensor has the same two (right-derived) right adjoints. In fact,
this always happens when we have a functor with two right adjoints, and compatible
deformations. See Remark 3.4.25 for more details.

Example 3.4.23. The universal property of a coproduct can be stated as follows: a map
∐

αXα → Y is the same thing as a map of tuples (Xα)→ (Y ), to the constant tuple that
is Y in every slot. Therefore, the coproduct is the left adjoint of the functor that creates
constant tuples.

These adjunctions pass to the homotopy category of spaces and spectra:

Left adjoint Right adjoint

Disjoint union
∐

: Ho Top×A→Ho Top Constant tuple Ho Top→Ho Top×A

Wedge sum
∨

: Ho Top×A
∗ →Ho Top∗ Constant tuple Ho Top∗→Ho Top×A

∗

Wedge sum
∨

: Ho Sp×A→Ho Sp Constant tuple Ho Sp→Ho Sp×A
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Dually, the product is the right adjoint of the functor that creates constant tuples: a map
Y →

∏

αXα is the same thing as a map of tuples (Y )→ (Xα). Passing to the homotopy
category:

Left adjoint Right adjoint

Constant tuple Ho Top→Ho Top×A Product
∏

: Ho Top×A→Ho Top

Constant tuple Ho Top∗→Ho Top×A
∗ Product

∏

: Ho Top×A
∗ →Ho Top∗

Constant tuple Ho Sp→Ho Sp×A Right-derived product
R
∏

: Ho Sp×A→Ho Sp

In particular, we have recovered Proposition 3.2.2 by a different method!

Example 3.4.24. The colimit functor colim : TopI → Top and constant diagram Top→
TopI are adjoints. We will see in ?? that the left-derived functor of colim is hocolim .
Clearly constant diagram preserves equivalences, so it is its own right-derived functor.
Therefore we get an adunction: the homotopy colimit hocolim : Ho(TopI)→ Ho Top is
the left adjoint to the constant diagram Ho Top → Ho(TopI). The same holds for dia-
grams of based spaces, and diagrams of spectra.

Remark 3.4.25. The tensor has a right adjoint in each variable, the cotensor and the
mapping space

∧: Top∗×Sp→ Sp

F : Topop
∗ ×Sp→ Sp

Map∗ : Spop×Sp→ Top∗.

This is an example of a two-variable adjunction: a collection of three functors

F (−,−): C×D→E,

G (−,−): Cop×E→D,

H (−,−): Dop×E→C

and natural isomorphisms of functors Cop×Dop×E→ Set,

C(c , H (d , e ))∼= E(F (c , d ), e )∼=D(d ,G (c , e )).

In other words, G is the adjoint of F in one slot and H is the adjoint of F in the other
slot.

It turns out that these can be deformed as well. Any time we pick

• a left deformation P c
∼−→ c landing in A1 ⊆C,
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• a left deformation Q d
∼−→ d landing in A2 ⊆D, and

• a right deformation e
∼−→R e landing in B⊆ E,

such that

• (P c ,Q d )
∼−→ (c , d ) is a left deformation of F ,

• (c , e )
∼−→ (P c , R e ) is a right deformation of G , and

• (d , e )
∼−→ (Q d , R e ) is a right deformation of H ,

then the derived functors

LF (−,−): Ho C×Ho D→Ho E,

RG (−,−): Ho Cop×Ho E→Ho D,

RH (−,−): Ho Dop×Ho E→Ho C

also form a two-variable adjunction on the homotopy categories. So we get natural bi-
jections for (c , d , e ) ∈Ho Cop×Ho D×Ho E,

[c ,RH (d , e ))]Ho C
∼= [LF (c , d ), e ]Ho E

∼= [d ,RG (c , e ))]Ho D.

It is not so hard to see that such isomorphisms exist by applying Proposition 3.4.20 for
each fixed value of c and d . However, to prove that they are natural in c and d involves
no small amount of diagram-chasing. We omit the full proof.

3.5 Exercises

1. (a) Suppose F : C→D is a functor. Prove that F gives a well-defined function

�

isom. classes of objects in C
	

→
�

isom. classes of objects in D}.

(b) Suppose that F is fully faithful. Prove that this map of isomorphism classes
is injective.

2. Modify the universal property for the homotopy category by allowing the triangle
(3.1.7) to commute up to natural isomorphism. Show that the homotopy category
constructed in Definition 3.1.9 (or Definition 3.1.1) also satisfies this property, and
that the homotopy category in this sense is unique up to equivalence of categories,
rather than isomorphism of categories.

3. Prove Lemma 3.1.22.
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4. Suppose f : X → Y is a stable equivalence of spectra. Explain why composition
with f gives isomorphisms

[W , X ]s
∼= // [W , Y ]s , [Y , W ]s

∼= // [X , W ]s .

5. (a) Define hTop by taking all topological spaces and homotopy classes of maps.
Explain why there is a functor hTop → Ho Top, and why it is not an equiv-
alence of categories. How does the proof in Proposition 3.1.26 that hCW ≃
Ho CW fail?

(b) Similarly, let hSp denote the category of spectra and homotopy classes of
maps between them, [X , Y ]h . Explain why there is a functor hSp → Ho Sp,
and why this functor is not an equivalence of categories.

6. Finish the proof of Proposition 3.1.26 by showing that the given maps Ho Top(X , Y )→
Ho CW(X , Y ) and Ho CW(X , Y ) → Ho Top(X , Y ) are inverses of each other. You
may find it helpful to think of the commuting diagram at the end of the proof as a
commuting diagram in Ho Top or Ho CW, instead of using the equivalence relation
on zig-zags directly.

7. Let f : X → Y be any map of spectra. Explain why the image in the homotopy

category δ( f ) =
�

f
−→

�

is an isomorphism iff f is a stable equivalence. In other

words, the stable equivalences in spectra are saturated. (You might have to use
Proposition 3.1.40).

8. Give a second proof of the Whitehead theorem for spectra (Proposition 2.6.16) by
defining the deformation retract of M to X one stable cell at a time, as in the proof
of Proposition 3.1.38.

9. Finish the proof of Proposition 3.1.40 by showing that the map (2) is an isomor-
phism.

10. Finish the proof of Theorem 3.2.5 by proving the composition is bilinear, that the
zero map is an identity element for+, and that flipping the suspension coordinate
gives inverse elements.

11. Use Proposition 3.2.7 to show that the different models for the degree n map X
n→

X in Example 3.1.4 give the same map in [X , X ]s .

12. Compute the set of endomorphisms of Σ∞+ S 1 ≃ S0 ∨ S1 in the stable homotopy
category, using that π0(S) = Z, π1(S) = Z/2, and π−1(S) = 0. Describe this set as a
ring, with multiplication coming from composition.

13. If Y is an Ω-spectrum, prove that the map FnS n → F0S 0 adjoint to the identity of
S n induces a bijection [F0S 0, Y ]s → [FnS n , Y ]s .
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14. Prove that there is a stable equivalence Fk S 0 ≃ΩkS. (Hint: use Section 2.7, exercise
19 and the fact that Σ is an equivalence of categories to argue that Ω is equivalent
to sh−1.)

15. (a) Recall the lim1 exact sequence for spaces from Section 1.5, equation (1.5.23):

0 // lim1

n→∞
πk+1(Xn ) // πk

�

holim
n→∞

Xn

�

// lim
n→∞

πk (Xn ) // 0.

Use this to prove the lim1 exact sequence for spectra (Proposition 3.2.20).

(b) Prove that if Y is the homotopy limit of a sequence of Ω-spectra

Y = lim
n→∞

Y (n ) −→ . . .−→ Y (1) −→ Y (0) −→∗,

and X is another spectrum, then there is a short exact sequence

0 // lim 1[ΣX , Y (n )]s // [X , Y ]s // lim [X , Y (n )]s // 0.

16. Use the lim1 sequence from Proposition 3.2.20 and the isomorphism [X ,Σk E ]s ∼=
E k (X ) from Example 3.2.16 to show that for any extraordinary cohomology theory
E and any sequence of spaces Xn , we have a lim1 exact sequence

0 // lim1

n→∞
E k−1(Xn ) // E k

�

hocolim
n→∞

Xn

�

// lim
n→∞

E k (Xn ) // 0.

Note the similarity to (1.5.6) for ordinary homology, and the difference with (3.2.21),
since the Xn simply form a diagram of spaces, not a spectrum.

17. Prove that the Postnikov tower of a spectrum X is unique up to canonical isomor-
phism as a diagram in the stable homotopy category. (Hint: Use Lemma 3.2.12
repeatedly.) This also implies that connective covers of X are unique up to equiv-
alence.

18. (a) If C and D are categories with weak equivalences, prove that

Ho(C×D)∼= (Ho C)× (Ho D).

For instance, you might prove this by showing that (Ho C) × (Ho D) has the
correct universal property.

(b) Generalize to products of an arbitrary number of categories.

19. Recall that the opposite category Cop has the same objects as C, but the morphisms
are reversed, Cop(X , Y ) = C(Y , X ). Prove that the homotopy category commutes
with the opposite category,

Ho(Cop)∼= (Ho C)op.
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20. Prove that every morphism in the stable homotopy category has a well-defined
homotopy cofiber. In other words, any two maps of spectra f : X → Y and g : W →
Z , whose images in Ho Sp are isomorphic to each other, have stably equivalent
cofibers, C f ≃C g .

21. Prove that Σ(−) does not preserve all weak equivalences of based spaces. (Hint:
Consider the subspace {0}∪{ 1

n : n ∈N} ⊂R. Its suspension is an infinite shrinking
wedge of circles.)

22. Complete the list of left-derived functors from Proposition 3.3.25:

(a) Prove that the free spectrum functor Fn : Top∗→ Sp can be left-derived.

(b) Prove that the handicrafted smash product∧: Sp×Sp→ Sp can be left-derived.

23. (a) Extend Example 3.3.26 to based spaces. Show that the pushout operation

Top{•←•→•}∗ → Top∗

can be left-deformed. Its left-derived functor is obtained by first making the
spaces A, X , and Y well-based, then taking the homotopy pushout.

(b) Extend Example 3.3.26 to spectra. Show that the pushout operation

Sp{•←•→•}→ Sp

can be left-deformed. Its left-derived functor is the homotopy pushout. (No
assumptions are needed on the basepoints.)

24. (a) As in Example 3.3.26, show that the sequential colimit functor

colim
n→∞

: Top{•→•→...}→ Top

is left-deformable, and its left-derived functor is the mapping telescope of
Definition 1.5.4.

(b) As in exercise 23, extend this to based spaces and spectra. No assumptions
are needed on the basepoints.

25. (a) Extend Example 3.3.34 to based spaces and spectra. Show that the pullback
is right-deformable, and its right-derived functor is the homotopy pullback.
No assumptions are needed on the basepoints.

(b) Show that the sequential limit functor

lim
n→∞

: Top{...→•→•}→ Top

is right-deformable, and its right-derived functor is the mapping telescope of
Definition 1.5.21.
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(c) The previous part works equally well for based spaces. However, for spectra,
show that the right-derived functor of

lim
n→∞

: Sp{...→•→•}→ Sp

is obtained by first making the spectra X (i ) into Ω-spectra, then taking the
homotopy limit at each spectrum level. We call this the “homotopy limit in
spectra” – if we don’t take Ω-spectra first, it is not the true homotopy limit.

26. We lift Section 2.7, exercise 34 to the homotopy category.

(a) Prove that the left-derived suspension spectrum functor LΣ∞ : Ho Top∗ →
Ho Sp sends cofiber sequences of spaces to cofiber/fiber sequences of spec-
tra.

(b) Prove that the right-derived evaluation functorΩ∞ =Rev0 : Ho Sp→Ho Top∗
sends cofiber/fiber sequences of spectra to fiber sequences of spaces.

27. Give an example of a functor F on a category with weak equivalences satisfying 2
out of 3, such that:

(a) F has a left-derived functor but no right-derived functor. (With proof.)

(b) F has neither a left- nor a right-derived functor.

(c) F has a left- and a right-derived functor, and the composite LF → F → RF
is not an equivalence.

(d) F has a left- and a right-derived functor, and the composite LF → F → RF
is an equivalence, but F is not homotopical.

(Hint: Make the target category the category of spaces, and make the source cate-
gory as small as possible.)

28. Let C be a category and W a class of morphisms in C. We say W satisfies the 2 out
of 6 property if for any three composable maps f , g , h , if g ◦ f and h ◦ g are in W
as shown below, then f , g , h , and h ◦ g ◦ f are also in W .

A
f
//

∼
##

B
g
��

∼

##

C h // D

(a) Prove that 2-out-of-6 implies 2-out-of-3. So it is a stronger condition.

(b) As in Example 3.3.14, prove that if W = F −1(isomorphisms) for some functor
F , then W has 2 out of 6. Conclude that the class of stable equivalences in Sp
has 2 out of 6.
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(c) Show that any class of weak equivalences W can be enlarged to have 2 out of
6, without changing the resulting homotopy category C[W −1].

29. Suppose F has a left-derived functor. Adapt the proof of Proposition 3.4.2 to show
thatLF is terminal among functors G : Ho C→Ho D with a natural transformation
G ⇒ F as functors C→ Ho D. In other words, given any other such G , there is a
unique natural transformation G ⇒ LF on Ho C, that on C commutes with the
given natural transformations to F . We also say that LF is the right Kan extension
of F along δ : C→Ho C.

30. Prove that the evaluation functor and underlying unbased space

Sp
evn // Top∗

U // Top

satisfy the hypotheses of Lemma 3.4.13, and therefore their right-derived functors
compose, as in Example 3.4.15.

31. Define rationalization of X as the hocolim of X
2→ X

3→ X
4→ X ..., where n denotes

the identity map of X added to itself n times. Prove it rationalizes the homotopy
groups. Same for localization at p , just eliminate all multiples of p from the ho-
colim. Prove it coincides with smashing with the localized sphere. Show SQ ≃HQ
by uniqueness of Eilenberg-Maclane spectra (Section 2.7, 38). The same is not true
for p -localization.
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Chapter 4

Properties of the smash product

The smash product of spectra ∧ plays the role of the tensor product ⊗ in higher algebra.
The fundamental intuition about X ∧Y is that it has a stable (m+n )-cell for each choice
of a stable m-cell of X and a stable n-cell of Y :

This is enough to get a feel for what X ∧Y looks like, at least up to stable equivalence.

We defined the smash product already in Definition 2.3.23, by picking a sequence of
values of p and q and defining (X ∧Y )p+q = Xp ∧Yq . Morally, this ought to make spectra

189
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into a symmetric monoidal category, meaning we have isomorphisms

(X ∧Y )∧Z ∼= X ∧ (Y ∧Z ), X ∧Y ∼= Y ∧X , X ∧S∼= X .

The problem is, the construction we gave depends on choices, and different choices
give spectra that are not even isomorphic, only equivalent. As a result, it is impossible
to prove things like (X ∧ Y )∧Z ∼= X ∧ (Y ∧Z ) in the category of spectra Sp, only on the
homotopy category Ho Sp.

In Chapter 6 we will give an explicit solution to this problem, modifying the category of
spectra Sp to the category of symmetric spectra SpΣ, and making SpΣ into a symmetric
monoidal category. Unfortunately, doing this in detail requires a long detour through
the theory of model categories, so that we can show that symmetric spectra are equiv-
alent to sequential spectra, and prove that the smash product on SpΣ preserves stable
equivalences.

It’s important not to get lost in the theoretical machinery, and to remember what’s im-
portant, why we care about the smash product. So in this chapter we give the propa-
ganda for ∧. We treat the smash product of spectra as a black box, assuming it exists,
and showing what you can do with it: define rings and modules, and take duals and
traces.

We also open up the box a little bit and define the smash product explicitly in the Spanier-
Whitehead category, the subcategory of the homotopy category of spectra Ho Sp con-
sisting of only the finite spectra. Even here the definition is a little complicated, signal-
ing the difficulties that lie ahead in defining the smash product on the entire category of
spectra Sp.

We also show how to lift the Poincaré duality theorem to a theorem about spectra called
Atiyah duality, and generalize it to a result called Spanier-Whitehead duality. We get as
a corollary a Poincaré duality theorem that holds with coefficients in any extraordinary
homology theory E , and a topological proof of the Lefschetz fixed point theorem.

4.1 Symmetric monoidal categories

The most important thing to know about the smash product is that it makes the stable
homotopy category Ho Sp into a symmetric monoidal category. We begin by explaining
what that means, and giving other examples, to help develop intuition for the case of
spectra.
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4.1.1 Definition of a symmetric monoidal category

Definition 4.1.1. A symmetric monoidal category is a category C, a functor

⊗: C×C−→C,

a unit object I ∈ ob C, and natural isomorphisms

α: (X ⊗Y )⊗Z ∼= X ⊗ (Y ⊗Z ), γ: X ⊗Y ∼= Y ⊗X , ρ : X ⊗ I ∼= X ,

that are coherent. We usually drop the notation for these isomorphisms and just say “the
canonical isomorphism” – they tend to be obvious in most examples.

Example 4.1.2. We list several symmetric monoidal categories, with their tensor and
unit object.

• Set,⨿,;

• Set,×,∗

• Top,⨿,;

• Top,×,∗

• Top∗,∨,∗

• Top∗,×,∗

• Top∗,∧,S 0

• Sp,∨,∗

• Ab,⊕, 0

• Ab,⊗,Z

• Modk ,⊕, 0

• Modk ,⊗k , k

• GrModk ,⊗k , k [0]

• Ch≥0(k ),⊗k , k [0]

• Ch(k ),⊗k , k [0]

• Ch(k ),⊕, 0

• Ho Top,⨿,;

• Ho Top,×,∗

• Ho Top∗,∨L,∗

• Ho Top∗,×,∗

• Ho Top∗,∧L,S 0

• D(k )≥0,⊗Lk , k [0]

• D(k ),⊗Lk , k [0]

• D(k ),⊕, 0

Here k is any field or commutative ring, and k [0] refers to the chain complex or graded
module that has just a k in degree 0. The category GrModk means graded modules, and
D(k ) is the derived category, in other words the homotopy category of chain complexes
of k -modules Ho Ch(k ).

So for instance, in Ab we have the isomorphism X ⊗Z ∼= X , while in Top∗ we have the
isomorphism X ∧ S 0 ∼= X . In this sense the 0-sphere S 0 is like the integers Z, because
each one is an identity element for its respective product.

Notice that the same category can have several different symmetric monoidal structures.
A symmetric monoidal category is a category with an extra structure placed on top of it,
not just a property of the category.

Remark 4.1.3. The choice of isomorphisms in Definition 4.1.1 are also part of the struc-
ture – we could keep the same product, but change the isomorphisms, and get a different



192 CHAPTER 4. PROPERTIES OF THE SMASH PRODUCT

structure! For instance, in graded k -modules GrModk , we could define the symmetry
isomorphism X ⊗ Y ∼= Y ⊗ X by sending each tensor of homogeneous terms a ⊗ b to
either b ⊗a , or to (−1)|a ||b |(b ⊗a ). The first choice is the most obvious isomorphism, but
the second choice is the one that obeys the Koszul sign rule.

When we pass to chain complexes Ch, we have to make the second choice here and send
a ⊗ b to (−1)|a ||b |(b ⊗a ). If we didn’t, the isomorphism X ⊗ Y ∼= Y ⊗X would fail to be a
map of chain complexes! See exercise 1.

In Definition 4.1.1, we should explain what we mean by “coherent.” If we take any string
of distinct objects X1, . . . , Xn and apply strings of the above isomorphisms to rearrange
the objects, add and remove units, and regroup parentheses, if we ever come back to the
same expression, the composite map must be the identity. For example, the following
composites have to be the identity:

(X ⊗ (Y ⊗Z ))⊗W
jj

∼=
α

**

((X ⊗Y )⊗Z )⊗W
tt

∼=
α

44

dd
∼=

α
$$

X ⊗ ((Y ⊗Z )⊗W )
::

∼=
α

zz

(X ⊗Y )⊗ (Z ⊗W ) oo
∼=
α
// X ⊗ (Y ⊗ (Z ⊗W ))

(X ⊗ I )⊗Y oo
∼=
α
//

OO

∼=ρ

��

X ⊗ (I ⊗Y )
OO

∼=γ
��

(X ⊗Y )⊗Z
OO

∼=α
��

oo
∼=
γ
// (Y ⊗X )⊗Z oo

∼=
α
// Y ⊗ (X ⊗Z )

OO

∼=γ
��

X ⊗Y oo
∼=
ρ

// X ⊗ (Y ⊗ I ) X ⊗ (Y ⊗Z ) oo
∼=
γ
// (Y ⊗Z )⊗X oo

∼=
α
// Y ⊗ (Z ⊗X )

X ⊗Y

id

88

∼=
γ
// Y ⊗X

∼=
γ
// X ⊗Y

In fact, these diagrams suffice. As soon as they all commute, any other diagram of the
same form must commute.

Theorem 4.1.4 (MacLane). If the above diagrams commute, then all similar diagrams
commute.

In practical terms, coherence means that we are allowed to drop parentheses and just
write X ⊗ Y ⊗ Z , and similarly we don’t have a choose an ordering when we multiply
distinct terms together:

X ⊗Y ⊗Z ∼= Z ⊗X ⊗Y .
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We do have to keep track of order when we have repeated terms. The swap map γ: X ⊗
X ∼= X ⊗X is often not the identity. In Top,× for instance, it’s the self-map of the space
X × X that switches the two coordinates. In Ch≥0(Z),⊗, it switches the tensors around
and applies minus signs whenever we switch terms of odd degree.

In general, we therefore have to specify what permutation we apply to go between two
different orderings of a given expression. (But, we don’t have to explain how to get that
permutation from instances of the map γ.)

Example 4.1.5. If C is a category with all finite products × and terminal object ∗, then
(C,×,∗) is a symmetric monoidal category in a canonical way (exercise 2). We say C is
cartesian monoidal in this case. For instance, Set, Top, Top∗, and Ab are all cartesian
monoidal.

Dually, if C has all finite coproducts and an initial object ;, then (C,⨿,;) is a symmetric
monoidal category – in this case C is cocartesian monoidal.

Remark 4.1.6. Often a category C has two symmetric monoidal structures⊕ and⊗, and
the tensor distributes over the direct sum:

A⊗ (B1⊕B2)∼= (A⊗B1)⊕ (A⊗B2).

For instance, if C has coproducts and ⊗ preserves coproducts in each variable, then we
get isomorphisms as above. We’ll frequently encounter the situation that C is an additive
category with direct sum ⊕ (see Theorem 3.2.5), and also a symmetric monoidal cate-
gory under some tensor product ⊗. In this situation, we ask that the tensor preserves
finite sums in each variable, so that we get isomorphisms as above. See exercise 5 for
more details.

Several of the examples in Example 4.1.2 are homotopy categories. To explain how this
works, suppose (C,⊗, I ) is a symmetric monoidal category, and C has a class of weak
equivalences W satisfying 2 out of 3 (Definition 3.3.13), so that we can form the homo-
topy category Ho C=C[W −1].

Lemma 4.1.7. Suppose there is a full subcategory A⊆C such that

• ⊗ preserves weak equivalences between objects in A,

• if X , Y ∈A then X ⊗Y ∈A,

• the unit I is also in A,1

• there is a functor Q : C→C landing in A, and

1It’s actually enough if the map Q I
∼−→ I induces an equivalence Q I ⊗Q X

∼−→ I ⊗Q X ∼=Q X .



194 CHAPTER 4. PROPERTIES OF THE SMASH PRODUCT

• there is a natural weak equivalence q : Q X
∼→ X .

Then the left-derived tensor X ⊗L Y =Q X ⊗QY and the unit I ∈ C make the homotopy
category Ho C into a symmetric monoidal category.

For instance, these conditions are satisfied in (Top∗,∧,S 0), where A is the subcategory of
based CW complexes. So (Ho Top∗,∧L,S 0) is a symmetric monoidal category.

These conditions are also satisfied in (Ch≥0(Z),⊗,Z[0]), where A is the subcategory of
levelwise projective chain complexes. So (D≥0(Z),⊗L,Z[0]) is also a symmetric monoidal
category.

Proof. As in the proof of Lemma 3.3.18, the left-derived tensor X ⊗L Y =Q X ⊗QY pre-
serves equivalences, because Q preserves equivalences and ⊗ preserves equivalences
between objects in A. Therefore it defines a functor

⊗L : Ho C×Ho C→Ho C.

We define the associativity isomorphism by removing extra Q s and then using the asso-
ciativity isomorphism for ⊗:

(X ⊗L Y )⊗L Z Q (Q X ⊗QY )⊗Q Z

q⊗1∼
��

Q X ⊗Q (QY ⊗Q Z )

1⊗q∼
��

X ⊗L (Y ⊗L Z )

(Q X ⊗QY )⊗Q Z oo
∼= //Q X ⊗ (QY ⊗Q Z )

The vertical maps are equivalences because q is an equivalence between objects in A, so
⊗ sends this to an equivalence. Therefore it is an isomorphism in the homotopy category
Ho C. The composite of these maps is therefore an isomorphism in the homotopy cat-
egory. (See also Example 3.4.18, which constructs the same isomorphism in a different
way.)

We construct the other two isomorphisms in a similar way. It is an exercise to see that
their coherence follows from the coherence of the same isomorphisms in C.

Remark 4.1.8. On the equivalent subcategory Ho A ⊆ Ho C, this symmetric monoidal
structure is isomorphic to a simpler one: just use the product X ⊗Y . It passes to the ho-
motopy category Ho A because it preserves all equivalences. The natural isomorphism
(X ⊗Y )⊗Z ∼= X ⊗ (Y ⊗Z ) in A also gives a natural isomorphism in Ho A, and similarly for
the other isomorphisms.

All of the examples in the right-hand column of Example 4.1.2 arise this way. For in-
stance, the homotopy category of based spaces Ho Top∗ is symmetric monoidal under
the left-derived smash product X ∧L Y =Q X ∧QY , where Q X is a cell complex equiv-
alent to X . If we restrict attention to cell complexes, or well-based spaces, we can just
use the smash product X ∧Y instead of the left-derived smash product.
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Example 4.1.9 (Smash product as a black box, part 1). As we’ve already discussed, in this
chapter, we develop the smash product of spectra as a black box. Here’s what’s written
on the label of that box:

• The category of spectra Sp is a symmetric monoidal category, under some opera-
tion called the smash product ∧, that we will not define explicitly.

• The unit is the sphere spectrum S. More generally, smashing with any suspension
spectrum Σ∞K gives the tensor from Definition 2.3.6:

(Σ∞K )∧X ∼= K ∧X .

In particular, the smash product of two suspension spectra is a suspension spec-
trum,

(Σ∞A)∧ (Σ∞B )∼=Σ∞(A ∧B ).

These claims are stronger than those in Example 2.3.25 because we are claiming
isomorphisms, not just stable equivalences.

• The smash product preserves colimits in each variable. It follows that the smash
product preserves wedge sums, homotopy pushouts, and mapping telescopes in
each variable as well (exercise 19).

• We have isomorphisms
Fd A ∧ Fe B ∼= Fd+e (A ∧B ).

It follows that the smash product of cellular spectra is a cellular spectrum (exercise
20).

• Not only does the smash product preserve cellular spectra, it also preserves all sta-
ble equivalences between them. So the hypotheses of Lemma 4.1.7 are satisfied,
making Ho Sp into a symmetric monoidal category as well. The unit is again S, and
the product is the left-derived smash product

X ∧L Y =Q X ∧QY ,

where Q is any replacement by a cellular spectrum, for instance the one in Theo-
rem 2.6.12. We also get that the smash product preserves cofiber/fiber sequences
in each variable (exercise 21).

In summary, we get two symmetric monoidal categories (Sp,∧,S) and (Ho Sp,∧L,S).

The fact that the smash product preserves cofiber sequences in each slot is often cap-
tured by saying that Ho Sp is a tensor triangulated category. See [HPS97] for more de-
tails on this point of view.
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Remark 4.1.10. This black box is a little bit of a lie, because there is no such smash prod-
uct functor∧, if we interpret Sp to mean the category of (sequential) spectra. It becomes
correct when we change definitions and use Sp to refer instead to the category of sym-
metric spectra or orthogonal spectra.

4.1.2 Rings and modules

Symmetric monoidal categories are a setting in which we can talk abstractly about rings
and modules over them.

Definition 4.1.11. Let C,⊗, I be a symmetric monoidal category. A monoid (or ring) in
C is an object R together with a multiplication map and a unit map

µ: R ⊗R −→R , η: I −→R ,

such that the following two diagrams commute.

R ⊗R ⊗R

1⊗µ
��

µ⊗1
// R ⊗R

µ

��

I ⊗R gg

∼=
''

η⊗1
// R ⊗R

µ

��

R ⊗ I
1⊗η

oo
77

∼=
ww

R ⊗R µ
// R R .

You should think of these as capturing the idea that (a b )c = a (b c ), and 1a = a = a 1. A
left module in over R is another object M together with an action map

α: R ⊗M −→M ,

such that the following two diagrams commute.

R ⊗R ⊗M

1⊗α
��

µ⊗1
// R ⊗M

µ

��

I ⊗M hh

∼=
((

η⊗1
// R ⊗M

α
��

R ⊗M µ
//M M .

Again, this captures the idea that (a b )m = a (b m ), and 1m = m . A right module is
defined the same way, except that the R is on the right, so we get m (a b ) = (ma )b instead
of (m b )a .

We typically only consider these in the “multiplicative” examples of symmetric monoidal
categories, because in the “additive” examples these concepts are rather degenerate; see
exercise 8.

Example 4.1.12. We consider monoids and modules in several examples.
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• In Set,×,∗, a monoid object is the same thing as a monoid G . A left module over
G is the same thing as a set with left G -action (Definition 5.3.8).

• In Ab,⊗,Z, a monoid object is the same thing as a ring R . The fact that the multi-
plication is a map R ⊗R → R makes it bilinear in each slot, so that the axioms of
a ring are satisfied. (This is a very concise way of remembering the axioms for a
ring!) A left module over R is the same thing as a left module in the usual sense.

• In Top,×,∗, a monoid object is the same thing as a topological monoid G . A left
module over G is the same thing as a space with a continuous left G -action (Defi-
nition 5.3.8).

• In Top∗,∧,S 0, a monoid object is the same thing as a based topological monoid
G . These are spaces with associative multiplication, and two special points, the
basepoint 0 and the unit point 1. We have 0 ∗a = 0 and 1 ∗a = a for every a ∈G .

• In Modk ,⊗k , k , a monoid is the same thing as a k -algebra.

• In GrModZ,⊗,Z[0], a monoid is the same thing as a graded ring, and a module is a
graded module.

• In Ch≥0(Z),⊗,Z[0], a monoid is the same thing as a differential graded algebra (DGA).

• In Ho Top,×,∗, a monoid is the same thing as an associative H -space – a space that
has a multiplication X ×X → X that is associative and unital up to homotopy.

Definition 4.1.13. A monoid R in C is commutative if the following diagram commutes.

R ⊗R

µ
""

oo
∼=
γ

// R ⊗R

µ
||

R

Lemma 4.1.14. If R is commutative then every left module over R is also a right module
and vice-versa.

Example 4.1.15. • In Set,×,∗, this gives commutative monoids.

• In Ab,⊗,Z, this gives commutative rings.

• In GrModZ,⊗,Z[0], this gives commutative graded rings. Whether the commuta-
tivity is a b = b a or a b = (−1)|a ||b |(b a ) depends on which symmetric monoidal
structure we choose.

• In Ch≥0(k ),⊗, k [0], this gives commutative differential graded algebras (CDGAs).
Again, we have to use the structure in which a b = (−1)|a ||b |(b a ), otherwise the ring
multiplication doesn’t give a map of chain complexes.
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Definition 4.1.16. A ring spectrum is a monoid object in (Sp,∧,S). So it is a spectrum R
with multiplication and unit maps

µ: R ∧R −→R , η: S−→R ,

such that the diagrams in Definition 4.1.11 commute. A commutative ring spectrum is
a commutative monoid object in (Sp,∧,S), and a module spectrum is a module object
over R .

Remark 4.1.17. It used to be that the term “ring spectrum” referred to a monoid object
in the homotopy category (Ho Sp,∧L,S), and a “highly structured ring spectrum” was
a monoid in (Sp,∧,S). However, this terminology has fallen out of favor. Monoids in
spectra turn out to be way more useful than monoids in the homotopy category, so we
don’t spend much time talking about monoids in the homotopy category anymore.

4.1.3 Symmetric monoidal functors

A symmetric monoidal functor is a map of symmetric monoidal categories that respects
the tensor product. There are different levels to this:

Definition 4.1.18. Suppose (C,⊗C, IC) and (D,⊗D, ID) are two symmetric monoidal cate-
gories. A lax symmetric monoidal functor is

• A functor F : C→D,

• A natural map m : F (X )⊗D F (Y )→ F (X ⊗C Y ), and

• a map i : ID→ F (IC),

that are coherent. A strong symmetric monoidal functor is the same thing except that
the maps m and i are isomorphisms, i.e.

F (X )⊗D F (Y )∼= F (X ⊗C Y ), ID
∼= F (IC).

Example 4.1.19. The forgetful functor (Top,×,∗)→ (Set,×,∗) is strong symmetric monoidal.
The product of spaces is the product on the underyling set.

Its left adjoint takes each set and gives it the discrete topology – this is also strong sym-
metric monoidal, because a product of discrete spaces is discrete.

Example 4.1.20. The forgetful functor (Top∗,∧,S 0)→ (Top,×,∗) is lax symmetric monoidal.
In other words, for based spaces X and Y , there is a canonical map X ×Y → X ∧Y , but
it isn’t an isomorphism.

Its left adjoint adds a disjoint basepoint (−)+. This is strong symmetric monoidal, since

X+ ∧Y+ ∼= (X ×Y )+, S 0 ∼= (∗)+.
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Example 4.1.21. The forgetful functor (Ab,⊗,∗)→ (Set,×,∗) is lax symmetric monoidal.
In other words, for abelian groups A and B , there is a canonical map of sets A×B → A⊗B ,
but it isn’t an isomorphism.

The left adjoint is the free abelian group functor (Set,×,∗)→ (Ab,⊗,∗). It takes the set S
to the free abelian group Z⊕S =

⊕

s∈S Z. This is strong symmetric monoidal, using the
fact that tensor distributes over direct sum:

Z⊕S ⊗Z⊕T ∼=Z⊕(S×T ), Z∼=Z⊕{∗}.

Remark 4.1.22. There is a pattern to these examples: we have an adjoint pair (F ⊣ G )
in which F is strong symmetric monoidal and G is at least lax symmetric monoidal. In
fact, this is always true – if F is strong symmetric monoidal and has a right adjoint G ,
then G must be lax symmetric monoidal. See exercise 12.

Again, coherence means that if we take any expression F (X1) ⊗ · · · ⊗ F (Xn ) and apply
composites of the above maps, any two such composites that end at the same expres-
sion, must be the same map. As for symmetric monoidal categories, it suffices to check
that the following diagrams commute.

(F (X )⊗ F (Y ))⊗ F (Z )
OO

α∼=
��

m // F (X ⊗Y )⊗ F (Z ) m // F ((X ⊗Y )⊗Z )
OO

α∼=
��

F (X )⊗ (F (Y )⊗ F (Z )) m // F (X )⊗ F (Y ⊗Z ) m // F (X ⊗ (Y ⊗Z ))

F (X )⊗ IDOO

ρ∼=
��

i // F (X )⊗ F (IC)

m
��

F (X ) F (X ⊗ IC)//
ρ

∼=
oo

F (X )⊗ F (Y ) oo
γ

∼=
//

m
��

F (Y )⊗ F (X )

m
��

F (X ⊗Y ) oo
γ

∼=
// F (Y ⊗X )

For strong symmetric monoidal functors, you can remember this by saying that, up to
canonical isomorphism, there’s only one way to tensor together a bunch of objects in C
and apply F to them. Whether you apply F to them first, then tensor, or whether you
tensor them first, then apply F , even if you add units in the middle for some reason,
everything is identified up to canonical isomorphism.

Proposition 4.1.23. If F : C→D is lax symmetric monoidal, and R is a monoid in C, then
F (R ) is a monoid in D.

Similarly, F takes modules over R to modules over F (R ), and takes commutative monoids
to commutative monoids.

Proof. This is fairly easy – the multiplication on F (R ) is defined to be

F (R )⊗D F (R ) m // F (R ⊗C R )
F (µ)
// F (R ),
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and the unit map is

ID
i // F (IC)

F (η)
// F (R ).

The required diagrams commute by coherence and the fact that they commuted in C.
See exercise 15. The case of modules and commutative monoids is similar.

Example 4.1.24. • The forgetful functor (Top,×,∗)→ (Set,×,∗) takes topological monoids
to ordinary monoids.

• By the adjunction between (Top∗,∧,S 0) and (Top,×,∗), every monoid in the based
sense is also a monoid in the unbased sense, and if G is a monoid in the unbased
sense then G+ is a monoid in the based sense.

• The free abelian group functor (Set,×,∗)→ (Ab,⊗,∗) takes each monoid or group
G to the ring Z[G ], often called the monoid ring or group ring.

Example 4.1.25. Homology is lax symmetric monoidal, either as a functor

(Top,×,∗)→ (GrAb,⊗,Z[0])

or as a functor
(Ch(Z),⊗,Z[0])→ (GrAb,⊗,Z[0]).

In particular, we get maps H∗(X )⊗H∗(Y )→H∗(X×Y ), that aren’t isomorphisms in general
(Theorem 1.3.9). Therefore, if X is a topological monoid, this makes H∗(X ) into a graded
ring. This product is called the Pontryagin product.

Example 4.1.26. For any symmetric monoidal category C satisfying the assumptions of
Lemma 4.1.7, the map to the homotopy category C→Ho C is lax symmetric monoidal.
Specifically, the maps q : Q X → X give the natural map

X ⊗L Y =Q X ⊗QY // X ⊗Y .

Therefore, every monoid in C becomes a monoid in the homotopy category Ho C.

In particular, every topological monoid in Top is also an associative H -space (a monoid
in Ho Top). Every ring spectrum in Sp is also a monoid in the stable homotopy category
Ho Sp.

Example 4.1.27 (Smash product as a black box, part 2). We extend the black box from
Example 4.1.9 by claiming that the following three functors are symmetric monoidal.

• First we consider the suspension spectrum functor, either from based or unbased
spaces:

(Top,×,∗)

Σ∞+

44

(−)+ // (Top,×,∗) Σ∞ // (Sp,∧,S).
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We claim that in both cases this functor is strong symmetric monoidal. In partic-
ular, we have isomorphisms

(Σ∞+ X )∧ (Σ∞+ Y )∼=Σ∞+ (X ×Y ), 2 S∼=Σ∞+ (∗).

If G is a group or monoid, the suspension spectrumΣ∞+ G is therefore a ring spec-
trum. This is sometimes called the spherical group ring and denoted S[G ] to em-
phasize the analogy with Z[G ]. Concretely, the multiplication is by

(Σ∞+ G )∧ (Σ∞+ G )∼=Σ∞+ (G ×G )
Σ∞+ (µ) // Σ∞+ G

and the unit is by

S∼=Σ∞+ (∗)
Σ∞+ (η) // Σ∞+ G .

If G is commutative, then Σ∞+ G is a commutative ring spectrum.

• Next, we claim that the Eilenberg-Maclane spectrum

(Ab,⊗,Z) H (−)
// (Sp,∧,S)

is lax symmetric monoidal. So, there are natural maps

H A ∧H B // H (A⊗B ), S // HZ.

Once we believe this claim, Proposition 4.1.23 tells us that for each ring R , its
Eilenberg-Maclane spectrum H R is a ring spectrum. Spelling it out, the multi-
plication is

H R ∧H R // H (R ⊗R )
H (µ)

// H R

and the unit is

S // HZ
H (η)

// H R .

Furthermore, if R is commutative then H R is a commutative ring spectrum.

• Finally, we claim that the stable homotopy groups π∗ are lax symmetric monoidal
as a functor on the homotopy category of spectra:

(Ho Sp,∧L,S) π∗ // (GrAb,⊗,Z[0]).

2We already asserted the existence of this isomorphism in Example 4.1.9, but the claim here is stronger.
Not only does this isomorphism exist, but along this isomorphism, the associativity and commutativ-
ity isomorphisms for the smash product of spectra agree with those same isomorphisms for topological
spaces. We need this stronger claim to prove that Σ∞+ G is a ring – for instance, when checking that its
associativity in Sp follows from the associativity of G in Top.
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For this we use the symmetric monoidal structure on GrAb in which the flip of
a ⊗ b is (−1)|a ||b |b ⊗a .

It follows that π∗ is also lax symmetric monoidal as a functor on the category of
spectra. Either way, there are natural maps

π∗(X )⊗π∗(Y ) // π∗(X ∧Y ), Z // π0(S).

It also follows that if R is a ring spectrum, then π∗(R ) is a graded ring. If R is com-
mutative then π∗(R ) is graded-commutative (commutative but using the Koszul
sign rule).

In particular, π∗(H R ) =R [0] gives our original ring back, and the stable homotopy
groups of spheres π∗(S) are a graded-commutative ring.

Remark 4.1.28. When F : C→D is a strong symmetric monoidal functor, it is helpful to
think of C and D as “commutative rings” in categories, and F as a ring homomorphism,
making D into an “algebra” over C.

In particular, D is a “module” over C, where objects in C act on the category D by the
formula

X ·Y := F (X )⊗D Y , X ∈C, Y ∈D.

In particular, the suspension spectrum functorΣ∞+ is strong symmetric monoidal, so we
can think of spectra as an “algebra” or “module” over unbased spaces. An unbased space
A acts on spectra by sending each spectrum X to

A+ ∧X ∼= (Σ∞+ A)∧X .

This has all of the properties that you would expect for a commutative ring acting on a
module, including associativity (up to isomorphism).

4.1.4 Closed symmetric monoidal categories

Definition 4.1.29. A closed symmetric monoidal category C is a symmetric monoidal
category in which X ⊗− always has a right adjoint Hom(X ,−). In other words, a map
X ⊗Y → Z is the same thing as a map Y →Hom(X , Z ).

We call Hom(−,−) the internal hom of C. By formal category theory, it defines a functor

Hom: Cop×C−→C

and we have natural bijections

C(X , Hom(Y , Z ))∼=C(X ⊗Y , Z )∼=C(Y , Hom(X , Z )).
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Example 4.1.30. • The category of k -vector spaces, or more generally k -modules
(Modk ,⊗k , k ) for a commutative ring k , is closed symmetric monoidal. The inter-
nal hom is Homk (X , Y ), the set of k -linear maps from X to Y , made into a module
by adding and scaling maps pointwise (on each input separately). We get the usual
tensor-hom adjunction

X ⊗k Y → Z ↔ X →Homk (Y , Z ).

• The category (Set,×,∗) is closed symmetric monoidal using the set of maps X → Y .

• The category (Top,×,∗)of (CGWH) topological spaces is closed symmetric monoidal
using the space Map(X , Y ) of continuous maps from X to Y .3

• The category (Top∗,∧,S 0) is closed symmetric monoidal using the space Map∗(X , Y )
of continuous based maps from X to Y .

• The category (GrModk ,⊗k , k [0]) is closed symmetric monoidal using the set of graded
maps Homk (X , Y ), whose d th level consists of maps from X to Y that shifts the
grading up by d , in other words Xn → Yn+d . The categories of chain complexes
have similarly-defined internal homs.

• We will see that Sp and Ho Sp are also closed symmetric monoidal. The internal
hom is called the function spectrum F (X , Y ). So we have bijections of maps of
spectra

X ∧Y → Z ↔ X → F (Y , Z )

and of maps in the homotopy category

Q X ∧QY →R Z ↔ Q X → F (QY , R Z ).

In a closed symmetric monoidal category C, the internal hom satisfies identities

Hom(I , X )∼= X , Hom(X ⊗Y , Z )∼=Hom(X , Hom(Y , Z )).

See exercise 17. We also get natural composition maps

Hom(X , Y )⊗Hom(Y , Z )−→Hom(X , Z )

that are associative, and have “identity” maps I →Hom(X , X ). All together this makes C
into a C-enriched category. Basically, this is the definition of a category, except that the
mapping objects C(X , Y ) are not sets, but objects of C. Taking the set of maps in from
the unit I recovers the original category:

C(I , Hom(X , Y ))∼=C(X , Y ).
3This is not true for “plain vanilla” topological spaces – we need at least the compactly generated hy-

pothesis to get the adjunction between the product × and mapping space Map.
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Finally, we also get an “external” tensor product on the internal homs,

Hom(X , Y )⊗Hom(W , Z )−→Hom(X ⊗W , Y ⊗Z ),

that commutes with composition in the expected way,

(g ⊗ g ′) ◦ ( f ⊗ f ′) = (g ◦ f )⊗ (g ′ ◦ f ′).

An important special case is the assembly map

Hom(X , Y )⊗Z −→Hom(X , Y ⊗Z ).

Example 4.1.31. In Modk these operations are the obvious ones on the modules Homk (X , Y ),
and similarly for Top these are the obvious operations on the mapping spaces Map(X , Y ).

Lemma 4.1.32. Suppose C is a symmetric monoidal category satisfying the assumptions
of Lemma 4.1.7. Suppose in addition there is a full subcategory B⊆C such that

• Hom preserves weak equivalences on Aop×B,

• if X ∈A and Y ∈B then Hom(X , Y ) ∈B,

• there is a functor R : C→C landing in B, and

• there is a natural weak equivalence r : X
∼→R X .

Then the right-derived homRHom(X , Y ) =Hom(Q X , RY )makes the homotopy category
Ho C into a closed symmetric monoidal category.

For instance, these conditions are satisfied in (Top∗,∧,S 0) and (Ch≥0(Z),⊗,Z[0]), where B
is the entire category.

Proof. We only have to show that for each X separately, RHom(X ,−) is a right adjoint
to X ⊗L (−). This follows from Proposition 3.4.20 applied to the functors Q X ⊗ (−) and
Hom(Q X ,−).

Example 4.1.33. This makes the derived category of chain complexes D(k )≥0 or D(k )
into a closed symmetric monoidal category. The tensor product is computed by taking
projective resolutions and tensoring, exactly the kind of manipulation that computes
Tor groups. The internal hom takes projective resolution of the source and then takes
the chain complex of maps, exactly the kind of manipulation that computes Ext groups.

Example 4.1.34 (Smash product as a black box, part 3). Continuing from Example 4.1.9
and Example 4.1.27, we assert that



4.2. DUALITY AND THE SPANIER-WHITEHEAD CATEGORY 205

• Sp has an internal hom called the function spectrum F (X , Y ). So maps X →
F (Y , Z ) correspond to maps X ∧ Y → Z , and we have natural isomorphisms of
spectra (not just equivalences!)

F (X ∧Y , Z )∼= F (X , F (Y , Z )), F (S, X )∼= X .

• More generally, for any based space K , it follows from the isomorphism (Σ∞K )∧
X ∼= K ∧X that functions out of a suspension spectrum are the same thing as the
cotensor from Definition 2.3.8:

F (Σ∞K , X )∼= F (K , X ).

• The conditions of Lemma 4.1.32 are satisfied, with B the subcategory ofΩ-spectra.
So we have a right-derived function spectrum

RF (X , Y ) = F (Q X , RY ),

where R is any replacement by anΩ-spectrum, such as the one in Proposition 2.2.9.

It follows from Lemma 4.1.32 that the stable homotopy category Ho Sp is closed sym-
metric monoidal. So there are natural bijections

[X ∧L Y , Z ]s ∼= [X ,RF (Y , Z )]s . (4.1.35)

The reader might want to verify that this is consistent with the isomorphisms we got in
(3.4.22) when K is a based space:

[X ,RF (K , Y )]s ∼= [K ∧L X , Y ]s ∼= [K ,RMap∗(X , Y )]∗.

It also follows with a good deal of additional work (exercise 23) that if X → Y → Z is a
cofiber/fiber sequence and W is a spectrum, then we have cofiber/fiber sequences

RF (Z , W )→RF (Y , W )→RF (X , W ), RF (W , X )→RF (W , Y )→RF (W , Z ).

4.2 Duality and the Spanier-Whitehead category

In each symmetric monoidal category C there is a class of especially well-behaved ob-
jects called the dualizable objects. Intuitively, these are the objects that are “finite enough.”

Dualizable objects have many nice properties, for instance the assembly map

Hom(X , Y )⊗Z −→Hom(X , Y ⊗Z )
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is an isomorphism if either X or Z is dualizable, and the “double dual” map

X −→Hom(Hom(X , I ), I )

is an isomorphism if X is dualizable. Setting X ∗ =Hom(X , I ), we therefore have

X ∗ =Hom(X , I ), X ∼=Hom(X ∗, I ).

Dualizability makes several more manipulations possible. For instance, every map X →
Y induces a dual map Y ∗→ X ∗ going the other way. Any self-map of a dualizable object
X has a “trace” that is a morphism I → I .

Because dualizable objects are simpler than general objects, it’s also sometimes easier
to define the subcategory of C on the dualizable objects. This is especially true for the
homotopy category of spectra Ho Sp – the subcategory of dualizable objects was first de-
fined by Spanier and Whitehead in the 1950s, before the smash product was defined on
the larger category Ho Sp by Boardman and Adams, and long before the smash product
was defined on Sp by Hovey-Shipley-Smith and Elmendorff-Kriz-Mandell-May in the
1990s.

4.2.1 Duality in a symmetric monoidal category

Definition 4.2.1. Let (C,⊗, I ) be a symmetric monoidal category. An object X is dualiz-
able if the functor X ⊗ (−) has a right adoint of the form X ∗⊗ (−).

In other words, X is dualizable if there exists a dual object X ∗, and evaluation and co-
evaluation maps

e : X ⊗X ∗ −→ I , c : I −→ X ∗⊗X ,

such that the following two composites are identity maps:

X ∼= X ⊗ I 1⊗c // X ⊗X ∗⊗X e⊗1 // I ⊗X ∼= X

X ∗ ∼= I ⊗X ∗ c⊗1 // X ∗⊗X ⊗X ∗ 1⊗e // X ∗⊗ I ∼= X ∗

(4.2.2)

The conditions in (4.2.2) are called the triangle identitites for c and e .

Example 4.2.3. In k -vector spaces C=Vectk , a vector space V is dualizable iff it is finite-
dimensional. Its dual V ∗ =Homk (V , k ) is the usual k -linear dual.

The evaluation map V ⊗ V ∗ → k is the usual map that plugs a vector v into a linear
functional f (−) to get a scalar f (v ).

The coevaluation map k → V ∗⊗V is the map that sends 1 to the sum
∑

i e ∗i ⊗ ei , where
{e1, . . . , en} is any basis for V . Along the isomorphism V ∗⊗V ∼=Homk (V , V ), this corre-
sponds to the identity transformation V →V .
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The previous example is typical.

Proposition 4.2.4. In any closed symmetric monoidal category C, the dual of X , if it exists,
must be the mapping object to the unit,

D X =Hom(X , I ).

Proof. The dual X ∗ is defined so that X ∗⊗− is the right adjoint of X ⊗−. But right adjoints
are unique up to isomorphism, and we already have a right adjoint Hom(X ,−). So the
two adjoints must be isomorphic:

X ∗⊗Y ∼=Hom(X , Y ).

Plugging in Y = I gives X ∗ ∼=Hom(X , I ).

Definition 4.2.5. In any closed symmetric monoidal category C, we call D X =Hom(X , I )
the functional dual of X . It always exists, but it only satisfies the properties of the dual
if X is dualizable.

Example 4.2.6. If V is an infinite-dimensional vector space, it has a functional dual
DV =Homk (V , k ), but D (DV ) is not canonically isomorphic to V again.

Proposition 4.2.7. If X is an object in a closed symmetric monoidal category C, the fol-
lowing are equivalent:

1. X is dualizable.

2. The assembly map D X ⊗X −→Hom(X , X ) is an isomorphism.

3. The assembly map D X ⊗Y −→Hom(X , Y ) is an isomorphism for all Y .

Proof. (1)⇒ (3) If X is dualizable, the operation Hom(X ,−) is naturally isomorphic to
D X ⊗ (−). The assembly map is exactly this isomorphism, so it is an isomorphism for all
Y .

(3)⇒ (2) Obvious.

(2)⇒ (1) We define the coevaluation map c to be the composite

I id // Hom(X , X )∼=D X ⊗X

and the evaluation map e to be the map

X ⊗D X ∼=Hom(I , X )⊗Hom(X , I ) ◦ // Hom(I , I )∼= I .

It is then an exercise to verify the triangle identities for c and e .
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Example 4.2.8. In vector spaces C = (Vectk ,⊗k , k ), the map DV ⊗k V → Homk (V , V )
is injective, and its image is the endomorphisms of finite rank. It is an isomorphism
iff V is finite-dimensional. Hence by Proposition 4.2.7, V is dualizable iff it is finite-
dimensional.

Example 4.2.9. If k is instead a commutative ring and C = Modk is the category of k -
modules with tensor product ⊗k , a k -module M is dualizable iff it is finitely generated
and projective over k .

Indeed, assume that M is dualizable. Then Homk (M ,−)∼=D M ⊗k (−) is right-exact, and
hence M is projective. Since D M ⊗k M → Homk (M , M ) is an isomorphism, it hits the
identity map of M , expressing this identity map as a finite sum of maps, each of which
has image in the span of a single element of M . It follows that M is finitely generated.

Conversely, if M is finitely generated and projective then it is a retract of k⊕n . We can
show the assembly map D M ⊗k M → Homk (M , M ) is a retract of the same assembly
map for k⊕n , and is therefore an isomorphism.

Example 4.2.10. Passing the previous example to bounded or unbounded chain com-
plexes C=Chk , a chain complex is dualizable iff it is bounded (only finitely many nonzero
terms) and finitely generated projective in each degree. Note that the internal hom is
given by the product

Map(A∗, B∗)n =
∏

k

HomR (An , Bn+k )

with boundary map
∂Map(A,B )( f ) = ∂B ◦ f − (−1)| f | f ◦ ∂A,

so that
(D A)n =Map(A, R )n =Hom(A−n , R ).

Essentially, the dual flips the chain complex over and dualizes each level separately.

If we pass to the homotopy category D(k ) =Ho Chk , a chain complex is dualizable iff it
is perfect, meaning that it is quasi-isomorphic to a bounded complex of finitely gener-
ated projective modules. The dual is computed by making the complex into a bounded
complex of finitely generated projective modules and then doing the above procedure.

Example 4.2.11 (Smash product as a black box, part 4). We add to our black box the
claim that a spectrum is dualizable if and only if it is stably equivalent to a finite spec-
trum. That is, a spectrum with finitely many stable cells.

4.2.2 The Spanier-Whitehead category

It’s much easier to define the smash product on the subcategory of dualizable spectra in
Ho Sp than the entire category. It builds intuition for what happens in general, so let’s
start there first.
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Recall from Remark 3.2.14 that the Spanier-Whitehead category is the full subcategory
Ho Spfin ⊆Ho Sp on the finite spectra. A finite spectrum is one that has finitely many sta-
ble cells – equivalently, it is a shift of a suspension spectrumΣ∞A of a finite CW complex
A. See Section 2.7, exercise 41.

So, we can describe the Spanier-Whitehead category as having an object (A, k ) for every
finite based CW complex A and integer k ∈Z. This corresponds to the spectrum

shk Σ∞A ∼=







F0Σ
k A when k ≥ 0,

F|k |A when k ≤ 0.

In particular, (S 0, k ) corresponds to the shifted sphere spectrum Sk = shk S.

By Corollary 3.2.13, the morphisms are computed as a colimit of homotopy classes of
based maps,

colim
n→∞

[Σk+n A,Σℓ+n B ]∗.

Here the colimit system is defined as soon as n is large enough that both k +n and ℓ+n
are nonnegative. When k = ℓ, it is classical to refer to this colimit as {A, B }, the abelian
group of “stable maps” from the CW complex A to the CW complex B . Collecting this all
together:

Proposition 4.2.12. The Spanier-Whitehead category Ho Spfin is equivalent to the cat-
egory whose objects are pairs (A, k ) with A a finite based CW complex and k ∈ Z. The
morphisms from (A, k ) to (B ,ℓ) are the colimit

colim
n→∞

[Σk+n A,Σℓ+n B ]∗

Definition 4.2.13. We define the symmetric monoidal structure on Ho Spfin by taking
smash product of the CW complexes and adding the integers:

(A, k )∧ (C , m ) := (A ∧C , k +m ).

This extends to the morphisms by taking each pair of maps

f : Σk+n1 A −→Σℓ+n1 B , g : Σm+n2 C −→Σ j+n2 D

to the map

Σk+m+n1+n2 A ∧C
∼= (−1)mn1

��

Σℓ+ j+n1+n2 B ∧DOO

∼= (−1) j n1

Σk+n1 A ∧Σm+n2 C
f ∧g

// Σℓ+n1 B ∧Σ j+n2 D

The minus signs indicate that we should apply a map of the specified degree to the
sphere S k+m+n1+n2 or S ℓ+ j+n1+n2 . This follows the Koszul sign rule, and guarantees that
this rule is independent of the choice of n1 and n2. See exercise 24.
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We define the associativity and unit isomorphisms

((A, k )∧ (B ,ℓ))∧ (C , m )∼= (A, k )∧ ((B ,ℓ)∧ (C , m )), (A, k )∧ (S 0, 0)∼= (A, k )

in the obvious way. For the symmetry isomorphism (A, k )∧ (C , m ) ∼= (C , m )∧ (A, k ), we
use another Koszul sign rule

Σk+m A ∧C ∼=

(−1)k m
// Σm+k C ∧A.

Proposition 4.2.14. This defines a symmetric monoidal structure on the Spanier-Whitehead
category Ho Spfin.

Proof. It is a straightforward exercise to check that the isomorphisms we defined are
natural, meaning they commute with the morphisms in the category, see exercise 25.
The diagrams above Theorem 4.1.4 all commute because the signs we introduce are the
signs of permutations for the sphere coordinates, and when we go around each diagram,
the composite permutation is the identity, so the product of the signs is +1.

It is a consequence of Theorem 3.2.5 that the Spanier-Whitehead category is additive:
the morphisms (A, k ) → (B ,ℓ) are abelian groups, there is a zero object, and finite co-
products and products exist and are isomorphic to each other. It follows from exer-
cise 5 that the smash product distributes over the sums of maps, so that f ∧ (g1 + g2) =
( f ∧ g1) + ( f ∧ g2).

Lemma 4.2.15. Dualization commutes with finite sums and shifts:

D (X ∨Y )≃D X ∨DY , D (Σk X ) =Σ−k D X .

This is left to exercise 26. As a special case, the dual of the n-sphere is the (−n )-sphere:

D (Sn ) =D (S 0, n )∼= (S 0,−n ) = S−n .

It turns out that much more is true: every finite spectrum is dualizable.

Proposition 4.2.16 (Spanier-Whitehead duality). Every object (A, k ) in the Spanier-Whitehead
category is dualizable.

Intuitively, the dual of a finite cellular spectrum X is a spectrum D X with a stable (−k )-
cell for every stable k -cell of X . To give a more specific construction in the Spanier-
Whitehead category, the dual of (A, k ) is computed by embedding A into a sphere S n+1,
letting B be a finite CW complex equivalent to the complement S n+1 \A, and taking the
dual to be (B , n − k ). The proof of Proposition 4.2.16 is pleasantly geometric, but goes
outside the scope of our immediate focus, so it will be deferred to ??.
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Corollary 4.2.17. The Spanier-Whitehead category is closed symmetric monoidal – there
is an internal hom that is right adjoint to the smash product.

Proof. If X and Y are objects of the Spanier-Whitehead category and X ∗ is the dual of X ,
we define Hom(X , Y ) to be X ∗∧Y . It is then immediate that Hom(X ,−) is a right adjoint
to X ∧− as required.

In the special case that A =M+ where M is a closed smooth manifold, if we embed M+

into S n and take its complement B , the suspension of B becomes identified with N /∂ N ,
a tubular neighborhood of M inRn modulo its boundary. This result is commonly called
Atiyah duality.

Theorem 4.2.18 (Atiyah duality). If M is a closed smooth manifold, then the dual of
(M+, 0) in the Spanier-Whitehead category is (N /∂ N ,−n ), for N any tubular neighbor-
hood of a smooth embedding M →Rn .

Example 4.2.19. If M = S 1, we can embed it into R2 in the standard way, and its neigh-
borhood N is an annulus. It is easy to see that N /∂ N is homotopy equivalent to S 1∨S 2.
We therefore get a duality

D (S 1
+, 0)≃ (S 1 ∨S 2,−2).

This could have also been calculated directly. By Section 2.7, exercise 33, we have an
isomorphism in the Spanier-Whitehead category

(S 1
+, 0)∼= S1 ∨S0

where Sk = (S 0, k ) is the shifted sphere spectrum. Therefore by Lemma 4.2.15,

D (S 1
+, 0)∼=D (S1 ∨S0)∼= S−1 ∨S0 ∼= (S 1 ∨S 2,−2).

4.2.3 Consequences of duality

Let us now return to the larger stable homotopy category Ho Sp. Recall that in Exam-
ple 4.1.9, Example 4.1.27, Example 4.1.34, and Example 4.2.11 we gave some black-boxed
properties of the smash product on this larger category. In particular, Ho Sp is a closed
symmetric monoidal category, under the left-derived smash product X ∧LY =Q X ∧QY
and right-derived function spectrumRF (X , Y ) = F (Q X , RY ), and a spectrum is dualiz-
able if and only if it is finite.

Lemma 4.2.20. If X is a finite (dualizable) spectrum, then the homology of D X is iso-
morphic to the cohomology of X ,

Eq (D X )∼= E −q (X ).
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Proof. The left-hand side is defined to be [Sq , D X ∧L E ]s , maps in the stable category
from Sq to the left-derived smash product D X ∧L E . Since D X ∧L (−) is the right adjoint
of X ∧L (−), by uniqueness of right adjoints, we must have

[Sq , D X ∧L E ]s ∼= [Sq ,RF (X , E )]s
∼= [Sq ∧L X , E ]s
∼= [shq X , E ]s
∼= E −q (X ).

The second-to-last isomorphism uses exercise 18.

Of course, since D X is also dualizable and D D X ≃ X , we also get

E q (D X )∼= E−q (X ).

We can now use this observation to give the stable-homotopy proof of Poincaré duality.

Theorem 4.2.21 (Poincaré duality, cf. Theorem 1.3.18). If M is a closed smooth d -dimensional
manifold, there is an isomorphism

H i (M ;Z)∼=Hd−i (M ; eZ)

where eZ is the local coefficient system whose fiber is Z and that twists according to the
orientation of M . In case M is orientable, this simplifies to

H i (M ;Z)∼=Hd−i (M ;Z).

In the general, non-orientable case we also get isomorphism with Z/2 coefficients

H i (M ;Z/2)∼=Hd−i (M ;Z/2).

Proof. By Lemma 4.2.20, the cohomology of M is the homology of its Spanier-Whitehead
dual:

H i (M ;Z)∼=H−i (D M ;Z).

By Theorem 4.2.18, this Spanier-Whitehead dual is a shift of N /∂ N , where N is a tubular
neighborhood of M in Rn :

H−i (D M ;Z)∼=Hn−i (N /∂ N ;Z).

The space N /∂ N can be identified with the Thom space Th(ν) of the normal bundle ν
of M inRn , which has dimension (n −d ). By the Thom isomorphism of Example 2.6.38,
if this bundle is orientable then

Hn−i (N /∂ N ;Z)∼=Hn−i (Th(ν);Z)∼=Hd−i (M ;Z),
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and more generally it gives Hd−i (M ; eZ)where eZ twists according to the orientation of the
normal bundle of M . This is the same as the orientation of the tangent bundle of M ,
and the conclusion follows. The isomorphism with Z/2 coefficients follows in the same
way.

This proof has the advantage that it generalizes to coefficients in any extraordinary ho-
mology theory E . We say that the normal bundle of M →Rn is E -orientable if there is
an isomorphism

E(n−d )+q (Th(ν))∼= Eq (M ).4

Theorem 4.2.22. If the normal bundle of M is E -orientable,

E i (M )∼= Ed−i (M ).

The proof is the same as that of Theorem 4.2.21.

We can also now give the proof of Theorem 2.5.13:

Theorem 4.2.23 (Whitehead representability). If h∗ is any extraordinary homology the-
ory then there is a spectrum E and a natural isomorphism of homology theories E∗ ∼= h∗,
where E∗ is defined as in Proposition 2.5.7. Furthermore E is unique up to stable equiva-
lence.

Proof. Given an extraordinary homology theory h∗, define

h n (X ) := h−n (F (X ,S)).

This is a cohomology theory on finite spaces, not all spaces, because h∗ doesn’t take
products to products. By Theorem 2.5.26, this is represented by a (unique) spectrum E .
Then we get for finite spaces

hn (X )∼= hn (D D X )
∼= h−n (D X )

= [S n ,RF (D X , E )]
∼= [S n , D D X ∧L E ]
∼= [S n , X ∧L E ]
∼= En (X ).

These isomorphisms are natural in the finite CW complex X , so h∗ ∼= E∗ on all finite CW
complexes. By the direct limit axiom (Remark 2.5.6), we therefore get h∗ ∼= E∗ on the
larger category of all CW complexes.

4Actually, the definition of orientability should be a little stricter than this – it should say that the bun-
dle ν looks trivial after taking a smash product with E . We would need parametrized spectra to state
this precisely, see [ABG+14]. In the end, this gives the same isomorphism that we want on the homology
E∗(Th(ν)).
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4.2.4 Traces

Definition 4.2.24. Let (C,⊗, I ) be a symmetric monoidal category. Let X be any dualiz-
able object, with coevaluation and evaluation maps c and e as in Definition 4.2.1, and
f : X → X any endomorphism of X . The trace of f is the map tr ( f ): I → I given by the
composite

I c // X ∗⊗X
1⊗ f
// X ∗⊗X oo

∼= // X ⊗X ∗ e // I . (4.2.25)

The Euler characteristic χ(X ): I → I is the trace of the identity map of X .

Example 4.2.26. In k -vector spaces C=Vectk , the trace of a map f : V →V is a k -linear
map k → k , which we can interpret simply as an element of k . Under this interpreta-
tion, tr ( f ) ∈ k is exactly the usual definition of trace, the sum of the diagonal entries of
any matrix that represents f . The Euler characteristic of V is its dimension dim V ∈ Z,
mapped forward to k .

Example 4.2.27. Suppose C =Modk is the category of modules over the commutative
ring k . By Example 4.2.9, a module M is dualizable iff it is finitely generated and projec-
tive, so we have M ⊕N ∼= k n for some other module N .

If f : M →M is a k -linear map, its trace is computed by forming the map ( f , 0): k n → k n

that is f on M and 0 on N . Then we take the matrix for ( f , 0) in any basis of k n and add
up its diagonal entries. The result does not depend on n , N , or the choice of basis!

In particular, the Euler characteristic of M is the trace of the idempotent map k n → k n

that projects to M and includes back into k n . This trace is the “dimension” of M , but it
is not always an integer!

Example 4.2.28. Suppose C = Chk is unbounded chain complexes over k . If C . is a
bounded complex of finitely generated projective modules and f : C .→C . is a self-map,
its trace is the alternating sum

tr ( f ) =
∑

n

(−1)n tr ( fn : Cn →Cn ),

where the trace of fn is computed as in the previous exercise. This expression comes
from writing out (4.2.25) explicitly. The Koszul sign rule in the definition of γ: X ⊗ Y ∼=
Y ⊗X is responsible for the presence of signs here. See exercise 27.

In particular, the Euler characteristic of C . is the alternating sum of the ranks of its levels.
If C . is the cellular chain complex of some finite CW complex X , this agrees with the
Euler characteristic χ(X ).

Example 4.2.29. Suppose C=Ho Chk is the derived category. Then the trace of a map is
computed as in Example 4.2.28, only we change C . up to quasi-isomorphism first into a
bounded complex of finitely generated projective modules.
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Remark 4.2.30. If k is a principal ideal domain (PID), it is a theorem in algebra that the
trace of a map of complexes f : C .→C . is also computed as the alternating sum of traces
on homology,

tr ( f ) =
∑

n

(−1)n tr ( fn : Hn (C .)→Hn (C .))

For chain complexes over Z, we can further pass toQ when computing this trace with-
out changing the answer. This captures the familiar theorem that the Euler characteris-
tic of a space χ(X ) is the alternating sum of the ranks of the rational homology groups
Hn (X ;Q).

Example 4.2.31. If X is a finite CW complex and f : X → X is a self-map, the trace of
C .( f ): C .(X )→C .(X ) is equal to the alternating sum of traces on rational homology

L ( f ) =
∑

n

(−1)n tr ( fn : Hn (X ;Q)→Hn (X ;Q)),

and is always an integer. We call this number the Lefschetz number of f .

It is a theorem of Lefschetz and Hopf that this number equals the number of fixed points
of f , added together with appropriate weights. In particular, if there are no fixed points,
the number must vanish:

Theorem 4.2.32 (Lefschetz Fixed Point Theorem). If f : X → X is a self-map of a finite
CW complex, with no fixed points, then L ( f ) = 0.

Equivalently, if L ( f ) ̸= 0 then f must have a fixed point. This is an important classical
theorem in topology that greatly generalizes the Brouwer fixed point theorem (any self-
map of D n must have a fixed point).

Example 4.2.33. If X is a finite CW complex then its suspension spectrum Σ∞+ X is a
finite spectrum, and is therefore dualizable in the stable homotopy category Ho Sp. If
f : X → X is a self-map, the trace of Σ∞+ f : Σ∞+ X → Σ∞+ X in the stable homotopy cate-
gory is a zig-zag S→ S, equivalently, an integer tr ( f ) ∈ Z ∼= [S,S]s . The integer we get is
exactly the Lefschetz number L ( f ) – see exercise 28.

For much more information about traces in symmetric monoidal categories, see [PS14],
or [DP80] for a more classical reference.

4.3 Exercises

1. We define the tensor product of two chain complexes A⊗B by the formula

(A⊗B )n =
⊕

i+ j=n

Ai ⊗B j , d (a ⊗ b ) = (d a )⊗ b + (−1)|a |a ⊗ (d b ).
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The differential is defined as above on each homogeneous piece Ai⊗B j . It extends
uniquely to (A⊗B )n since it is a homomorphism.

Note that the differential resembles the Leibniz rule from calculus, but with a sign
that’s introduced when we “switch d past a ,” consistent with the Koszul sign rule.

(a) Verify that this is indeed a chain complex. Explain what would go wrong with-
out the (−1)|a | term.

(b) Define a symmetry isomorphism γ: A⊗B → B ⊗A by

γ(a ⊗ b ) = (−1)|a ||b |(b ⊗a ).

Verify that this is indeed a map of chain complexes, commuting with the dif-
ferential. Again, explain what would happen without the (−1)|a |||b | term.

2. We say a symmetric monoidal category C is cartesian monoidal if its symmetric
monoidal structure uses the categorical product×. Show that any category C with
finite products is cartesian monoidal. (Note that we are also assuming that the
empty product exists, i.e. the terminal object ∗ ∈C.)

3. Dualize the previous exercise to cocartesian monoidal categories, in which the
structure uses the coproduct ⨿.

4. Use Lemma 4.1.7 to show that the stable homotopy category Ho Sp is a symmetric
monoidal category under the left-derived wedge sum ∨L. Then explain how we
could get this more easily from the previous exercise and Proposition 3.2.2.

(This is not the symmetric monoidal structure on spectra that comes from the
smash product ∧. This one is additive, the other one is multiplicative.)

5. Recall from Theorem 3.2.5 that an additive category C is one in which

• the sets C(X , Y ) are abelian groups,

• the composition maps C(X , Y )×C(Y , Z )→C(X , Z ) are bilinear,

• C has all finite coproducts and products, and a zero object ∗, and

• the canonical map X ⨿Y → X ×Y is an isomorphism.

In such a category we let⊕ refer to the coproduct. An additive symmetric monoidal
category is a category C that is both additive and symmetric monoidal, whose
symmetric monoidal structure ⊗ preserves finite coproducts in each slot.

Prove that in any such category, the tensor ⊗ induces bilinear maps

C(X , Y )×C(W , Z )−→C(X ⊗W , Y ⊗Z ).

(You might want to use the definition of the addition in C(X , Y ) given in the proof
of Theorem 3.2.5.)
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6. In this exercise we prove that there is no natural transformation in the stable ho-
motopy category

X
η
// X ∧X

that on suspension spectra agrees with the diagonal map

Σ∞K ∆ // Σ∞(K ∧K ) ∼= (Σ∞K )∧ (Σ∞K ).

Suppose there were such a transformation η. Let 2: S→ S be the map that is two
times the identity. Use exercise 5 to argue that the map 2∧ 2: S∧S→ S∧S is iso-
morphic to 4: S→ S. If η is natural, it induces a commuting square

S
η

��

2 // S
η

��

S∧S 4 // S∧S.

Derive a contradiction from this.

7. Suppose that E is a ring spectrum. Show that the cohomology of any space X in-
herits a “cup product” by taking any two maps in the stable homotopy category

Σ∞X
f
// Σm E , Σ∞X

g
// Σn E

to the composite

Σ∞X ∆ // Σ∞(X ∧X ) ∼= (Σ∞X )∧ (Σ∞X )
f ∧g
// Σm E ∧Σn E

µ
// Σm+n E .

The cohomology of a spectrum X does not have such a cup product – why?

8. Suppose C is a symmetric monoidal category under its coproduct ⨿.

• Show that every object X of C is a monoid object (with respect to ⨿) in a
canonical way.

• For each pair of objects X and Y , show that the structure of an X -module on
Y (with respect to ⨿) is the same thing as a morphism X → Y .

This is why we only consider ring and module objects in the more “multiplicative”
examples.

9. Suppose C is a cartesian monoidal category, in other words a symmetric monoidal
category but the product is the categorical product ×. We say that G is a group
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object in C if it is a monoid and it also has an inversion map i : G → G such that
the following diagram commutes:

G

��

(i ,1) or (1,i )
// G ×G

µ

��

∗
η

// G .

Informally, this means that g g −1 = 1= g −1g .

• Identify the group objects in Set, Top, and the category Diff of smooth man-
ifolds and smooth maps.

• Explain why this definition doesn’t make sense in a general symmetric monoidal
category C. (Instead it gets replaced with the notion of a “Hopf algebra.”)

10. Let (C,⊗, I ) be any symmetric monoidal category.

(a) Prove that the unit object I is always a commutative monoid in C. As a result,
the sphere spectrum Smust be a commutative ring spectrum.

(b) Prove that every object X ∈ C is an I -module in a canonical way. Therefore,
every spectrum is a S-module in a canonical way.

11. Let (C,⊗, I ) be any symmetric monoidal category. Define the correct notion of a
map of monoids R → S in C. When you are done, compare your definition against
Definition 6.2.32. (No peeking!)

12. Suppose (F ⊣G ) is an adjoint pair of functors. Show that maps

F (X ⊗Y )→ F (X )⊗ F (Y )

correspond to maps
G (X )⊗G (Y )→G (X ⊗Y ),

and that maps F (I )→ I correspond to maps I →G (I ). It turns out that one set of
maps is coherent iff the other is. So, G is lax symmetric monoidal iff F is “oplax”
symmetric monoidal. In practice, when this happens, usually F is strong symmet-
ric monoidal.

13. Suppose (C,⊗, I ) is a symmetric monoidal category and ⊗′ is another functor C×
C→C that is naturally isomorphic to⊗. Explain how there is a canonical symmet-
ric monoidal structure on C that uses ⊗′ instead of ⊗.

14. Suppose (F,G ) is an equivalence of categories C ≃ D. Show that if (C,⊗, I ) is a
symmetric monoidal category, we can define a symmetric monoidal structure on
D by

X ⊗D Y := F (G (X )⊗C G (Y )).
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What is the unit object?

15. Finish the proof of Proposition 4.1.23 by showing that the diagrams in Definition 4.1.11
commute for F (R ) if they commuted for R .

16. Suppose F : C→D and G : D→ E are both lax monoidal functors. Explain why the
composite G ◦ F : C→E is also a lax monoidal functor.

17. Prove that in any closed symmetric monoidal category C, we have isomorphisms

Hom(I , X )∼= X , Hom(X ⊗Y , Z )∼=Hom(X , Hom(Y , Z )).

(Hint: Use the Yoneda Lemma. If C(−, A) and C(−, B ) are isomorphic as functors
then necessarily A ∼= B .)

18. Using the claimed properties in Example 4.1.9, prove that for any integer d ∈Z, the
derived smash product Sd ∧L X is equivalent to the shift shd X . You might want to
prove this for nonnegative d first, where shd X ≃ Σd X , and then use the unique-
ness of adjoints to argue the result for negative d .

19. Using the claimed properties in Example 4.1.9, prove that the smash product pre-
serves wedge sums, homotopy pushouts, and mapping telescopes in each vari-
able.

20. Using the claimed properties in Example 4.1.9, prove that the smash product of
cellular spectra is a cellular spectrum, as illustrated at the beginning of Chapter 4.

21. Using the claimed properties in Example 4.1.9, prove that for any cofiber/fiber se-
quence X → Y → Z and spectrum W , the derived smash products

W ∧L X →W ∧L Y →W ∧L Z

form a cofiber/fiber sequence as well.

22. Using exercise 18 and the claimed properties in Example 4.1.34, prove that for any
integer d ∈ Z, the derived mapping space RF (Sd , X ) is equivalent to the negative
shift sh−d X .

23. In this exercise we use the claimed properties of the function spectrum in Ex-
ample 4.1.34 to show that the function spectrum preserves cofiber and fiber se-
quences in each slot.

(a) Using that right adjoints preserve limits (Theorem 1.6.9), prove that the func-
tion spectrum F sends colimits in the first slot, or limits in the second slot, to
limits.
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(b) For a map of spectra f : X → Y with homotopy cofiber C f and homotopy
fiber F f , prove that F (C f , W ) is the homotopy fiber of F ( f , W ), and that
F (W , F f ) is the homotopy fiber of F (W , f ).

(c) Prove that for any cofiber/fiber sequence X → Y → Z and spectrum W , the
derived maps into W

RF (Z , W )→RF (Y , W )→RF (X , W )

and derived maps out of W

RF (W , X )→RF (W , Y )→RF (W , Z )

form cofiber/fiber sequences as well.

24. Show that the rule for the smash product of two morphisms in Definition 4.2.13 is
independent of n1 and n2, so that it gives a well-defined map

colim
n1→∞

[Σk+n1 A,Σℓ+n1 C ]∗×colim
n2→∞

[Σm+n2 B ,Σ j+n2 D ]∗ −→ colim
n→∞

[Σk+m+n A∧C ,Σℓ+ j+n B∧D ]∗.

25. Prove that the map (A, k )∧(C , m )∼= (C , m )∧(A, k ) from Definition 4.2.13 is natural,
i.e. every diagram of the following form commutes:

(A, k )∧ (C , m )
f ∧g

//

∼=
��

(B ,ℓ)∧ (D , j )

∼=
��

(C , m )∧ (A, k )
g∧ f

// (D , j )∧ (B ,ℓ)

Optionally, do the same for the associativity and unit isomorphisms.

26. Prove Lemma 4.2.15. Essentially, you just have to check that sums and shifts can
be pulled through the definition of dual pair from Definition 4.2.1.

27. Verify Example 4.2.28 by checking that the trace of a self-map of a complex is the
alternating sum of traces on each level.

28. (a) Prove that a strong symmetric monoidal functor F : C→D preserves dualiz-
able objects: if X is dualizable in C then F (X ) is dualizable in D.

(b) Prove that F also preserves traces: along the isomorphism ID
∼= F (IC), the

map F (tr ( f )) agrees with the map tr (F ( f )), for any self-map f : X → X .

(c) The rational homology functor H∗(−;Q): Ho Sp→GrModk is strong symmet-
ric monoidal. Use this to show that the trace of a finite complex in the stable
homotopy category Ho Sp agrees with the Lefschetz number L ( f ).



Chapter 5

Spectra as a model category

What do spaces and spectra have in common? They are both categories with weak equiv-
alences, so we can form a homotopy category Ho C, and talk about derived functors, as
in Chapter 3.

There is another thing in common – they both have a notion of a “cell complex.” A cell
complex of spaces is built by taking successive pushouts along maps of the form S n−1→
D n . A cell complex of spectra is built in the same way from maps of the form FnS k−1

+ →
Fn D k

+ .

There is a third thing that they have in common – they both have a notion of “fibrant
object.” A fibrant topological space is... just a topological space. In other words, every
space is fibrant. A fibrant spectrum, on the other hand, is an Ω-spectrum.

Finally, in both settings, maps in the homotopy category Ho C(X , Y ) are the same thing
as homotopy classes of maps X → Y , if X is a cell complex and Y is fibrant. So the cell
complexes and the fibrant objects are the “nice” objects, for the purpose of counting
maps in the homotopy category.

In this chapter, we introduce a formal framework that generalizes this: cofibrantly gen-
erated model categories. A model category is a category with three classes of maps,
cofibrations, weak equivalences, and fibrations, that satisfy a few axioms. A cofibrantly
generated model category also has a notion of “cell complex.” The cofibrations are the
maps that are retracts of cell complexes, and the fibrations are the maps that have a lift-
ing property along a certain class of cell complexes.

Why do we need this terminology? Soon, we will introduce two new kinds of spectra
called symmetric spectra and orthogonal spectra. We sometimes refer to both of these
as “diagram spectra.”

In order to work with diagram spectra effectively, we have to build cell complexes of
diagram spectra, and show that they have the same behavior as cell complexes of ordi-

221
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nary (sequential) spectra. We also want to define the smash product of diagram spectra
X ∧Y , and prove that it preserves stable equivalences when X and Y are cellular diagram
spectra. Both of these tasks are difficult to do without model categories.

How do model categories help us? One of the big things they do is break up the weak
equivalences into “chunks.” So, we can prove that a functor like X ∧ Y preserves weak
equivalences by checking it on one chunk at a time. In topological spaces, the chunks
are maps of the form D n × {0} → D n × I . It is very easy to show that maps like this go
to weak equivalences. For spectra, the chunks are more complicated, because they also
involve the truncation maps of the form FnS n → F0S 0, which are stable equivalences.
Still, this is a powerful technique. As we already mentioned, it’s pretty difficult to do
diagram spectra without it.

5.1 Generalized cell complexes and fibrations

Our treatment of model categories will be somewhat backwards. We’ll start with the
definition of a “cell complex” in an arbitrary category C. Then we’ll show how to factor
every map in C into a cell complex, followed by a map that has a lifting property with
respect to cell complexes. This is the famous small-object argument. It was developed
by Quillen when he invented model categories, and it’s really the core idea that powers
the whole theory.

5.1.1 I -cell complexes and I -injective maps

Let C be any category. Assume that every diagram in C has a colimit.1 In particular, we’re
assuming that C has all coproducts, pushouts, and sequential colimits.

Let I be any set of maps in C. For example, I could be the set {S n−1 → D n}n≥0 in the
category Top. We think of the maps in I as the “cells” in C.

Definition 5.1.1. An I -cell complex is a sequential composition of pushouts of coprod-
ucts of maps in I . In other words, it is a composite

A = X (0) −→ X (1) −→ X (2) −→ . . .−→ X (n−1) −→ X (n ) −→ . . .−→ X = colim
n→∞

X (n ).

where X (n ) is obtained from X (n−1) by attaching a collection of cells Kα→ Lα from the set

1Recall from Section 1.1 that a diagram is defined to be a functor I→ C where I is a small category. In
other words, the objects and morphisms of I form a set, not a proper class.
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I :
∐

αKα //

��

∐

α Lα

��

X (n−1) // X (n ).

Example 5.1.2. • If C = Top and I = {S n−1→D n}n≥0, an I -cell complex is the same
thing as a relative cell complex in the usual sense (Definition 1.1.8).

• If C = Sp and I = {FnS k−1
+ → Fn D k

+ }n ,k≥0, an I -cell complex is the same thing as a
relative cellular spectrum (Definition 2.6.7 and Proposition 2.6.11).

• If C = Ch≥0(Z) is nonnegatively-graded chain complexes of abelian groups, and I
consists of all shifts of the map of chain complexes (0 → Z) → (Z → Z) (see Ex-
ample 5.2.10), then an I -cell complex in Ch≥0 is a map C• → D• such that each
Cn →Dn is injective, with quotient a free abelian group

⊕

Z.

• If C = Top and J = {D n × {0} → D n × I }n≥0, a J -cell complex is a map built by
successive elementary expansions. In other words, we select a collection of discs
in the space D n → A, extrude each one to form a cylinder D n × I , then repeat the
process countably many times, to get a larger space X . Clearly the inclusion A→ X
is both a relative cell complex and a weak equivalence.
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Remark 5.1.3. It is common to use a more general definition of cell complex that in-
volves transfinite compositions, see e.g. [Hov99, §2.1]. However, this extra generality is
not necessary for the examples we consider in this book. In fact, in the examples we
consider, cell complexes in the more general sense coincide with cell complexes in our
sense. So we are talking about the same cell complexes as everyone else.

The set I also determines a class of generalized “fibrations” in C – those maps that have
lifts along every map in I .

Definition 5.1.4. An I -injective map is a map p : X → Y such that, for any commuting
square

A
i
��

// X
p
��

B //

<<

Y

(5.1.5)

with i a map in I , a dashed lift exists, making both triangles commute. We call this con-
dition the right lifting property with respect to I .

Example 5.1.6. If C= Top and I = {S n−1→D n}n≥0, an I -injective map is a map of topo-
logical spaces X → Y such that every square

S n−1

��

// X
p
��

D n //

;;

Y

(5.1.7)

has a dashed lift. Clearly this implies that πn (Y , X ) = 0, so the map X → Y is a weak
equivalence. Furthermore, for any cell complex A → B , any commuting square of the
form (5.1.5) has a lift, by defining the lift inductively, one cell at a time. Therefore, in
particular, every square of the form

D n ×{0}

��

// X
p
��

D n × I //

99

Y

has a lift. In other words, X → Y is a Serre fibration as well.

Conversely, if X → Y is both a weak equivalence and a Serre fibration, then it is I -
injective. You show this by first showing that the square (5.1.7) has a lift up to homotopy,
then using the homotopy lifting property of the fibration to modify this to a strict lift.
(Section 1.7, exercise 19.)

In conclusion, the I -injective maps in Top are the maps that are both weak equivalences
and Serre fibrations. We call these maps the acyclic Serre fibrations.

Example 5.1.8. If C = Top and J = {D n × {0} → D n × I }n≥0, then by definition, a J -
injective map is the same thing as a Serre fibration.
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Example 5.1.9. If C = Sp and I = {FnS k−1
+ → Fn D k

+ }n ,k≥0, an I -injective map is a map of
spectra X → Y such that every square

FnS k−1
+

��

// X

p

��

Fn D k
+

//

;;

Y

has a dashed lift. Using the adjunction (Fn (−)+, evn )between spectra and unbased spaces,
this rearranges to finding a lift

S k−1

��

// Xn

pn

��

D k //

;;

Yn .

(5.1.10)

Therefore, X → Y is I -injective iff it is an acyclic Serre fibration (a weak equivalence and
a Serre fibration) at each spectrum level.

5.1.2 The small-object argument

Recall that C is a category with all (small) colimits, and I is any set of maps in C.

Definition 5.1.11. We say that I has the countable smallness condition if for each map
K → L in the set I , and each I -cell complex

X (0) −→ X (1) −→ . . . X (∞) = colim
n→∞

X (n ),

every map K → X (∞) factors through some X (n ).

For instance, the set I = {S n−1→D n}n≥0 in Top has the countable smallness condition,
because S n−1 is compact (see Section 1.7, exercise 23).

Theorem 5.1.12 (Small-object argument). Suppose I satisfies the countable smallness
condition. Then every map in C can be factored into an I -cell complex followed by an
I -injective map:

X
I -cell complex

// X (∞)
I -injective

// Y .

Furthermore, this factorization is functorial.

Proof. Let f : X → Y be any map. Define fn : X (n )→ Y for n ≥ 1 by induction on n . When
n = 0, we take X (0) = X and f0 = f . Given fn−1, take the set of all possible commuting
squares of the form

K

��

i // L

��

X (n−1) fn−1 // Y

(5.1.13)
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with i ∈ I . Note that I is assumed to be a set, not a proper class, so the collection of all
such squares forms a set as well.

Take the coproduct of all the maps i , one for each such square, and then define X (n ) by
taking the pushout of X (n−1) along this coproduct:

∐

αKα

��

iα //
∐

α Lα

�� !!

X (n−1)

fn−1

33// X (n )
fn // Y

(5.1.14)

Finally, let X (∞) = colim
n→∞

X (n ) and f∞ the induced map to Y .

We have now factored f into the I -cell com-
plex X → X (∞), followed by f∞, so it remains
to prove that f∞ is I -injective. Given any com-
muting square

K

i
��

// X (∞)<<

f∞
��

L // Y

(5.1.15)

with i ∈ I , by the countable smallness condi-
tion, the map K → X (∞) factors through some
finite stage X (n−1). By the construction of X (n ),
this map i is one of the maps we included in
the coproduct in (5.1.14), so we get a map L→
X (n ). Composing this with X (n ) → X (∞), gives
the dashed map making (5.1.15) commute.

The functoriality is a simple check – given a commuting square

X

ξ
��

f
// Y

υ

��

X ′
f ′
// Y ′,

composing with ξ and υ turns each of the squares in (5.1.13) to a corresponding square
for f ′. This gives a rule for how to map each X (n ) to (X ′)(n ), and therefore a map of their
colimits over n , commuting with everything else. This makes the factorization functo-
rial.

The small-object argument is amazing. It miraculously produces a factorization that has
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both a cell complex and a fibration, even though intuitively, such a factorization does not
seem possible. How could a complex built in this way possibly act like a fiber bundle?

The magic happens because we solved all possible lifting problems for X (∞) → Y , by
explicitly attaching a cell for every possible lifting problem. This doesn’t work if we only
do the cell attachments once, because for every lifting problem that we solve, many more
new lifting problems are created. But, if we perform this procedure countably many
times and take the colimit, every lifting problem that we create is solved at the next stage
of the construction. That is the miracle of the small-object argument.

Example 5.1.16. If C = Top and I = {S n−1→D n}n≥0, the small-object argument factors
every map X → Y into a cell complex followed by a map that is both a weak equivalence
and a Serre fibration:

X
cell complex

// X ′
weak equivalence

Serre fibration // Y .

This is surprising, and much stronger than Corollary 1.4.11.

Example 5.1.17. If C= Top and J = {D n ×{0}→D n × I }n≥0, the small-object argument
factors every map X → Y into a map that is both a cell complex and a weak equivalence,
followed by a Serre fibration:

X
cell complex

weak equivalence
// X ′ Serre fibration // Y .

Again, this is stronger than the construction that replaces the map E → B by the fibration
E ×B B I → B . The inclusion E → E ×B B I is a weak equivalence, but is not a cell complex
in general.

5.1.3 Quillen cofibrations

Definition 5.1.18. A map of spaces X → Y is a Quillen cofibration if it is a retract in the
arrow category Top{•→•} of a relative cell complex.

More generally, in any category C and set of maps I , an I -cofibration is any map that is
a retract of an I -cell complex.
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It is an exercise to show that, without
loss of generality, the cell complex has
the same domain X (exercise 4). So
X → Y is a Quillen cofibration if it is
a topological inclusion, Y sits inside a
larger space Z as a retract, and X → Z
is a relative cell complex.

It follows from Lemma 1.2.2 that every
Quillen cofibration is also a Hurewicz
cofibration, in other words a map with
the homotopy extension property.

Proposition 5.1.19. Suppose I satisfies Definition 5.1.11. Then a map A → B is an I -
cofibration iff it has the left lifting property with respect to every I -injective map. In other
words, there is a lift for every commuting square

A
i
��

// X
p
��

B //

<<

Y

in which p : X → Y is I -injective.

Proof. We first prove that every I -cofibration has this property. Clearly if the map A→ B
is actually in I , then the lift exists, by the definition of I -injective (Definition 5.1.4). By
exercise 6 below, the maps with the left lifting property are preserved by coproducts,
pushouts, sequential compositions, and retracts. Therefore every retract of an I -cell
complex has the left lifting property as well.

Conversely, suppose that f : A → B has the left lifting property. By the small object ar-
gument, f factors into an I -cell complex followed by an I -injective map. This allows us
to form the following square.

A

f

��

I -cell complex
// A′

I -injective

��

B

66

B

It follows that f is a retract of the I -cell complex A→ A′.

Corollary 5.1.20. I -cofibrations are preserved by coproducts, pushouts, sequential com-
positions, and retracts.

Proof. Left to exercise 6.
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Example 5.1.21. If C= Top and J = {D n×{0}→D n× I }n≥0, a J -cofibration is a retract of
a complex built out of elementary expansions, see Example 5.1.2. These coincide with
the maps that have lifts along every Serre fibration.

Proposition 5.1.22. In Top, with the sets of maps I and J used above, a map A→ B is a
J -cofibration iff it is both an I -cofibration and a weak equivalence.

Proof. It is easy to see that a J -cofibration is both an I -cofibration and a weak equiva-
lence, because the maps in J are all relative cell complexes and weak equivalences.

Conversely, suppose that f : A → B is both an I -cofibration and a weak equivalence.
Then, as in the proof of Proposition 5.1.19, we can factor f into a J -cell complex and a
J -injective map (a Serre fibration):

A

f

��

J -cell complex
// A′

J -injective

��

B B .

By 2 out of 3, since both f and the J -cell complex are weak equivalences, the Serre fi-
bration on the right is also a weak equivalence. By Example 5.1.9, the map on the right
is therefore I -injective. By Proposition 5.1.19, therefore, a lift exists:

A

f

��

J -cell complex
// A′

I -injective

��

B

66

B .

Therefore f is a retract of a J -cell complex, in other words, a J -cofibration.

Definition 5.1.23. An acyclic Quillen cofibration is a map in Top that satisfies either of
the above two equivalent conditions:

• it is both a weak equivalence, and a retract of a cell complex, or

• it is a retract of a complex of elementary expansions.

In summary, Proposition 5.1.22 shows that equivalent subcomplexes can be expressed
in terms of elementary expansions. For spaces, this is not such a big deal, because we
don’t have much difficulty in proving that things like the smash product X ∧Y preserve
weak equivalences. However, the arguments we just performed were very formal, and
can be applied to spectra as well. In that setting, this is a powerful technique.
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5.2 Model categories

5.2.1 Definition and examples

Let us formalize what we have proven so far about Top. Let C be any category.

Definition 5.2.1. A model structure on C is a choice of three subcategories C , W , and
F whose maps are called the “cofibrations,” “weak equivalences,” and “fibrations,” re-
spectively. We refer to maps in W ∩C as “acyclic cofibrations,” and maps in W ∩ F as
“acyclic fibrations.” These must satisfy four axioms:

• The weak equivalences W are closed under 2-out-of-3 (see Definition 3.3.13).

• Each of the three classes W , C , and F is closed under retracts, in the category of
arrows C{•→•}. In other words, for any commuting diagram

A //

f
��

B //

g
��

A
f
��

X // Y // X

in which the composite maps A −→ A and X −→ X are identity maps, if g ∈C then
f ∈C . The same applies to W and to F .

• C has the left lifting property with respect to W ∩F , and W ∩C has the left lifting
property with respect to F .

In other words, given a commuting square in C

A
i
��

// X
p
��

B //

<<

Y ,

(5.2.2)

if i ∈C and p ∈W ∩ F , or i ∈W ∩C and p ∈ F , a dashed lift exists.

• There is a functorial factorization of each map f into f = p ◦ i , where i is a cofi-
bration and p is an acyclic fibration. There is another functorial factorization in
which i is an acyclic cofibration and p is a fibration.

The last two axioms can be summarized pictorially as follows.

• C // • W ∩F // • • W ∩C // • F // •

•
C
��

// •
W ∩F
��

•
W ∩C

��

// •
F
��

• //

??

• • //

??

•
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Definition 5.2.3. We say C has all small colimits and limits if for every diagram in C, i.e.
a functor from a small category I to C, the colimit and the limit of the diagram both exist.

Definition 5.2.4. A model category is a category C that has all small colimits and limits,
plus a choice of model structure on C.

We can neatly organize the conclusions of Theorem 5.1.12, Proposition 5.1.19, and Propo-
sition 5.1.22 by saying that Top is a model category:

Theorem 5.2.5 (Quillen). The category of unbased topological spaces Top has a model
structure in which

• the cofibrations are the Quillen cofibrations,

• the weak equivalences are the weak homotopy equivalences, and

• the fibrations are the Serre fibrations.

We would like to produce more examples. We can use the same technique: start with a
category C, and pick a subcategory W , and two sets of maps I and J . We then declare
that

• the cofibrations are the I -cofibrations,

• the weak equivalences are the maps in W , and

• the fibrations are the J -injective maps.

Proposition 5.2.6. This defines a model structure on C, if the following list of conditions
is satisfied.

1. W is closed under 2-out-of-3 and retracts.

2. I satisfies the countable smallness condition.

3. J satisfies the countable smallness condition.

4. J -cell complexes are in W ∩ I -cof.

5. I -inj ⊆W ∩ J -inj.

6. Either W ∩ I -cof ⊆ J -cof or W ∩ J -inj ⊆ I -inj.

Proof. If in the last point if we know that W ∩ J -inj ⊆ I -inj, then the proofs of Theo-
rem 5.1.12, Proposition 5.1.19, and Proposition 5.1.22 all apply, proving that we have a
model structure.
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If in the last point we have W ∩ I -cof ⊆ J -cof, then we don’t need Proposition 5.1.22
to prove that W ∩ I -cof ⊆ J -cof. However, we do need to know that W ∩ J -inj ⊆ I -inj.
We show this by dualizing the proof of Proposition 5.1.22, see exercise 5. The rest of the
argument then proceeds as before. See also [Hov99, 2.1.19].

Definition 5.2.7. A cofibrantly generated model structure on C is one produced by the
method of Proposition 5.2.6.2 In such a model structure, we always have

• C = I -cof, W ∩C = J -cof,

• F = J -inj, W ∩ F = I -inj.

So the cofibrations, acyclic cofibrations, fibrations, and acyclic fibrations are all neatly
described in terms of the generators in I and J . For this reason, we call I the generating
cofibrations and J the generating acyclic cofibrations.

Think of a cofibrantly generated model category as a category with “generalized cell
complexes and fibrations.” All of the nice properties of cell complexes and Serre fibra-
tions in Top carry over to any cofibrantly generated model category.

Example 5.2.8. The category of based topological spaces Top∗ has a cofibrantly-generated
model structure with

• C the Quillen cofibrations,

• W the weak homotopy equivalences,

• F the Serre fibrations,

• I = {S n−1
+ →D n

+ }n≥0, and

• J = {(D n ×{0})+→ (D n × I )+}n≥0.

Essentially, a map is a cofibration, weak equivalence, or fibration if it is such after forget-
ting about the basepoint. The generators have disjoint basepoints added to them. See
exercise 9.

Example 5.2.9. The categories Top and Top∗ in this book have objects the compactly
generated weak Hausdorff spaces. It turns out that if we drop the weak Hausdorff con-
dition, or both conditions, then a model structure still exists, with essentially the same
definition as above.

2Our definition is a little bit more stringent than the standard one. The standard one allows cell com-
plexes with uncountably many levels, which in turn makes the smallness condition a little bit weaker.
That extra level of generality is not needed in any of our examples. See [Hov99] for details.
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Example 5.2.10. For any ring R , the category Ch≥0(R ) of nonnegatively-graded chain
complexes of R -modules has a cofibrantly-generated model structure in which

• the cofibrations are the maps that in each degree are injective and with cokernel a
projective R -module,

• the weak equivalences are the quasi-isomorphisms, i.e. the maps inducing iso-
morphisms on homology,

• the fibrations are the maps that are surjective in all positive degrees,

• I consists of all maps of chain complexes of the form (0→R )→ (R →R ), and their
shifts, and also (0)→ (R ) in degree zero, and

• J consists of all maps from the zero complex to a shift of the complex (R →R ).

In the definitions of I and J , every unnamed map R → R is the identity map of R . Note
that attaching a “cell” in I has the effect of adding a summand ⊕R to one level of the
chain complex, and also specifying its image under the boundary map, if we added it
above level 0. The verification of the conditions in Proposition 5.2.6 is left to exercise 11.

The larger category of unbounded chain complexes has a similar model structure with
essentially the same generators I and J , but with cofibrations and fibrations a little dif-
ferent – see exercise 12.

The following is the main theorem of this chapter.

Theorem 5.2.11 (Bousfield-Friedlander). The category of (sequential) spectra Sp has the
following two model structures.

In the level model structure,

• the cofibrations are the retracts of the relative cell complex spectra,

• the weak equivalences are the level equivalences Xn
∼−→ Yn , and

• the fibrations are the level fibrations: the maps X → Y in which each level Xn → Yn

is a Serre fibration.

We establish this model structure in Theorem 5.3.37.

In the stable model structure,

• the cofibrations are the same, the retracts of the relative cell complex spectra,

• the weak equivalences are the stable equivalences, and



234 CHAPTER 5. SPECTRA AS A MODEL CATEGORY

• the fibrations are the stable fibrations: the maps X → Y in which each level Xn →
Yn is a Serre fibration and each square

Xn

��

// ΩXn+1

��

Yn
// ΩYn+1

is a homotopy pullback square.

We establish this model structure in Section 5.6.

For the level model structure, the generating cofibrations are the maps

I = {FnS k−1
+ → Fn D k

+ }n ,k≥0

from Example 5.1.9, and the generating acyclic cofibrations are the maps

J = {Fn (D
k ×{0})+→ Fn (D

k × I )+}n ,k≥0.

In the stable model structure, we use the same set I (Definition 5.6.1), but a larger set J
(Definition 5.6.3).

Remark 5.2.12. Not every model structure is cofibrantly generated. There is a Strøm
model structure on Top in which

• the cofibrations are the classical ones, i.e. the maps with the homotopy extension
property,

• the weak equivalences are the homotopy equivalences, and

• the fibrations are the Hurewicz fibrations.

This is not (at least in any obvious way) generated by sets of maps I and J , so it cannot
be proven by the method we’ve developed thus far. Fortunately, all of the examples we
actually care about are cofibrantly generated, so we won’t spend much time thinking
about model structures that are not cofibrantly generated.

Our goal in the remainder of the chapter is to develop the properties of model categories
in general, and to prove Theorem 5.2.11, giving two model structures on spectra.

5.2.2 Cofibrant and fibrant objects

Let C be a model category. So it has a model structure, and also, it has all small colimits
and limits. In particular, C has an initial object ;, and a terminal object ∗. For any object
X , there is a unique map ;→ X , and a unique map X →∗.
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Definition 5.2.13. We say that

• X is cofibrant if ;→ X is a cofibration.

• X is fibrant if X →∗ is a fibration.

• X is bifibrant if it is both cofibrant and fibrant.

You should think of the cofibrant and fibrant objects as the “good” or “well-behaved”
objects.

Example 5.2.14. In Top, the initial object is the empty set, so a space X is cofibrant iff it
is a retract of a cell complex.

The terminal object is the one-point space. It is easy to see that X →∗ is always a Serre
fibration, so every space is fibrant.

Example 5.2.15. In Ch≥0(R ), the initial and terminal object are both the zero complex.
A complex is cofibrant if it is a retract of a levelwise free complex. Equivalently, if it is
levelwise projective. Every complex is fibrant.

Example 5.2.16. In Sp, the initial and terminal object are both the zero spectrum. In
both model structures, a spectrum is cofibrant if it is a retract of a cellular spectrum. In
the level model structure, every spectrum is fibrant. In the stable model structure, the
fibrant spectra are precisely the Ω-spectra!

Definition 5.2.17. The cofibrant replacement of an object X is the object Q X and map
Q X → X obtained by factoring the unique map ;→ X into a cofibration followed by an
acyclic fibration:

; −→Q X
∼−→ X

Note that Q is a functor, and Q X → X is a natural transformation.

Similarly, the fibrant replacement of an object X is the object R X and map X → R X
obtained by factoring the unique map X → ∗ into an acyclic cofibration followed by a
fibration:

X
∼−→R X −→∗.

Note that R is a functor, and X →R X is a natural transformation.

Lemma 5.2.18. The cofibrant replacement and fibrant replacement functors are homo-
topical – they preserve weak equivalences.

Proof. This follows quickly from the 2 out of 3 property.

Lemma 5.2.19. Q preserves fibrant objects and R preserves cofibrant objects. So Q R X
and RQ X are both bifibrant.
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Proof. If X is fibrant, then X → ∗ is a fibration, and Q X → X is an acyclic fibration.
Composing them, we conclude that Q X →∗ is a fibration. The argument for R is similar.

Remark 5.2.20. In Sp with the stable model structure, these operations behave like the
Q and R that we defined in Theorem 2.6.12 and Proposition 2.2.9. The difference is that:

• They have better properties: Q X → X is now a fibration and X → R X is now a
cofibration, in addition to these maps being weak equivalences.

• However, they are less explicit, especially compared to the construction in Propo-
sition 2.2.9.

5.2.3 Fundamental properties

Lemma 5.2.21. In any model category C the following statements hold:

• f is an cofibration iff it has the left-lifting property with respect to all acyclic fibra-
tions.

• f is an acyclic cofibration iff it has the left-lifting property with respect to all fibra-
tions.

• f is an fibration iff it has the right-lifting property with respect to all acyclic cofi-
brations.

• f is an acyclic fibration iff it has the right-lifting property with respect to all cofi-
brations.

• Every isomorphism in C is a cofibration, a fibration, and a weak equivalence.

• The cofibrations are closed under pushouts, coproducts, sequential compositions,
and retracts. The same applies to acyclic cofibrations.

• The fibrations are closed under pullbacks, products, sequential inverse composi-
tions, and retracts. The same applies to acyclic fibrations.

Proof. The first four points are similar to the proof of Proposition 5.1.19. For example, if
f : A→ B is a map that has the left lifting property with respect to all fibrations, we factor
f into an acyclic cofibration followed by a fibration. This gives a commuting square

A

f

��

∈W ∩C // A′

∈F
��

B

::

B .
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The lift exists because f has the left lifting property. But this shows that f is a retract of
a map in W ∩C , and therefore f ∈W ∩C .

An isomorphism clearly has the left lifting property and right lifting property with re-
spect to every map. Therefore it is a cofibration, a fibration, and a weak equivalence.

The last two points are left as exercises, see exercises 6 and 7.

In any model category C, it is possible to talk about homotopies. We just have to define
a suitable replacement for the cylinder X × I in topological spaces.

Definition 5.2.22. For any cofibrant object X , a cylinder on X is any object Z fitting into
a diagram of the following form.

Z
∈W ∩F

$$

X ⨿X

∈C
88

(idX ,idX )
// X .

Example 5.2.23. In Top, the product X × I is an example of a cylinder, because if X is a
cell complex, the inclusion of X ×{0} and X ×{1} into X ×I is also a relative cell complex.
The same conclusion follows for retracts of cell complexes. The projection X × I → X is
clearly a fibration as well.

We can similarly define a mapping cylinder for a map f : X → Y by factoring the map
( f , idY ): X ⨿Y → Y into a cofibration and an acyclic fibration. This idea is used to prove
the following.

Suppose F : C→D is a functor from a model category C to a category D. Suppose that D
has a class of weak equivalences, satisfying 2-out-of-3.

Lemma 5.2.24. (Ken Brown’s Lemma) Suppose F takes acyclic cofibrations X → Y be-
tween cofibrant objects X , Y ∈ C to weak equivalences F (X )

∼→ F (Y ) in D. Then F takes
all weak equivalences of cofibrant objects to weak equivalences.

Proof. The idea is to use the mapping cylinder. Given any weak equivalence of cofi-
brant objects f : X → Y , factor ( f , idY ): X ⨿ Y → Y into a cofibration and an acyclic
fibration, and let M f be the intermediate space. Since f is a weak equivalence and Y is
cofibrant, the composition X → X ⨿ Y →M f is both a weak equivalence and a cofibra-
tion. Similarly Y →M f is an acyclic cofibration. So F sends both of these maps to weak
equivalences.

The projection M f → Y is a left inverse to Y →M f , and is therefore F sends it to a weak
equivalence as well. The map f is now the composition X →M f → Y of maps that F
sends to weak equivalences, so F sends X → Y to a weak equivalence.
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Lemma 5.2.25. Suppose F takes acyclic fibrations X → Y between fibrant objects X , Y ∈
C to weak equivalences F (X )

∼→ F (Y ) in D. Then F takes all weak equivalences of fibrant
objects to weak equivalences.

Proof. This is left to exercise 21.

Returning to ordinary cylinders, we say that two maps f , g : X ⇒ Y are left homotopic if
there is some extension of ( f , g ): X ⨿X → Y to Z → Y , for some cylinder object X ⨿X →
Z → X . We will only consider this relation when X is cofibrant and Y is fibrant, in which
case it does not depend on the choice of Z .

We skip the proof of the following, as it is rather long and introduces several more defini-
tions that we will not need. See [Hov99, §1.2] for a full proof. Recall that Ho C=C[W −1]
refers to the category in which the weak equivalences of C have been inverted.

Theorem 5.2.26 (Fundamental Theorem of Model Categories). If X is cofibrant and Y is
fibrant, then the maps in the homotopy category Ho C(X , Y ) are the maps in the original
category C(X , Y ), modulo the relation of left homotopy.

As in Proposition 3.1.28, since Q and R are functors that are weakly equivalent to the
identity, we get equivalences of categories

Ho Cc f

∼
��

∼
// Ho C f

Q
ss

∼
��

Ho Cc

R

CC

∼ // Ho C
Q

gg

R

[[

where Cc f ⊆C denotes the bifibrant objects, Cc the cofibrant objects, and C f the fibrant
objects. As in Remark 3.1.29, we conclude that for any pair of objects X , Y ∈C, the maps
in the homotopy category can be computed as

Ho C(X , Y )∼=C(Q X , RY )/(left homotopy)
∼=C(Q R X ,Q RY )/(left homotopy)
∼=C(RQ X , RQY )/(left homotopy).

Corollary 5.2.27 (Whitehead’s Theorem for Model Categories). Between bifibrant ob-
jects, a map f : X → Y is a weak equivalence iff it is a homotopy equivalence.

In other words, model categories are a formal setting where we get the same results as
those in Section 3.1. Note that we have already proven the Fundamental Theorem and
Whitehead’s Theorem in Sp. (Proposition 3.1.40 and Corollary 2.6.17)
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Remark 5.2.28. For the Quillen model structure on spaces, this recovers Proposition 3.1.26,
that the homotopy category is equivalent to CW complexes and homotopy classes of
maps. For Quillen’s model structure on chain complexes, this recovers the fact that the
derived category D≥0(R ) = Ho Ch≥0(R ) is equivalent to projective chain complexes and
chain homotopy classes of maps.

5.2.4 Properness

Definition 5.2.29. A model category C is left proper if for every pushout square as shown,
with i a cofibration and f a weak equivalence, the map g is also a weak equivalence.

A i //

f
��

B
g
��

C
j
// B ∪A C

Dually, C is right proper if for every pullback square as shown, with j a fibration and g
a weak equivalence, the map f is also a weak equivalence.

B ×D C i //

f
��

B
g
��

C
j

// D

We say C is proper if both of these conditions hold.

Example 5.2.30. The Quillen model structure on Top is proper – this is one of the basic
facts about spaces that we recalled in Theorem 1.5.10 and Theorem 1.5.24.

Example 5.2.31. Both the level and stable model structures on Sp are proper – this can
be deduced from the stability theorems of Section 2.4, see exercise 8.

Lemma 5.2.32 (Gluing lemma). If C is left proper, any weak equivalence of pushout dia-
grams

X
∼
��

Aioo

∼
��

// Y
∼
��

X ′ A′i ′oo // Y ′,

each of which the maps i and i ′ are cofibrations, induces a weak equivalence of pushouts

X ∪A Y ∼ // X ′ ∪A′ Y ′.

In fact, the gluing lemma is equivalent to C being left proper. We omit the proof because
it is formal but quite long. The dual result for pullbacks along fibrations holds if C is right
proper.
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Remark 5.2.33. In any model category, the pushout preserves weak equivalences if A→
X is a cofibration and all three objects A, X , and Y are cofibrant. The proof is left to
exercise 13. Dually, the pullback preserves equivalences if one of the maps is a fibration
and all three objects are fibrant. We can therefore talk about the left-derived pushout,
and right-derived pullback, in any model category.

5.2.5 In summary

A model structure on C is three classes of maps C , W , F , such that W has 2 out of 3, all
three have retracts, and we have factorizations and lifts as pictured.

• C // • W ∩F // • • W ∩C // • F // •

•
C
��

// •
W ∩F
��

•
W ∩C

��

// •
F
��

• //

??

• • //

??

•
A cofibrantly generated model structure arises from sets of maps I and J so that

• C = retracts of I -cell complexes, W ∩C = retracts of J -cell complexes,

• F = J -injective maps, W ∩ F = I -injective maps.

This structure makes it easier to study objects in C up to weak equivalence, because:

• the Fundamental Theorem and Whitehead’s Theorem make it feasible to count
maps in the homotopy category,

• there is a built-in notion of which objects are “nice” (cofibrant and/or fibrant), and
everything is weakly equivalent to a nice object, and

• Ken Brown’s lemma and the generating acyclics J make it easier to check that a
given functor F preserves equivalences of nice objects. (The weak equivalences
break up into “chunks.”)

5.3 Diagrams of spaces

In this section we give many, many examples of model categories. For any small topo-
logical category I, the category of I-shaped diagrams TopI has a model structure.

In particular, we show that spectra are the same thing as diagrams on some category I.
We use this to prove the existence of the level model structure for spectra.
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5.3.1 Diagrams of unbased spaces

Definition 5.3.1. A topological category or category enriched in spaces is

• a collection of objects ob C,

• for each pair of objects a , b , a topological space of morphisms C(a , b ),

• continuous composition maps C(a , b )×C(b , c )→C(a , c ), and

• for each object a a unit map {ida }→C(a , a ),

such that the composition in C is associative and each ida acts as an identity element. A
functor of topological categories F : C→D is just a functor such that the maps C(a , b )→
D(F (a ), F (b )) are continuous.

Example 5.3.2. Every ordinary category is a topological category, by giving the mapping
sets the discrete topology.

Example 5.3.3. The categories Top and Top∗ are topological in the obvious way. Recall
from Definition 2.3.12 that Sp is also a topological category, the space of maps Sp(X , Y )
being defined as the product of the mapping spaces Map(Xn , Yn ), restricted to the sub-
space of those maps that commute with the bonding maps of X and Y .

Example 5.3.4. If I is a topological category, its opposite category Iop is also a topological
category in a canonical way.

Recall that a category or topological category I is small if its objects form a set, rather
than a proper class.

Definition 5.3.5. Let I be any small category, or more generally, any small topological
category. A diagram (of spaces) is a continuous functor X : I → Top. Equivalently, it
consists of

• a space X (i ) for each i ∈ ob I, and

• a continuous composition map X (i )× I(i , j )→ X ( j ),

such that the identity map of i acts by the identity on X (i ), and g ◦ f acts by the composite
of g and f . A map of diagrams is a natural transformation X → Y . Equivalently, it
consists of continuous maps X (i )→ Y (i ) for all i ∈ ob I, commuting with the action of
every map f : i → j . We let TopI refer to the category of diagrams.

Remark 5.3.6. The above definition implicitly uses the fact that a continuous map I(i , j )→
Map(X (i ), X ( j )) is the same data as a continuous map X (i )× I(i , j )→ X ( j ).
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Example 5.3.7. • If I = {•} has a single object and only the identity morphism, an
I-diagram is just a space. A map of diagrams is a map of spaces.

• If I = {•,•} has two objects but only identity morphisms, an I-diagram is a pair of
spaces (X , Y ), with no relationship. (In other words, we are not asking for Y to be
a subspace of X .) A map of diagrams is a pair of maps of spaces.

• If I = {0→ 1} has a single nontrivial morphism, an I-diagram is an arrow X (0)→
X (1). A map of diagrams is a commuting square.

• If I= {1← 0→ 2} is the span category, an I-diagram is a span X (1)← X (0)→ X (2).
A map of diagrams is a map of spans. As remarked in Example 3.3.26, there is a
functor Top{1←0→2}→ Top taking each span to its pushout.

• If I is the commuting square category

•

��

// •

��

• // •

then an I-diagram is a commuting square. A map of diagrams is a commuting
cube.

Definition 5.3.8. A topological monoid is a space G with a multiplication map G ×G →
G that is continuous, associative, and has unit 1 ∈G :

g ·1= g = 1 · g , g1(g2g3) = (g1g2)g3.

Note that this is the same thing as a topological category I with one object.

A topological group is a topological monoid with inverses, such that the map g 7→ g −1

is continuous.

A right action of G on a space X is a continuous map X ×G →G that is associative and
unital in the sense that

x ·1= x , (x g1)g2 = x (g1g2).

A left action of G on Y is a continuous map G ×Y → Y such that

1 · y = y , g2(g1 y ) = (g2g1)y .

In this case we call X a left G -space and Y a left G -space.

A map G -spaces f : Y → Z is equivariant if it commutes with the G -action. For left
actions, this means that f (g y ) = g f (y ) for all y ∈ Y and g ∈G .
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Example 5.3.9. If G is any topological monoid, then as noted above, it also defines a
category with one object. A G -diagram is the same thing as a space with right G -action,
and a map of G -diagrams is the same thing as an equivariant map. Similarly, an G op-
diagram is a space with a left G -action.3

Definition 5.3.10. For each object i ∈ ob I and space A, the free diagram Fi A is the I-
diagram whose value at j is the product

(Fi A)( j ) = A× I(i , j ),

with I acting by composition on the I(i , j ) term.

Lemma 5.3.11. This is the left adjoint of the forgetful functor evi : TopI → Top sending
the diagram X to the space X (i ).

Proof. It is straightforward to see that a map of diagrams Fi A→ X is the same data as a
map of spaces A→ X (i ). Once you know where A×{idi } goes in X , the rest of the maps
A×{ f } are determined by the fact that Fi A→ X has to be a map of diagrams.

Example 5.3.12. • If I= {•}, a free diagram is any space (A).

• If I= {•, •}, a free diagram is any pair in which one of the spaces is empty: (A,;) or
(;, A).

• If I= {•→ •}, a free diagram is either an arrow of the form A = A, or ;→ A.

• If I = {• ← •→ •} is the span category, a free diagram is one of the following three
forms:

A

��

// A ;

��

// ; ;

��

// A

A A ;

• If I is the commuting square category, a free diagram is one of the following four
forms:

A

��

// A

��

;

��

// ;

��

;

��

// A

��

;

��

// ;

��

A // A A // A ; // A ; // A.

• If G is a topological monoid, a free G -diagram is a space of the form A×G , with G
acting on the right by (a , g0) · g1 = (a , g0g1).

3Of course, which one is left or right is an artifact of the conventions we choose to use. If the opposite
convention feels more natural to you, I insist that you use that one instead.
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5.3.2 The projective model structure

Our next goal is to prove that I-diagrams are a model category.

Lemma 5.3.13. The category TopI has all colimits and limits. The colimit or limit of a
diagram of diagrams is computed at each object i ∈ I separately.

Definition 5.3.14. A map of diagrams X → Y is a level equivalence if X (i )→ Y (i ) is a
weak equivalence for every i ∈ ob I. Similarly X → Y is a level fibration if X (i )→ Y (i ) is
a Serre fibration for every i .

Example 5.3.15. For spaces with G -action, a level equivalence is an equivariant map
X
∼→ Y , that is a weak equivalence if we forget the G -action. These are often called Borel

equivalences, or coarse equivalences, and the homotopy category Ho TopG formed us-
ing these equivalences is the Borel homotopy category. We have this special notation
because there is also a more sophisticated kind of weak equivalence, that keeps track of
the subspaces of H -fixed points X H for H ≤G . See ??.

Let I = {S n−1→D n}n≥0 be the class of cells from Example 5.1.2. Let F I be the set of all
maps obtained by applying the free diagram functors Fi of Definition 5.3.10 to the maps
in I :

F I = { Fi S n−1→ Fi D n : n ≥ 0, i ∈ ob I }.

A relative cell complex of diagrams is an F I -cell complex. Note that if X → Y is a cell
complex of diagrams then X ( j )→ Y ( j ) is not necessarily a relative cell complex in the
traditional sense. It is built out of the “cells” of the form I(i , j )× (S n−1→D n ).

Intuitively, an F I -cell complex is obtained by
starting with a diagram X , and attaching cells to
the spaces X (i ). But, every time you attach a cell
to one space X (i ), you also have to attach a cell to
X ( j ) for every map f : i → j . That way, your new
cell in X (i ) has somewhere to go under the map
f , so that you still have a diagram.

As in Example 5.1.9, a square of diagrams

Fi S n−1

��

// X
p
��

Fi D n //

::

Y
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is equivalent to a square of spaces

S n−1

��

// X (i )
pi
��

D n //

::

Y (i ),

using the adjunction between Fi and evi . Therefore, a map of diagrams X → Y is F I -
injective iff it is a weak equivalence and Serre fibration at each level. In other words, if it
is a level equivalence and a level fibration.

We define F J similarly:

F J = { Fi (D
n ×{0})→ Fi (D

n × I ) : n ≥ 0, i ∈ ob I }.

A map of diagrams X → Y is F J -injective iff it is a level fibration.

A free cofibration of diagrams is any retract of an F I -cell complex.

Theorem 5.3.16. The category TopI has a projective model structure in which

• the cofibrations are free cofibrations,

• the weak equivalences are level equivalences, and

• the fibrations are the level fibrations.

Proof. We check that the level equivalences, and the sets of maps F I and F J defined
just above, satisfy the conditions of Proposition 5.2.6.

1. W is closed under 2-out-of-3 and retracts. Can be checked at each i ∈ ob I sepa-
rately.

2. F I satisfies the countable smallness condition. By the free-forget adjunction,
a map Fi S n−1→ X is the same as a map S n−1→ X (i ). It is easy to see that I(i , j )×
(S n−1→D n ) is a closed inclusion. It follows that the skeleta of any F I -cell complex
of diagrams are related by closed inclusions. So, by Section 1.7, exercise 23, the
map from S n−1 factors through some finite stage.

3. F J satisfies the countable smallness condition. Same as the previous point.

4. F J -cell complexes are in W ∩ F I -cof. The proof is essentially the same as when
we proved Theorem 5.2.5.

5 & 6. F I -inj =W ∩ F J -inj. As discussed above, by the free-forget adjunction, a map
of diagrams is F I -injective iff it is a level equivalence and a level fibration, iff it is
F J -injective.
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The weak equivalences and fibrations in this model category are pretty boring, but the
cofibrations are interesting.

Example 5.3.17. We say a diagram X is cellular if the map from the empty digram ;→ X
is a cell complex of diagrams, and cofibrant if ;→ X is a free cofibration, in other words,
a retract of a cell complex of diagrams.

• If I= {•, •}, a diagram (X0, X1) is cellular iff both X0 and X1 are cell complexes.

• If I= {•→ •}, a diagram X0→ X1 is cellular iff X0 is a cell complex and X0→ X1 is a
relative cell complex.

• For I=G , a cell complex of diagrams is called a free G -cell complex. It is a complex
built out of cells of the form D n ×G , attached along the boundary S n−1×G .

5.3.3 Homotopy colimits and homotopy orbits

We give a short example to illustrate the power of this theory, by proving that the colimit
has a left-derived functor. Consider the functor TopI→ Top that takes every diagram X
to its colimit colim X .

Proposition 5.3.18. This colimit functor preserves all equivalences between cofibrant di-
agrams.

Proof. We first show that each map in F J goes to a weak equivalence. The colimit of a
free diagram is the same space back:

colim
I
(Fi A)∼= A,

so each map in F J goes to the map of spaces D n ×{0}→D n × I , which is clearly a weak
equivalence.

Similarly, a coproduct of maps in F J goes to a coproduct of maps of the form D n×{0}→
D n × I , which is a weak equivalence. A pushout of maps in F J goes to a pushout in
spaces, because colim is a left adjoint. A pushout of maps of the form D n ×{0}→D n × I
is a collection of elementary expansions, which we have already noted is a weak equiv-
alence. Finally, a sequential composition of such maps is a weak equivalence, because
it is a colimit along a sequence of closed inclusions, using Section 1.7, exercise 23.

In conclusion, every F J -cell complex goes to a weak equivalence. Every retract of an F J -
cell complex goes to a retract of a weak equivalence, which is therefore a weak equiva-
lence. In conclusion, colim sends every acyclic cofibration (F J -cofibration, or retract of
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an F J -cell complex) to a weak equivalence. By Ken Brown’s Lemma (Lemma 5.2.24), we
conclude that all weak equivalences of cofibrant diagrams go to weak equivalences.

Remark 5.3.19. There is a much faster proof of Proposition 5.3.18 using Quillen adjunc-
tions – see exercise 20. We give this version of the proof here as an illustration, before we
apply the technique to diagram spectra in the next chapter.

Definition 5.3.20. The homotopy colimit is the left-derived functor of the colimit. It
exists because, by Theorem 5.3.16, we can replace each diagram X by an equivalent
cofibrant diagram Q X , and by Proposition 5.3.18, the colimit functor preserves weak
equivalences between cofibrant diagrams.

Note that we define homotopy colimits twice in this book – the first definition is here,
the second is in ??. They are always equivalent to each other, so it does not matter which
one you use.

Example 5.3.21. If I is discrete, meaning it has no non-identity morphisms, then the
homotopy colimit is obtained by replacing each of the spaces X (i ) by a cell complex
Q X (i ), then taking their coproduct.

If I is the span category {•← •→ •} the homotopy colimit is obtained by making all the
spaces in the span cell complexes and the maps inclusions of subcomplexes, then taking
the pushout.

If I is a sequential colimit category

• // • // • // · · · ,

the homotopy colimit is obtained by making each space Xn into a cell complex, and the
maps Xn → Xn+1 into subcomplexes, then taking the colimit.

In each of these three cases, we can see that the homotopy colimit as defined in Defini-
tion 5.3.20 is equivalent (though not isomorphic) to the homotopy colimit as defined in
Section 1.5. Of course, since they’re both examples of left-derived functors of the colimit,
they must be equivalent, by Corollary 3.4.3.

Recall that for a space with G -action X , the orbit space XG is obtained by identifying
every point x to all of its images under the G -action, x ∼ x g . This is the same thing
as taking the colimit of X as a diagram over the category G . Recall also that a Borel
equivalence is a map that is both G -equivariant, and a weak equivalence after forgetting
the G -action.

Corollary 5.3.22. Any Borel equivalence of free G -cell complexes X
∼→ Y induces a weak

equivalence of orbit spaces XG
∼→ YG .
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This is not true if we drop the “free” condition. For instance, the infinite dimensional
sphere S∞ has a Z/2-action by the antipodal map. The one-point space ∗ has a trivial
action byZ/2. The map S∞→∗ is a Borel equivalence, but on orbits, it induces the map
RP∞→∗, which is decidedly not a weak equivalence.

Definition 5.3.23. The homotopy orbit space XhG is the is the left-derived functor of
the orbits, in other words, the homotopy colimit of X as a diagram over G . Concretely,
we replace X by an equivalent free G -cell complex, then take its G -orbits.

This is a left-derived functor, so it preserves all equivalences. Therefore every Borel
equivalence X

∼→ Y induces an equivalence of homotopy orbits XhG → YhG .

Example 5.3.24. The homotopy orbits of both S∞ and ∗ under the Z/2-action are ho-
motopy equivalent to RP∞.

The homotopy colimit generalizes to the homotopy coend, see exercise 15.

Remark 5.3.25. The constructions of the homotopy colimit and homotopy orbits in this
section are not very explicit – you use the small-object argument to replace the diagram
X by a huge diagramQ X with an absurd number of cells, then take its colimit. In exercise
14 and ??, we give weakly equivalent, and much more explicit, models for the homotopy
colimit.

Remark 5.3.26. One might hope that we can define homotopy limits in an analogous
way, by showing that the limit functor TopI→ Top preserves equivalences of fibrant di-
agrams. Unfortunately, it does not! We would have to change the model structure to
one in which the cofibrations are the level cofibrations, and the fibrations are defined
by a right lifting property. This would be called the injective model structure on TopI.
Unfortunately, it does not exist!

There are a few standard ways around this: we could pass to the setting of simplicial sets
where the injective model structure does exist, or we could argue abstractly that a right-
derived functor of the limit exists, as in [DHKS04]. We’ll follow the approach of [Shu06]
and use bar constructions to derive the limit instead.

5.3.4 Based diagrams

Now we consider the category TopI
∗ of diagrams of based spaces. This requires a few

changes to the definitions, but the proofs do not change.

Definition 5.3.27. A based topological category or category enriched in based spaces
is

• a collection of objects ob C,
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• for each pair of objects a , b , a based space of morphisms C(a , b ),

• continuous composition maps C(a , b )∧C(b , c )→C(a , c ), and

• for each object a a unit map {ida }→C(a , a ),

with the same conditions as in Definition 5.3.1. For a functor of based categories, we
require that the maps C(a , b )→D(F (a ), F (b )) preserve the basepoint.

Remark 5.3.28. A based topological category the same thing as a topological category
in which there is a “zero map” ∗: a → b for every pair of objects a and b , such that the
composition of any morphism with zero is always equal to zero.

Example 5.3.29. The categories Top∗ and Sp are based topological categories.

Definition 5.3.30. Suppose I is a based category. A based diagram is a continuous func-
tor X : I→ Top∗. Equivalently, it consists of

• a based space X (i ) for each i ∈ ob I, and

• a continuous composition map X (i )∧ I(i , j )→ X ( j ),

with the same conditions as in Definition 5.3.5. By abuse of notation, we let TopI
∗ refer

to the category of based diagrams.

Definition 5.3.31. The sphere category S is a based topological category, with one ob-
ject for each nonnegative integer n ≥ 0. The morphism spaces are spheres

S(m , n ) =







S n−m when n ≥m ,

∗ when n <m .

The nontrivial compositions are all homeomorphisms

S n−m ∧S p−n ∼= S p−m .

To be specific, we use the canonical homeomorphism of Definition 2.1.4. This is the
one-point compacitification of the the linear isomorphism Rn−m ×Rp−n ∼= Rp−m that
concatenates the coordinates.

Lemma 5.3.32. There is an isomorphism of categories TopS
∗
∼= Sp.

In other words, spectra are a special case of diagrams!
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Proof. Given a spectrum X , form a diagram over S using the spaces Xn . The maps Xm ∧
S n−m → Xn are the compositions of the bonding maps. It is easy to check this forms a
diagram. Going the other way, for any S-diagram, the action of S(n , n + 1) ∼= S 1 gives
maps Xn ∧S 1→ Xn+1, making the spaces Xn into a spectrum.

These operations are inverses, and along this identification, a map of diagrams corre-
sponds to a map of spectra. We therefore get an isomorphism of categories.

Definition 5.3.33. For each object i ∈ ob I and based space A, the free based diagram
Fi A is the based I-diagram whose value at j is the smash product

(Fi A)( j ) = A ∧ I(i , j ),

with I acting by composition on the I(i , j ) term.

Lemma 5.3.34. This is the left adjoint of the forgetful functor evi : TopI
∗→ Top∗ sending

the based diagram X to the based space X (i ).

The proof is the same as that of Lemma 5.3.11.

Example 5.3.35. For the sphere category S, a free diagram Fd A is precisely the same
thing as a shift desuspension spectrum from Example 2.1.8. At level n , if n ≥ d , we get
the suspension A∧S n−d =Σn−d A. When n < d , we get the zero space ∗, because A∧∗∼= ∗.

Definition 5.3.36. As in Definition 5.3.14, a map of based diagrams is level equivalence
if X (i )→ Y (i ) is a weak equivalence for every i ∈ ob I. Similarly X → Y is a level fibration
if X (i )→ Y (i ) is a Serre fibration for every i .

As before, we define the sets

F I+ = { Fi S n−1
+ → Fi D n

+ : n ≥ 0, i ∈ ob I },
F J+ = { Fi (D

n ×{0})+→ Fi (D
n × I )+ : n ≥ 0, i ∈ ob I }.

A free cofibration in TopI
∗ is a retract of an F I+-cell complex.

Theorem 5.3.37. The category of based diagrams TopI
∗ has a projective model structure

in which

• the cofibrations are free cofibrations,

• the weak equivalences are level equivalences, and

• the fibrations are the level fibrations.

Proof. The proof is identical to that of Theorem 5.3.16, using the sets F I+ and F J+.

Example 5.3.38. For the sphere category S, this gives the level model structure on spec-
tra from Theorem 5.2.11.
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5.3.5 Based diagrams on unbased categories

A large class of examples of based diagrams comes from the following construction.

Example 5.3.39. For any unbased category I, we form a based category I+ by adding a
disjoint basepoint to each of the mapping spaces. The composition becomes

I(a , b )+ ∧ I(b , c )+ ∼= (I(a , b )× I(b , c ))+ // I(a , c )+.

Lemma 5.3.40. A based diagram I+→ Top∗ is the same thing as a functor I→ Top∗. It is
also the same thing as an unbased diagram I→ Top that contains the constant diagram
∗ as a retract.

Proof. These all describe the same thing: a based space X (i ) for each i ∈ ob I, and a
based map X (i )→ X ( j ) for each i → j in I.

Example 5.3.41. If G is a topological monoid, a based G -space is a based space X with
basepoint-preserving action by G . By Lemma 5.3.40, this could also be described as a
based space with action maps of the form

G+ ∧X −→ X ,

or as a G -space that contains the trivial G -space ∗ as a retract.

We write the category of based diagrams on I+ as TopI
∗, because by Lemma 5.3.40, this is

the same as a functor from I to based spaces. Consider the forgetful map TopI
∗ → TopI

that forgets the basepoints.

Lemma 5.3.42. A map in TopI
∗ is a cofibration, weak equivalence, or fibration in the

model structure of Theorem 5.3.37 iff its image in TopI is respectively a cofibration, weak
equivalence, or fibration in the model structure of Theorem 5.3.16.

Proof. For weak equivalences and fibrations, this is immediate. For cofibrations, we
have to observe that attaching a cell of the form

S n−1
+ ∧ I(i ,−)+ // D n

+ ∧ I(i ,−)+

gives a homeomorphic result if we instead write the cell in the form

S n−1× I(i ,−) // D n × I(i ,−).
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Remark 5.3.43. One might expect that you could take the colimit or homotopy colimit
of a based diagram X on a based category I. However, this colimit is always the one-
point space ∗, because the zero morphisms in I identify everything to zero. As a result,
you can’t meaningfully take a “colimit of a spectrum along itself.”

You can use Lemma 5.3.40, and consider a diagram of based spaces indexed by an un-
based category I. Then you take the colimit along I, not the larger category I+. This
works, and the corresponding based homotopy colimit turns out to be the quotient of
unbased homotopy colimits

hocolim
i∈I

(b )X (i )≃
�

hocolim
i∈I

(u )X (i )
���

hocolim
i∈I

(u ) (∗)
�

.

See ??. You can also take a more general notion of a weighted colimit or a left Kan exten-
sion for based diagrams – see Section 5.4.3.

5.4 Quillen adjunctions and equivalences

Now that we have many, many examples of model categories, we can dig more into the
relationships between different model categories. The two basic kinds of relationships
are Quillen adjunctions and Quillen tensors. We start with Quillen adjunctions in this
section.

5.4.1 Quillen adjunctions

Suppose C and D are model categories. In particular, they are categories with weak
equivalences, so we can talk about derived functors.

Recall from Definition 3.3.15 that a functor F : C→D is left-deformable if we can define
a functor Q X , equivalent to X by a map Q X

∼→ X , and landing in a full subcategory A⊆C
on which F preserves all weak equivalences. The left-derived functor is thenLF = F ◦Q .

If C is a model category, there is an obvious choice to make for A: the subcategory of cofi-
brant objects Cc ⊆C. By Ken Brown’s Lemma (Lemma 5.2.24), to check that F preserves
equivalences on A, it is enough to show that F of any acyclic cofibration is a weak equiv-
alence. For instance, we used this technique to show that the colimit has a left-derived
functor in Proposition 5.3.18.

Definition 5.4.1. A functor F : C→ D is left Quillen if it is a left adjoint, and preserves
both the cofibrations and the acyclic cofibrations:

F (C )⊆C , F (W ∩C )⊆W ∩C .
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Similarly, G : D→ C is right Quillen if it is a right adjoint, and preserves both the fibra-
tions and the acyclic fibrations.

A Quillen adjunction, or Quillen pair, is an adjoint pair (F ⊣G ) in which F is left Quillen
and G is right Quillen.

From Definition 3.3.15, it follows that any such F has a left-derived functor LF (X ) =
F (Q X ), any such G has a right-derived functor RG (Y ) = G (RY ). By Lemma 3.3.18,
these derived functors preserve weak equivalences, so they define maps on the homo-
topy category

LF : Ho C→Ho D, RG : Ho D→Ho C.

By Proposition 3.4.20, these derived functors are again adjoint to each other, (LF ⊣RG ).

To give examples, it will be helpful to first make the definition a little easier to check.

Lemma 5.4.2. If (F ⊣G ) is an adjoint pair of functors on the model categories C and D,
then F is left Quillen iff G is right Quillen.

We leave the proof to exercise 18. As a result, we only have to check that F is left Quillen,
or G is right Quillen.

This check gets even easier if C is cofibrantly generated:

Lemma 5.4.3. If C is cofibrantly generated, F : C→D is a left adjoint, and

F (I )⊆C , F (J )⊆W ∩C ,

then F is left Quillen (and therefore its right adjoint G is right Quillen).

Proof. Since F is a left adjoint, it preserves coproducts, pushouts, sequential composi-
tions, and retracts – exactly the moves we use to build an I -cofibration out of the maps
in I . Therefore, if F (I ) ⊆ C , it follows that F (C ) ⊆ C . The same argument applies to J
and W ∩C .

Example 5.4.4. Using Lemma 5.4.2 or Lemma 5.4.3, or both, we can see that the follow-
ing pairs are Quillen adjunctions:
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Left adjoint Right adjoint

Disjoint basepoint (−)+ : Top→ Top∗ Forget basepoint U : Top∗→ Top

A× (−): Top→ Top Map(A,−): Top→ Top

(if A is a cell complex or cofibrant)

P ⊗ (−): Ch≥0(Z)→Ch≥0(Z) Hom(P,−): Ch≥0(Z)→Ch≥0(Z)

(if P is projective)

A ∧ (−): Top∗→ Top∗ Map∗(A,−): Top∗→ Top∗

(if A is cofibrant)

Tensor A ∧ (−): Sp→ Sp Cotensor F (A,−): Sp→ Sp

(if A is cofibrant)

Free diagram Fi : Top→ TopI Evalulation evi : TopI→ Top

Unbased colimit, colim(u ) : TopI→ Top Constant diagram∆: Top→ TopI

Based colimit, colim(b ) : TopI
∗→ Top∗ Constant diagram∆: Top∗→ TopI

∗

Free diagram Fi : Top∗→ TopI
∗ Evalulation evi : TopI

∗→ Top∗

Fi (−)+ : Top→ TopI
∗ U ◦evi : TopI

∗→ Top

As a special case we also get:

Left adjoint Right adjoint

Suspension Σ: Top∗→ Top∗ Loopspace Ω: Top∗→ Top∗

Suspension Σ: Sp→ Sp Loopspace Ω: Sp→ Sp

Suspension spectrum Σ∞ : Top∗→ Sp 0th space ev0 : Sp→ Top∗

Suspension spectrum Σ∞+ : Top→ Sp 0th space U ◦ev0 : Sp→ Top

Free spectrum Fk : Top∗→ Sp k th space evk : Sp→ Top∗
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Remark 5.4.5. We have already seen that many of these functors can be derived. By
Proposition 3.4.2, derived functors are unique up to equivalence, so it doesn’t matter
whether we use a model structure, or some other technique, to form the derived functor.
The result is the same either way.

Remark 5.4.6. If F is left Quillen, the left-derived functor LF is sampling the behavior
of F on the cofibrant objects, and extending that behavior to the rest of C. Of course,LF
is equivalent to F on every cofibrant object. Following Definition 3.4.10, we say that F
is correct, or has the correct homotopy type, when it is evaluated on a cofibrant object.

Quillen pairs can be composed. If we have three model categories and two left Quillen
functors

C1
F1 // C2

F2 // C3,

then the composite F2 ◦ F1 is clearly left Quillen. If the right adjoints are

C1
oo

G1 C2
oo

G2 C3,

then the composite G1 ◦G2 is right Quillen, and (F2 ◦ F1 ⊣G1 ◦G2) form a Quillen pair. By
Lemma 3.4.13, we have equivalences of derived functors

L(F2 ◦ F1)≃ (LF2) ◦ (LF1), R(G1 ◦G2)≃ (RG1) ◦ (RG2).

Example 5.4.7. Composing the disjoint basepoint and free diagram functors from Ex-
ample 5.4.4 gives the free based diagram on an unbased space:

Top
(−)+ // Top∗

Fi (−) // TopI
∗

The right adjoints are all forgetful functors, which compose to give a forgetful functor:

Top oo U Top∗ oo
evi TopI

∗

The composite Quillen pair is (Fi (−)+,U ◦evi ).

5.4.2 Quillen equivalences

Suppose (F ⊣G ) is a Quillen adjunction. By Proposition 3.4.20, the functors (LF ⊣RG )
form an adjoint pair on the homotopy categories Ho C and Ho D. However, this adjunc-
tion is much easier to describe, using the fundamental theorem of model categories,
Theorem 5.2.26.

It suffices to restrict attention to cofibrant X ∈ C, so that LF (X ) ≃ F (X ), and fibrant
Y ∈ D, so that RG (Y ) ≃ G (Y ). Since F preserves cofibrations and the initial object,
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F (X ) ∈D is cofibrant. Since G preserves fibrations and the terminal object, G (Y ) ∈C is
fibrant. By Theorem 5.2.26 we therefore get

Ho C(X ,G (Y ))∼=C(X ,G (Y ))/(homotopy)
∼=D(F (X ), Y )/(homotopy)
∼=Ho D(F (X ), Y ),

giving the adjunction between LF and RG .4

Definition 5.4.8. A Quillen equivalence is a Quillen adjunction (F ⊣G ) such that (LF ⊣
RG ) is an equivalence of homotopy categories Ho C≃Ho D.

Recall that an adjunction is an equivalence if its counit and unit maps are isomorphisms.
Equivalently, if isomorphisms F (X )→ Y correspond to isomorphisms X →G (Y ). There-
fore:

Lemma 5.4.9. A Quillen adjunction (F ⊣G ) is a Quillen equivalence if, for all cofibrant
X in C and fibrant Y in D, a map F X → Y is a weak equivalence in D iff its adjunct
X →G Y is a weak equivalence in C.

Example 5.4.10. Σ and Ω form a Quillen equivalence between Sp and itself. The other
examples in Example 5.4.4 are not Quillen equivalences.

Example 5.4.11. For any object X in a model category X , the slice category or comma
category (X ↓C) is the category of maps X → Z , with morphisms the commuting trian-
gles. This is a model category with essentially the same cofibrations, weak equivalences,
and fibrations as C, see exercise 9.

Any map f : X → Y induces a map of comma categories f ∗ : (Y ↓ C)→ (X ↓ C) by pre-
composing with f . This operation has a left adjoint f! : (X ↓ C) → (Y ↓ C) that takes
every X → Z to the pushout Y → Y ∪X Z . It is very easy to see that f ∗ preserves weak
equivalences and fibrations, so ( f! ⊣ f ∗) forms a Quillen pair.

Furthermore, if f is a weak equivalence and C is left proper (Definition 5.2.29), then
( f! ⊣ f ∗) is a Quillen equivalence. (This is also true if f is a weak equivalence and both X
and Y are cofibrant.)

Example 5.4.12. The previous example can be dualized. The slice category or comma
category (C ↓ X ) is the category of maps Z → X , with morphisms the commuting trian-
gles. This is also model category with essentially the same cofibrations, weak equiva-
lences, and fibrations as C, see exercise 10.

4We are skipping some details here about why the adjunction sends homotopies of maps F (X )→ Y to
homotopies of maps X →G (Y ). In examples, this is usually obvious. It’s also true in general, but you have
to use the notions of left and right homotopy in a model category to prove it – see [Hov99, Lem 1.3.10].
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Any map f : X → Y induces a map of comma categories f ∗ : (C ↓ Y )→ (C ↓X) by sending
Z → Y to the pullback X ×Y Z . This operation has a left adjoint f! : (C ↓ X )→ (C ↓ Y ) that
post-composes with f . Again, it is very easy to see that f! preserves weak equivalences
and cofibrations, so ( f! ⊣ f ∗) forms a Quillen pair.

Furthermore, if f is a weak equivalence and C is right proper (Definition 5.2.29), then
( f! ⊣ f ∗) is a Quillen equivalence. (This is also true if f is a weak equivalence and both X
and Y are fibrant.)

5.4.3 Restriction and left Kan extension

Perhaps the most important Quillen adjunction is the one between “restriction” and “left
Kan extension.” This can be done in a great deal of generality, but we focus here on
diagrams of spaces.

Let I and J be any small topological categories, and F : I→ J a topological functor. First,
let’s consider the case that the categories are unbased.

Definition 5.4.13. The restriction F ∗ : TopJ → TopI composes every diagram J → Top
with the functor F . In other words, it produces the diagram whose value at i ∈ I is the
original diagram at F (i ) ∈ J:

(F ∗X )(i ) = X (F (i )).

The left Kan extension F! : TopI → TopJ is the left adjoint of F ∗. By analogy with the
theory of rings, this is also sometimes called extension of scalars.

To spell it out explicitly, if the morphism spaces of I are discrete, then F! takes the colimit
of all of the terms X (i ) for each morphism F (i )→ j in J:

(F!X )( j ) = colim
F (i )→ j

X (i )

This colimit is indexed by the comma category:

Definition 5.4.14. For each j ∈ J, the comma category (F ↓ j ) has an object for each
i ∈ I and morphism p : F (i )→ j , and a morphism for each morphism f : i0→ i1 in I that
forms a commuting triangle

F (i0)

p0
!!

F ( f )
// F (i1)

p1
}}

j

If F is the inclusion of a single object, this recovers the earlier notion of comma category
( j ↓ J).
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More generally, if I has a topology, then F!X is defined by taking the spaces X (i )×J(F (i ), j )
and modding out by a relation for each commuting triangle in Definition 5.4.14:

(F!X )( j ) =

�

∐

i∈I

X (i )× J(F (i ), j )

�

��

(x , F ( f ) ◦p )∼ (F ( f )(x ), p )
�

We could also express this another way as a coequalizer, i.e. a colimit of a diagram that
just has two maps between the same pair of objects:

�

∐

i0,i1∈I

X (i0)× I(i0, i1)× J(F (i1), j )

�

⇒

�

∐

i∈I

X (i )× J(F (i ), j )

�

−→ (F!X )( j ) (5.4.15)

See exercise 15. The following is also left as an exercise.

Lemma 5.4.16. The functor F! thus described is the left adjoint of F ∗.

Proposition 5.4.17. The functors (F! ⊣ F ∗) form a Quillen adjunction.

Proof. By Lemma 5.4.2, it suffices to check that F ∗ preserves level equivalences and level
fibrations of diagrams. This is obviously true, so we are done!

Of course F ∗ is homotopical, so its right-derived functor RF ∗ is equivalent to F ∗ itself.
The left-derived functor LF! is called the homotopy left Kan extension. It is formed by
first making the diagram X cofibrant, then taking its left Kan extension.

Example 5.4.18. If J= ∗ is the one-point category with only the identity map, a diagram
over J is just a single space. There is a unique functor F : I→∗. The restriction F ∗ is the
functor that takes each space to the constant diagram on that space. The left Kan exten-
sion F! is the colimit. The homotopy left Kan extension LF! is therefore the homotopy
colimit.

Example 5.4.19. If I = ∗ is the one-point category, there is a functor F : ∗ → J for every
object j ∈ J. The restriction F ∗ is the evaluation ev j that takes the j th level of the diagram
X ( j ) and forgets everything else. The left Kan extension F! is the free diagram functor
Fj (−) from Definition 5.3.10.

Example 5.4.20. Every topological group G is a category with one object, and a functor
F : H → G is a group homomorphism. Suppose the homomorphism is injective. Then
F ∗ is the functor from G -spaces to H -spaces that forgets the action of those elements of
G not in the subgroup H . The left Kan extension F! is the extension or balanced product

F!X =G ×H X =
�

G ×X
��

(g , h x )∼ (g h , x ),

see exercise 14. This is like extension of scalars in ring theory.
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The case of based diagrams is entirely similar. Let I and J be any small based topological
categories, and F : I → J a based topological functor. The restriction F ∗ : TopJ

∗ → TopI
∗

composes every based diagram J→ Top∗ with the functor F , just as before. The left Kan
extension F! : TopI

∗ → TopJ
∗ is the left adjoint of F ∗. It is defined just as before but using

smash products:

(F!X )( j ) =

�

∨

i∈I

X (i )∧ J(F (i ), j )

�

��

(x , F ( f ) ◦p )∼ (F ( f )(x ), p )
�

. (5.4.21)

Example 5.4.22. Again let I= ∗be the one-point category, and S 0 = I+ the based category
obtained by adding a disjoint basepoint. It has one object, and morphism set S 0, and
the composition is the isomorphism S 0 ∧S 0 ∼= S 0. A based functor F : S 0→ J is the same
thing as an object j ∈ J. As before, the restriction F ∗ is the evaluation ev j , and the left
Kan extension F! is the free diagram functor Fj (−) from Definition 5.3.33.

Example 5.4.23. If instead we let J+ = S 0, then there isn’t a unique functor I→ J+ any-
more for an arbitrary based category I. This is consistent with the idea that you can’t
really take colimits of diagrams on based categories (Remark 5.3.43).

5.5 Quillen tensors*

Quillen tensors are essentially Quillen adjunctions that have two inputs instead of one.
So they are functors from a pair of model categories C and D to a third model category
E:

⊗: C×D→E.

We develop their properties here, and use them to finish the proof of the stable model
structure for spectra.

5.5.1 Two-variable adjunctions

Definition 5.5.1. A two-variable left adjoint is a functor ⊗: C×D→ E that has a right
adjoint in each slot. In other words, each of the functors X ⊗− and −⊗ Y has a right
adjoint.

It follows from the abstract properties of adjoints (exercise 23) that the right adjoints
assemble together into functors

HomC : Cop×E→D, HomD : Dop×E→C,

and we have bijections

C(X , HomD(Y , Z ))∼= E(X ⊗Y , Z )∼=D(Y , HomC(X , Z ))
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that are natural in X , Y , and Z . All together this is called a two-variable adjunction. (cf.
Remark 3.4.25)

Example 5.5.2. The Cartesian product and unbased mapping space

×: Top×Top→ Top

Map: Topop×Top→ Top

Map: Topop×Top→ Top

form a two-variable adjunction. So we have natural bijections

Top(X , Map(Y , Z ))∼= Top(X ×Y , Z )∼= Top(Y , Map(X , Z ))

for any three unbased spaces X , Y , and Z .

Example 5.5.3. The smash product and based mapping space

∧: Top∗×Top∗→ Top∗
Map∗ : Topop

∗ ×Top∗→ Top∗
Map∗ : Topop

∗ ×Top∗→ Top∗

form a two-variable adjunction. So we have natural bijections

Top∗(X , Map∗(Y , Z ))∼= Top∗(X ∧Y , Z )∼= Top∗(Y , Map∗(X , Z ))

for any three based spaces X , Y , and Z .

Example 5.5.4. Consider the functors

×: Top×TopI→ TopI

Map: Topop×TopI→ TopI

MapI : (TopI)op×TopI→ Top.

The first functor takes a space X and applies X ×− to every level of a diagram Y . The sec-
ond functor similarly applies Map(X ,−) to every level. The third functor takes the space
of maps of diagrams MapI(Y , Z ). It is the product of mapping spaces Map(Y (i ), Z (i )), re-
stricted to the subspace of those maps that form a natural transformation of diagrams.

These form a two-variable adjunction. So we have natural bijections

Top(X , MapI(Y , Z ))∼= TopI(X ×Y , Z )∼= TopI(Y , Map(X , Z ))

for any space X and diagrams Y and Z .
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Example 5.5.5. The previous example has a variant where we use based spaces and the
smash product instead. Taking I to be the sphere category S of Definition 5.3.31, we get
the tensor, cotensor, and the mapping space

∧: Top∗×Sp→ Sp

F : Topop
∗ ×Sp→ Sp

Map∗ : Spop×Sp→ Top∗

So we have natural bijections

Top∗(X , Map∗(Y , Z ))∼= Sp(X ∧Y , Z )∼= Sp(Y , F (X , Z ))

for any space X and spectra Y and Z .

5.5.2 Pushout-products and pullback-homs

We would like to say that the product of two topological spaces

×: Top×Top→ Top

is a left Quillen functor, in some sense. The problem is that, if A → X and B → Y are
both Quillen cofibrations (retracts of relative cell complexes), the product map

A×B → X ×Y

will not be a Quillen cofibration.

But products of spaces are nice, right? So what’s going on? The problem is that we are
asking for the wrong condition.

To illustrate the problem, assume further that
both maps are cell complexes. So the comple-
ment X \A is composed of cells, and the comple-
ment Y \ B is also composed of cells. The com-
plement (X × Y ) \ (A × B ) has all the products of
these cells, but it also has products of A with all
the cells in Y \B , and also the product of B with
all the cells in X \A.

What is the correct statement? The cells in X ×Y
are located away from the points in which either
the first coordinate is in A or the second coordi-
nate is in B . So we have to consider X ×Y relative
to a larger subspace.
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Given two maps of spaces f : A→ X and g : B → Y , we define the pushout-product f □g
to be the inclusion

(A×Y )∪(A×B ) (X ×B ) // X ×Y .

More generally, suppose C, D, and E are categories, E has all pushouts, and

⊗: C×D→E

is a functor that preserves colimits in each slot.

Definition 5.5.6. If f : A→ X is a map in C and g : B → Y is a map in D, we use⊗ to form
the following commuting square.

A⊗B
id⊗g

//

f ⊗id
��

A⊗Y

f ⊗id
��

X ⊗B
id⊗g

// X ⊗Y

The pushout-product f □g is the map from the pushout of the first three terms to the
final vertex:

f □g : (X ⊗B )∪A⊗B (A⊗Y ) // X ⊗Y .

Note that f □g is a morphism in the category E.

In particular, if ⊗ is a functor C×C→ C, the pushout-product of any two maps in C is
another map in C.

Example 5.5.7. Since ⊗ preserves colimits in each slot, we have ;⊗X ∼= ;. Therefore:

(; −→ X ) □ (B
g
−→ Y ) = (X ⊗B

id⊗g
−→ X ⊗Y )

(A
f
−→ X ) □ (; −→ Y ) = (A⊗Y

f ⊗id
−→ X ⊗Y )

In other words, pushout-product with a map of the form (; → X ) is the same thing as
tensoring the map with the object X .

As a further special case, we get

(; −→ X ) □ (; −→ Y ) = (; −→ X ⊗Y ).

Example 5.5.8. In based spaces Top∗, we have two products, × and ∧. We can take
pushout-product with respect to either one, to make another map of based spaces. If
there is any risk of confusion, we use a subscript, f □×g or f □∧g , to denote which one
we are taking.



5.5. QUILLEN TENSORS* 263

Example 5.5.9. There are isomorphisms of maps

(S m−1→D m ) □ (S n−1→D n )∼= (S m+n−1→D m+n )

(S m−1→D m ) □ (D n ×{0}→D n × I )∼= (D m+n ×{0}→D m+n × I ).

Once we have checked this, we observe that A×(−) commutes with the pushout-product
in unbased spaces, so we get

(A×S m−1→ A×D m ) □ (S n−1→D n )∼= (A×S m+n−1→ A×D m+n )

(A×S m−1→ A×D m ) □ (D n ×{0}→D n × I )∼= (A×D m+n ×{0}→ A×D m+n × I ).

We could prove these more elegantly by proving that□ is associative (exercise 24). Then
in the above two isomorphisms, each side can be written as a three-fold pushout-product

(;→ A) □ (S m−1→D m ) □ (S n−1→D n ),

(;→ A) □ (S m−1→D m ) □ (D n ×{0}→D n × I ).

Similarly, if we work in based spaces and use the smash product, we have isomorphisms

(S m−1
+ →D m

+ ) □∧ (S
n−1
+ →D n

+ )
∼= (S m+n−1

+ →D m+n
+ )

(S m−1
+ →D m

+ ) □∧ ((D
n ×{0})+→ (D n × I )+)∼= ((D m+n ×{0})+→ (D m+n × I )+)

and similar isomorphisms that smash one of the maps with a based space A.

The pushout-product is a functor of arrow categories

□: C{•→•}×D{•→•} −→ E{•→•}.

If⊗ has a right adjoint in each slot, and C and D have all limits, then□ has a right adjoint
in each slot as well. The right adjoint is called the pullback-hom.

Definition 5.5.10. If g : B → Y is a map in D and h : C → Z is a map in E, we can use
HomD(−,−) to form the following commuting square.

HomD(Y , C ) //

��

HomD(B , C )

��

HomD(Y , Z ) // HomD(B , Z )

The pullback-hom HomD,□(g , h ), or just Hom□(g , h ), is the map in C from the first vertex
of this square to the pullback of the remaining three terms:

Hom□(g , h ): HomD(Y , C )→HomD(B , C )×HomD(B ,Z )HomD(Y , Z ).
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This can be visualized as the space of all choices of diagonal in the square below, map-
ping to the space of all choices of two horizontal maps making the square commute.

B //

g
��

C
h
��

Y //

::

Z

Example 5.5.11. Similarly to Example 5.5.7, if we plug an initial object in for B , the
pullback-hom simplifies to HomD(Y ,−)

Hom□((; −→ Y ), (C
h−→ Z )) = (HomD(Y , C )−→HomD(Y , Z )),

and if we plug in a terminal object for Z , the pullback-hom simplifies to HomD(−, C ):

Hom□((B
g
−→ Y ), (C −→∗)) = (HomD(Y , C )−→HomD(B , C )),

If we do both, we get a single mapping space and its map to the terminal object:

Hom□((; −→ Y ), (C −→∗)) = (HomD(Y , C )−→∗).

We are now ready to prove that Hom□ is the right adjoint of □ in each slot.

Proposition 5.5.12. We have natural bijections between commuting squares of the fol-
lowing forms.

•
f
��

// •
Hom□(g ,h )
��

•
f □g
��

// •
h
��

•
g

��

// •
Hom□( f ,h )
��

• // • • // • • // •

Moreover, a lift in any one square gives lifts in the others:

•
f
��

// •
Hom□(g ,h )
��

•
f □g
��

// •
h
��

•
g

��

// •
Hom□( f ,h )
��

• //

??

• • //

??

• • //

??

•

Proof. Pick any three maps

f : A→ X in C, g : B → Y in D, h : C → Z in E.

A choice of dotted maps making the square

A //

f
��

HomD(Y , C )
Hom□(g ,h )
��

X // HomD(B , C )×HomD(B ,Z )HomD(Y , Z )



5.5. QUILLEN TENSORS* 265

commute in C can be expressed uniquely by the data of three maps A⊗Y →C , X ⊗B →
C , and X ⊗Y → Z in E, subject to three compatibility conditions, two that say the above
square commutes, and one that says that the maps to the lower-right land not just in the
product but in the fiber product.

These three compatibility conditions correspond to the three regions in the diagram be-
low, and they hold if the maps around these regions commute.

A⊗B
f ⊗id

xx

id⊗g

&&

X ⊗B //

id⊗g

��

C
h
��

A⊗Yoo

f ⊗id

��

Z

X ⊗Y

OO

This rearranges to the statement that the square

X ⊗B ∪A⊗B A⊗Y //

f □g
��

C
h
��

X ⊗Y // Z

commutes (two of the conditions) and that the top map is in fact a map out of the pushout
and not just the coproduct (the last condition).

Similarly, a choice of lift X → HomD(Y , C ) in the first square corresponds to a map
X ⊗ Y → C in the last square, and in each case we need the same three conditions to
guarantee that these lifts commute with the other maps in the square.

In summary, the pushout-product □ is an operation on maps in the categories C and D.
And if the tensor ⊗: C×D→ E has a right adjoint in each slot, then □ has a right adjoint
in each slot as well.

5.5.3 Definition of a Quillen tensor

If we have both a tensor product and a model structure, how should they interact? By
the previous subsection, the right condition to ask for is that the pushout-product of any
two cofibrations is a cofibration.

Suppose that C, D, and E are model categories, and ⊗: C×D→E a functor.

Definition 5.5.13. We say that ⊗ is a Quillen tensor, or left Quillen bifunctor, if the
following conditions hold.
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• ⊗ is a left adjoint in each slot.

• For each cofibration f in C and cofibration g in D, the pushout-product f □g ,
formed using ⊗, is a cofibration.

• If, in addition to being a cofibration, one of the maps f or g is a weak equivalence,
then the pushout-product f □g is also a weak equivalence.

We can summarize these conditions as follows.

C □ C ⊆C , (W ∩C ) □ C ⊆ (W ∩C ), C □ (W ∩C )⊆ (W ∩C ).

Proposition 5.5.14. If C and D are cofibrantly generated, then it suffices to check the last
two conditions of Definition 5.5.13 on the generating cofibrations I and generating acyclic
cofibrations J in the categories C and D. In shorthand,

I □ I ⊆C , J □ I ⊆ (W ∩C ), I □ J ⊆ (W ∩C ).

Proof. One might think this proceeds exactly as in Lemma 5.4.3, and indeed it is possible
to prove it that way, but the proof is a bit harder because you have to figure out what−□g
does to pushouts and sequential compositions. It’s much faster to use the adjoints of □
and lifting properties.

The argument can be given pictorially as follows.

•
I□I
��

// •
W ∩F
��

•
I
��

// •
Hom□(I ,W ∩F )
��

•
C
��

// •
Hom□(I ,W ∩F )
��

•
C□I
��

// •
W ∩F
��

• //

??

• • //

??

• • //

??

• • //

??

•

In words, since each map in I □ I is a cofibration, lifts in the first square always exist. By
Proposition 5.5.12, this is equivalent to the existence of lifts in the second square. Since
maps with the left-lifting property are closed under coproducts, pushouts, sequential
compositions, and retracts, we can pass from I to C , giving the third square. Finally,
rearranging again gives the fourth square. We conclude that C □ I ⊆C .

Repeating the argument on the other side, we conclude that C □ C ⊆ C . The other two
cases are similar.

Example 5.5.15. The following are Quillen tensors, using Proposition 5.5.14 and Exam-
ple 5.5.9.
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Functor Notes

×: Top×Top→ Top Cartesian product of unbased spaces.

∧: Top∗×Top∗→ Top∗ Smash product of based spaces.

×: TopI×Top→ TopI Multiply each space in the diagram X (i ) by a fixed space A.

∧: TopI
∗×Top∗→ TopI

∗ Smash each X (i )with a fixed based space A.

∧: Sp×Top∗→ Sp Smashing a spectrum with a space.5

There is another entry for this list called the “coend” TopI ×TopIop → Top, see exercise
15.

Example 5.5.16. The tensor product of chain complexes

⊗: Ch≥0(Z)×Ch≥0(Z)−→Ch≥0(Z)

is also a Quillen tensor.

Remark 5.5.17. We can use Proposition 5.5.12 to rearrange the conditions of a Quillen
tensor. For instance, if⊗ has a right adjoint in each slot, then⊗ is a Quillen tensor iff one
of the right adjoints Hom(−,−) has

Hom□(C , F )⊆ F, Hom□((W ∩C ), F )⊆ (W ∩ F ), Hom□(C , (W ∩ F ))⊆ (W ∩ F ).

This is often called Quillen’s SM7 axiom. See exercise 27.

5.5.4 Properties of Quillen tensors

What does the condition of a Quillen tensor give us? For one, it guarantees that⊗will be
well-behaved on all cofibrant objects.

Lemma 5.5.18. Suppose ⊗ is a Quillen tensor.

• If X and Y are cofibrant, then X ⊗Y is cofibrant.

• If A is cofibrant and B → Y is an (acyclic) cofibration, then the product A⊗B → A⊗Y
is an (acyclic) cofibration.

• If B is cofibrant and A→ X is an (acyclic) cofibration, then the product A⊗B → X ⊗B
is an (acyclic) cofibration.
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Proof. This follows from the definition of a Quillen tensor, and the simplifications de-
scribed in Example 5.5.7.

Lemma 5.5.19. If⊗ is a Quillen tensor, then the functor (−)⊗(−) preserves all weak equiv-
alences between pairs of cofibrant objects.

Proof. This follows from Lemma 5.5.18 and Ken Brown’s Lemma (Lemma 5.2.24).

Corollary 5.5.20. If⊗ is a Quillen tensor and X ∈C is cofibrant, then X ⊗(−) is left Quillen
functor D→E. Similarly if Y ∈D is cofibrant, then (−)⊗Y is a left Quillen functor C→E.

We can recover some of the examples of Example 5.4.4 from Example 5.5.15 using this
fact. For instance, the smash product of spaces ∧ is a Quillen tensor. Therefore, if X is a
cofibrant space, then X ∧ (−) is left Quillen.

We can dualize the above results, and say that the right adjoints Hom(−,−) are well-
behaved whenever the source is cofibrant and the target is fibrant.

Lemma 5.5.21. Suppose Hom(−,−) is one of the right adjoints of a Quillen tensor.

• If X is cofibrant and Y is fibrant, then Hom(X , Y ) is fibrant.

• If A is cofibrant and X → Y is an (acyclic) fibration, then the induced map Hom(A, X )→
Hom(A, Y ) is an (acyclic) fibration.

• If Y is fibrant and A→ B is an (acyclic) cofibration, then the induced map going the
other way Hom(B , Y )→Hom(A, Y ) is an (acyclic) fibration.

Proof. This follows from Example 5.5.11 and Proposition 5.5.12.

To spell out one case in detail, if i : ;→ A is a cofibration and p : X → Y is a fibration, we
use Example 5.5.11 to write the map Hom(A, X )→ Hom(A, Y ) as Hom□(i , p ). We show
this is a fibration by showing it has lifts along any acyclic cofibration j :

•
j

��

// Hom(A, X )

Hom□(i ,p )
��

• //

::

Hom(A, Y )

By Proposition 5.5.12, this is equivalent to finding a lift in

•
j□i

��

// X
p

��

• //

??

Y .

But p is a fibration, and j□i is an acyclic cofibration, because ⊗ is a Quillen tensor.
Therefore the required lift exists.

The remaining cases are left to exercise 28.
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Lemma 5.5.22. If Hom(−,−) is one of the right adjoints of a Quillen tensor, then it pre-
serves all weak equivalences of pairs in which the first object is cofibrant and the second
object is fibrant.

Proof. This follows from Lemma 5.5.21 and Ken Brown’s Lemma for fibrations, Lemma 5.2.25.

Corollary 5.5.23. If Hom(−,−) is one of the right adjoints of a Quillen tensor, and X ∈ C
is cofibrant, then Hom(X ,−) is right Quillen.

Example 5.5.24. The unbased mapping space Map(X , Y ) is the right adjoint of a Quillen
tensor. Therefore it preserves equivalences if X is cofibrant and Y is fibrant. You could
prove this directly using the Whitehead theorem and cellular arguments, but it would
be quite tedious!

Example 5.5.25. When X and Y are spectra, the mapping space Map∗(X , Y ) is the right
adjoint of a Quillen tensor. Therefore it preserves equivalences if X is cofibrant and Y
is fibrant. This gives a second proof of Lemma 3.3.32.

Example 5.5.26. When K is a based space and X is a spectrum, the cotensor F (K , X ) is
the right adjoint of a Quillen tensor. So it preserves equivalences if K is a retract of a cell
complex, and X is an Ω-spectrum.

To summarize, a Quillen tensor ⊗ is well-behaved on pairs of cofibrant objects, and its
right adjoints HomC(−,−) and HomD(−,−) are well-behaved when the source is cofibrant
and the target is fibrant. We therefore have a left-derived tensor and right-derived homs

X ⊗L Y :=Q X ⊗QY ,

RHomC(X , Z ) :=HomC(Q X , R Z ), RHomD(Y , Z ) :=HomD(QY , R Z ).

As in Remark 3.4.25, these form a two-variable adjunction on the homotopy category, so
we have natural isomorphisms

[X ,RHomD(Y , Z ))]Ho C
∼= [X ⊗L Y , Z ]Ho E

∼= [Y ,RHomC(X , Z )]Ho D.

Concretely, these come about by the identifications

C(X , HomD(Y , Z ))/(homotopy)∼= E(X ⊗Y , Z )/(homotopy)
∼=D(Y , HomC(X , Z ))/(homotopy)

where we take the identifications of mapping sets in Definition 5.5.1, and pass to homo-
topy classes of maps.
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Corollary 5.5.27. If C is both a model category and a closed symmetric monoidal category,
if the unit I is cofibrant and⊗ is a Quillen tensor, then the left-derived tensor⊗L and right-
derived homRHom make the homotopy category Ho C into a closed symmetric monoidal
category.

Proof. Follows from the above discussion along with Lemma 4.1.7 and Lemma 4.1.32.

5.6 Proof of the stable model structure*

We are finally ready to establish the stable model structure on Sp from Theorem 5.2.11.

Definition 5.6.1. We define the generating cofibrations to be

I = { Fi S n−1
+ −→ Fi D n

+ : n , i ≥ 0 }.

We have already observed that an I -cell complex is the same thing as a cellular spectrum.
For each i , j ≥ 0, let

λi , j : Fi+ j S j −→ Fi S 0

be the map adjoint to the identity S j ∼= S j . Concretely, this is a truncation map that cuts
off a few of the levels of Fi S 0, and includes the remaining levels back into the spectrum.
It follows that λi , j is a stable equivalence.

Let Cyli , j denote the based mapping cylinder of λi , j , and let ki , j inclusion of the front
end of that mapping cylinder. This is summarized in the following diagram.

Fi+ j S j oo
∼= //

λi , j
��

{1}+ ∧ Fi+ j S j

λi , j
��

∼ //

⌜

I+ ∧ Fi+ j S j

��

{0}+ ∧ Fi+ j S j∼oo

ki , jvv

Fi S 0 oo
∼= // {1}+ ∧ Fi S 0 ∼ // Cyli , j

(5.6.2)

Definition 5.6.3. We define the generating acyclic cofibrations to be

J = { Fi (D
n ×{0})+ −→ Fi (D

n × I )+ : n , i ≥ 0 }
∪ { ki , j □

�

S n−1
+ −→D n

+

�

: i , j , n ≥ 0 }.

Here the pushout-product □ is being taken with respect to the tensoring functor

∧: Sp×Top∗→ Sp.

We have already established in Example 5.5.15 that this is a Quillen tensor, using the
level model structure on spectra.
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Lemma 5.6.4. The map ki , j is a stable equivalence and an I -cofibration.

Proof. In (5.6.2), the maps marked ∼ are all level equivalences. Since λi , j is a stable
equivalence, we conclude that ki , j is a stable equivalence. The following diagram shows
that ki , j is a composition of two I -cell complexes of spectra, and is therefore an I -cofibration.

{0, 1}+ ∧ Fi+ j S j

��

//

⌜

I+ ∧ Fi+ j S j

��

{0}+ ∧ Fi+ j S j //

ki , j

44({0}+ ∧ Fi+ j S j )∨ ({1}+ ∧ Fi S 0) // Cyli , j

Lemma 5.6.5. The map ki , j □
�

S n−1
+ →D n

+

�

is a stable equivalence and an I -cofibration.

Proof. Since∧ is a Quillen tensor using the level model structure, and this uses the same
set of maps I , we know that ki , j □

�

S n−1
+ →D n

+

�

is an I -cofibration.

To show it is a stable equivalence, we replace ki , j by any stable equivalence of cofibrant
spectra k : X → Y , and show that k □

�

S n−1
+ →D n

+

�

is a stable equivalence. Consider the
square

X ∧S n−1
+

k∧id
��

// X ∧D n
+

k∧id
��

Y ∧S n−1
+

// Y ∧D n
+ .

By Corollary 2.4.23, or alternatively Lemma 5.5.19, the vertical maps are both stable
equivalences. On the other hand, the horizontal maps are cofibrations at each spectrum
level, so the strict pushout

(Y ∧S n−1
+ )∪X ∧S n−1

+
(X ∧D n

+ )

is equivalent to the homotopy pushout. Since X ∧ S n−1
+ → Y ∧ S n−1

+ is an equivalence,
this homotopy pushout is equivalent to X ∧D n

+ . Therefore the map from the pushout to
Y ∧D n

+ is an equivalence.

Lemma 5.6.6. Let p : X → Y be a map of spectra. Then p is I -injective if and only if each
pi : X i → Yi is an acyclic Serre fibration.

Furthermore p is J -injective if and only if two conditions hold: each pi : X i → Yi is a Serre
fibration, and each square (5.6.7) is a homotopy pullback square.

X i
//

pi

��

Ω j X i+ j

Ω j pi+ j
��

Yi
// Ω j Yi+ j

(5.6.7)
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Proof. The first claim has already been proven in Theorem 5.3.37, using the free-forget
adjunction (Fn , evn ). See Theorem 5.3.16.

By the same argument, p has the right-lifting property with respect to the first set of
maps in J , iff each pi is a Serre fibration. It remains to prove that, under this assumption,
p has the right-lifting property with respect to the second set of maps in J iff each square
(5.6.7) is a homotopy pullback square. So we assume that p is a level fibration for the rest
of the proof.

By Proposition 5.5.12, p has the right-lifting property with respect to the second set of
maps in J iff Hom□(ki , j , p ) has the right-lifting property with respect to S n−1

+ → D n
+ , in

other words iff Hom□(ki , j , p ) is an acyclic Serre fibration.

Note that in the level model structure on spectra, ki , j is a cofibration and p is a fibration.
By Remark 5.5.17, therefore Hom□(ki , j , p ) is a Serre fibration. So we only have to consider
whether it is a weak equialence as well.

Recall that the map Hom□(ki , j , p ) is written as

Map∗(Cyli , j , X )−→Map∗(Fi+ j S j , X )×Map∗(Fi+ j S j ,Y )Map∗(Cyli , j , Y ). (5.6.8)

Since Map∗ is the right adjoint of a Quillen tensor for the level model structure, Lemma 5.5.21
applies. It tells us two things.

First, Map∗(Fi+ j S j , X )→Map∗(Fi+ j S j , Y ) is a Serre fibration. Therefore the pullback on
the right-hand side of (5.6.8) is a homotopy pullback.

Second, Map∗ preserves equivalences when the source is a cellular spectrum. Therefore
we may replace Cyli , j by the level equivalent spectrum Fi S 0:

Map∗(Fi S 0, X )−→Map∗(Fi+ j S j , X )×h
Map∗(Fi+ j S j ,Y )Map∗(Fi S 0, Y ). (5.6.9)

This map is weakly equivalent to (5.6.8), because we replaced two of the terms by weakly
equivalent spaces, and the pullback is a homotopy pullback.

We can simplify one more time. By composing adjoints, we get an isomorphism Map∗(FmS n , X )∼=
Ωn Xm . This allows us to rewrite (5.6.9) as the map

X i −→Ω j X i+ j ×h
(Ω j Yi+ j )

Yi (5.6.10)

arising from the adjunct bonding maps of X and Y .

In summary, we have shown that p has the right-lifting property with respect to the sec-
ond set of maps in J iff (5.6.10) is a weak equivalence. However, (5.6.10) is just the map
from the first vertex to the homotopy pullback of the other three vertices, in the square
(5.6.7). So p has the right-lifting property with respect to the second set of maps in J iff
(5.6.7) is a homotopy pullback square.
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Definition 5.6.11. A stable fibration is a map of spectra X → Y that is J -injective. By
Lemma 5.6.6, this is the same as being a level fibration and (5.6.7) being a homotopy
pullback square. Note that X →∗ is a stable fibration iff X is an Ω-spectrum.

Remark 5.6.12. To check that the squares Equation 5.6.7 are homotopy pullbacks, it
suffices to check the cases in which j = 1. For instance, the square for j = 2 can be
subdivided as follows.

X i
//

pi
��

ΩX i+1
//

Ωpi+1
��

Ω2X i+2

Ω2pi+2
��

Yi
// ΩYi+1

// Ω2Yi+2

If the squares with j = 1 are all homotopy pullbacks, then the left-hand square above
is a homotopy pullback, and applying Ω, we see that the right-hand square is as well.
Homotopy pullback squares are preserved under pasting, hence the large rectangle is a
homotopy pullback. The same argument works for larger values of j as well.

As a result, we could have been a little more efficient in defining J . We only had to take
the maps ki , j □

�

S n−1
+ →D n

+

�

for j = 1, not for all j ≥ 0.

Proof of Theorem 5.2.11. (The stable model structure on Sp)

We verify the six conditions from Proposition 5.2.6.

1. W is closed under 2-out-of-3 and retracts. This follows because the stable equiv-
alences are exactly those maps that are sent to isomorphisms under π∗.

2. I satisfies the countable smallness condition. As in TopI , this follows because
the domain of each map in I is a free spectrum on a compact space, and every I -
cell complex · · · → X (n )→ ·· · → X (∞) is a cell complex at each spectrum level. The
factorization therefore exists by Section 2.7, exercise 28.

3. J satisfies the countable smallness condition. Every map in J is a composite of
I -cell attachments. Therefore any J -cell complex is also I -cell complex. So now
we have to show the domains of J factor through some finite stage in any I -cell
complex.

For the first set of maps in J , the proof is the same as the previous point. For the
second set of maps, we note that we are factoring a map K → X (∞) through a finite
stage K → X (n ). The inclusion X (n )→ X (∞) is a closed inclusion, at each spectrum
level. Therefore, if n is large enough that the factorization K → X (n ) exists, the
factorization must also be unique.

If K is a finite union of spectra Ki , and each piece Ki factors through some finite
stage of the cell complex, then the factorizations must agree with each other (as-
suming n is large enough that they are all defined). Therefore K factors through
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some finite stage as well. In particular, if K can be expressed as a finite union of
free spectra on compact spaces, then this factorization exists.

By (5.6.2), the spectrum Cyli , j is a union of three free spectra on compact spaces. It
therefore factors through some finite stage in any I -cell complex. The same is true
if we take the tensor with a sphere, Cyli , j ∧S n−1

+ , because smash product commutes
with free spectrum,

(Fi A)∧B ∼= Fi (A ∧B ).

Now we turn to the domain of ki , j □
�

S n−1
+ →D n

+

�

. This is of the form

(Cyli , j ∧S n−1
+ )∪Fi+ j S j∧S n−1

+
(Fi+ j D n

+ ).

We now know that each of these three pieces factors through some finite stage,
and therefore the entire union does as well.

4. J -cell complexes are in W ∩ I -cof. As in the above point, every J -cell complex
is also an I -cell complex, and so is an I -cofibration. By Lemma 5.6.5, each map
Kα→ Lα in J is also a stable equivalence. A coproduct of such maps

∨

αKα→
∨

α Lα
is a stable equivalence by Section 2.7, exercise 29. Any pushout of this coproduct
map is also a stable equivalence, because the pushout map has the same homo-
topy cofiber (Lemma 2.4.14), and this homotopy cofiber is contractible. Therefore
in a J -cell complex, the successive stages X (n )→ X (n+1) are all stable equivalences.
Finally, the sequential composition these stable equivalences is a stable equiva-
lence, by Section 2.7, exercise 27. We conclude that every J -cell complex is a stable
equivalence.

5. I -inj ⊆W ∩ J -inj. By Lemma 5.6.6, if p is I -injective then it is a both a fibration
and a weak equivalence at each spectrum level. Therefore it is a stable equivalence,
so p ∈W . Moreover, since p is a level equivalence, the squares (5.6.7) have both
verticals weak equivalences, and therefore they are homotopy pullback squares.
Combining this with the fact that p is a level fibration, by Lemma 5.6.6 again we
conclude that p is J -injective.

6. W ∩ J -inj⊆ I -inj. If p ∈W ∩ J -inj, then by Lemma 5.6.6, each pi is a Serre fibration
and the squares (5.6.7) are homotopy pullback squares. We just need to prove that
each pi is also a weak equivalence, using the fact that p is a stable equivalence.

Examine the strict fiber spectrum F of the map p , in other words the pullback
of X along the basepoint ∗ → Y . Because p is a level fibration, F equivalent to
the homotopy fiber spectrum. Since p is a stable equivalence, by the long exact
sequence of Lemma 2.4.8, F is stably equivalent to the zero spectrum.

Since (5.6.7) is a homotopy pullback square, the induced map of fibers of the ver-
tical maps is a weak equivalence:

Fi
∼ // Ω j Fi+ j .
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Therefore F is anΩ-spectrum. The map F →∗ is a stable equivalence ofΩ-spectra,
so by Lemma 2.2.5, it is also a level equivalence. Therefore each of the spaces Fi is
weakly contractible.

Since Fi is the homotopy fiber of pi : X i → Yi at the basepoint of Yi , we conclude
that pi is a weak equivalence, at least over the basepoint component of Yi . Taking
the loopspace, Ωpi : ΩX i → ΩYi is an equivalence on every component. By the
homotopy pullback square (5.6.7), this implies that pi−1 is a weak equivalence,
for every value of i . Therefore p is an acyclic Serre fibration at each level. By
Lemma 5.6.6 again we conclude that p is I -injective.

In summary, once we developed the theory of Quillen tensors, we were able to show that
the category of spectra Sp has a model structure with the stable equivalences. All of the
properties of model categories from Section 5.2.5 now apply: we get factorizations

X
cellular spectrum

stable equivalence
// X ′ stable fibration // Y

X
cellular spectrum

// X ′ stable fibration

stable equivalence
// Y ,

and lifts of the form
•

C
��

// •
W ∩F
��

•
W ∩C

��

// •
F
��

• //

??

• • //

>>

•.
Note that since the stable and level model structures have the same cofibrations C , they
also have the same acyclic fibrations W ∩F : a map that is both a stable equivalence and
a stable fibration must be a level equivalence and level fibration.

Perhaps the biggest upshot is the ability to check that a functor preserves weak equiv-
alences by using Ken Brown’s Lemma and checking the functor on one map of J at a
time. We will use this heavily as we develop symmetric and orthogonal spectra, and
their smash product.

5.7 Bousfield localization*

A localization of a category C is when we invert a class of weak equivalences, turning
them into isomorphisms, to form a homotopy category Ho C.

If C is already a model category, with a class of weak equivalences V , we also use the
word “localization” to refer to expanding the class V to a larger class W . This also has
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the effect of inverting morphisms in the homotopy category C[V −1], turning the maps
in W into isomorphisms to form the homotopy category C[W −1].

If C is a model category with weak equivalences V , and we want to expand the weak
equivalences to W , we might want to do this in a way that gives a compatible model
structure. There is a standard framework for this, called left Bousfield localization.

Definition 5.7.1. Suppose C is a model category with cofibrations C , weak equivalences
V , and fibrations F . Then suppose that W is a class of maps containing V . The left
Bousfield localization, if it exists, is the model structure (C , W , L F ) in which

• the cofibrations are the same,

• the weak equivalences are now W , and

• the fibrations L F are the maps with the right-lifting property with respect to W ∩C .

Note that this model structure is unique if it exists, because the fibrations must be the
maps with the RLP with respect to W ∩C , by Lemma 5.2.21.

Example 5.7.2. The stable model structure on Sp is a left Bousfield localization of the
level model structure. They both have the same cofibrations, but the stable model struc-
ture has more equivalences.

Example 5.7.3. A map of spectra X → Y is a rational equivalence if it induces isomor-
phisms on the rational stable homotopy groups π∗(−)⊗Q, see Example 2.5.30. The ra-
tional stable model structure on Sp is defined to be the left Bousfield localization of the
stable model structure, using these rational equivalences.

We can directly show that this model structure exists. You take I to be the same as in
Definition 5.6.1, and in J you add to Definition 5.6.3 the mapping cylinders of the maps

Fi S n −→ Fi S n

that apply a degree k map φk to the n-sphere, for all values of k . These new maps are
all rational equivalences, as is any cell complex built out of them. On the other hand,
the proof of Lemma 5.6.6 shows that having the right-lifting property with respect to
these new maps is equivalent to asking that the following squares are homotopy pullback
squares:

Ωn X i

Ωn pi
��

−◦φk // Ωn X i

Ωn pi
��

Ωn Yi −◦φk

// Ωn Yi

This is equivalent to the fiber of X → Y (which is already anΩ-spectrum) having k ·− act
by an isomorphism on the stable homotopy groups, in other words, the fiber is rationally
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contractible. All together, this is everything we need to show that I and J generate a
model structure with W equal to the rational equivalences.

Example 5.7.4. Let p be any prime. A map of spectra X → Y is a p -local equivalence if
it induces isomorphisms on the p -local stable homotopy groups π∗(−)⊗Z(p ), see Exam-
ple 2.5.31. The p -local stable model structure on Sp is defined to be the left Bousfield
localization of the stable model structure, using these p -local equivalences. Its con-
struction is nearly identical to the previous example.

Left Bousfield localizations have a few important features:

• We always have L F ⊆ F , because V ∩ C ⊆ W ∩ C . Therefore there are fewer
fibrations, and therefore fewer fibrant objects. The fibrant objects in the local-
ized model structure are often called local objects, and the fibrant replacement is
called localization

X −→ L X .

• We always have W ∩L F =V ∩F , because the cofibrations are the same. It follows
that W = V when restricted to the local objects. So objects up to W -equivalence
are the same thing as local objects up to V -equivalence.

• We get a reflective subcategory: the category Ho C[W −1] sits inside Ho C[V −1] as
the subcategory of local objects, and we have a retract onto this subcategory, by
inverting the maps in W . Furthermore, this is an adjunction between Ho C[V −1]
and Ho C[W −1]: a map in the W -homotopy category X → Y is the same thing
as a map in the V -homotopy category X → LY . Further-furthermore, we have
canonical bijections

[X , Y ]W ∼= [X , LY ]V orW
∼= [L X , LY ]V orW

and if Z is local then

[X , Z ]V ∼= [X , Z ]W ∼= [X , LZ ]V orW
∼= [L X , LZ ]V orW .

So up to W -equivalence, everything is local, and once you’re mapping into a local
object, the V - and W -homotopy categories look the same, and it doesn’t matter if
you apply L additional times.

• As a consequence of this last point, an object Z ∈ ob C is local precisely when

– It is fibrant in the original model structure (C , V , F ), and

– A map of objects X → Y is in W iff the induced map FV (Y , Z )→ FV (X , Z ) is a
weak equivalence, where F refers to the homotopical function complex (??).
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In other words, the W -equivalences are the maps that look like isomorphisms in
the V -homotopy category, from the point of view of a local object.

There is a general theory that left Bousfield localizations are guaranteed to exist pro-
vided C is cofibrantly generated, and C and W satisfy mild assumptions, see [Hir03]. We
won’t cover the general theory in detail here, but we will focus on the special case of lo-
calization with respect to a homology theory. Most interesting localizations, including
the two we explored above, arise in this way.

Example 5.7.5. Let E be any spectrum, so that it defines an extraordinary homology the-
ory E∗(−) on spectra. A map of spectra X → Y is an E -local equivalence if it induces an
isomorphism on E∗. The E -local model structure on Sp is the left Bousfield localization
of the stable model structure, using the E -local equivalences.

Example 5.7.6. When X and Y are spaces we say similarly that a map X → Y is an E -
local equivalence if it induces an isomorphism on E∗. The E -local model structure on
Top or Top∗ is the left Bousfield localization of the Quillen model structure on Top or
Top∗, using the E -local equivalences.

Theorem 5.7.7 (Bousfield). The E -local model structures on Sp, Top, and Top∗ always
exist, for any spectrum E .

Example 5.7.8. We focus first on the case of spectra.

• If we take E = S then nothing extra is inverted, we just get the stable model struc-
ture back.

• If E = SQ ≃HQ then we get the rational equivalences and the rational stable model
structure. The localization (fibrant replacement) in this model structure is called
rationalization XQ. We will prove later that the rationalization is stably equivalent
to the smash product X ∧HQ.

• If E = S(p ) then we get the p -local model structure. The localization in this model
structure is also equivalent to the smash product X ∧S(p ).

• If E = S/p then we get the p -adic equivalences and a corresponding model struc-
ture. A map is an p -adic equivalence if it induces an equivalence on homotopy
groups mod p . The localization in this model structure is called p -completion
X ∧p . The p -completion is, informally, the homotopy inverse limit

X ∧p ≃ holim
n→∞

X /(p n ).

More precisely, we can define it as the cotensor

X ∧p = shn F (M (Z/(p∞), n ), X )

where M (Z/(p∞), n ) is the Moore space for the Prüfer p -group Z/(p∞).
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For spaces, we instead use ordinary homology:

• If E =HQ then we get the rational equivalences of spaces and the rational stable
model structure.

• If E =HZ(p ) then we get the p -local model structure.

• If E = HZ/p then we get the p -adic equivalences and a corresponding model
structure. A map is an p -adic equivalence if it induces an equivalence on homol-
ogy groups mod p .

For spaces, we get nice descriptions of the homotopy and homology groups of the local-
izations XQ, X (p ), and X ∧p , if X is simply-connected, or more generally nilpotent [MP12].
For more general spaces X , the localization still exists, but it is harder to calculate any-
thing about it.

Proof sketch. See [MP12, §19.3] for a proof for unbased spaces; the original proofs for
based spaces and spectra are in [Bou75] and [Bou79], respectively.

We sketch the proof for spaces first. The task is to construct a set, not a proper class, of
generating acyclic cofibrations J , containing the usual ones, but also containing some
additional cofibrations that are E -local equivalences, so that a map X → Y is J -injective
iff it is a fibration and an E -local equivalence. The idea is to take the cardinality κ of
the set E∗(∗), and let K be the set of all CW pairs (X , A) where the number of cells of
X is at most κ, and E∗(X , A) = 0. Then every map in K is an E -local equivalence and
a cofibration, as desired. Also, having the right lifting property with respect to J ∪ K
rearranges to being a fibration and an E -local equivalence, as desired.

For spectra, the proof is the same, except that we want to take the set F K of free spectra
on the maps in K in the previous proof.

5.8 Exercises

1. (a) Use Lemma 5.2.21 to show that in a model category C, any map isomorphic
to a cofibration must also be a cofibration. The same is also true for weak
equivalences, and fibrations.

(b) If C is a model category and D is another category equivalent to C, show that
D has a model structure in which a map is a cofibration, weak equivalence,
or fibration iff its image in C is such. (The previous part of this exercise is
needed to show that this is well-defined.)
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2. Let C be any category. Show that there is always a trivial model structure on C in
which the weak equivalences W are the isomorphisms, and both C and F consist
of all of the morphisms in C. Show that there is also a model structure in which C
is the isomorphisms, and W and F are every map in C.

3. Let C be any model category. Show that the opposite category Cop is also a model
category, in which we swap the cofibrations with the fibrations and keep the weak
equivalences the same.

4. Suppose C is a category and I is any set of maps in C. Recall from Definition 5.1.18
that we defined an “I -cofibration” to be a retract of an I -cell complex.

Show that X → Y is an I -cofibration iff Y is a retract of a third object Z , and the
composite X → Y → Z is an I -cell complex. In other words, without loss of gen-
erality, the X → Y is a retract of a cell complex with the same domain X .

5. Finish the proof of Proposition 5.2.6 by assuming that in point (6) we have W ∩ I -
cof ⊆ J -cof, and proving that W ∩ J -inj ⊆ I -inj. (Hint: Dualize the proof of Propo-
sition 5.1.22.)

6. Let g be any morphism in any category C. Prove that the set of maps with the left
lifting property (LLP) with respect to g is closed under coproducts, pushouts, se-
quential compositions, and retracts. In particular, I -cofibrations in any category,
and cofibrations in any model category, are closed under these operations.

7. Dually, prove that the maps with the right lifting property (RLP) with respect to
g are closed under products, pullbacks, sequential limits, and retracts. Therefore
fibrations in any model category are closed under these operations.

8. Prove that both model structures on spectra are proper (Definition 5.2.29). You
may find it helpful to use the facts about homotopy cofibers and fibers that we
proved back in Section 2.4.

9. (a) If C is a model category and X is any object, prove that the comma category
(X ↓ C) is a model category, in which the cofibrations, fibrations, and weak
equivalences are determined by forgetting the map from X .

(b) If C is cofibrantly generated by I and J , show that (X ↓ C) is cofibrantly gen-
erated by the sets

X ⨿ I = {X ⨿K
id⨿ f
−→ X ⨿ L : f ∈ I }

X ⨿ J = {X ⨿K
id⨿ f
−→ X ⨿ L : f ∈ J }.

(c) Recover the model structure on Top∗ = (∗ ↓ Top) as a special case.
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10. (a) As in exercise 9, prove that the comma category (C ↓ X ) has a model structure
in which the cofibrations, fibrations, and weak equivalences are determined
by forgetting the map from X

(b) If C is cofibrantly generated by I and J , show that (C ↓ X ) is cofibrantly gen-
erated by the sets I /X and J /X , where I /X has one morphism for each com-
muting triangle

K

  

f
// L

��

X

with f ∈ I , and similarly J /X has a morphism for each such triangle with
f ∈ J .

(c) Use this to give a model structure on (Top ↓ B ) for an unbased space B . What
do Whitehead’s theorem and the fundamental theorem tell us in this setting?
(This is very useful to know when studying fibrations and fiber bundles!)

(d) Combine this exercise and exercise 9 to give a model structure on the category
R(B ) of topological spaces containing B as a retract.

11. Use Proposition 5.2.6 to establish Quillen’s model structure on chain complexes
Ch≥0(R ) from Example 5.2.10. (You might want to figure out what the I -cell com-
plexes, I -injective maps, and J -injective maps are.)

12. Generalize Proposition 5.2.6 to give a model structure on unbounded (Z-graded)
chain complexes Ch(R ), with weak equivalences the quasi-isomorphisms and fi-
brations the maps that are surjective in every degree. Use essentially the same
generating maps I and J .

13. In any model category C:

• Show that any span X
i← A

j
→ Y is weakly equivalent to a span in which all

three objects are cofibrant, and the map i is a cofibration.

• If in addition the map i is a weak equivalence, explain why the pushout of i ,
Y → X ∪A Y , is also a weak equivalence.

• If i is a cofibration and j is a weak equivalence, prove that the pushout of
j , X → X ∪A Y , is also a weak equivalence. (Hint: Imitate the proof of Ken
Brown’s Lemma, Lemma 5.2.24.)

Therefore the left properness property of Definition 5.2.29 “almost” holds in any
model category. It follows that the gluing lemma, Lemma 5.2.32, also holds when
all objects are cofibrant.
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14. Suppose G is a topological monoid, X is a right G -space, and Y is a left G -space.
The balanced product X ×G Y is the quotient of X ×Y by the equivalence relation

(x g , y )∼ (x , g y )

for all x ∈ X , y ∈ Y , and g ∈G .

(a) Prove that X ×G ∗ is the orbit space XG .

(b) Prove that this is a Quillen tensor

TopG ×TopG op
→ Top.

Therefore the balanced product has a left-derived functor X ×LG Y , and it is
computed by making both X and Y into a cofibrant G -spaces,

X ×LG Y =Q X ×G QY .

(c) Let E G be the cofibrant replacement of the point ∗ in right G -spaces. Con-
sider G -spaces of the form E G ×Y , with G acting on (a , y ) by (a g −1, g y ). The
orbits under this action are E G ×G Y . Show that any weak equivalence of G -
spaces of this form gives a weak equivalence on orbits, and therefore E G×G Y
is a model for the homotopy orbits YhG .

(d) Explain why E G is a free G -cell complex. Show by induction on its skeleta
that the functor E G ×G (−)preserves all equivalences. Therefore for all spaces
Y we get

YhG ≃ E G ×G Y .

This makes the construction of homotopy orbits much more concrete.

15. Suppose I is a topological category, X : I→ Top is a diagram, and Y : Iop→ Top is a
contravariant diagram. Define the coend X ×I Y to be the topological space

X ×C Y =

�

∐

c∈C

X (c )×Y (c )

�

�

( f (x ), y )∼ (x , f (y ))

where the relation is taken over all f : c → d , x ∈ X (c ), and y ∈ Y (d ). Essentially,
X and Y are glued along the category C to create a single space, in much the same
way that we form the balanced product X ×G Y in the previous exercise.

(a) Prove that X ×I ∗ is the colimit of X .

(b) Prove that the coend defines a Quillen tensor

TopI×TopIop
→ Top.
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(c) Conclude that the homotopy colimit is the left-derived tensor with ∗.
If we take the left-derived tensor with an arbitrary diagram Y , this is called
an enriched homotopy colimit, or a homotopy colimit with weights given by
Y .

(d) Let F : I→ J be a functor, and j ∈ J. Notice that J(F (−), j ) is a diagram on Iop.
Prove that X ×I J(F (−), j ) is the left Kan extension (F!X )( j ). Deduce that the
homotopy left Kan extension is the left-derived tensor with J(F (−), j ).

16. (a) If α: I→ J is a functor, and Fi A is a free diagram on I at the object i ∈ I, prove
that the left Kan extensionα!Fi A is isomorphic to the free diagram Fα(i )A. (You
might find it easiest to prove this by taking the right adjoints, composing
them, then taking the left adjoint of the result.)

(b) Verify that the previous part also holds if the categories are based and the
diagrams are diagrams of based spaces.

17. Similarly to the previous exercise, show that if F and G are composable functors

A F // B G // D

then the left Kan extensions compose, in the sense that (G ◦F )! is naturally isomor-
phic to G! ◦ F!. Conclude that for a commuting square of functors

A

H
��

F // B

G
��

C K // D

we have K ! ◦H!
∼=G! ◦ F!.

18. If (F ⊣G ) are a pair of adjoint functors between model categories, prove that F pre-
serves cofibrations and acyclic cofibrations iff G preserves fibrations and acyclic
fibrations. (Hint: by Lemma 5.2.21, a map is a fibration if and only if it has the
right lifting property with respect to acyclic cofibrations.)

19. Verify that the functors listed in Example 5.4.4 are all Quillen adjunctions.

20. Use Lemma 5.4.2 to give a much shorter proof of Proposition 5.3.18.

21. Dualize the proof of Lemma 5.2.24 to prove Lemma 5.2.25.

22. Suppose F1, F2 : C⇒D are two functors, with right adjoints G1,G2 : D⇒ C, respec-
tively. Prove that any natural transformation φ : F1 → F2 has a “mate,” a natural
transformation φ∗ : G2 → G1 going the opposite direction. It should be set up so
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that the following square commutes.

D(F2(X ), Y )

−◦φ
��

oo
∼= // C(X ,G2(Y ))

φ∗◦−
��

D(F1(X ), Y ) oo
∼= // C(X ,G1(Y ))

23. Let C, D, and E be categories. A functor F : C×D→E is a two-variable left adjoint
if

• ∀c ∈C, the functor F (c ,−): D→E has a right adjoint G (c ,−): E→D, and

• ∀d ∈D, the functor F (−, d ): C→E has a right adjoint H (d ,−): E→C.

Using exercise 22, explain how as c and d varies, the operations G and H give
functors of two variables

G (−,−): Cop×E→D,

H (−,−): Dop×E→C

and natural isomorphisms of functors Cop×Dop×E→ Set,

C(c , H (d , e ))∼= E(F (c , d ), e )∼=D(d ,G (c , e )).

This is called a two-variable adjunction.

24. Define the three-fold pushout-product f □g□h , and use it to prove that the pushout-
product is associative,

( f □g )□h ∼= f □g□h ∼= f □(g□h ).

25. Establish the isomorphisms in Example 5.5.9.

26. Prove Example 5.5.16.

27. Prove the claim in Remark 5.5.17, that ⊗ is a Quillen tensor iff one of the right ad-
joints satisfies:

Hom□(C , F )⊆ F, Hom□((W ∩C ), F )⊆ (W ∩ F ), Hom□(C , (W ∩ F ))⊆ (W ∩ F ).

28. Give more details in the proof of Lemma 5.5.21.

29. Finish the details of Example 5.7.3 and prove that the rational stable model struc-
ture exists.
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30. If I and J are two based topological categories, define their smash product I∧ J to
have objects (ob I)× (ob J), and morphisms

(I∧ J)((a , b ), (c , d )) = I(a , c )∧ J(b , d ),

with the evident composition.

Let S be the sphere category S(m , n ) = S n−m from Definition 5.3.31. Define a bis-
pectrum to be a diagram of based spaces indexed by S∧S. Explain how this is a grid
of based spaces Xp ,q , and bonding maps Xp ,q ∧S 1→ Xp+1,q and Xp ,q ∧S 1→ Xp ,q+1

that form the evident commuting squares.

31. (*) Recall from the previous exercise that a bispectrum is a (S∧S)-diagram of based
spaces. This long exercise develops the properties of bispectra.

(a) For each spectrum X , define a suspension bispectrumΣ∞X by defining level
(p , q ) to be Xp ∧S q . More generally, if X and Y are spectra, explain how the
smash products Xp ∧Yq form a bispectrum.

(b) Define free bispectra and cellular bispectra. Construct the level model struc-
ture on bispectra.

(c) Define stable homotopy groups for bispectra, as the colimit (along both di-
rections!) of the homotopy groups of each level. Define a stable equivalence
to be a map inducing isomorphisms on these homotopy groups.

(d) Verify that the proof of the stable model structure from Section 5.6 establishes
a stable model structure on bispectra.

(e) Prove that the suspension bispectrum functor TopS
∗→ TopS∧S

∗ is a Quillen left
adjoint.

32. (*) Prove that the suspension bispectrum functor TopS
∗→ TopS∧S

∗ from the previous
exercise is actually a Quillen equivalence.

Conclude that bispectra are Quillen equivalent to spectra. Intuitively, once we’ve
stabilized once to form spectra, stabilizing a second time doesn’t change the the-
ory.

33. Let C be any cofibrantly generated model category, and I any discrete category (no
topology on its morphisms). Prove that the category of diagrams CI has a projec-
tive model structure, as in Theorem 5.3.16. You might need to think a little about
how to define the free diagrams Fi A here. (Remember, C has all coproducts!) Re-
cover the model structures on TopI and TopI

∗ as special cases.

34. Now let C = Sp be the category of spectra, and let I be any topological category,
either based or unbased. Prove that the category of diagrams SpI has a projective
model structure, as in Theorem 5.3.16.
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Note that a weak equivalence here will be a pointwise equivalence: a map of dia-
grams of spectra X → Y such that for each i , the map of spectra X (i )→ Y (i ) is a
stable equivalence.

(Of course, there are many more categories C for which CI has such a model struc-
ture. However, it is difficult to give good, clean, general conditions on C that make
the proof work, specifically the smallness condition we need for the small-object
argument. See e.g. [MMSS01] for one example of a general framework – but it does
not apply to parametrized spectra!)



Chapter 6

Construction of the smash product

In this chapter we define the smash product of spectra ∧ explicitly, and show that it has
all of the properties we promised in Chapter 4. To do this, we introduce new kinds of
spectra called symmetric spectra and orthogonal spectra. Together with ordinary (se-
quential) spectra, we refer to these as diagram spectra, because they can all be defined
as diagrams on some based topological category I.

Recall that we defined the smash product in Definition 2.3.23 by picking a sequence of
values of p and q and defining (X ∧Y )p+q = Xp ∧Yq . As already mentioned, this depends
on choices, and different choices give spectra that are not even isomorphic, only equiv-
alent. As a result, it is impossible to prove things like (X ∧Y )∧Z ∼= X ∧(Y ∧Z ), and define
a symmetric monoidal category of spectra.

With symmetric and orthogonal spectra, we can define a smash product that is com-
pletely well-defined, and has isomorphisms

(X ∧Y )∧Z ∼= X ∧ (Y ∧Z ), X ∧Y ∼= Y ∧X , X ∧S∼= X ,

making spectra into a symmetric monoidal category, just like the category of abelian
groups with the tensor product ⊗. As we saw in Chapter 4, lots of things we can do with
abelian groups then carry over to spectra. For instance, we can define ring spectra as
spectra that have multiplication maps X ∧ X → X that are associative and that have a
unit given by a map S→ X .

Moreover, symmetric and orthogonal spectra both form model categories, that are Quillen
equivalent to the usual category of sequential spectra. In other words, they model the
same homotopy theory. Therefore, we can use them to put a symmetric monoidal struc-
ture onto the homotopy theory Ho Sp we have been studying all along.

Almost all of the material in this chapter comes from the landmark book project [Sch07]
and the beautiful and seminal paper [MMSS01], which in turn draws heavily on [HSS00].

287
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6.1 Symmetric and orthogonal spectra

In this section we introduce new kinds of spectra called symmetric and orthogonal spec-
tra. To differentiate them from the old notion we’ve been studying them up to this point,
we’ll sometimes call the old notion sequential spectra or prespectra, denote the cate-
gory of such by SpN, and denote the free spectra by F Ni A.

6.1.1 Definition and examples

Definition 6.1.1. The symmetric group Σn is the group of permutations on n letters.
Specifically, if we let n = {1, 2, . . . , n}, then Σn is the group of bijections n → n , with
composition written from right to left.

The orthogonal group O (n ) is the group of linear isometries Rn →Rn .

Taking the one-point compactification, we get a basepoint-preserving action of O (n )
on S n . The symmetric group Σn ≤ O (n ) is the subgroup of permutation matrices, and
therefore also acts on S n by permuting coordinates.

The idea of a symmetric or orthogonal spectrum is that the nth level of the spectrum
has an action by Σn , respectively O (n ), which mimics this action on the n-sphere.

Definition 6.1.2. A symmetric spectrum is a spectrum X , with a basepoint-preserving
left action of Σn on Xn for all n ≥ 0, with the following condition. Define ξm ,n to be the
composite of n bonding maps:

ξm ,n : Xm ∧S n ξm∧id
// Xm+1 ∧S n−1 ξm+1∧id

// . . .
ξm+n−1 // Xm+n .

Then we require that ξm ,n is Σm × Σn -equivariant. Here Σn acts on S n by permuting
coordinates, and Σm ×Σn acts on Xm+n along the inclusion Σm ×Σn −→ Σm+n given by
block permutations.

Note that by Example 5.3.41, the based action of Σn on Xn can be described as a map
out of the smash product

(Σn )+ ∧Xn
// Xn .

A map of symmetric spectra is a map of spectra X → Y commuting with the Σn -action
at each level n . We let SpΣ denote the category of symmetric spectra.

Definition 6.1.3. A orthogonal spectrum is a spectrum X , with a continuous basepoint-
preserving left action

O (n )+ ∧Xn
// Xn

for all n ≥ 0, so that the composite maps ξm ,n are O (m )×O (n )-equivariant.
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A map of orthogonal spectra is a map of spectra X → Y commuting with the O (n )-action
at each level n . We let SpO denote the category of orthogonal spectra.

Every orthogonal spectrum is a symmetric spectrum, and every symmetric spectrum is
a (sequential) spectrum, by neglect of structure. So we have forgetful functors

SpO U O
Σ //

U O
N

33SpΣ
U Σ
N // SpN.

We will shortly define model structures on the categories SpΣ and SpO , so that these
forgetful functors are right Quillen, and give equivalences of homotopy categories

Ho SpO ≃Ho SpΣ ≃Ho SpN.

In other words, symmetric and orthogonal spectra are different point-set models for the
same stable homotopy category.

Example 6.1.4. The sphere spectrum S is an orthogonal spectrum, and therefore also a
symmetric spectrum. The group O (n ) acts on S n as in Definition 6.1.1, and so Σn acts
by permuting the coordinates. In fact, this is the only way to make S into a symmetric
or orthogonal spectrum!

More generally, the suspension spectrum Σ∞A is an orthogonal spectrum. At level n ,
O (n ) acts on A ∧S n by acting just on the sphere S n and leaving A alone.

Example 6.1.5. We can build a model for the Eilenberg-Maclane spectrum H G that is an
orthogonal spectrum, and therefore a symmetric spectrum. The idea is to take level n to
be the space of configurations of points in S n , with labels in G . When points collide their
labels add, and when a point goes to the basepoint of S n , it disappears. The orthogonal
group acts on the sphere as in Definition 6.1.1. See ?? for more details.

6.1.2 Recasting as diagrams

Recall from Lemma 5.3.32 that a spectrum is the same thing as a based diagram on the
category S from Definition 5.3.31, with one object for each nonnegative integer n ≥ 0,
and morphism spaces the spheres

S(m , n ) =







S n−m when n ≥m ,

∗ when n <m .

The compositions use the canonical homeomorphisms of Definition 2.1.4 that concate-
nate coordinates.

To generalize this construction to symmetric spectra, we have to include more mor-
phisms in S, to account for the actions of the symmetric groups.
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Definition 6.1.6. Let SΣ be the based topological category with an object for each integer
n ≥ 0. The morphisms are

SΣ(m , n ) =







(Σn )+ ∧Σn−m
S n−m when n ≥m ,

∗ when n <m .

In particular, we get a wedge of spheres S n−m , one for each element of Σn , but then we
glue these spheres together along the relation

(στ, x )∼ (σ,τx ) forσ ∈Σn , τ ∈Σn−m , x ∈ S n−m .

To define the composition in SΣ, it is easiest to rewrite the morphism space in a different
way. Recall from Definition 6.1.1 that n = {1, 2, . . . , n}. For each subset A ⊆ n , we let
the A-sphere S A ⊆ S n be the one-point compactification of RA ⊆Rn . This is a sphere of
dimension |A|. Note that for disjoint subsets A and B we have

S A ∧S B ∼= S A⨿B .

For each injective map α: m ,→ n , we can therefore take the sphere on the complement
of the image of α,

S n−α(m ) ∼= S n−m .

We can now rewrite the morphism space as the wedge sum of these spheres over all the
injective maps α: m ,→ n :

SΣ(m , n ) =
∨

α: m ,→n

S n−α(m ) when n ≥m .

With this rewriting, we can finally compose the maps. For two composable injective
maps α: m ,→ n and β : n ,→ p , the complement of the image of βα splits into the dis-
joint union of two sets, the complement of β and the complement of α:

p −βα(m ) = (p −β (n ))⨿β (n −α(m ))
∼= (p −β (n ))⨿ (n −α(m ))

Therefore we get a homeomorphism of spheres

S p−βα(m ) ∼= S p−β (n ) ∧S n−α(m ). (6.1.7)

The composition in SΣ is now defined by composing the injective maps α and β , and
using the homeomorphism (6.1.7).

Lemma 6.1.8. There is an isomorphism of categories TopSΣ

∗
∼= SpΣ.
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This and the next lemma are left to exercise 3.

Definition 6.1.9. Let SO =J be the based topological category with an object for each
integer n ≥ 0. The morphisms are

SO (m , n ) =







O (n )+ ∧O (n−m ) S
n−m when n ≥m ,

∗ when n <m .

Again we rewrite this composition in a different way. For each inclusion of inner product
spaces V ⊆W , let W −V refer to the orthogonal complement of V in W , and S W −V its
one-point compactification. For each pair of integers m , n ≥ 0, let O (m , n ) be the space
of all linear isometriesRm →Rn . That is, all linear maps that preserve the standard inner
product, and are therefore injective. Note that O (n , n ) =O (n ).

There is a vector bundle E (m , n )→O (m , n ) whose fiber over each embedding i : Rm →
Rn is the orthogonal complementRn − i (Rm ). Taking the one-point compactification of
E (m , n ), in other words its Thom space, gives the space SO (m , n ).

Intuitively, this is a “wedge sum” of spheres S n−m , but the spheres are indexed by the
space O (m , n ), so it is not really a wedge sum. Instead, the spheres are continuously
glued together.

For any three integers m ≤ n ≤ p , there is a product map

E (m , n )×E (n , p )−→ E (m , p )

that composes the embeddings i : Rm →Rn and j : Rn →Rp , and identifies each pair of
points y ∈Rp − j (Rn ) and x ∈Rn − i (Rm )with the point y + j (x ) ∈Rp − j i (Rm ). Passing
to one-point compactifications gives the composition map

SO (m , n )∧SO (n , p )−→ SO (m , p ).

Lemma 6.1.10. There is an isomorphism of categories TopSO

∗
∼= SpO .

6.1.3 Cellular spectra and the level model structure

By Theorem 5.3.37, there is a level model structure on the category of symmetric spectra
SpΣ, and also on the category of orthogonal spectra SpO .

The weak equivalences in this model structure are the level equivalences, the maps of
spectra X → Y that are weak equivalences on each level, Xn

∼→ Yn . Similarly, the fibra-
tions are the maps of spectra X → Y that are fibrations at each level.
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To describe the cofibrations, recall from Definition 5.3.33 that for each m ≥ 0 and based
space A, we can make a free symmetric spectrum on A at level m . We call this spectrum
F Σm A. At level n , it is the smash product

(F Σm A)(n ) = A ∧SΣ(m , n )≃
∨

α: m ,→n

(A ∧S n−α(m )).

A cellular symmetric spectrum is a spectrum built from ∗ by successively attaching
“cells” of the form F Σm S n−1

+ → F Σm D n
+ . These objects, and their retracts, are the cofibrant

objects in the level model structure. The cofibrations are the retracts of the relative cell
complexes.

Intuitively, this is like the notion of a cellular spectrum
from Definition 2.6.2 and Proposition 2.6.11. The differ-
ence is that, when we attach a cell at level m , we not only
have to attach its suspensions to the higher levels, but
we also have to attach extra copies of the same cell so
that the symmetric group actions Σn have somewhere
to send them.

So if we attach a cell D n
+ at level 3, we have to attach 6 copies of that cell, so thatΣ3 can act

by permuting them. If we only attached one, there would be no Σ3 action on the result!
Then we have to attach 24 copies of its suspension ΣD n

+ at level 4, with Σ4 permuting
them. Then 60 copies of Σ2D n

+ at level 5, with Σ5 acting by permuting them, and also
flipping the two suspension coordinates on each of them. At level p , we attach as many
copies of Σp−3D n

+ as there are injective maps 3→ p . The action of Σp permutes these
cells and also their (p −3) suspensions.

For orthogonal spectra SpO , we get the same situation, except that the free spectra F O
m A

now look like

(F O
m A)(n ) = A ∧SO (m , n ).

So when we attach a cell at level m , we also have to attach its image under all of the
orthogonal group actions at each level. This is quite complicated to think about geo-
metrically, so we encourage the reader to think about it more formally.

Proposition 6.1.11. Using the level model structure, the forgetful functors

SpN SpΣ
U Σ
Noo SpOU O

Σoo

U O
N

kk

are right Quillen.
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Proof. This is immediate – they clearly preserve both weak equivalences and fibrations.

We call the left adjoint of each of these functors prologation. Prolongation is a special
case of the left Kan extension from Section 5.4.3.

SpN
P O
Σ //

P O
N

33SpΣ
PΣN // SpO

These can all be written very explicitly using coequalizers. For instance, the prolonga-
tion of a sequential spectrum X to a symmetric spectrum is written as the coequalizer

�

∨

m0,m1≥0

Xm0
∧SN(m0, m1)∧SΣ(m1, n )

�

⇒
�

∨

m≥0

Xm ∧SΣ(m , n )

�

−→ (P ΣN X )n . (6.1.12)

The prolongation P O
N is written the same way, only using SO in the place of SΣ, and the

prolongation P O
Σ is written this way but swapping SO for SΣ and SΣ for SN.

The formula (6.1.12) looks pretty complicated. Here is a simpler way to think about it. By
composition of adjoints, the prolongation of a free spectrum is always a free spectrum:

P ΣN (F
N

n A)∼= F Σn A, P O
N (F

N
n A)∼= F O

n A, P O
Σ (F

Σ
n A)∼= F O

n A.

Prolongation also commutes with the formation of cell complexes, and preserves weak
equivalences between cell complexes, because it is left Quillen. So, if we think of “cell
complexes” abstractly, then when we use prolongation to move between these different
categories, the cell complexes don’t change.

Therefore, if we replace all of our spectra by cellular spectra, then prolongation essen-
tially does nothing, it just changes the exact meaning of the word “cell” as we pass from
one category to another.

Example 6.1.13. The prolongation of a suspension spectrum is always a suspension
spectrum on the same space. As a special case, the prolongation of S is S again.

Example 6.1.14. The prolongation of the spectrum F N1 A to symmetric spectra is the
symmetric spectrum F Σ1 A. At level n , it is a wedge sum of n copies of the suspension
Σn−1A, whereas the original spectrum F1A had a single copy of Σn−1A at each spectrum
level.

For any space A and symmetric or orthogonal spectrum X , we define the tensor A ∧ X
just as in Definition 2.3.6, by smashing each level of X with A. This produces a symmetric
or orthogonal spectrum in whichΣn or O (n ) is acting on the Xn inside A∧Xn and leaving
the A alone.
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Lemma 6.1.15. This defines Quillen tensors

∧: Top∗×SpΣ→ SpΣ

∧: Top∗×SpO → SpO

using the level model structure on spectra.

Proof. This is just a special case of Example 5.5.15.

The right adjoints give us the space of maps Map∗(X , Y ) between two diagram spectra,
and the cotensor F (A, X ). The cotensor just applies F (A,−) at each spectrum level, as in
Definition 2.3.8. The space of maps is the subspace of the product

∏

n≥0 Map∗(Xn , Yn ) of
those maps that commute with both the bonding maps and the symmetric or orthogonal
group actions.

We can similarly define the homotopy cofiber C f and homotopy fiber F f of any map of
symmetric or orthogonal spectra, by doing the same construction we did for sequential
spectra in Example 2.3.19 and Example 2.3.22. The result has an obvious Σn or O (n )-
action, so that it is a symmetric or orthogonal spectrum.

Remark 6.1.16. More generally, the colimit of any diagram of symmetric or orthogonal
spectra can be defined by taking the colimit of the underlying spectra. TheΣn and O (n )
actions act in an obvious way on the colimit. In particular, we can take wedge sums X ∨Y
and pushouts X ∪A Y of symmetric or orthogonal spectra.

Similarly, we can take any limit, or homotopy colimit or limit, by doing the same con-
struction to the underlying spectrum. For homotopy limits, we do want to restrict atten-
tion to Ω-spectra when doing this. We’ll see a little later how to replace each symmetric
or orthogonal spectrum by an equivalent Ω-spectrum.

6.1.4 π∗-isomorphisms and stable equivalences

Recall that a “diagram spectrum” is either a sequential spectrum in SpN, a symmetric
spectrum in SpΣ, or an orthogonal spectrum in SpO . Every diagram spectrum X has
an underlying sequential spectrum, and therefore has stable homotopy groups π∗(X ),
defined as in Definition 2.1.2.

Definition 6.1.17. A π∗-isomorphism of diagram spectra is a map X → Y inducing an

isomorphism π∗(X )
∼=→π∗(Y ).

We might be tempted to define a stable equivalence to be a π∗-isomorphism, as we did
in SpN. However, if we did that in symmetric spectra SpΣ, then the forgetful functor on
homotopy categories

U Σ
N : Ho SpΣ −→Ho SpN
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would not be an equivalence of categories. In other words, symmetric spectra would
not model the stable homotopy category Ho Sp.

To give a heuristic for why this fails, suppose that U Σ
N is an equivalence of homotopy

categories Ho SpΣ ≃ Ho SpN, and that the left adjoint P ΣN is left-deformable. Then the
derived left adjointLP ΣN must be an equivalence of categories as well. If we take the free
sequential spectrum on the circle, F N1 S 1, and move it back and forth through this equiv-
alence, we get the free symmetric spectrum on the circle, F Σ1 S 1, regarded as a sequential
spectrum.

If this were an equivalence of categories, the two sequential spectra F N1 S 1 and F Σ1 S 1

would have the same homotopy groups. However, we can see directly that

π0(F
Σ

1 S 1)∼=
⊕

n≥0

Z,

π0(F
N

1 S 1)∼=Z,

and we have our contradiction. Of course, we had to assume here that P ΣN is left-deformable.
See exercise 6 for a different proof that doesn’t use this assumption.

This is a pickle! To get around this problem, we take motivation from the idea of left
Bousfield localization. We want F Σ1 S 1 to have the correct homotopy type, the same as
F Σ0 S 0 = S. There is a map of symmetric spectra F Σ1 S 1→ F Σ0 S 0 that should be the equiv-
alence. So, we just formally declare that this map is an equivalence, and see what class
of stable equivalences this gives us in the category SpΣ.

How will we characterize such maps? Well, maps of the form F Σ1 S 1 → Z correspond to
maps of based spaces S 1 → Z1. Maps F Σ0 S 0 → Z correspond to based maps S 0 → Z0. If
Z is an Ω-spectrum, then these are equivalent, because Z0 ≃ΩZ1. This gives us an idea:
define the stable equivalences using maps to Ω-spectra.

Definition 6.1.18. A stable equivalence of diagram spectra is a map f : X → Y such that,
for any diagram spectrum Z that is also an Ω-spectrum, the induced map

(−) ◦ f : [Y , Z ]ℓ −→ [X , Z ]ℓ

is a bijection. Here [−,−]ℓ means morphisms in the homotopy category of diagram spec-
tra, with the level equivalences inverted.

In other words, if we replace X and Y by level-equivalent cellular spectra Q X and QY ,
a map f : X → Y is a stable equivalence if it induces a bijection on homotopy classes of
maps

(−) ◦Q f : [QY , Z ]h
∼=−→ [Q X , Z ]h .

Example 6.1.19. In sequential spectra SpN, a map is a stable equivalence iff it is a π∗-
isomorphism. To see this, notice that X → Y is a π∗-isomorphism iff it induces a bijec-
tion on [−, Z ]s for all Z . (See Section 3.5, exercises 4 and 7.) Without loss of generality
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Z is an Ω-spectrum. Applying Theorem 5.2.26 twice, we see that stable maps X → Z are
the same as the homotopy classes of maps Q X → Z , which are the same as maps in the
level homotopy category X → Z .

We will also see shortly that in orthogonal spectra SpO , a map is a stable equivalence
iff it is a π∗-isomorphism. So symmetric spectra are to blame for the extra complexity
in Definition 6.1.18. However, symmetric spectra are very useful, because for instance
orthogonal spectra can’t be defined in the motivic setting. So we will bite the bullet and
develop the theory in a way that works for symmetric spectra too.

Example 6.1.20. As discussed before, the canonical map F Σ1 S 1→ F Σ0 S 0 is a stable equiv-
alence of symmetric spectra, even though it is not a π∗-isomorphism. Similarly, for any
well-based space A the canonical maps

Fi+ jΣ
i A −→ Fj A

are all stable equivalences, in any of the three categories of diagram spectra SpN, SpΣ, or
SpO . Therefore the maps ki , j in Definition 5.6.3 are all stable equivalences.

Our goal in the remainder of the section is to prove that everyπ∗-isomorphism is a stable
equivalence. We restrict attention to symmetric spectra since the argument for orthog-
onal spectra is identical.

Definition 6.1.21. Let X be any symmetric spectrum. We define symmetric spectra ΣX
and sh X as

(ΣX )n =ΣXn = S 1 ∧Xn

(sh X )n = X1+n

with the same bonding maps as X . We write (1 + n ) instead of (n + 1) in the second
subscript to indicate that we take the Σn -action on X1+n that arises from the inclusion
Σn ≤ Σ1+n as the permutations on the last n letters, not the first n letters. This is nec-
essary to actually make sh X a symmetric spectrum, since the bonding maps will add
more elements to the right-hand side of the set {1, 2, . . . , n +1}, not the left.

We define a map of symmetric spectra

λ∗ : ΣX → sh X

by sending S 1∧Xn → X1+n by applying the bonding map ξn : Xn ∧S 1→ Xn+1, then apply-
ing the action of the block permutation τn ,1 ∈Σn+1 that moves the first n elements past
the last element. Intuitively, the permutation τn ,1 is “correcting” for the fact that we had
to swap the S 1 past the Xn to define the bonding map.
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It is an exercise thatλ∗ is a map of symmetric spectra, and that it would fail to be a map of
symmetric spectra if we didn’t includeτn ,1 (exercise 8). You need to use the equivariance
condition in Definition 6.1.2 when checking this!

Proposition 6.1.22. If X is anΩ-spectrum, then the adjoint mapλ∗ : X →Ωsh X is a level
equivalence.

Proof. At each level it is the composite

Xn

eξn

∼
// ΩXn+1

Ωτn ,1

∼=
// ΩX1+n .

The first map is an equivalence because X is an Ω-spectrum. The second map is a
homeomorphism because it has an inverse. Therefore their composite is a weak equiv-
alence.

Let L X be the based homotopy colimit (reduced mapping telescope) of iterations of the
map λ∗.

Proposition 6.1.23. There is a natural isomorphism πk+n ((L X )n )∼=πk (X ).

Proof. If λ∗ consisted only of the adjoint maps eξn , the colimit would be the spectrum
R X from Proposition 2.2.9, and so this would be true because R X is an Ω-spectrum:

πk (X )∼=πk (R X )∼=πn+k ((R X )n ).

The full truth is that we added some isomorphisms τn ,1 into the colimit system. How-
ever, this does not change the colimit up to isomorphism, so the colimit groupπn+k ((L X )n )
is still isomorphic toπk (X ). Interestingly, L X may fail to be anΩ-spectrum, even though
πk+n ((L X )n ) is abstractly isomorphic to πk+n+1((L X )n+1).

Proposition 6.1.24. Every π∗-isomorphism X → Y is a stable equivalence.

Proof. Since homotopy colimits preserve equivalences of based spaces, L preserves level
equivalences, so it induces a map on the level homotopy category [X , Z ]ℓ→ [L X , LZ ]ℓ.
If we let ι : X → L X denote the natural map, then for every map of spectra f : X → Z
where Z is an Ω-spectrum, we have a commuting square

X
ι
��

f
// Z
ι
��

L X
L f
// LZ ,
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and therefore a commuting diagram

[L X , Z ]ℓ
ι◦−∼=
��

[X , Z ]ℓ
L

ww

ι◦−∼=
��

[L X , LZ ]ℓ −◦ι
// [X , LZ ]ℓ.

The isomorphisms are because Z is anΩ-spectrum, and so by applying Proposition 6.1.22
and taking the colimit, the map ι : Z → LZ is a level equivalence.

We conclude that the set [X , Z ]ℓ is naturally a retract of the set [L X , Z ]ℓ. Now suppose
f : X → Y is a π∗-isomorphism. By Proposition 6.1.23, L f is a level equivalence, so it

induces an isomorphism (−◦ L f ): [LY , Z ]ℓ
∼=→ [L X , Z ]ℓ. Since (−◦ f ): [Y , Z ]ℓ→ [X , Z ]ℓ is

a retract of this isomorphism, it is also an isomorphism. Therefore f is a stable equiva-
lence.

We round out this section with the observation:

Lemma 6.1.25. Between Ω-spectra, every stable equivalence is a level equivalence.

Proof. This is a simple application of the Yoneda lemma, to the category of Ω-spectra
with level equivalences inverted.

To summarize, we have implications

level equivalence ⇒ π∗-isomorphism ⇒ stable equivalence

and for Ω-spectra, all three are equivalent.

6.1.5 Stability theorems

Since our definition of stable equivalence has changed, we need to re-prove some of the
theorems from the first few chapters of the book, for this new notion of stable equiva-
lence. In the spirit of [MMSS01], we list these theorems in a huge block, then proceed to
prove them.

Theorem 6.1.26. 1. The map f is a stable equivalence iff Σ f is a stable equivalence.

2. For stable equivalences Xα→ Yα, the wedge sum
∨

αXα→
∨

α Yα is a stable equiva-
lence.

3. A map f : X → Y is a stable equivalence iff the homotopy cofiber C f is stably equiv-
alent to ∗.
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4. If A→ X is a stable equivalence and either A→ X or A→ Y is a free cofibration, the
pushout map Y → X ∪A Y is also a stable equivalence.1

5. If we have a sequence of maps X (n ) → X (n+1) that are stable equivalences and free
cofibrations, their sequential composition is also a stable equivalence (and free cofi-
bration).

6. A retract of a stable equivalence is a stable equivalence.

We also get several more corollaries, since we already know how π∗ behaves on the un-
derlying sequential spectra. For example:

Corollary 6.1.27. 1. Finite wedges are stably equivalent to finite products (because
they are π∗-isomorphic).

2. The map f is a stable equivalence iff Ω f is a stable equivalence (because ΣΩX → X
is a π∗-isomorphism).

3. There is a stable equivalence ΣF f
∼→C f (because it is a π∗-isomorphism).

4. The map f is a stable equivalence iff F f is stably equivalent to ∗.

Proof of Theorem 6.1.26. The key idea is to think about the properties of the functor
[−, Z ]ℓ for any Ω-spectrum Z . Since Z is an Ω-spectrum, the construction of Exam-
ple 3.2.9 makes [X , Z ]ℓ into an abelian group in a natural way. This will be important
for the steps below that form exact sequences out of these abelian groups.

1. There are natural isomorphisms

[ΣX , Z ]ℓ ∼= [X ,ΩZ ]ℓ,

[X , Z ]ℓ ∼= [X ,Ωsh Z ]ℓ ∼= [ΣX , sh Z ]ℓ

using Proposition 6.1.22. Also, the operations Ω and sh preserve Ω-spectra. It fol-
lows that f induces an isomorphism on [−, Z ]ℓ iff it induces an isomorphism on
[Σ(−), Z ]ℓ for all Ω-spectra Z .

2. The proof of Proposition 3.2.2 gives a natural isomorphism

�

∨

α

Xα, Z

�

ℓ

∼=
∏

α

[X , Z ]ℓ,

so a wedge sum of stable equivalences is a stable equivalence.

1In points 4 and 5 of Theorem 6.1.26, it is not necessary to assume we have free cofibrations. It is
enough if the maps of spectra have the homotopy extension property at each spectrum level.
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3. We define a long exact sequence of abelian groups

[ΣC f , Z ]ℓ // [ΣY , Z ]ℓ
−◦Σ f

// [ΣX , Z ]ℓ // [C f , Z ]ℓ // [Y , Z ]ℓ
−◦ f
// [X , Z ]ℓ

just as in Proposition 3.2.19. If f is a stable equivalence then f and Σ f induce
bijections, so [C f , Z ]ℓ = 0, so C f is stably equivalent to zero. Conversely, if C f
is stably equivalent to zero then so is ΣC f . By the exact sequence, Σ f is a stable
equivalence, and therefore f is a stable equivalence.

4. The cofibration assumption implies that the pushout X ∪A Y is equivalent to the
homotopy pushout X ∪h

A Y . As in Lemma 2.4.14, the homotopy cofiber of f : A→ X
is equivalent to the homotopy cofiber of f̄ : Y → X ∪A Y . So if f is a stable equiva-
lence, C f is stably equivalent to zero, hence C f̄ is stably equivalent to zero, so f̄
is a stable equivalence.

5. As in Proposition 3.2.20, we get a lim1 exact sequence of abelian groups

0 // lim 1[ΣX (n ), Z ]ℓ // [X (∞), Z ]ℓ // lim [X (n ), Z ]ℓ // 0.

If all of the maps [X (n ), Z ]ℓ → [X (0), Z ]ℓ are bijections, the lim1 term vanishes and
the map [X (∞), Z ]ℓ→ [X (0), Z ]ℓ is therefore a bijection.

6. A retract of an isomorphism on [−, Z ]ℓ is an isomorphism, so a retract of a stable
equivalence is a stable equivalence.

6.1.6 The stable model structure

Now that we have proven the stability theorems, we have all the ingredients we need to
give symmetric and orthogonal spectra a model structure with the stable equivalences.

Theorem 6.1.28 (Hovey-Shipley-Smith). The category of symmetric spectra SpΣ has a sta-
ble model structure in which

• the cofibrations are the retracts of the relative cellular spectra,

• the weak equivalences are the stable equivalences, and

• the fibrations are the stable fibrations, i.e. the maps that are fibrations at each spec-
trum level and such that the squares

X i
//

pi

��

Ω j X i+ j

Ω j pi+ j
��

Yi
// Ω j Yi+ j
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are homotopy pullbacks.

Theorem 6.1.29 (Mandell-May-Schwede-Shipley). The category of orthogonal spectra
SpO has a stable model structure with the same description.

Proof. All of the arguments in Section 5.6 now apply, using Lemma 6.1.15, Theorem 6.1.26,
and Corollary 6.1.27 instead of the earlier results on sequential spectra.

Remark 6.1.30. This model structure is proper in the sense of Definition 5.2.29. It is left
proper by part (4) of Theorem 6.1.26. It is right proper by the dual of the proof of (4),
taking homotopy fibers in a pullback square and using part (4) of Corollary 6.1.27.

We have seen that in symmetric spectra, not every stable equivalence is aπ∗-isomorphism.
For orthogonal spectra, we are a bit luckier, and the two classes of maps coincide. We
first check this on the free spectra.

Lemma 6.1.31. If A is a well-based space, the canonical map from the free sequential
spectrum on A to the free orthogonal spectrum on A,

F Ni A −→ F O
i A,

is a π∗-isomorphism.

Proof. At spectrum level n , this is the map

A ∧S n−i −→ A ∧SO (i , n ).

It suffices to check that the map S n−i → SO (i , n ), that includes the compactification of
a single fiber into the entire Thom space, becomes more highly connected as n →∞.
This follows from the geometric fact that the space of embeddings ofRi intoRn becomes
more highly connected as n→∞.

Proposition 6.1.32. For orthogonal spectra, every stable equivalence is aπ∗-isomorphism.

Proof. Since level equivalences areπ∗-isomorphisms, without loss of generality X and Y
are cofibrant. We want to show that every stable equivalence X → Y is aπ∗-isomorphism.

Let J be the generating acyclic cofibrations for orthogonal spectra. The maps of J are
built from free orthogonal spectra, each of which has the same homotopy groups as the
corresponding free sequential spectrum by Lemma 6.1.31. It now straightforward to ar-
gue that each J -cofibration is a π∗-isomorphism. By Ken Brown’s Lemma, therefore ev-
ery stable equivalence of cofibrant orthogonal spectra X → Y is a π∗-isomorphism.
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Remark 6.1.33. For symmetric spectra, we have shown that stable equivalences and
π∗-isomorphisms coincide when we restrict attention to Ω-spectra. There is a some-
what larger class of semistable symmetric spectra, on which the stable equivalences
also agree with the π∗-isomorphisms.

A spectrum is semistable if the symmetric group actions Σn induce no interesting ac-
tion on the stable homotopy groups π∗(X ), only the action that multplies by the sign of
the permutation. Equivalently, if the map λ∗ in Proposition 6.1.22 is a π∗-isomorphism.
EveryΩ-spectrum is semistable, as is the underlying symmetric spectrum of any orthog-
onal spectrum. See [Sch07] for a much more extensive discussion.

Proposition 6.1.34. The prolongation and forgetful functors form Quillen equivalences
SpN ≃ SpΣ ≃ SpO .

Proof. It is easy to see that the forgetful functors preserve fibrations. The acyclic fibra-
tions are the same thing as the I -injective maps, which in every case are the level acyclic
fibrations, so they are also preserved. Therefore all of the forgetful functors are right
Quillen.

We next check that (P O
N ,U O

N ) is a Quillen equivalence. We abbreviate the forgetful and
prolongation functors to P and U . The unit of the adjunction (LP ⊣ RU ) can be de-
scribed on any cofibrant sequential spectrum X as the composite

X −→U P X −→U R P X

that applies the unit of (P ⊣U ) and then a fibrant replacement in the middle. But this is
equivalent to the plain old unit map X →U P X , in other words the canonical map from
each sequential spectrum to the free orthogonal spectrum on it.

If X is a free spectrum F Ni A on a cell complex A, this canonical map isπ∗-isomorphism by
Lemma 6.1.31. We observe using (6.1.12) that prolongation P commutes with homotopy
cofibers. So by Lemma 2.4.9 and the 5-lemma, if the unit map is an equivalence for any
two spectra in a cofiber sequence X → Y → C f , it is also an equivalence on the third.
Using this, we can show by induction that the unit map is an equivalence for each of
the skeleta X (n ) of a cellular spectrum X . Since P preserves sequential compositions of
cofibrations, we conclude also that the unit map is an equivalence on X itself.

The forgetful functorRU ≃U reflects weak equivalences, in the sense that U X →U Y is
a weak equivalence iff X → Y is a weak equivalence. It follows formally that the derived
counit map PQU Y → PU Y → Y must also be an equivalence. (See exercise 10.) There-
fore we have a Quillen equivalence between sequential spectra and orthogonal spectra.

Next, we apply the same argument to the pair (P O
Σ ,U O

Σ ). We need to check that:

• U O
Σ preserves weak equivalences. This is true because weak equivalences of or-
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thogonal spectra areπ∗-isomorphisms by Proposition 6.1.32, which are weak equiv-
alences of symmetric spectra by Proposition 6.1.24.

• U O
Σ reflects weak equivalences. This is true because up to equivalence, we may

as well assume the orthogonal spectra are Ω-spectra, and if a map of orthogonal
Ω-spectra X → Y is a stable equivalence as a map of symmetric spectra, then by
Lemma 6.1.25 it’s a level equivalence, and therefore it’s a stable equivalence as a
map of orthogonal spectra too.

• The unit map X →U O
Σ P O

Σ X is a stable equivalence (not a π∗-isomorphism!) when
X is a free spectrum F Σn A. Using the five-lemma and Theorem 6.1.26, we reduce
this to the case where A = S n . Then we compare to F Σ0 S 0:

F Σn S n

η

��

∼ // F Σ0 S 0

OO

η∼=
��

U O
Σ F O

n S n ∼ //U O
Σ F O

0 S 0

The horizontal maps are stable equivalences of symmetric spectra by Example 6.1.20,
and the unit map on the right-hand side is an isomorphism S∼= S, so the unit map
on the left-hand side must be a stable equivalence of symmetric spectra as well.

Finally, we give a gasp of dismay: this argument does not apply to (P ΣN ,U Σ
N ), because of

the mismatch between π∗-isomorphisms and stable equivalences in SpΣ. But it doesn’t
matter! We know that LP O

Σ is an equivalence of categories, and the composite

LP O
N ≃ (LP O

Σ ) ◦ (LP ΣN )

is an equivalence of categories too. It follows that LP ΣN must also be an equivalence of
categories. This proves that (P ΣN ,U Σ

N ) is a Quillen equivalence and finishes the proof.

Since the stable equivalences between Ω-spectra are π∗-isomorphisms, we can use the
fibrant replacement functor R to right-derive the homotopy groups of a symmetric spec-
trum.

Definition 6.1.35. In symmetric spectra, the right-derived functor of the homotopy groups

Rπ∗(X ) :=π∗(R X )

is called the true homotopy groups.

A map is a stable equivalence iff it induces isomorphisms on the true homotopy groups.
Along the Quillen equivalences of Proposition 6.1.34, the true homotopy groups of a
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symmetric spectrum X correspond to the homotopy groups of its associated orthogo-
nal spectrum LP O

Σ X or sequential spectrum RU Σ
N X . We therefore get all of the same

theorems and calculations for the true homotopy groups that we did back in sequential
spectra – for instance, for a symmetric spectrum X we have

[Sk , X ]s ∼=Rπ∗(X )

where Sk = F Σ0 S k when k ≥ 0 and F Σ|k |S
0 when k < 0. For this reason, we often drop theR

and think of these as the real homotopy groups, and the ones we defined before as the
“naïve homotopy groups” of symmetric spectra.

6.2 The smash product

In this section we define the smash product X ∧ Y of symmetric or orthogonal spectra.
We show it is equivalent to the handicrafted smash product of Definition 2.3.23, and that
it is associative, commutative, and unital up to isomorphism:

(X ∧Y )∧Z ∼= X ∧ (Y ∧Z ), X ∧Y ∼= Y ∧X , S∧X ∼= X .

We also show that it has right adjoints in each variable, and plays well with the stable
equivalences, so that it defines a Quillen tensor, and passes to a smash product on the
homotopy category Ho Sp. The construction of this smash product was a major devel-
opment in the subject in the 1990s.

6.2.1 Explicit definition

In the handicrafted smash product, (X ∧ Y )n is defined to be Xp ∧ Yq for some values of
p and q that add to n . However, it’s much better to take all values of p and q that add
to n , and use the structure of a symmetric spectrum to glue them together.

Definition 6.2.1. Let X and Y be symmetric spectra. The smash product X ∧ Y is the
symmetric spectrum that at level n is the quotient

(X ∧Y )n =
∨

p+q=n

(Σp+q )+ ∧Σp×Σq
(Xp ∧Yq )/∼

that identifies the images of the following maps for all p , q , and r adding to n :

(Σp+q+r )+ ∧Xp ∧Yq ∧S r
id∧id∧υq ,r

//

(−◦(1×τr,q ))∧id∧γ
��

(Σp+q+r )+ ∧Xp ∧Yq+r

(Σp+q+r )+ ∧Xp ∧S r ∧Yq

id∧ξp ,r ∧id
// (Σp+q+r )+ ∧Xp+r ∧Yq
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Here G ∧H X denotes the quotient of G ∧X by the relation (g h , x )∼ (g , h x ), ξp ,r andυq ,r

are the iterated bonding maps from Definition 6.1.2, γ is the symmetry isomorphism
Yq ∧S r ∼= S r ∧ Yq , and −◦ (1×τr,q ) is the operation that pre-composes the permutation
σ ∈ Σp+q+r with the block permutation 1×τr,q that leaves the first p letters alone, and
switches the next r letters past the last q letters.

The symmetric group Σn acts on (X ∧ Y )n by multiplying into Σp+q on the left, and the
bonding map (X ∧Y )n ∧S 1→ (X ∧Y )n+1 is obtained from the bonding map of Y . (How-
ever, because of the quotient we applied, we get the same result if we use the bonding
map of X , along with some extra permutations.)

Intuitively, the smash product is the disjoint union of all of the terms along one diago-
nal in the grid in Definition 2.3.23, modulo relations that glue these terms together along
bonding maps coming from the terms below that diagonal. We also add in the symmet-
ric group (Σp+q )+ so that the full symmetric group will act on the resulting space. For
instance, at spectrum level 2, we get a single space built out of the following six spaces:

X0 ∧Y2

X0 ∧Y1 X1 ∧Y1

X0 ∧Y0 X1 ∧Y0 X2 ∧Y0

This identification comes with an extra factor of τr,q , which you should think of as the
Koszul sign rule for spectra.

You can also think ofτr,q as a correcting factor that undoes the permutation we do when
we switch the S r past Yq . That switch feels like a block permutationτq ,r that wasn’t there
before, so we add in the inverse τr,q to “undo” it. See also Remark 6.2.5.

If X and Y are orthogonal spectra, the smash product is defined the same way, but with
orthogonal groups in the place of the symmetric groups:

(X ∧Y )n =
∨

p+q=n

O (p +q )+ ∧O (p )×O (q ) (Xp ∧Yq )/∼

Example 6.2.2. The smash productS∧S is isomorphic toS again. To see this, we observe
that all of the terms Xp ∧ Yq are n-spheres S n , and all of the relations give the identity
map of S n . The permutations τr,q are absolutely necessary for this! If we didn’t work
them in, we would get the orbit space (S n )Σn

at level n , which is contractible!

Example 6.2.3. The argument of the previous example also shows that Σ∞A ∧Σ∞B ∼=
Σ∞(A ∧B ). So a smash product of suspension spectra is a suspension spectrum again.

Example 6.2.4. Generalizing in a different direction, if X is any symmetric spectrum
then X ∧ S ∼= X . This is also not hard to show: all the terms Xp ∧ S q get identified to
Xn ∧S 0, and we’re left with just Xn at spectrum level n .
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Remark 6.2.5. You should imagine a symmetric spectrum as a spectrum in which Xn

has “secret sphere coordinates,” andΣn permutes those coordinates around. Of course,
there actually is a map Σn X0→ Xn that commutes with the Σn -action, so on the image
of that map, the points really do have sphere coordinates that Σn is permuting around.

With this intuition, the smash product identifies all copies of Xp ∧ Yq together along
bonding maps, but when we use the bonding maps to move some spheres from X to
Y , the sphere coordinates get shuffled out of order. The Koszul sign rule (in other words
the permutation τr,q ) is there to shuffle everything back into the correct order.

Proposition 6.2.6. There are natural isomorphisms

X ∧S∼= X , X ∧Y ∼= Y ∧X , (X ∧Y )∧Z ∼= X ∧ (Y ∧Z ).

Proof sketch. We won’t do the proof in much detail since it is a tedious exercise to check
everything carefully. We will just give the general idea.

For the first isomorphism, we use the equivalence relation to identify all the points in
Xp ∧S q to Xp+q using the bonding map of X .

For the middle isomorphism, we switch X with Y , but introduce a permutation to cor-
rect for the switch, another instance of the spectral Koszul sign rule.

For the last isomorphism, we define a three-fold variant of the smash product X ∧Y ∧Z ,
and then identify both (X ∧Y )∧Z and X ∧(Y ∧Z )with this three-fold smash product.

Remark 6.2.7. It’s important to emphasize how strong this is: S∧X is isomorphic to X .
Not just stably equivalent, or something wishy-washy like that. They are isomorphic.

One can proceed further and carefully check that the isomorphisms in Proposition 6.2.6
are coherent in the sense outlined above Theorem 4.1.4. We conclude:

Theorem 6.2.8. Symmetric spectra SpΣ and orthogonal spectra SpΣ are both symmetric
monoidal categories under the smash product ∧.

There is also a somewhat easier way to do this step, see Theorem 6.2.22 below.

6.2.2 Explicit function spectra

To define function spectra F (X , Y ), it’s convenient to first capture the universal prop-
erty of the smash product of symmetric spectra, in a way that’s similar to the universal
property of the tensor product ⊗ of abelian groups.
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Definition 6.2.9. Let X , Y , and Z be symmetric spectra, with bonding maps labeled ξ,
υ, and ζ, respectively. A bimorphism (X , Y )−→ Z is a collection of Σp ×Σq -equivariant
maps of pointed spaces

bp ,q : Xp ∧Yq −→ Zp+q

such that the following diagram commutes.

Xp ∧Yq ∧S 1

bp ,q∧id
��

Xp ∧Yq ∧S 1 id∧τ //

id∧υq

��

Xp ∧S 1 ∧Yq

ξp∧id

��

Zp+q ∧S 1

ζp+q

��

Xp ∧Yq+1

bp ,q+1

��

Xp+1 ∧Yq

bp+1,q

��

Zp+q+1 Zp+q+1 1×τq ,1

// Zp+1+q

(6.2.10)

The following is a straightforward check of the definitions.

Lemma 6.2.11. The smash product X ∧ Y is the universal symmetric spectrum that re-
ceives a bimorphism from (X , Y ).

Definition 6.2.12. We define the function spectrum F (Y , Z ) as follows. At level p , it is
the subspace of the product

F (Y , Z )p ⊆
∏

q≥0

Map∗(Yq , Zp+q )

consisting of all tuples of Σq -equviariant maps fq : Yq → Zp+q that commute with the
bonding maps of Y and Z :

Yq ∧S 1
υq

//

fq∧id
��

Yq+1

fq+1

��

Zp+q ∧S 1
ζp+q

// Zp+q+1

We define a Σp -action on this space by composing the maps fq with the action of
Σp ×1≤Σp+q on the space Zp+q . We define the bonding map

F (Y , Z )p →ΩF (Y , Z )p+1
∼= F (Y ,ΩZ )p+1

by taking each collection of maps fq : Yq → Zp+q to the collection of maps

Yq

fq
// Zp+q

eζp+q
// ΩZp+q+1

(1×τq ,1)
// ΩZp+1+q .

It is straightforward to check this satisfies the definition of a symmetric spectrum (Def-
inition 6.1.2).
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Now, if we have a map of symmetric spectra X → F (Y , Z ), the individual maps Xp →
F (Y , Z )p rearrange to maps bp ,q : Xp ∧Yq → Zp+q , making the left-hand region in (6.2.10)
commute. Furthermore, requiring that Xp → F (Y , Z )p is Σp -equivariant and that each
fq isΣq -equivariant is equivalent to asking that each bp ,q isΣp ×Σq -equivariant. Finally,
the maps Xp → F (Y , Z )p must commute with the bonding maps:

Xp

��

eξp
// ΩXp+1

��

F (Y , Z )p // F (Y ,ΩZ )p+1.

This rearranges to the commutativity of the outside rectangle in (6.2.10). All together,
this proves:

Lemma 6.2.13. Maps of symmetric spectra X → F (Y , Z ) correspond to maps of symmetric
spectra X ∧Y → Z . In other words, F (Y ,−) is the right adjoint of (−)∧Y .

It is clear that we can form the same constructions using orthogonal spectra, and the
same result holds, with the same proof. In conclusion:

Theorem 6.2.14. The symmetric monoidal structures on SpΣ and SpO from Theorem 6.2.14
are both closed.

As mentioned in Example 4.1.34, this means that we also have isomorphisms of spectra

F (X ∧Y , Z )∼= F (X , F (Y , Z )), F (S, X )∼= X ,

and that a function spectrum out of a suspension spectrum F (Σ∞K , X ) is isomorphic
to the cotensor spectrum F (K , X ) where we just apply Map∗(K ,−) to each level of X
separately. See also exercise 11.

6.2.3 Abstract definition

In this section we give a second definition of the smash product. It is isomorphic to the
first definition, but it is described in a more abstract and global way, which will make it
easier to prove some of its properties.

Recall from Lemma 6.1.8 that symmetric spectra are the same thing as diagrams of based
spaces on the category SΣ, whose mapping spaces are

SΣ(m , n ) =
∨

α: m ,→n

S n−α(m ) when n ≥m .
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If X and Y are two symmetric spectra, we can consider all of the smash products Xp ∧Yq

for p , q ≥ 0. These form a diagram on the smash product category SΣ ∧ SΣ defined in
Section 5.8, exercise 30. The objects of this category are pairs of integers, and the maps
are the smash product of the mapping spaces:

(SΣ ∧SΣ)((p0, q0), (p1, q1)) = SΣ(p0, p1)∧SΣ(q0, q1)

=

 

∨

α: p0,→p1

S p1−α(p0)

!

∧

 

∨

β : q0,→q1

S q1−β (q0)

!

.

Definition 6.2.15. We define a functor ⨿: SΣ ∧ SΣ → SΣ as follows. On objects, we take
each pair (p , q ) to the sum p +q . On morphisms, we take each pair of maps α: p0 ,→ p1

and β : q0 ,→ q1 to the disjoint union

(α⨿β ): p0+q0 ,→ p1+q1.

We have bijections of sets

p1+q1− (α⨿β )(p0+q0)∼= (p1−α(p0))⨿ (q1−β (q0))

which give homeomorphisms of spheres

S p1+q1−(α⨿β )(p0+q0) ∼= S p1−α(p0) ∧S q1−β (q0), (6.2.16)

and together these define the desired maps

�

∨

α: p0,→p1
S p1−α(p0)

�

∧
�

∨

β : q0,→q1
S q1−β (q0)

�

−→
∨

γ: n0,→n1
S n1−γ(n0)

SΣ(p0, p1)∧SΣ(q0, q1) −→ SΣ(p0+q0, p1+q1)

finishing the definition of the functor SΣ ∧ SΣ → SΣ. It is straightforward to check this
respects composition (exercise 15). We call this functor⨿, because in essence it is taking
the disjoint union of finite sets, and concatenating sphere coordinates.

Definition 6.2.17. The smash product X ∧Y is the SΣ-diagram obtained from the smash
products (Xp ∧Yq )p ,q≥0 by left Kan extension along ⨿ (Definition 5.4.13):

X ∧Y = (⨿)!(X− ∧Y−).

We can also define an analogous functor ⊕: SO ∧ SO → SO for orthogonal spectra, see
exercise 16.

Proposition 6.2.18. This abstract smash product is isomorphic to the explicit smash prod-
uct from Definition 6.2.1.
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Proof. The expression for the left Kan extension from (5.4.15), adapted to based spaces
(so that the Cartesian products × becomes smash products ∧), gives in this case the co-
equalizer of the two maps
�

∨

(p0,q0),(p1,q1)

Xp0
∧Yq0

∧SΣ(p0, p1)∧SΣ(q0, q1)∧SΣ(q0+q1, n )

�

⇒

�

∨

(p ,q )

Xp ∧Yq ∧SΣ(p +q , n )

�

that either have SΣ(p0, p1)∧ SΣ(q0, q1) act on Xp0
∧ Yq0

, or apply ⨿ to SΣ(p0, p1)∧ SΣ(q0, q1)
and then compose the result with SΣ(q0+q1, n ).

Along these relations, the terms in which p + q < n get identified to terms in which
p +q = n , so that we get a quotient of the sum

∨

p+q=n

Xp ∧Yq ∧SΣ(p +q , n )∼=
∨

p+q=n

Xp ∧Yq ∧ (Σp+q )+.

The remaining relations turn out to give the relations we imposed in Definition 6.2.1,
but it is tedious to check this and we omit the details.

The advantage of this definition of the smash product is that we can prove the following
by a formal argument:

Lemma 6.2.19. The smash product of two free spectra is free:

Fd A ∧ Fe B ∼= Fd+e (A ∧B ).

This holds if the free spectra and smash product are both taken in the category of sym-
metric spectra, or if they are both taken in the category of orthogonal spectra.

Proof. The smash products of the levels of Fd A and Fe B become

(Fd A)p ∧ (Fe B )q ∼= A ∧SΣ(d , p )∧B ∧SΣ(e , q ).

This is the free diagram on the category SΣ∧SΣ, at the object (d , e ), using the space (A∧B ).
The left Kan extension preserves free diagrams (Section 5.8, exercise 16) and therefore
we get Fd+e (A ∧B ) as the result.

Recall that Σ∞A ∧Σ∞B ∼= Σ∞(A ∧ B ) is a special case of this result. As in Section 5.8,
exercise 20, we can also conclude that the smash product preserves cell complex spectra:

Corollary 6.2.20. ∧ preserves cellular spectra, and X ∧Y has a stable (m+n )-cell for every
stable m-cell of X and stable n-cell of Y .

This is illustrated at the beginning of Chapter 4.

It is likewise easier to prove that the smash products for symmetric and orthogonal spec-
tra agree strictly in the following sense.
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Proposition 6.2.21. The prolongation from symmetric to orthogonal spectra commutes
with the smash product,

(P O
Σ X )∧(O ) (P O

Σ Y )∼= P O
Σ (X ∧

(Σ) Y ).

Proof. Let i : SΣ → SO be the obvious inclusion. Using the fact that the smash product
preserves colimits in each slot, the smash product of the levels of P O

Σ X and P O
Σ Y can be

rewritten as the left Kan extension of X− ∧ Y− along i ∧ i : SΣ ∧ SΣ → SO ∧ SO . To finish
taking the smash product in orthogonal spectra, we left Kan extend to SO along the sum
functor ⊕.

On the other hand, if we smashed X and Y in symmetric spectra first, we’d take the left
Kan extension of X−∧Y− along the sum functor⨿ to get a symmetric spectrum, then left
Kan extend along i to get an orthogonal spectrum. So, both sides of the desired equation
are left Kan extensions along the two routes in the following commuting square:

SΣ ∧SΣ

i∧i
��

⨿ // SΣ

i
��

SO ∧SO
⊕
// SO .

The results agree up to isomorphism because left Kan extensions are closed under com-
position (Section 5.8, exercise 17).

6.2.4 Point-set rigidity of the smash product

The smash product has a convenient property that keeps us from getting errors when
we pass between different definitions, or when we check that the associativity and com-
mutativity isomorphisms are coherent.

Think of the smash product as a functor ∧: SpΣ×SpΣ→ SpΣ, and consider natural trans-
formations from this functor to itself. These are maps

ηX ,Y : X ∧Y → X ∧Y

that commute with maps in each variable.

Theorem 6.2.22 (Point-set rigidity of ∧). The only such natural transformations are the
identity transformation, and the zero transformation sending everything to the basepoint.
Moreover, the same is also true for:

• the n-fold smash product

(X1, X2 . . . , Xn ) 7→ (((X1 ∧X2)∧ . . .)∧Xn )

for every n ≥ 0,
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• the n-fold smash product of orthogonal spectra for every n ≥ 0,

• the suspension spectrum functor Σ∞, to either symmetric or orthogonal spectra,

• the n-fold smash product of spaces, and also the suspension spectrum of the n-
fold smash product of spaces.

This is a useful fact because it allows us to “lock down” isomorphisms between different
models of the smash product.

Corollary 6.2.23. For any two functors isomorphic to the n-fold smash product, there is
a unique natural isomorphism between them.

Proof. Any two isomorphisms α, β can be composed to give a natural transformation
β−1α from the n-fold smash product to itself, that is not zero. This transformation must
be the identity by Theorem 6.2.22, and therefore β =α.

In particular, the two definitions of the smash product we gave in Definition 6.2.1 and
Definition 6.2.17 are isomorphic by a unique isomorphism.

Here are a few more applications. The first is another proof that symmetric spectra and
orthogonal spectra form symmetric monoidal categories.

Second proof of Theorem 6.2.8. We explained how to define the associativity, commuta-
tivity, and unit isomorphisms in Proposition 6.2.6. Now we have to check the coherences
listed in Theorem 4.1.4. But in each of these diagrams, the maps are all natural trans-
formations. Going around the diagram gives a natural transformation from the n-fold
smash product to itself. This must be the identity by Theorem 6.2.22. Therefore the
diagram commutes.

Lemma 6.2.24. Σ∞ is a strong symmetric monoidal functor Top∗→ SpΣ or SpO .

Proof. The isomorphisms Σ∞A∧Σ∞B ∼=Σ∞(A∧B )were constructed in Lemma 6.2.19,
andΣ∞S 0 ∼= S is obvious. As in the previous proof, all of the coherences for a symmetric
monoidal functor are automatically satisfied, because the functor Σ∞X1 ∧ . . .∧ Xn has
no nontrivial automorphisms.

Proof of Theorem 6.2.22. We handle the n-fold smash product of symmetric spectra; the
other cases are analogous. Let η be a natural transformation from the n-fold smash
product functor to itself.

We first examine whatηdoes to n-tuples of free spectra (F Σd1
A1, . . . , F Σdn

An ). By Lemma 6.2.19,
the smash product of these n spectra is equivalent to the free spectrum F Σd1+...+dn

(A1∧. . .∧
An ).
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The simplest case is the n-tuple consisting entirely of sphere spectra, (F Σ0 S 0, . . . , F Σ0 S 0),
whose smash product is F Σ0 S 0. Here η gives a map of spectra

F Σ0 S 0 −→ F Σ0 S 0.

But F Σ0 S 0 is a free spectrum, so this is determined a choice of point in S 0 at level 0. There
are only two possibilities here: η is the identity map, or the zero map.

Let’s examine the case whereη is the identity on (F Σ0 S 0, . . . , F Σ0 S 0). Moving next to (F Σd1
S 0, . . . , F Σdn

S 0),
η gives a map

F Σd1+...+dn
S 0 −→ F Σd1+...+dn

S 0.

Again this is determined by what it does at spectrum level (d1+ . . .+dn ), where it gives a
point in the space (Σd1+...+dn

)+. In other words, a permutationσ, or the basepoint.

We claim that this point has to be the identity permutation σ = id. To see this, con-
sider any point (t1, . . . , tn ) ∈ S d1 ∧ . . .∧S dn . We can choose maps of spectra F Σdi

S 0→ F Σ0 S 0

which at level di send the non-basepoint of S 0 to the point ti ∈ S di . Since η is a natural
transformation, this square commutes for all choices of (t1, . . . , tn ):

(Σd1+...+dn
)+

·σ
//

(−)(t1,...,tn )
��

(Σd1+...+dn
)+

(−)(t1,...,tn )
��

S d1+...+dn
id // S d1+...+dn

Since Σd1+...+dn
acts faithfully on the sphere S d1+...+dn , we must haveσ = id. In summary,

η acts as the identity on the n-tuple (F Σd1
S 0, . . . , F Σdn

S 0).

Next we examine an arbitrary n-tuple of free spectra (F Σd1
A1, . . . , F Σdn

An ). Each collection
of choices of point ai ∈ Ai gives a sequence of maps F Σdi

S 0 → F Σdi
Ai , and applying η to

this sequence of maps gives a commuting square

F Σd1+...+dn
S 0 ∧ . . .∧S 0 id //

��

F Σd1+...+dn
S 0 ∧ . . .∧S 0

��

F Σd1+...+dn
A1 ∧ . . .∧An

η
// F Σd1+...+dn

A1 ∧ . . .∧An

The commutativity of the square implies that the bottom map must be the identity on
any point of the form

(a1, . . . , an , f ) ∈ A1 ∧ . . .∧An ∧SΣ(d1+ . . .+dn , m ).

But by varying (a1, . . . , an ) this gives every point, and soη is the identity on every n-tuple
of free spectra.

It is left as an exercise to conclude thatη is therefore the identity on all n-tuples of spectra
(exercise 22). In the remaining case, we assume thatη= 0 on the n-tuple (F Σ0 S 0, . . . , F Σ0 S 0),
and follow the same steps to conclude that η= 0 on all n-tuples of spectra.
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We can prove the same for prolongation, which also helps us check it is a symmetric
monoidal functor. We combine the two results into one:

Theorem 6.2.25. Prolongation P O
Σ is a strong symmetric monoidal functor.

Proof. As in the previous proofs, it suffices to show that the functor that takes an n-tuple
of symmetric spectra, takes their smash product, and prolongs the result to orthogonal
spectra, has no nontrivial automorphisms. The proof is the same as the proof of Theo-
rem 6.2.22. For the part deferred to exercise 22, we observe that if X → Y is a levelwise
surjection of symmetric spectra, the map of prolongations P O

Σ X → P O
Σ Y is also levelwise

surjective by examination of the formula (5.4.21).

6.2.5 Symmetric and orthogonal ring spectra

Recall from Definition 4.1.16 that a ring spectrum is a monoid for the smash product.
Now that we have an honest definition of the smash product, we get an honest definition
of ring spectra:

Definition 6.2.26. A symmetric ring spectrum is a monoid in SpΣ. So it consists of a
symmetric spectrum R with maps

µ: R ∧R −→R , η: S−→R ,

such that the diagrams in Definition 4.1.11 commute. A commutative symmetric ring
spectrum is a commutative monoid object in SpΣ, and an R -module spectrum is a mod-
ule object over R , with action map

α: R ∧M −→M ,

such that the diagrams in Definition 4.1.11 commute. An orthogonal ring spectrum
and modules over it are defined in the same way in SpO .

Remark 6.2.27. Using the definition of a bimorphism from Definition 6.2.9, we can see
that the ring structure is determined by a collection of maps

Rp ∧Rq −→Rp+q

that interact well with the bonding maps of R . Similarly an R -module is determined by
maps

Rp ∧Mq −→Mp+q .

Lemma 6.2.28. The prolongation P O
Σ of a symmetric ring spectrum is an orthogonal ring

spectrum, and the forgetful functorU O
Σ of an orthogonal ring spectrum is a symmetric ring

spectrum. These functors likewise preserve modules over ring spectra, and commutative
ring spectra.
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Proof. Follows immediately from Proposition 4.1.23 and Section 4.3, exercise 12.

Example 6.2.29. The sphere spectrum S is an orthogonal ring spectrum in a canonical
way. It is therefore also a symmetric ring spectrum.

Example 6.2.30. If G is a topological group or monoid, the spherical group ring

S[G ] = S∧G+ =Σ
∞
+ G

is the orthogonal ring spectrum given by the suspension spectrum of G , with multipli-
cation coming from that of G . This is a ring spectrum by Proposition 4.1.23 and the fact
that Σ∞+ is a strong symmetric monoidal functor (Lemma 6.2.24).

Remark 6.2.31. We will prove in ?? that for any ordinary ring R , the Eilenberg-Maclane
spectrum H R can also be made into an orthogonal ring spectrum.

Definition 6.2.32. We define the category of symmetric ring spectra SpΣAlg by saying that
an object is a symmetric ring spectrum R , and a morphism is a map of spectra f : R → S
that commutes with the multiplication and unit maps:

R ∧R

µR

��

f ∧ f
// S ∧S

µS

��

S
ηR

��

S
ηS

��

R
f

// S R
f
// S .

We also sometimes call such a map a ring homomorphism. The category of commu-
tative ring spectra SpΣCAlg is the full subcategory on the rings that are commutative. (In
other words, the morphisms are the same.)

For a fixed symmetric ring spectrum R , the category of module spectra R -ModΣ has ob-
jects the R -modules, and morphisms the maps of spectra f : M →N that commute with
the R -action:

R ∧M

αM

��

id∧ f
// R ∧N

αN

��

M
f

// N .

We also sometimes call this an R -linear map. We can also do the same definitions with
orthogonal spectra.

Example 6.2.33. By Section 4.3, exercise 10, the category of S-modules in symmetric
spectra, S-ModΣ, is equivalent to the category of symmetric spectra SpΣ. Likewise, the
category of S-modules in orthogonal spectra, S-ModO , is equivalent to SpO . In other
words, every spectrum is a module over the sphere spectrum in a canonical way.
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Example 6.2.34. We will later see that HZ-module spectra up to stable equivalence cor-
respond to unbounded chain complexes over Z.

Lemma 6.2.28 tells us that we get functors on ring spectra

P O
Σ : SpΣAlg↔ SpO

Alg : U O
Σ .

As with ordinary spectra, we really want to think about ring spectra up to stable equiva-
lence.

Definition 6.2.35. A stable equivalence of ring spectra is a homomorphism of ring spec-
tra R → S that is a stable equivalence on the underlying spectra. A stable equivalence of
modules, or of commutative rings, is defined similarly.

We said after Definition 2.1.10 that stable homotopy theory is the study of spectra up to
stable equivalence. By analogy with this:

Higher algebra is the study of ring spectra and their modules up to stable equivalence.

To do this properly, we will need to define a model category on ring spectra with these
stable equivalences. This will be done in ?? and exercise 24. For now, we state the result:

Theorem 6.2.36. There are model structures on SpΣAlg and SpO
Alg where the weak equiv-

alences and fibrations are the ring homomorphisms that on the underlying spectra are
equivalences or fibrations in the stable model structure from Theorem 5.2.11.

The same is also true for modules over a fixed ring R -Mod. We also get such a model
structure for commutative ring spectra SpCAlg if we use the “positive” stable model struc-

ture (see Theorem 6.4.2). Every stable equivalence of rings R
∼−→ S gives a Quillen equiv-

alence R -Mod≃ S-Mod. We also have the following compatibility with our earlier model
structure:

Lemma 6.2.37. A cofibrant ring always has a cofibrant underlying spectrum. A cofibrant
module over a cofibrant ring is also cofibrant as an ordinary spectrum.

Remark 6.2.38. The theory of commutative ring spectra is more subtle – cofibrant ob-
jects in the model structure on commutative rings are actually not cofibrant as spectra.
See ??.

These results are enough to start working with rings and modules up to stable equiva-
lence. For instance, it shows that we can left-derive the prolongation P O

Σ : SpΣAlg→ SpO
Alg.

In detail: if X is a symmetric ring spectrum, and we cofibrantly replace it as a symmetric
spectrum, there is no reason to expect the result Q X to also be a ring spectrum. How-
ever, if we cofibrantly replace X in the model structure on symmetric ring spectra, then
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Q X is a ring and Q X → X is a ring homomorphism by definition. Then the prolonga-
tion P O

Σ Q X is an orthogonal ring spectrum. By Lemma 6.2.37, Q X is also cofibrant as a
spectrum, so P O

Σ Q X preserves weak equivalences, as desired.

This shows that we can effectively pass between symmetric and orthogonal ring spectra
without losing information, so that the theory of ring spectra up to equivalence is the
same in both cases.

6.3 Interaction with the model structure

Now that we understand how the smash product works up to isomorphism, let us con-
sider how it works up to weak equivalence. The big thing to show is that the smash prod-
uct preserves weak equivalences on cofibrant spectra. To do that, we prove that it plays
nicely with the stable model structure, making spectra into something called a symmet-
ric monoidal model category.

6.3.1 Symmetric monoidal model categories

Suppose that C is both a model category and a closed symmetric monoidal category. For
instance, C might be:

• (CGWH) topological spaces (Top,×,∗),

• based spaces (Top∗,∧,S 0),

• chain complexes (Ch(k ),⊗k , k [0]),

• symmetric spectra (SpΣ,∧,S), or

• orthogonal spectra (SpO ,∧,S).

At the moment, we haven’t asked for the model structure and the symmetric monoidal
structure on C to be compatible at all. But it is reasonable to ask for something.

Recall that the pushout-product of two maps f : A → X and g : B → Y in a symmetric
monoidal category C is the map

f □g : (X ⊗B )∪A⊗B (A⊗Y ) // X ⊗Y .

We say that ⊗ is a Quillen tensor if X ⊗ (−) always has a right adjoint Hom(X ,−), and if
the pushout-product preserves cofibrations and acyclic cofibrations:

C □ C ⊆C , C □ (W ∩C )⊆ (W ∩C ).



318 CHAPTER 6. CONSTRUCTION OF THE SMASH PRODUCT

(We first saw pushout-products in Definition 5.5.6, and Quillen tensors in Definition 5.5.13.
One of the three conditions in Definition 5.5.13 has become redundant because of the
symmetry of ⊗.)

Definition 6.3.1. A symmetric monoidal model category is a closed symmetric monoidal
category (C,⊗, I ) that is also a model category, such that

• ⊗ is a Quillen tensor, in other words if f and g are cofibrations then f □g is a cofi-
bration, and if additionally one of them is a weak equivalence then f □g is a weak
equivalence, and

• either the unit I is cofibrant, or the map Q I ⊗Q X → I ⊗Q X is a weak equivalence
for all X ∈C.

Remark 6.3.2. By Proposition 5.5.14, for a cofibrantly generated model category C, it
suffices to check the pushout-product condition on the generating cofibrations I and
generating acyclic cofibrations J . We also recalled in Remark 5.5.17 a common rear-
rangement of the pushout-product axiom called Quillen’s SM7 axiom.

Example 6.3.3. All of the examples in the above list are closed symmetric monoidal
model categories. For the last two, we use the following proposition.

Proposition 6.3.4. The smash product ∧ is a Quillen tensor, both in symmetric spectra
SpΣ and orthogonal spectra SpO .

Proof. We use the generic notation for a free spectrum Fd A since our proof will apply
equally well to symmetric or orthogonal spectra.

We need to calculate the pushout-product of two maps using the smash product. We
use the fact that smashing with a suspension spectrum Σ∞K is the same as smashing
with the space K , and that the free spectrum Fd A is the smash product of the spectrum
Fd S 0 with the space A.

Using the simplifications of the pushout-product from Example 5.5.7 and Example 5.5.9,
the pushout-product of two maps in I from Definition 5.6.1 is rewritten as

Fd (S
k−1→D k )+□Fe (S

ℓ−1→D ℓ)+ ∼= (idFd S 0)□(S k−1→D k )+□(idFe S 0)□(S ℓ−1→D ℓ)+
∼= (idFd S 0)□(idFe S 0)□(S k−1→D k )+□(S ℓ−1→D ℓ)+
∼= (idFd+e S 0)□(S k+ℓ−1→D k+ℓ)+
∼= Fd+e (S

k+ℓ−1→D k+ℓ)+.

This is a map in I , so we’ve shown that I □ I ⊆ C . (Recall from Section 5.8, exercise 1
that any map isomorphic to a cofibration is again a cofibration.)
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Next we take pushout-product of maps in I with maps in J . For the first set of maps in
J from Definition 5.6.3, the proof is largely the same:

Fd (S
k−1→D k )+□Fe (D

ℓ→D ℓ× I )+ ∼= (idFd S 0)□(S k−1→D k )+□(idFe S 0)□(D ℓ→D ℓ× I )+
∼= (idFd S 0)□(idFe S 0)□(S k−1→D k )+□(D ℓ→D ℓ× I )+
∼= (idFd+e S 0)□(D k+ℓ→D k+ℓ× I )+
∼= Fd+e (S

k+ℓ−1→D k+ℓ)+,

which is another map in J . For the second set of maps from Definition 5.6.3,

Fd (S
k−1→D k )+□ki , j□(S ℓ−1→D ℓ)+ ∼= (idFd S 0)□(S k−1→D k )+□ki , j□(S ℓ−1→D ℓ)+

∼= (idFd S 0)□ki , j□(S k−1→D k )+□(S ℓ−1→D ℓ)+
∼= kd+i , j□(S k+ℓ−1→D k+ℓ)+,

which is another map in J . The last manipulation uses the fact that smashing a free
spectrum Fd S 0 into the definition of ki , j increases the indices on all of the free spectra
in the definition by d , giving the map kd+i , j . In conclusion, we have shown that I □ J ⊆
(W ∩C ), so the smash product is a Quillen tensor.

By far, the biggest reason why we care about this is that

Corollary 6.3.5. The smash product X ∧ Y preserves stable equivalences when X and Y
are cofibrant. The function spectrum F (X , Y ) preserves stable equivalences when X is
cofibrant and Y is fibrant.

Proof. This follows from Lemma 5.5.19 and Lemma 5.5.22, and the just-established fact
that ∧ is a Quillen tensor.

Remark 6.3.6. In fact, more is true: the smash product X ∧ Y preserves stable equiva-
lences when X is cofibrant and Y is arbitrary. See exercise 13. Also, the function spec-
trum F (X , Y ) preserves stable equivalences if X is a finite cell spectrum and Y is arbi-
trary. See exercise 14.

We therefore have a smash product of spectra that is well-behaved on the point-set level,
and preserves stable equivlences when we need it to!

More generally, in any symmetric monoidal model category C, the tensor X ⊗ Y pre-
serves equivalences when X and Y are cofibrant, and the Hom(X , Y ) preserves equiva-
lences when X is cofibrant and Y is fibrant. We can therefore left-derive the tensor and
right-derive the hom:

X ⊗L Y :=Q X ⊗QY , RHom(X , Y ) :=Hom(Q X , RY ).
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These functors preserve all equivalences, so they define functors on the homotopy cate-
gory as well. We proved in Corollary 5.5.27 that these make the homotopy category Ho C
into a closed symmetric monoidal category.

Since we have equivalences of homotopy categories

Ho SpO ≃Ho SpΣ ≃Ho SpN,

by Section 4.3, exercise 14, a symmetric monoidal structure on any one of these cate-
gories becomes a symmetric monoidal structure on all of them. We have therefore, fi-
nally, achieved the goal of placing a closed symmetric monoidal structure on the stable
homotopy category Ho Sp.2

Corollary 6.3.7. The stable homotopy category Ho Sp has a closed symmetric monoidal
structure using ∧L and RF (−,−), and satisfying all of the properties from Example 4.1.9
and Example 4.1.34.

There were more promised properties in Example 4.1.27, but those have to do with func-
tors between this an other categories, and Example 4.2.11, but that had to do with dual-
ity. See exercise ??.

6.3.2 Symmetric monoidal Quillen adjunctions

We now turn to functors between symmetric monoidal model categories.

Definition 6.3.8. Suppose C and D are symmetric monoidal model categories. A strong
symmetric monoidal Quillen adjunction is

• a Quillen adjunction (F ⊣G ) in which

• the left Quillen functor F : C→D is strong symmetric monoidal, and

• the map of units F (Q IC)→ F (IC)∼= ID is a weak equivalence.

A strong symmetric monoidal Quillen equivalence is the same thing, except that (LF ⊣
RG ) is a Quillen equivalence, i.e. the derived functors also give an equivalence on the
homotopy category. See also exercise 26 for a weaker notion.

To check the first two conditions, we need to check that F preserves cofibrations and
acyclic cofibrations, and preserves tensors and the units up to isomorphism:

F (C )⊆C , F (W ∩C )⊆W ∩C , F (X )⊗D F (Y )∼= F (X ⊗C Y ), F (IC)∼= ID.

2The following section checks the important fact that SpΣ and SpO give the same symmetric monoidal
structure, up to isomorphism.
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Also, the third condition on the map F (Q IC) → F (IC) ∼= ID is automatically true if IC is
cofibrant.

Example 6.3.9. The following adjoint pairs are strong symmetric monoidal Quillen ad-
junctions:

• The disjoint basepoint (−)+ : Top→ Top∗ and its right adjoint the forgetful functor
U : Top→ Top∗.

• Suspension spectrumΣ∞ : Top∗→ SpΣ and its right adjoint the evaluation functor
ev0 : SpΣ→ Top∗.

• Prolongation P O
Σ : SpΣ→ SpO and its right adjoint the forgetful functor U O

Σ : SpO →
SpΣ.

These are closed under composition. So for instance, suspension with a disjoint base-
point Σ∞+ is also a symmetric monoidal left Quillen functor. We summarize with the
following diagram of strong symmetric monoidal Quillen left adjoints:

Top
(−)+ // Top∗

Σ∞ // SpΣ
P O
Σ

∼
// SpO . (6.3.10)

Remark 6.3.11. As in Remark 4.1.28, any time F : C→D is a strong symmetric monoidal
functor, we can think of D as a “module” or “algebra” over C. So unbased spaces act on
the category of based spaces by

X ·Y := X+ ∧Y , X ∈ Top, Y ∈ Top∗,

based spaces act on symmetric or orthogonal spectra by

X ·Y := X ∧Y ∼= (Σ∞X )∧Y , X ∈ Top∗, Y ∈ Sp,

and so on. In the diagram (6.3.10), every category “acts” in this way on every category to
its right.

If (F ⊣G ) is a strong symmetric monoidal Quillen adjunction, it follows from Section 4.3,
exercise 12 that the right Quillen functor G : D→ C is lax symmetric monoidal. We also
get:

Lemma 6.3.12. The left-derived functor LF : Ho C→ Ho D is strong monoidal, and the
right-derived functor RG : Ho D→Ho C is lax monoidal.

The proof is left to exercise 25. As a consequence of Proposition 4.1.23, we also get

Corollary 6.3.13. F and G both preserve monoid objects, andLF andRG preserve monoid
objects in the homotopy category.

We already observed this in Lemma 6.2.28, where we concluded that the forgetful and
prolongation functors between SpΣ and SpO preserve ring spectra.
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6.4 Other symmetric monoidal models of spectra

We spent this chapter focusing on symmetric and orthogonal spectra, but there are other
important models of spectra that also have a smash product. We develop a few of them
in this section.

6.4.1 The positive stable model structure

Our first example is not really a new example, because it’s just symmetric spectra again.
However, the model structure is different.

Definition 6.4.1. A positive cofibration in SpΣ is a retract of a relative cell complex, in
which all of the cells F Σi (S

n−1→ D n )+ that appear have i > 0. There is no restriction on
n .

In other words, we can attach cells of any stable dimension, but we can only attach them
at spectrum level 1 and above. A positive cofibration in SpO is defined the same way.

Theorem 6.4.2 (Mandell-May-Schwede-Shipley). The category of symmetric spectra SpΣ

has a positive stable model structure in which

• the cofibrations are the positive cofibrations,

• the weak equivalences are the stable equivalences, and

• the fibrations are the maps X → Y such that X i → Yi is a Serre fibration, and the
squares

X i
//

pi

��

Ω j X i+ j

Ω j pi+ j
��

Yi
// Ω j Yi+ j

are homotopy pullbacks, for all positive values of i .

The category of orthogonal spectra SpO has a positive stable model structure with the same
description.

The proof is the same as the proof of Theorem 6.1.28 and its earlier variant Theorem 5.2.11,
only we change the sets of maps I and J from Definition 5.6.1 and Definition 5.6.3 to only
use positive values of i :

I + = { Fi S n−1
+ −→ Fi D n

+ : n ≥ 0, i > 0 },
J + = { Fi (D

n ×{0})+ −→ Fi (D
n × I )+ : n ≥ 0, i > 0 }

∪ { ki , j □
�

S n−1
+ −→D n

+

�

: j , n ≥ 0, i > 0 }.
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A fibrant object in this model structure is a positiveΩ-spectrum: it is a spectrum X such
that the maps Xn →ΩXn+1 are all weak equivalences for n ≥ 1.

Lemma 6.4.3. The identity functor of SpΣ gives Quillen equivalence between the positive
stable model structure and the stable model structure.

Proof. This can be checked directly from the definitions of the two model structures in
Theorems 6.1.28 and 6.4.2. The identity is left Quillen when going from the positive one
to the ordinary one, and right Quillen when going from the ordinary one to the positive
one.

We let SpΣ+ denote the category of symmetric spectra with the positive stable model
structure. So it is the same category as SpΣ, but the model structure is different.

Lemma 6.4.4. SpΣ+ is a symmetric monoidal model category. The identity functor SpΣ+→
SpΣ is a strong symmetric monoidal left Quillen adjoint.

Proof. This is proven just as in Proposition 6.3.4, only the variables d , e , and i in that
proof all have to be positive.

To summarize, the diagram (6.3.10) can be expanded to the following diagram of strong
symmetric monoidal Quillen left adjoints:

Top
(−)+ // Top∗

Σ∞ // SpΣ
P O
Σ

∼
// SpO

SpΣ+

id ∼

OO

P O
Σ

∼
// SpO

+ .

id ∼

OO
(6.4.5)

Remark 6.4.6. The suspension spectrum functor to the positive stable model structure,
Σ∞ : Top∗→ SpΣ+, is not left Quillen!

6.4.2 EKMM spectra

In the early 1990s, Hovey, Shipley, and Smith developed the theory of symmetric spectra,
providing a solution to the problem of giving the category of spectra a well-behaved
smash product. At about the same time, a second group of authors developed in parallel
an entirely different category of spectra that has a smash product. We call it the category
of EKMM spectra after its creators.3

3Michael Cole also provided significant simplifications to the theory, see [EKMM97] for more details.
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Theorem 6.4.7 (Elmendorff, Kriz, Mandell, and May). There is a categoryM , whose ob-
jects we call EKMM spectra, with the following properties.

• M is a closed symmetric monoidal category, whose product we call the smash
product ∧ and whose unit is the sphere spectrum S.

• M is also a model category, whose weak equivalences we call the stable equiva-
lences.

• Every object inM is fibrant. The sphere spectrum S fails to be cofibrant.

• The smash product ∧ is a Quillen tensor, and the map QS∧Q X → S∧Q X is always
a stable equivalence. Therefore,M is a symmetric monoidal model category.

• There is a strong symmetric monoidal Quillen equivalence (N,N#) between posi-
tive orthogonal spectra SpO

+ andM .

• The left adjoint N: SpO →M preserves all stable equivalences between cofibrant
orthogonal spectra, not just the ones that are positive cofibrant. However, if there
are any cells at spectrum level 0, they don’t go to cofibrant objects ofM .

We don’t give the definition of EKMM spectra in this book. We simply remark that the
definition is more complicated than that of symmetric or orthogonal spectra, so if you
want to get your hands dirty and work with a definition directly, diagram spectra are usu-
ally the way to go. The main advantage of EKMM spectra is that every object is fibrant.
This is very useful sometimes.

You can work effectively with EKMM spectra by using Theorem 6.4.7 as a black box. For
instance, since (N,N#) is a Quillen equivalence, the homotopy category HoM is equiv-
alent to the stable homotopy category Ho Sp. SinceM is a symmetric monoidal cate-
gory, we can define EKMM ring spectra just as before. And since the Quillen equivalence
(N,N#) is strong symmetric monoidal, EKMM ring spectra up to equivalence are the same
thing as symmetric or orthogonal ring spectra up to equivalence.

We define the EKMM suspension spectrum of a based space A to be NΣ∞A. This is
usually not cofibrant, even if A is a cell complex. One might find it odd that the sphere
is not cofibrant, but this is actually impossible:

Theorem 6.4.8. There does not exist a symmetric monoidal model category of spectra Sp
with the following properties:

• The homotopy category Ho Sp is equivalent to the classical stable homotopy cat-
egory, as a symmetric monoidal category.

• The unit object of Sp is both cofibrant and fibrant.
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Proof sketch. If there were such a category, the space of maps from the unit object to
itself would be equivalent to QS 0 = Ω∞S, and would also be a commutative monoid.
Any commutative monoid in (Top∗,×,∗) is equivalent to a product of Eilenberg-Maclane
spaces, but QS 0 is not equivalent to such a product, so we have a contradiction.

Remark 6.4.9. This is a weaker form of a theorem of Gaunce Lewis. Lewis’s result does
not assume that Ho Sp is equivalent to the classical stable homotopy category: it is enough
to ask for a strong symmetric monoidal adjunction (Σ∞,Ω∞)between Top∗ and Sp, such
that Ω∞Σ∞X has the homotopy type we expect. See [Lew91].

Remark 6.4.10. The category of symmetric spectra gets around this theorem by making
the sphere spectrum S cofibrant but not fibrant. The category of EKMM spectra gets
around this theorem by making the sphere spectrum S fibrant but not cofibrant. It is
impossible to do both.

To summarize, the diagram (6.4.5) can be further expanded to the following diagram of
strong symmetric monoidal Quillen left adjoints:

Top
(−)+ // Top∗

Σ∞ // SpΣ
P O
Σ

∼
// SpO

SpΣ+

id ∼

OO

P O
Σ

∼
// SpO

+

id ∼

OO

N
∼

//M .

(6.4.11)

6.4.3 Spectra as functors

Another important perspective on spectra is that they are equivalent to functors from
spaces to spaces with certain properties.

Definition 6.4.12. Let F : Top∗→ Top∗ be a functor. We say F is

• a homotopy functor if every weak equivalence A
∼−→ B is sent to a weak equiva-

lence F (A)
∼−→ F (B ),

• excisive if for each homotopy pushout square

A

f
��

g
// B

h
��

C
k
// D ,
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applying F gives a homotopy pullback square:

F (A)

F ( f )
��

F (g )
// F (B )

F (h )
��

F (C )
F (k )
// F (D ),

• reduced if F (∗) is contractible, and

• finitary if for any CW complex X and its finite subcomplexes Xα ⊆ X the canonical
map

hocolim
α

F (Xα) // F (X )

is an equivalence.

A finitary homotopy functor is determined up to equivalence by its behavior on finite
CW complexes, so for simplicity, we restrict the domain of F to the category of finite
based CW complexes CWfin

∗ , and drop the finitary assumption.

We let F denote the category whose objects are homotopy functors F : CWfin
∗ → Top∗,

and whose morphisms are natural transformations. LetF re ⊆F be the full subcategory
of reduced excisive homotopy functors.

Example 6.4.13. If E ∈ SpN is any sequential spectrum, the functor of finite based CW
complexes A ∈CWfin

∗ given by
F (A) =Ω∞(A ∧E )

is excisive, and therefore F ∈F re. See exercise 27.

In fact, we can show that every reduced excisive functor is of this form. To go backwards,
given F ∈F re, we define an Ω-spectrum E by

En = F (S n ).

We have the homotopy pullback square

F (S n )

��

// F (D n+1)

��

F (D n+1) // F (S n+1),

where F (D n+1) is contractible. Therefore the homotopy pullback is equivalent to the
based loopspace ΩEn+1. Since this is a homotopy pullback square, we therefore get an
equivalence En

∼−→ΩEn+1. This makes E into an Ω-spectrum.



6.4. OTHER SYMMETRIC MONOIDAL MODELS OF SPECTRA 327

Theorem 6.4.14 (Goodwillie). These two operations give an equivalence of homotopy cat-
egories

HoF re ≃Ho SpN.

In other words, reduced excisive functors are equivalent to spectra.

It is easier to describe this equivalence if we give the functors a little more structure.

Definition 6.4.15. A functor F : CWfin
∗ → Top∗ is enriched in spaces, or topological, if

for every pair of spaces A, B the map

Map∗(A, B ) F //Map∗(F (A), F (B ))

induced by F is continuous.4 A map of enriched functors is the same as a map of under-
lying functors. See exercise 28.

We let E denote the category of enriched functors on CW complexes, and E re ⊆E the full
subcategory of reduced excisive enriched functors.

Every enriched functor has assembly maps

A ∧ F (B ) // F (A ∧B ) (6.4.16)

for all based CW complexes A and B , defined by sending each a ∈ A to the map F (B )→
F (A ∧ B ) that is F applied to the inclusion {a }× B → A ∧ B . If F is enriched then these
assembly maps are continuous – this is left to exercise 29.

Lemma 6.4.17. Every enriched functor is a homotopy functor.

Proof. The key observation is a homotopy of maps A → B is the same thing as a map
I+→Map∗(A, B ). Since F is enriched, this becomes a homotopy of maps F (A)→ F (B ). It
follows from this observation that F sends homotopy equivalences to homotopy equiva-
lences. Since the domain is restricted to CW complexes, this means that F is a homotopy
functor.

Lemma 6.4.18. Every homotopy functor is equivalent to an enriched functor.

The proof uses simplicial sets and is deferred to ??, exercise ??.

Corollary 6.4.19. The inclusions E ⊆ F and E re ⊆ F re give equivalences of homotopy
categories.

4Notice that this is a condition on F , not extra data, though in general giving a functor an enrichment
requires extra data. We get away with murder here because the forgetful functor Top→ Set is faithful.
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We therefore have
HoE re ≃HoF re ≃Ho Sp.

This model of spectra can also be made symmetric monoidal. We don’t give the details,
but the rough idea is to define the smash product of two enriched functors F ∧G by
imitating Definition 6.2.17, using the functor ∧: CWfin

∗ ×CWfin
∗ →CWfin

∗ in the place of⨿.
The resulting notion of a ring spectrum is called a functor with smash product (FSP):

Definition 6.4.20. A functor with smash product (FSP) is an enriched functor F : CWfin
∗ →

Top∗ with maps
S n −→ F (S n ), F (A)∧ F (B )−→ F (A ∧B )

that are associative and unital in the sense given in [MMSS01, 22.5].

Goodwillie’s theorem generalizes to say that these functors with smash product are equiv-
alent to orthogonal ring spectra, and therefore to all other notions of ring spectra. The
equivalence is simple: just evaluate F on spheres, and notice that the resulting spaces
are an orthogonal ring spectrum in a natural way.
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6.5 Exercises

1. Given a symmetric spectrum E , define the E -homology and E -cohomology of an-
other symmetric spectrum X by:

En (X ) = [Σ
nS, X ∧L E ]s =πn (X ∧L E )

E n (X ) = [Σ−n X , E ]s =π−n (RF (X , E )).

Explain what the Eilenberg-Steenrod axioms should be in this setting, and verify
that they hold for these theories.

Note that the L decoration on the smash product can be removed if E and X are
cofibrant, and the R decoration on F can be removed if X is cofibrant and E is
fibrant.

By exercise 20, these definitions of homology and cohomology agree with the ear-
lier ones from Definition 2.6.36, Example 3.2.16, and Example 3.2.21.

2. Suppose that E is a symmetric ring spectrum. Show that the cohomology of any
space X inherits a “cup product” by taking any two maps in the stable homotopy
category

Σ−m X
f
// E ,Σ−n X

g
// E

to the composite

Σ−(m+n )X ∆ // Σ−(m+n )(X ∧X )
f ∧g
// E ∧E

µ
// E .

3. Prove Lemma 6.1.8 and Lemma 6.1.10.

4. In this exercise we give the inverse to the shift functor sh1 : SpΣ→ SpΣ from Defini-
tion 6.1.21. Recall that (sh1 X )n = X1+n , withΣn acting as the subgroup 1×Σn ≤Σn+1

that permutes only the last n letters.

(a) Construct a symmetric spectrum by the rule

(sh−1 X )n = (Σn )+ ∧Σn−1
Xn−1,

with bonding maps coming from those of X .

(b) Prove that this defines the left adjoint to sh1.

(c) Argue that both of these functors preserve level equivalences, and that we get
an adjunction in the level homotopy category

[sh−1 X , Z ]ℓ ∼= [X , sh1 Z ]ℓ.
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(d) Conclude that sh−1 preserves stable equivalences.

5. Generalize exercise 4 to orthogonal spectra. To prove that

O (n )+ ∧O (n−1) A

preserves weak equivalences of spaces, you might find it helpful to observe that
O (n ) is built out of cells of the form O (n −1)×D m for varying m .

6. This exercise gives a rigorous proof that the π∗-isomorphisms in symmetric spec-
tra give the wrong homotopy category. Suppose we form the homotopy category
Ho SpΣ using theπ∗-isomorphisms (Definition 6.1.17). The forgetful functor to se-
quential spectra U Σ

N clearly preserves these weak equivalences, so we get a map of
homotopy categories

U Σ
N : Ho SpΣ −→Ho SpN.

(a) Recall from exercise 4 the shift functor sh1, and that the inverse of sh1 on se-
quential spectra is (sh−1

N X )n = Xn−1. Explain why this does not define a sym-
metric spectrum.

(b) Show that the left adjoint sh−1
Σ : SpΣ → SpΣ to sh1 from exercise 4 is not π∗-

isomorphic to sh−1
N .

(c) Observe that sh1 commutes with the forgetful functor, and conclude using
Lemma 3.4.13 that we have a square of functors of homotopy categories

Ho SpΣ

U Σ
N
��

sh1
Σ // Ho SpΣ

U Σ
N
��

Ho SpN
sh1
N

// Ho SpN

that commutes up to isomorphism.

Now, assume that U Σ
N gives an equivalence of homotopy categories. This implies

that the left adjoints agree up to isomorphism as well:

Ho SpΣ

U Σ
N ∼
��

oo
sh−1
Σ Ho SpΣ

∼ U Σ
N
��

Ho SpN oo
sh−1
N

Ho SpN

But this contradicts part (c), so U Σ
N cannot be an equivalence of homotopy cate-

gories Ho SpΣ ≃ Ho SpN. This proves that the π∗-isomorphisms are the “wrong”
class of weak equivalences to take in SpΣ.
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7. What happens to the argument in exercise 6 in the setting of orthogonal spectra?
Which parts change, and how do we not get a contradiction?

8. Prove that the map λ∗ in Definition 6.1.21 would fail to be a map of symmetric
spectra if we did not include the permutation τn ,1 in its definition.

9. Define “unitary spectra.” Show that every orthogonal spectrum gives a unitary
spectrum using the inclusion of groups U (n )→O (2n ).

10. Suppose (F ⊣G ) is a Quillen adjunction, the derived unit map

η: X → (RG )(LF )X

is a weak equivalence, and RG reflects weak equivalences, in the sense that X →
Y is a weak equivalence iff RG X → RG Y is a weak equivalence. Prove that the
derived counit map

ε: (LF )(RG )Y → Y

is also a weak equivalence, and therefore (F ⊣G ) is a Quillen equivalence.

(Hint: one of the triangle identities tells you that the composite

(RG )Y
η◦id
// (RG )(LF )(RG )Y id◦ε // (RG )Y

is equal to the identity.)

11. Check directly that F (S, X ) ∼= X , where F is the function spectrum from Defini-
tion 6.2.12.

12. (a) Generalizing exercise 11, check that F (F1S 0, X )∼= sh1 X , where the shift func-
tor sh1 is defined in exercise 4.

(b) Use this to conclude that F (Fp S 0, X )∼= shp X , where shn is defined by iterating
sh1. More concretely, (shp X )n = Xp+n , with Σn acting through the permuta-
tions on (p +n ) letters that only permute the last n letters.

(c) Deduce formally from this that for any based space K ,

F (Fp K , X )∼= F (K , shp X )∼= shp F (K , X )

where F (K ,−) denotes cotensor spectrum, and also

Fp K ∧X ∼= K ∧ sh−p X

where sh−p = (sh−1)◦p is the p -fold iterate of the functor sh−1 from exercise 4.

(d) Conclude using exercise 4 that if K is a cell complex, smashing with the free
spectrum Fp K ∧ (−) preserves all stable equivalences of spectra.
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13. Prove that the smash product X ∧Y of symmetric or orthogonal spectra preserves
stable equivalences when X is cofibrant and Y is arbitrary, generalizing Corol-
lary 6.3.5.

(You’ll need to do exercises 4 and 12 first, which show that X ∧(−) preserves equiv-
alences if X is a free spectrum on a based cell complex K . Then you can use Theo-
rem 6.1.26 to work your way up from this to any cofibrant spectrum X . Finally, you
can use Corollary 6.3.5 to show that equivalences in the X variable are preserved
as well.)

14. Use the argument of exercise 13 to show that the function spectrum F (X , Y ) pre-
serves equivalences if X is a finite cell spectrum and Y is arbitrary. (That is, if X is
cofibrant but only has finitely many cells.)

What goes wrong if X has infinitely many cells? (You might want to recall Sec-
tion 2.7, exercise 25.)

15. Check that the functor ⨿: SΣ ∧SΣ→ SΣ defined in Definition 6.2.15 respects com-
position and identity maps, so that it is in fact a functor.

16. Generalize ⨿ to a functor ⊕: SO ∧ SO → SO , where SO = J is the category from
Definition 6.1.9. You should be taking direct sum of vector spaces and the direct
sum of their orthogonal complements. The isomorphisms in Section 2.7, exercise
5 will probably be helpful.

17. Show that the sum functor ⨿ from Definition 6.2.15 makes SΣ into a symmetric
monoidal category. Similarly the functor ⊕ from exercise 16 makes SO into a sym-
metric monoidal category.

18. Suppose (I,+, 0) and (C,⊗, I ) are symmetric monoidal categories, I is small, C has
all colimits, and⊗ preserves colimits in each slot. The Day convolution is a tensor
product defined on the category of diagrams

⊠: CI×CI→CI

in the following way. Given two diagrams X , Y : I→ C, the tensor products X (i )⊗
Y ( j ) form a diagram

X ⊗Y : I× I→C.

We define the Day convolution to be the left Kan extension of this diagram along
the sum functor +:

X ⊠Y = (+)!(X ⊗Y ): I→C

The smash product of diagram spectra from Definition 6.2.17 is a variant of this
construction where I is enriched in based spaces and C has a tensor product with
based spaces, but for the purposes of this exercise, let I and C be ordinary cate-
gories, enriched only in sets.
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• Prove that there is an isomorphism (X ⊠Y )⊠Z ∼= X ⊠ (Y ⊠Z ). You might find
Section 5.8, exercise 17 helpful.

• Prove that there is an isomorphism X ⊠Y ∼= Y ⊠X .

• Identify the unit diagram U , and prove that there is an isomorphism X ⊠U ∼=
X .

Together with the coherences between these isomorphisms, this makes CI into
a symmetric monoidal category. This gives a more formal way of proving Theo-
rem 6.2.8.

19. Recall from Section 5.8, exercise 31 that a bispectrum is a spectrum that has two
directions. Formally, it is a diagram over the smash product category S∧S, where
S is the sphere category S(m , n ) = S n−m from Definition 5.3.31.

(a) Define a symmetric bispectrum to be a diagram on SΣ∧SΣ. Explain how these
arise in the definition of the smash product in Definition 6.2.17.

(b) Taking on faith that bispectra have a stable model structure in which the cofi-
brations are the relative cellular bispectra, and that suspension bispectrum
TopSΣ

∗ → TopSΣ∧SΣ

∗ is a Quillen equivalence, prove that the left Kan extension
(⨿)! : TopSΣ∧SΣ

∗ → TopSΣ

∗ is also a Quillen equivalence.

20. Using exercise 19, show that the homotopy groups of the smash product of or-
thogonal spectra X ∧Y agrees with the homotopy groups of the bispectrum X ∧Y ,
which is the colimit of the grid of groups from Definition 2.3.23:

...
...

... colim =πk (X ∧Y )

πk+3(X0 ∧Y3)

+

OO

− // πk+4(X1 ∧Y3)

+

OO

− // πk+5(X2 ∧Y3)

+

OO

− // · · ·

πk+2(X0 ∧Y2)

+

OO

+ // πk+3(X1 ∧Y2)

+

OO

+ // πk+4(X2 ∧Y2)

+

OO

+ // · · ·

πk+1(X0 ∧Y1)

+

OO

− // πk+2(X1 ∧Y1)

+

OO

− // πk+3(X2 ∧Y1)

+

OO

− // · · ·

πk (X0 ∧Y0)

+

OO

+ // πk+1(X1 ∧Y0)

+

OO

+ // πk+2(X2 ∧Y0)

+

OO

+ // · · ·

Of course, the same conclusion follows in symmetric spectra as well if we use the
true homotopy groups from Definition 6.1.35.
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21. Prove that the most “obvious” definition of a functor S∧S→ S, does not in fact de-
fine a functor. This is one way of explaining why we couldn’t define a good smash
product on sequential spectra.

22. Finish the proof of Theorem 6.2.22 using the following ideas. We say that a map of
spectra X → Y is levelwise surjective if each map Xn → Yn is surjective.

(a) Show that if X → Y and W → Z are levelwise surjective then so is their smash
product X ∧W → Y ∧Z .

(b) If f : X → Y is levelwise surjective and we have a commuting square of the
form

X id //

f
��

X

f
��

Y η
// Y ,

explain why we must have η= id.

(c) Prove that for any spectrum X , the canonical map
∨

n≥0

Fn Xn −→ X

is levelwise surjective.

(d) Use these ideas to prove that the natural transformationη in the proof of The-
orem 6.2.22 must be the identity on any n-tuple of spectra.

23. Fix a symmetric or orthogonal ring spectrum R and let R -Mod be the category of
R -module spectra from Definition 6.2.32.

(a) Show that S-Mod∼= Sp, in other words S-modules are the same thing as spec-
tra.

(b) Show that the forgetful functor R -Mod→ Sp has as its left adjoint the functor
R ∧− that takes the smash product with R , and has R act by

R ∧R ∧X
µ∧id

// R ∧X .

24. Fix a symmetric or orthogonal ring spectrum R . Prove that the category R -Mod of
R -module spectra from Definition 6.2.32 has a model stucture in which the weak
equivalences and fibrations are determined by forgetting the R -action. The cofi-
brations and acyclic cofibrations are generated by smashing R with the maps from
Definition 5.6.1 and Definition 5.6.3:

R ∧ I = { R ∧ f : f ∈ I }= { R ∧ Fi S n−1
+ −→R ∧ Fi D n

+ : n , i ≥ 0 },
R ∧ J = { R ∧ f : f ∈ J }= { R ∧ Fi (D

n ×{0})+ −→R ∧ Fi (D
n × I )+ : n , i ≥ 0 }

∪ { R ∧ki , j □
�

S n−1
+ −→D n

+

�

: i , j , n ≥ 0 }.
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(Essentially, the proofs in Section 5.6 carry through here as well. You do need ex-
ercise 13 though, because R might not be cofibrant.)

25. Prove Lemma 6.3.12. You might want to use ideas from the proof of Lemma 4.1.7.

26. Define a symmetric monoidal Quillen adjunction to be

• a Quillen adjunction (F ⊣G ) in which

• the left Quillen functor F : C→D is oplax symmetric monoidal, meaning the
maps go in the direction

F (X ⊗C Y )−→ F (X )⊗D F (Y ), ID −→ F (IC),

• the map of units F (Q IC)→ F (IC)→ ID is a weak equivalence, and

• for cofibrant X and Y , the map

F (X ⊗C Y )−→ F (X )⊗D F (Y )

is a weak equivalence.

Prove Lemma 6.3.12 under these weaker assumptions. In other words, the left-
derived functor LF : Ho C→Ho D is strong monoidal, and the right-derived func-
tor RG : Ho D→Ho C is lax monoidal.

27. Prove that the functor
F (A) =Ω∞(A ∧E )

of Example 6.4.13 is excisive. Here E is a sequential spectrum and A is a based
finite CW complex.

28. Suppose that F and G are enriched functors and η: F → G is a natural transfor-
mation on the underlying functors. Explain why this gives a commuting square of
topological spaces, not just sets,

Map∗(A, B ) F //

G
��

Map∗(F (A), F (B ))

η◦−
��

Map∗(G (A),G (B ))
−◦η
//Map∗(F (A),G (B )).

This is called the enriched naturality condition. If this weren’t automatically true,
we would have to assume it as a condition on η in order to get a good theory of
enriched functors.

29. If F is an enriched functor, prove that the assembly map A ∧ F (B ) → F (A ∧ B )
described in (6.4.16) is continuous.



336 CHAPTER 6. CONSTRUCTION OF THE SMASH PRODUCT



Chapter 7

More to come!

This is a draft of what is planned to be an open-access textbook. The list at the end of
Section 0.2 indicates the plan for the remaining chapters. One of them is about the bar
construction. Here is a picture!

Feedback on this draft is warmly welcomed.

Cary Malkiewich
Department of Mathematics
Binghamton University
PO Box 6000
Binghamton, New York 13902-6000
malkiewich@math.binghamton.edu
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