
Problem 1. Let I = nZ and J = mZ be ideals of Z.

a) Prove that I + J = gcd(m, n)Z.

b) Prove that I ∩ J = [m, n]Z, where [m, n] is the least common multiple of m and

n.

c) Prove that IJ = (mn)Z.

d) Prove that I ⊆ J iff m|n.

Solution: a) Since gcd(m, n)|n, any multiple of n is also a multiple of gcd(m, n).

Thus I ⊆ gcd(m, n)Z. Similarly, J ⊆ gcd(m, n)Z. It follows that I+J ⊆ gcd(m, n)Z

(since gcd(m, n)Z is closed under addition).

To get the opposite inclusion recall that gcd(m, n) = an + bm for some integers

a, b. Since an ∈ I and bm ∈ J , we see that gcd(m, n) ∈ I + J and therfore

gcd(m, n)Z ⊆ I + J (since I + J is closed under multiplication by any integer).

We proved that I + J ⊆ gcd(m, n)Z and gcd(m, n)Z ⊆ I + J . It follows that

I + J = gcd(m, n)Z

b) Since n|[m, n], we have [m, n] ∈ I and consequently [m, n]Z ⊆ I. Similarly,

[m, n]Z ⊆ J . It follows that [m, n]Z ⊆ I ∩ J .

On the other hand, if k ∈ I ∩ J then n|k and m|k and therefore [m, n]|k so

k ∈ [m, n]Z. This proves that I ∩ J ⊆ [m, n]Z.

We proved that [m, n]Z ⊆ I ∩J and I ∩J ⊆ [m, n]Z so we have I ∩J = [m, n]Z.

c) A product of a multiple of n and a multiple of m is a multiple of mn and the sum

of any number of multiples of mn is a multiple of mn. Since every element in IJ is

a sum of some number of products of an element from I by an element from J , we

see that each element in IJ is a multiple of mn. Conversely, any multiple of mn is

a product of n ∈ I and a multiple of m which is in J , hence it is in IJ . This proves

that IJ = (mn)Z.

Remark It is easy to see that in any commutative ring R we have (rR)(sR) = (rs)R.

d) Suppose that m|n. Then n ∈ mZ and therefore I = nZ ⊆ mZ = J . Conversely,

if I ⊆ J then n ∈ J (since n ∈ I), so m|n.
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Problem 2. Let R be a ring. Two ideals I, J of R are called coprime if I +J = R.

Suppose that I and J are coprime.

a) Prove that for any r, t ∈ R there is s ∈ R such that s+I = r+I and s+J = t+J .

Hint: Write r = i + j, t = i1 + j1 for some i, i1 ∈ I and j, j1 ∈ J and consider

s = j + i1.

b) Let fI : R −→ R/I and fJ : R −→ R/J be the cannonical homomorphisms.

Define f : R −→ (R/I) ⊕ (R/J) by f(r) = (fI(r), fJ(r)). Use a) to prove that f is

a surjective ring homomorphism. What is ker f?

c) Prove that R/(I ∩J) is isomorphic to (R/I)⊕ (R/J). Conclude that Z/(mn)Z is

isomorphic to Z/mZ⊕Z/nZ for any relatively prime integers m, n (compare this to

the Chinese remainder theorem and the map r of Lemma 1.6.3 in Lauritzen’s book.

d) Let R be unital and commutative. Prove that I∩J = IJ . (Hint: Write 1 = i+j

for some i ∈ I, j ∈ J and use the fact that x = 1 · x for any x.) Conclude that

[m, n] = mn for relatively prime positive integers m, n.

Solution: a) Since R = I + J any element of R can be written as i + j for some

i ∈ I and j ∈ J . In particular, r = i + j, t = i1 + j1 for some i, i1 ∈ I and j, j1 ∈ J .

Let s = j + i1. Since s − r = i1 − i ∈ I, we have s + I = r + I. Similarly, since

s − t = j − j1 ∈ J , we have s + J = t + J .

b) Note first the following general fact. If R, S, T are rings and g : R −→ S,

h : R −→ T are homomorphisms then the map f : R −→ S ⊕ T given by f(r) =

(g(r), h(r)) is a ring homomorphism. In fact,

f(r+t) = (g(r+t), h(r+t)) = (g(r)+g(t), h(r)+h(t)) = (g(r), h(r))+(g(t), h(t)) = f(r)+f(t),

and

f(r·t) = (g(r·t), h(r·t)) = (g(r)·g(t), h(r)·h(t)) = (g(r), h(r))·(g(t), h(t)) = f(r)·f(t).

Furthermore, f(r) = 0 = (0, 0) iff g(r) = 0 and h(r) = 0. This means that

ker f = ker g ∩ ker h.

This proves that the f defined in the problem is a homomorphism and ker f =

I ∩ J . It remains to prove that f is surjective (this is the main meassage of the
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problem). By a), given (r + I, t + J) ∈ (R/I) ⊕ (R/J) there is s ∈ R such that

(r+I, t+J) = (s+I, s+J) = (fI(s), fJ(s)) = f(s). This proves that f is surjective.

c) According to b), the map f is a surjective homomorphism from R to (R/I)⊕(R/J)

and ker f = I ∩ J . By the First Homomorphism Theorem, the rings R/(I ∩ J) and

(R/I)⊕(R/J) are isomorphic. The actual isomorphism g is given by g(r+(I∩J)) =

(r + I, r + J).

Let us apply this to the case when R = Z, I = nZ, J = mZ for some ralatively

prime integers m, n. By a) of the previous problem, we have I + J = gcd(m, n)Z =

Z = R, so I, J are coprime. Since gcd(m, n) = 1, we have [m, n] = mn. It follows

from b) of the previous problem that I ∩ J = mnZ. Thus Z/(mn)Z is isomorphic

to Z/mZ⊕Z/nZ. (Note that the map g in this case coincides with the r of Lemma

1.6.3 in Lauritzen’s book, so we can consider this result as a special case of Chinese

remainder theorem.)

d) It is always true that IJ ⊆ I ∩J . Thus it suffices to show that if I, J are coprime

and R is commutative and unital then I ∩ J ⊆ IJ . Let r ∈ I ∩ J . Since R = I + J ,

we have 1 = i + j for some i ∈ I and j ∈ J . Thus

r = r · 1 = r(i + j) = ri + rj = ir + rj ∈ IJ.

In the special case, when R = Z, I = nZ, J = mZ for some ralatively prime

integers m, n (we have already seen that I, J are coprime) we get by b) and c) of

the previous problem that [m, n]Z = I ∩ J = IJ = mnZ. Since mn and [m, n] are

positive, we get that mn = [m, n].
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