Problem 1. Let $I = n\mathbb{Z}$ and $J = m\mathbb{Z}$ be ideals of \mathbb{Z} .

a) Prove that $I + J = \gcd(m, n)\mathbb{Z}$.

b) Prove that $I \cap J = [m, n]\mathbb{Z}$, where [m, n] is the least common multiple of m and n.

- c) Prove that $IJ = (mn)\mathbb{Z}$.
- d) Prove that $I \subseteq J$ iff m|n.

Solution: a) Since gcd(m, n)|n, any multiple of n is also a multiple of gcd(m, n). Thus $I \subseteq gcd(m, n)\mathbb{Z}$. Similarly, $J \subseteq gcd(m, n)\mathbb{Z}$. It follows that $I+J \subseteq gcd(m, n)\mathbb{Z}$ (since $gcd(m, n)\mathbb{Z}$ is closed under addition).

To get the opposite inclusion recall that gcd(m, n) = an + bm for some integers a, b. Since $an \in I$ and $bm \in J$, we see that $gcd(m, n) \in I + J$ and therefore $gcd(m, n)\mathbb{Z} \subseteq I + J$ (since I + J is closed under multiplication by any integer).

We proved that $I + J \subseteq \gcd(m, n)\mathbb{Z}$ and $\gcd(m, n)\mathbb{Z} \subseteq I + J$. It follows that $I + J = \gcd(m, n)\mathbb{Z}$

b) Since n|[m,n], we have $[m,n] \in I$ and consequently $[m,n]\mathbb{Z} \subseteq I$. Similarly, $[m,n]\mathbb{Z} \subseteq J$. It follows that $[m,n]\mathbb{Z} \subseteq I \cap J$.

On the other hand, if $k \in I \cap J$ then n|k and m|k and therefore [m, n]|k so $k \in [m, n]\mathbb{Z}$. This proves that $I \cap J \subseteq [m, n]\mathbb{Z}$.

We proved that $[m, n]\mathbb{Z} \subseteq I \cap J$ and $I \cap J \subseteq [m, n]\mathbb{Z}$ so we have $I \cap J = [m, n]\mathbb{Z}$.

c) A product of a multiple of n and a multiple of m is a multiple of mn and the sum of any number of multiples of mn is a multiple of mn. Since every element in IJ is a sum of some number of products of an element from I by an element from J, we see that each element in IJ is a multiple of mn. Conversely, any multiple of mn is a product of $n \in I$ and a multiple of m which is in J, hence it is in IJ. This proves that $IJ = (mn)\mathbb{Z}$.

Remark It is easy to see that in any commutative ring R we have (rR)(sR) = (rs)R.

d) Suppose that m|n. Then $n \in m\mathbb{Z}$ and therefore $I = n\mathbb{Z} \subseteq m\mathbb{Z} = J$. Conversely, if $I \subseteq J$ then $n \in J$ (since $n \in I$), so m|n.

Problem 2. Let *R* be a ring. Two ideals *I*, *J* of *R* are called **coprime** if I + J = R. Suppose that *I* and *J* are coprime.

a) Prove that for any $r, t \in R$ there is $s \in R$ such that s+I = r+I and s+J = t+J. **Hint:** Write r = i + j, $t = i_1 + j_1$ for some $i, i_1 \in I$ and $j, j_1 \in J$ and consider $s = j + i_1$.

b) Let $f_I : R \longrightarrow R/I$ and $f_J : R \longrightarrow R/J$ be the canonical homomorphisms. Define $f : R \longrightarrow (R/I) \oplus (R/J)$ by $f(r) = (f_I(r), f_J(r))$. Use a) to prove that f is a surjective ring homomorphism. What is ker f?

c) Prove that $R/(I \cap J)$ is isomorphic to $(R/I) \oplus (R/J)$. Conclude that $\mathbb{Z}/(mn)\mathbb{Z}$ is isomorphic to $\mathbb{Z}/m\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$ for any relatively prime integers m, n (compare this to the Chinese remainder theorem and the map r of Lemma 1.6.3 in Lauritzen's book.

d) Let R be unital and commutative. Prove that $I \cap J = IJ$. (**Hint:** Write 1 = i+j for some $i \in I$, $j \in J$ and use the fact that $x = 1 \cdot x$ for any x.) Conclude that [m, n] = mn for relatively prime positive integers m, n.

Solution: a) Since R = I + J any element of R can be written as i + j for some $i \in I$ and $j \in J$. In particular, r = i + j, $t = i_1 + j_1$ for some $i, i_1 \in I$ and $j, j_1 \in J$. Let $s = j + i_1$. Since $s - r = i_1 - i \in I$, we have s + I = r + I. Similarly, since $s - t = j - j_1 \in J$, we have s + J = t + J.

b) Note first the following general fact. If R, S, T are rings and $g : R \longrightarrow S$, $h : R \longrightarrow T$ are homomorphisms then the map $f : R \longrightarrow S \oplus T$ given by f(r) = (g(r), h(r)) is a ring homomorphism. In fact,

$$f(r+t) = (g(r+t), h(r+t)) = (g(r)+g(t), h(r)+h(t)) = (g(r), h(r)) + (g(t), h(t)) = f(r) + f(t) + f$$

and

$$f(r \cdot t) = (g(r \cdot t), h(r \cdot t)) = (g(r) \cdot g(t), h(r) \cdot h(t)) = (g(r), h(r)) \cdot (g(t), h(t)) = f(r) \cdot f(t) \cdot f(t) = f(r) \cdot f(t) = f(r)$$

Furthermore, f(r) = 0 = (0,0) iff g(r) = 0 and h(r) = 0. This means that $\ker f = \ker g \cap \ker h$.

This proves that the f defined in the problem is a homomorphism and ker $f = I \cap J$. It remains to prove that f is surjective (this is the main meassage of the

problem). By a), given $(r + I, t + J) \in (R/I) \oplus (R/J)$ there is $s \in R$ such that $(r+I, t+J) = (s+I, s+J) = (f_I(s), f_J(s)) = f(s)$. This proves that f is surjective.

c) According to b), the map f is a surjective homomorphism from R to $(R/I)\oplus(R/J)$ and ker $f = I \cap J$. By the First Homomorphism Theorem, the rings $R/(I \cap J)$ and $(R/I)\oplus(R/J)$ are isomorphic. The actual isomorphism g is given by $g(r+(I\cap J)) =$ (r+I, r+J).

Let us apply this to the case when $R = \mathbb{Z}$, $I = n\mathbb{Z}$, $J = m\mathbb{Z}$ for some ralatively prime integers m, n. By a) of the previous problem, we have $I + J = \text{gcd}(m, n)\mathbb{Z} = \mathbb{Z} = R$, so I, J are coprime. Since gcd(m, n) = 1, we have [m, n] = mn. It follows from b) of the previous problem that $I \cap J = mn\mathbb{Z}$. Thus $\mathbb{Z}/(mn)\mathbb{Z}$ is isomorphic to $\mathbb{Z}/m\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$. (Note that the map g in this case coincides with the r of Lemma 1.6.3 in Lauritzen's book, so we can consider this result as a special case of Chinese remainder theorem.)

d) It is always true that $IJ \subseteq I \cap J$. Thus it suffices to show that if I, J are coprime and R is commutative and unital then $I \cap J \subseteq IJ$. Let $r \in I \cap J$. Since R = I + J, we have 1 = i + j for some $i \in I$ and $j \in J$. Thus

$$r = r \cdot 1 = r(i+j) = ri+rj = ir+rj \in IJ.$$

In the special case, when $R = \mathbb{Z}$, $I = n\mathbb{Z}$, $J = m\mathbb{Z}$ for some ralatively prime integers m, n (we have already seen that I, J are coprime) we get by b) and c) of the previous problem that $[m, n]\mathbb{Z} = I \cap J = IJ = mn\mathbb{Z}$. Since mn and [m, n] are positive, we get that mn = [m, n].