Math 330 Section 6 - Spring 2024 - Homework 02

Published: Saturday, January 20, 2024 Running total: 14 points

Last submission: Friday, January 31, 2024 That is **before HW 1!**

Status - Reading Assignments:

Here is the status of the reading assignments you were previously asked to complete.

MF lecture notes:

ch.1; ch.2.1 - 2.6, 3.1 - 3.4

ch.4 - 6, ch.7.1 until before prop.7.1,

ch.8, except: Skip the proofs of prop.8.13, 8.14, 8.15, cor.8.2, thm.8.2; skip rem.8.6 ch.13.1 up to and including example 13.5,

ch.16 (Addenda to B/G): the chapters corresponding to what has been assigned from B/G.

B/G (Beck/Geoghegan) Textbook:

ch.2.1 - 2.2

B/K lecture notes:

ch.1.1 (Introduction to sets) (optional)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

Written assignments:

- The material for all assignments, including the size of a set, is covered in MF ch.2.1 (Sets and Basic Set Operations) and MF ch.2.5 (Cartesian Products).
- This set is worth ten points! (probably translates to more than 70 grade points)!
- Graded ONLY ONCE, but partial credit will be given.

Clarification:

- **a.** Correct: No matter what A stands for, it is never true that $A = \{A\}$. Not even if $A = \emptyset$ (the empty set): $\{\emptyset\}$ is a set: it is of the form $\{\ldots\}$. But $\{\emptyset\}$ contains an element (exactly one): The empty set! So $\{\emptyset\} \neq \emptyset$. By the way: It is true that $\emptyset \subseteq \{\emptyset\}$!
- **b.** Correct: No matter what A stands for, it is never true that $A \in A$. Again, not even if $A = \emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set.
- **c. CAREFUL HERE**: If I told anyone of you that it is impossible to have both $a \in U$ and $\{a\} \in U$ then I made a mistake. Matter of fact, the first assignment of this homework has an example that this is possible.

Written assignment 1:

Let $S = \{3, 5, \{3, 5\}, \{5\}\}$. True or false?

- a. $\{5\} \subseteq S$ c. $\{\{5\}\} \subseteq S$ e. $\{3\} \subseteq S$ g. $3 \subseteq S$
- **b.** $\{5\} \in S$ **d.** $\{\{5\}\} \in S$ **f.** $\{3\} \in S$ **h.** $3 \in S$

Written assignment 2:

Find the size of each of the following sets:

a.
$$A = \{x, \{x\}, y, \{x\}, \{x, y\}\}\$$
 c. $C = \{j, k, j, k, j\}$ **e.** $E = \{e^x : x \in \mathbb{R}\}$ **b.** $B = \{a, \{a\}, \{b\}\}\}$ **d.** $D = \{4q^2 : q \in \mathbb{Z}\}$ **f.** $F = \{(-1)^m : m \in \mathbb{Z}\}$

Written assignment 3:

Let
$$X = \{x, y, \{x\}, \{x, y\}\}$$
 and $Y = \{x, \{y\}\}$. True or false?

$$\mathbf{a.}\ x \in X \cap Y \qquad \mathbf{c.}\ x \in X \cup Y \qquad \mathbf{e.}\ x \in X \setminus Y \qquad \mathbf{g.}\ x \in X \Delta Y$$

b.
$$\{y\} \in X \cap Y$$
 d. $\{y\} \in X \cup Y$ **f.** $\{y\} \in X \setminus Y$ **h.** $\{y\} \in X\Delta Y$

Written assignment 4:

Let
$$X = \{x, y\}$$
 and let $Y = \{1, 2, 3\}$.

a. What is
$$X \times Y$$
? **c.** What is $card(X \times Y)$? **e.** Is $(x,3) \in X \times Y$? **g.** Is $3 \cdot x \in X \times Y$?

b. What is
$$Y \times X$$
? **d.** What is card $(Y \times X)$? **f.** Is $(x,3) \in Y \times X$? **h.** Is $2 \cdot y \in Y \times X$?

Written assignment 5:

Let
$$Y = \{3\}$$
.

- **a.** What is 2^Y ?
- **b.** What is $2^{(2^Y)}$?

Remember that you are dealing with power sets, so the answers must be sets and NOT numbers!