Problem 1. Let $I=n \mathbb{Z}$ and $J=m \mathbb{Z}$ be ideals of \mathbb{Z}.
a) Prove that $I+J=\operatorname{gcd}(m, n) \mathbb{Z}$.
b) Prove that $I \cap J=[m, n] \mathbb{Z}$, where $[m, n]$ is the least common multiple of m and n.
c) Prove that $I J=(m n) \mathbb{Z}$.
d) Prove that $I \subseteq J$ iff $m \mid n$.

Solution: a) Since $\operatorname{gcd}(m, n) \mid n$, any multiple of n is also a multiple of $\operatorname{gcd}(m, n)$. Thus $I \subseteq \operatorname{gcd}(m, n) \mathbb{Z}$. Similarly, $J \subseteq \operatorname{gcd}(m, n) \mathbb{Z}$. It follows that $I+J \subseteq \operatorname{gcd}(m, n) \mathbb{Z}$ (since $\operatorname{gcd}(m, n) \mathbb{Z}$ is closed under addition).

To get the opposite inclusion recall that $\operatorname{gcd}(m, n)=a n+b m$ for some integers a, b. Since $a n \in I$ and $b m \in J$, we see that $\operatorname{gcd}(m, n) \in I+J$ and therfore $\operatorname{gcd}(m, n) \mathbb{Z} \subseteq I+J$ (since $I+J$ is closed under multiplication by any integer).

We proved that $I+J \subseteq \operatorname{gcd}(m, n) \mathbb{Z}$ and $\operatorname{gcd}(m, n) \mathbb{Z} \subseteq I+J$. It follows that $I+J=\operatorname{gcd}(m, n) \mathbb{Z}$
b) Since $n \mid[m, n]$, we have $[m, n] \in I$ and consequently $[m, n] \mathbb{Z} \subseteq I$. Similarly, $[m, n] \mathbb{Z} \subseteq J$. It follows that $[m, n] \mathbb{Z} \subseteq I \cap J$.

On the other hand, if $k \in I \cap J$ then $n \mid k$ and $m \mid k$ and therefore $[m, n] \mid k$ so $k \in[m, n] \mathbb{Z}$. This proves that $I \cap J \subseteq[m, n] \mathbb{Z}$.

We proved that $[m, n] \mathbb{Z} \subseteq I \cap J$ and $I \cap J \subseteq[m, n] \mathbb{Z}$ so we have $I \cap J=[m, n] \mathbb{Z}$.
c) A product of a multiple of n and a multiple of m is a multiple of $m n$ and the sum of any number of multiples of $m n$ is a multiple of $m n$. Since every element in $I J$ is a sum of some number of products of an element from I by an element from J, we see that each element in $I J$ is a multiple of $m n$. Conversely, any multiple of $m n$ is a product of $n \in I$ and a multiple of m which is in J, hence it is in $I J$. This proves that $I J=(m n) \mathbb{Z}$.

Remark It is easy to see that in any commutative ring R we have $(r R)(s R)=(r s) R$.
d) Suppose that $m \mid n$. Then $n \in m \mathbb{Z}$ and therefore $I=n \mathbb{Z} \subseteq m \mathbb{Z}=J$. Conversely, if $I \subseteq J$ then $n \in J$ (since $n \in I$), so $m \mid n$.

Problem 2. Let R be a ring. Two ideals I, J of R are called coprime if $I+J=R$. Suppose that I and J are coprime.
a) Prove that for any $r, t \in R$ there is $s \in R$ such that $s+I=r+I$ and $s+J=t+J$. Hint: Write $r=i+j, t=i_{1}+j_{1}$ for some $i, i_{1} \in I$ and $j, j_{1} \in J$ and consider $s=j+i_{1}$.
b) Let $f_{I}: R \longrightarrow R / I$ and $f_{J}: R \longrightarrow R / J$ be the cannonical homomorphisms. Define $f: R \longrightarrow(R / I) \oplus(R / J)$ by $f(r)=\left(f_{I}(r), f_{J}(r)\right)$. Use a) to prove that f is a surjective ring homomorphism. What is ker f ?
c) Prove that $R /(I \cap J)$ is isomorphic to $(R / I) \oplus(R / J)$. Conclude that $\mathbb{Z} /(m n) \mathbb{Z}$ is isomorphic to $\mathbb{Z} / m \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ for any relatively prime integers m, n (compare this to the Chinese remainder theorem and the map r of Lemma 1.6.3 in Lauritzen's book.
d) Let R be unital and commutative. Prove that $I \cap J=I J$. (Hint: Write $1=i+j$ for some $i \in I, j \in J$ and use the fact that $x=1 \cdot x$ for any x.) Conclude that $[m, n]=m n$ for relatively prime positive integers m, n.

Solution: a) Since $R=I+J$ any element of R can be written as $i+j$ for some $i \in I$ and $j \in J$. In particular, $r=i+j, t=i_{1}+j_{1}$ for some $i, i_{1} \in I$ and $j, j_{1} \in J$. Let $s=j+i_{1}$. Since $s-r=i_{1}-i \in I$, we have $s+I=r+I$. Similarly, since $s-t=j-j_{1} \in J$, we have $s+J=t+J$.
b) Note first the following general fact. If R, S, T are rings and $g: R \longrightarrow S$, $h: R \longrightarrow T$ are homomorphisms then the map $f: R \longrightarrow S \oplus T$ given by $f(r)=$ $(g(r), h(r))$ is a ring homomorphism. In fact,
$f(r+t)=(g(r+t), h(r+t))=(g(r)+g(t), h(r)+h(t))=(g(r), h(r))+(g(t), h(t))=f(r)+f(t)$,
and
$f(r \cdot t)=(g(r \cdot t), h(r \cdot t))=(g(r) \cdot g(t), h(r) \cdot h(t))=(g(r), h(r)) \cdot(g(t), h(t))=f(r) \cdot f(t)$.
Furthermore, $f(r)=0=(0,0)$ iff $g(r)=0$ and $h(r)=0$. This means that $\operatorname{ker} f=\operatorname{ker} g \cap \operatorname{ker} h$.

This proves that the f defined in the problem is a homomorphism and $\operatorname{ker} f=$ $I \cap J$. It remains to prove that f is surjective (this is the main meassage of the
problem). By a), given $(r+I, t+J) \in(R / I) \oplus(R / J)$ there is $s \in R$ such that $(r+I, t+J)=(s+I, s+J)=\left(f_{I}(s), f_{J}(s)\right)=f(s)$. This proves that f is surjective.
c) According to b), the map f is a surjective homomorphism from R to $(R / I) \oplus(R / J)$ and ker $f=I \cap J$. By the First Homomorphism Theorem, the rings $R /(I \cap J)$ and $(R / I) \oplus(R / J)$ are isomorphic. The actual isomorphism g is given by $g(r+(I \cap J))=$ $(r+I, r+J)$.

Let us apply this to the case when $R=\mathbb{Z}, I=n \mathbb{Z}, J=m \mathbb{Z}$ for some ralatively prime integers m, n. By a) of the previous problem, we have $I+J=\operatorname{gcd}(m, n) \mathbb{Z}=$ $\mathbb{Z}=R$, so I, J are coprime. Since $\operatorname{gcd}(m, n)=1$, we have $[m, n]=m n$. It follows from b) of the previous problem that $I \cap J=m n \mathbb{Z}$. Thus $\mathbb{Z} /(m n) \mathbb{Z}$ is isomorphic to $\mathbb{Z} / m \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$. (Note that the map g in this case coincides with the r of Lemma 1.6.3 in Lauritzen's book, so we can consider this result as a special case of Chinese remainder theorem.)
d) It is always true that $I J \subseteq I \cap J$. Thus it suffices to show that if I, J are coprime and R is commutative and unital then $I \cap J \subseteq I J$. Let $r \in I \cap J$. Since $R=I+J$, we have $1=i+j$ for some $i \in I$ and $j \in J$. Thus

$$
r=r \cdot 1=r(i+j)=r i+r j=i r+r j \in I J .
$$

In the special case, when $R=\mathbb{Z}, I=n \mathbb{Z}, J=m \mathbb{Z}$ for some ralatively prime integers m, n (we have already seen that I, J are coprime) we get by b) and c) of the previous problem that $[m, n] \mathbb{Z}=I \cap J=I J=m n \mathbb{Z}$. Since $m n$ and $[m, n]$ are positive, we get that $m n=[m, n]$.

