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Summary. In multicategory classification, standard techniques typically treat all classes equally. This treatment can be
problematic when the dataset is unbalanced in the sense that certain classes have very small class proportions compared to
others. The minority classes may be ignored or discounted during the classification process due to their small proportions.
This can be a serious problem if those minority classes are important. In this article, we study the problem of unbalanced
classification and propose new criteria to measure classification accuracy. Moreover, we propose three different weighted
learning procedures, two one-step weighted procedures, as well as one adaptive weighted procedure. We demonstrate the
advantages of the new procedures, using multicategory support vector machines, through simulated and real datasets. Our
results indicate that the proposed methodology can handle unbalanced classification problems effectively.
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1. Introduction
Classification, as a means for information extraction, is a
very commonly used statistical tool. It has been successfully
applied in many different fields such as engineering, health
science, and social science. There are numerous classifica-
tion methods proposed in the literature. Well-known ones
include the k-nearest neighbors (k-NN), linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), the
logistic regression, and the support vector machine (SVM)
among others. See Hastie, Tibshirani, and Friedman (2001)
and Duda, Hart, and Stork (2001) for a comprehensive re-
view of different classification techniques.

Despite progresses in classification, problems may still oc-
cur when the training sample or population is unbalanced,
i.e., some classes have relatively small proportions compared
to others. For example, suppose we have a three-class problem
with class proportions (0.49, 0.49, 0.02). A classifier misclassi-
fying all points in class 3 may still give 90% overall classifica-
tion accuracy. However, it is not a desirable classifier because
it cannot discriminate class 3 at all. This phenomenon is es-
pecially problematic if class 3 itself is our main interest. For
instance, in a study of a certain rare disease, one hopes to
build a classification rule to classify the disease versus normal
patients. Compared to the normal group, the disease group
sample can be very small. The measure of overall classifica-
tion accuracy may be misleading if the overall accuracy is high
whereas the accuracy for the disease group is very poor. This
calls for alternative classification criteria to build and select
classifiers.

In the literature, a lot of work has been done to deal with
unbalanced classification by adjusting the class proportions.

One approach is to undersample the classes with larger pro-
portions and the other one is to oversample the classes with
small proportions. See an extensive survey on this topic by
Chawla, Japkowicz, and Kolcz (2004). Recently, Owen (2007)
studied the asymptotic behavior of binary logistic regression,
where one class has a finite sample size and the other class’s
sample size grows to infinity. The asymptotic results help to
compute the logistic regression more efficiently for unbalanced
data.

In this research, we first discuss the reason why minor-
ity classes can be ignored by a classifier if the overall mis-
classification rate is used as the evaluation criterion. Based
on the fact that one may be more interested in the classifica-
tion performance on a certain particular class, we propose
two new criteria—the mean within group error criterion
and the mean square within group error criterion in Sec-
tion 2. To cope with the difficulty of unbalanced datasets, in
Section 3 we propose weighted learning to increase the im-
pact of the minority classes so that they will not be ig-
nored due to their small proportions. Three different weight-
ing schemes are given: The first is the one-step weighting
based on class proportions. The second is the one-step weight-
ing using both the information of class proportions and the
information of within-group misclassification rates. The last
proposal is to use adaptive weighted learning, which mod-
ifies the weights for different classes adaptively. The pro-
posed weighted learning methods can be incorporated into
many existing classification techniques. The algorithm for
the adaptive weighted learning is given in Section 4. In Sec-
tion 5, we illustrate the proposed weighted learning methods
on the SVM. Numerical studies on simulated and real data
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are given in Section 6. Some final discussion is included in
Section 7.

2. Classification Criteria and Bayes’ Rules
2.1 Multicategory Classification
In a multicategory classification problem, we are given a train-
ing dataset with n observations {xi, yi}, i = 1, . . . ,n. Here
each input xi is a d-dimensional vector and yi is the class la-
bel, indicating the class that xi belongs to. Suppose there are
k different classes with yi ∈ {1, 2, . . . , k}, and suppose that
{xi, yi}’s are drawn from an unknown population, with the
underlying (d + 1)-dimensional joint probability distribution
P (x, y).

The goal of multicategory classification problem is to con-
struct a decision rule φ(x) :Rd → {1, 2, . . . , k}, based on the
information of the training data {xi, yi}’s, to predict the class
label for future input x. Here φ(x) needs to not only classify
those xi’s in the training data well, but also have good gener-
alization ability, so that it works well on the entire population
for prediction.

Let (X, Y ) denote a (d + 1)-dimensional random vec-
tor from a probability distribution P (X, Y ), with the joint
probability density g(x, y). Let pj(x) = P (Y = j |X =x);
j = 1, 2, . . . , k. Denote the conditional probability density
of X given Y = j as gj(x) = gX|Y =j(x). Let πj denote the
proportion of class j in the population, i.e., πj = P (Y =
j), the marginal probability mass function of Y. Then
by the Bayes formula, we have pj(x) = P (Y = j |X = x) =

g(x, j)/
∑k

i=1 g(x, i) = gj(x)πj/{
∑k

i=1 gi(x)πi}.
Once pj(x); j = 1, 2, . . . , k is given, one can form a classifi-

cation rule according to a given criterion. In Sections 2.2 and
2.3, we discuss different classification criteria and the corre-
sponding Bayes’ rules.

2.2 The Classic Classification Criterion
In the standard case where the misclassification costs for dif-
ferent classes are all equal, the associated loss function is the
0 − 1 loss function, i.e., l(y, φ(x)) = I{y 	= φ(x)}. The cor-
responding Bayes decision rule, φB(x), minimizes the poste-
rior expected risk ρ(x, φ), which can be written as: ρ(x, φ) =
E[I{Y 	= φ(X)} |X = x] = 1 − pφ(x)(x). Then we can
simplify φB(x) as φB(x) = argminj=1, ... , k{1 − pj(x)} =
argmaxj=1, ... , k pj(x).

Note that the risk function corresponding to the 0 − 1
loss represents the probability of misclassification given x. Its
empirical version can be written as

∑
I{φ(xi) 	= yi}/n, the

ratio between the number of misclassified observations and
the total number of observations. This is a commonly used
classification criterion, namely “the overall misclassification
rate.”

It is interesting to note that if there exists j ∈ {1, . . . , k},
such that ∀x ∈ Rd, pj(x) 	= maxi∈{1, ... , k}pi(x), then the
Bayes rule never classifies any x to class j. The class j will
be ignored with an empty classification set. By the Bayes
formula, pj(x) = {gj(x)πj}/{

∑k

i=1 gi(x)πi}. Thus as πj gets
small enough, so does pj(x), even though gj(x) might be large.
For this reason, in an unbalanced scenario where a minority
class has very small πj compared to the other classes, the mi-
nority class can be ignored by both the Bayes decision rule

and any classification methods based on it, if the overall mis-
classification rate is used as the classification criterion.

We now consider a simple example to illustrate the prob-
lem of minority classes. Consider a three-class classification
problem. The proportion π1 :π2 :π3 for these three classes is
3 : 3 : 1. The conditional distributions for these three classes
are N(−0.5, 0.4), N(0.5, 0.4), and N(0, 0.4), respectively.
The left panel in Figure 1 displays the class-conditional prob-
ability density functions gj(x); j = 1, 2, 3, whereas the right
panel shows the posterior probability functions pj(x); j =
1, 2, 3, given the information that π1 :π2 :π3 = 3 : 3 : 1. As
indicated in Figure 1, if the overall misclassification rate is
used as the classification criterion, the Bayes rule assigns x ∈
[0, 0.5] for class 1 and x ∈ [0.5, 1] for class 2. Thus class 3
is totally ignored simply because of its small proportion π3 =
1/7. This calls for alternative criteria that can deal with the
unbalanced class proportions.

2.3 Mean Within Group Error Rate and Mean Square Within
Group Error Rate

In this section, we propose two alternative classification cri-
teria to take minority classes into account.

As stated in Section 2.2, the classic criterion aims to find
a decision rule minimizing the overall misclassification rate,
E[I{φ(X) 	= Y }], which can be written as

E[I{φ(X) 	= Y }]

= P (φ(X) 	= Y ) =

k∑
j=1

E[I{φ(X) 	= j} |Y = j]πj . (1)

Notice that in (1), if πj is small, the contribution of class j to
the error will be small. The term E[I{φ(X) 	= j} |Y = j] rep-
resents the within group error for class j. To reduce the effect
of πj , we consider the average of within group errors. Then
the corresponding objective function, after removing πj ’s in
(1) and up to a constant 1/k, becomes,

k∑
j=1

E[I{φ(X) 	= j} |Y = j]

= E

[
k∑

j=1

1

πj

∑
l	=j

I{φ(X) = l, Y = j}
]

= E

[
k∑

j=1

1

πj

k∑
l=1

δ̄jlI(Y = j)I{φ(X) = l}
]
,

where δ̄jl = 0 if j = l, and 1 otherwise.
The intuition for this new criterion is that instead of aim-

ing for a classification rule with a small overall misclassifica-
tion rate, we take into account of each within group error. To
prevent a minority class from being ignored, we consider the
average of within group error rates. Thus the corresponding
classification rule will put more emphasis on minority classes
compared to the classic one. We call this new criterion “mean
within group error rate.” If the within group error for a mi-
nority class is very large, it will increase the average and con-
sequently help to reduce the unbalanced data effect.

As a remark, we note that the mean within group error rate
criterion is closely related to existing classification measures
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Figure 1. An illustrating plot of a three-class unbalanced problem with classes 1 − 3 from N(−0.5, 0.4), N(0.5, 0.4), and
N(0, 0.4), respectively, with π1 :π2 :π3 = 3 : 3 : 1. The left panel displays the class-conditional probability density functions
gj(x) and the right panel displays the posterior class probability functions pj(x) given X = x; j = 1, 2, 3.

such as sensitivity and specificity for disease diagnosis. In dis-
ease diagnosis, sensitivity and specificity refer to the probabil-
ity that the test is positive given that the patient is sick and
the probability that the test is negative given that the patient
is not sick, respectively (see, e.g., Yerushalmy, 1947; Leisen-
ring, Alonzo, and Pepe, 2000). It is easy to show that the mean
within group error rate can be calculated as 1 − (sensitivity +
specificity)/2. Thus, the two criteria are equivalent for binary
classification. However, one important difference here is that
sensitivity and specificity are mainly for binary classification,
whereas the new criteria can be used for general classification
problems.

Proposition 1 below demonstrates the Bayes rules under
the classic and the mean within group error criteria.

Proposition 1: The Bayes rules under the classic
and the mean within group error criteria are φB(x) =

argminl

∑k

j=1 δ̄jlpj(x) = argmaxl pl(x) and φB(x) =

argminl

∑k

j=1 pj(x)δ̄jl/πj = argmaxl pl(x)/πl, respectively.

Proposition 1 can be shown using the results of theoretical
classification Bayes’ rules under the general misclassification
cost structure (Johnson and Wichern, 2001). To save space,
its detailed proof is omitted.

We now introduce another criterion, which is an extension
of the mean within group error. Sometimes we may want not
only the average of the within-class misclassification rates to
be small, but also the variation to be small as well, if all
classes are equally important. For example, when we are given
two classification rules with group errors of (20%, 22%) and
(1%, 40%), even though the latter one has smaller average
of within group error (20.5% < 21%), we may prefer the first
one, because of its smaller within group error variation. Notice
that the latter one performs well on one class but does badly
on the other, whereas the first one performs reasonably well
for both classes. If these two classes are equally important,
the first classification rule may be more preferable.

Denote ej = E[I{φ(X) 	= j} |Y = j]; j = 1, . . . , k, as the
within group error for the jth class, and ē =

∑
ej/k as the

average of within group errors. The sample version of ej , êj ,

can be calculated as the ratio of the number of misclassifica-
tions in class j and total number of observations in class j.
Now we try to minimize ē2 +

∑
(ej − ē)2/k =

∑
e2
j/k, where

the first term on the left-hand side is the square of the average
within group error and the second term reflects the variation
of within group errors for different classes. Then the new cri-
terion, namely, the mean square within group error, tries to
minimize the following

k∑
j=1

E2[I{φ(X) 	= j} |Y = j]

=

k∑
j=1

1

π2
j

E2

[
k∑
l=1

δ̄jlI{φ(X) = l}I(Y = j)

]
.

Unlike the other two criteria, the Bayes rule for this criterion
does not appear to have a close form.

For a given classification procedure, different criteria used
can lead to different classifiers. Specifically, many procedures
involve selection of multiple parameters. New criteria can be
used to select these parameters. For example, the SVM in-
volves several parameters, such as the regularization parame-
ter λ and the parameters used in its kernel function. Selection
of these parameters is an important step for choosing the fi-
nal classifier. The new proposed criteria can be used for this
purpose.

2.4 Unequal Misclassification Costs
So far we only focus on situations where the costs for different
types of misclassification are all equal, that is, the cost of mis-
classifying an observation in class j to class l is the same for
any j 	= l ∈ {1, . . . , k}. However, in many problems, unequal
misclassification costs are necessary. For example, misclassi-
fying a cancer patient to be healthy is much more severe than
classifying a healthy person to be a cancer patient. The first
type of error may cause delay of early treatment of the patient
and one should try to avoid that if possible. For the second
type of error, it can be corrected using further diagnosis. Sim-
ilarly, cost of misdetecting a good product to be flawed should
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be much smaller than the cost of omitting a defective product
into the market.

Denote Cij as the cost of misclassifying an observation
in class i to class j. Lin, Lee, and Wahba (2002) discussed
the SVM for classification in a nonstandard situation, where
the cost of different types of misclassification are not the
same or there is sampling bias for the training set. Then
the adjusted overall misclassification cost can be expressed
as E[

∑k

j=1

∑k

l=1 Cjlδ̄jlI(Y = j)I{φ(X) = l}].
Under the mean within group error criterion, the ob-

jective function becomes E[
∑k

j=1

∑k

l=1 I(Y = j)I{φ(X) =

l}Cjlδ̄jl/πj ]. Thus, our proposed criteria in Sections 2.1 and
2.2 can be directly generalized to unequal cost situations. The
following corollary gives the Bayes rules using two different
criteria with unequal costs.

Corollary 1: Let Cij be the cost of misclassifying ob-
servation in class i to class j. Then the Bayes rules under
the classic criterion and the mean within group error cri-
terion are φB(x) = argminl

∑k

j=1 Cjlδ̄jlpj(x) and φB(x) =

argminl

∑k

j=1 Cjlδ̄jlpj(x)/πj , respectively.

3. Weighted Learning
In Section 2, we discussed different criteria and their as-
sociated Bayes’ rules. In this section, we propose several
weighted learning schemes for classification with unbalanced
datasets.

Standard classifiers treat all classes equally. This may
cause problems for unbalanced problems because the minor-
ity classes can be possibly ignored. Intuitively, one can put a
relatively big weight for a minority class so that it cannot be
ignored easily. For example, consider a binary problem with
the class 1 to be the minority class and class 2 to be the ma-
jority class. Suppose we use the weights (4, 1) for the two
classes. This implies that one misclassified point of class 1 is
treated to be equivalent to four misclassified points of class 2.
Using a bigger weight for class 1, one can increase the im-
pact of class 1 for the classification rule so that it will not
be ignored due to its small proportion. Denote (w1, . . . ,wk)
as the weights for k classes. In this section, we consider three
different weighting schemes, the first two being one-step fixed
weights and the third one being an adaptive procedure.

Without loss of generality, let Cij = 1. Then analogous to
the 0 − 1 loss function, the expected weighted loss can be
written as

E

[
k∑

j=1

wjI{Y = j, φ(X) 	= j}
]

= E

[
k∑

j=1

k∑
l=1

δ̄jlwjI(Y = j)I{φ(X) = l}
]
.

Clearly, the classic criterion and the mean within group error
criterion are special cases with the weights being (1, . . . , 1)
and (1/π1 : 1/π2 : . . . : 1/πk), respectively. Similar to Propo-
sition 1, we can show that the Bayes rule of the weighted
learning is φ(x) = argmaxlwlpl (x). Similar results for other
loss functions such as the hinge loss of the SVM can be derived
as well.

In Sections 3.1 and 3.2, we discuss different ways of se-
lecting the weights to achieve good classification performance
under a given criterion.

3.1 One-Step Fixed Weights
A natural choice of weights is to make use of the true pro-
portions {πj} of different classes, if they are available. Let
(w1 :w2 : . . . :wk) = (1/π1 : 1/π2 : . . . : 1/πk). Using this choice,
we aim to put a big weight for class j if πj is small. In Sec-
tion 5, we show that this choice of weights corresponds to the
mean within group error rate under the SVM setting. This
indicates that this choice of weights can eliminate the unbal-
anced data effect because it is equivalent to finding a classifier
that minimizes the mean within group error rate.

Despite its nice theoretical properties, this choice of weights
may have problems for practice. First of all, πj ’s are typically
not available. Consequently, we need to estimate them. A nat-
ural estimator is π̂j = nj/n, where nj represents the number
of observations for class j in the training dataset. Using π̂j

has some drawbacks. Clearly, the accuracy of the estimator
π̂j affects the performance. The smaller nj and n are, the less
reliable π̂j is as an estimator of πj . Moreover, this choice of
weights only utilizes the class proportions. It may be beneficial
to take into account the classification accuracy for different
classes as well.

Recall that ê1, ê2, . . . , êk denote the within group errors
on the training dataset with equal weights. Then we can
use (ê1, ê2, . . . , êk) as well as the proportion information (π1,
π2, . . . ,πk) to form weights wj = W (êj , πj) through a func-
tion W(·, ·). When πj ’s are not available, we can replace
them by their estimators. Our goal is to put those classes
with larger within group error rates (i.e., larger êj ’s), as well
as with smaller proportions, bigger weights so that it can be
classified more accurately. As a result, W (ê, π) should be an
increasing function in ê and a decreasing function in π. In
this research, we recommend W (ê, π) = (1/π)ê. Clearly, this
function satisfies our requirement. Moreover, (1/π)ê ≤ 1/π,
with the upper bound achieved when ê = 1. Once the new
weights are obtained, we can scale them so that the standard-
ized weights add up to one. Besides this choice of W (ê, π), we
also examine the performance of other weight functions such
as W (ê, π) = ê/π. More discussions can be found in Section 6.

One potential drawback of one-step weights is that the
weights may not be optimal for unbalanced learning. A nat-
ural solution is to update the weights adaptively. In Sec-
tion 3.2, we introduce the procedure of adaptive weighted
learning.

3.2 Adaptive Weighted Learning
To choose an optimal weight to deal with unbalanced clas-
sification problems, we propose an adaptive weighting pro-
cedure, which adaptively updates the weights by utilizing
the classification information, including the within group er-
ror rates (ê1, ê2, . . . , êk) and the estimated class proportions
(π̂1, π̂2, . . . , π̂k).

Before we discuss the adaptive procedure, we first show an
interesting property of the choice of weights. Define the equiv-
alent weight set on Rk to a given weight vector as follows:
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Definition 1: The weight vector {wj , j = 1, . . . , k}
belongs to the equivalent weight set Wπ of (1/π1,
1/π2, . . . , 1/πk), if φ(x) = argmaxlwlpl (x) coincides with
ψ(x) = argmaxlpl(x)/πl.

If there are multiple elements in Wπ, one can find a differ-
ent weight vector in Wπ to get the same Bayes rule as that of
{1/πj ; j = 1, . . . , k} and it may have different finite sample be-
haviors. Thus, an adaptive procedure may find better weights
than (1/π̂1, 1/π̂2, . . . , 1/π̂k). The following example further il-
lustrates the equivalent weight set of {1/πj ; j = 1, . . . , k}.

Example: Let d = 1, x ∈ [0, 1] and k = 3, with π1 =
0.45, π2 = 0.45, and π3 = 0.1. Then class 3 is the minority.
The class-conditional probability density functions gj(x) and
the conditional class probability functions pj(x) are given as
follows

x [0, 1
3 ) [ 1

3 ,
2
3 ) [ 2

3 , 1]

g1(x)
3
2 1 1

2

g2(x)
1
2

3
2 1

g3(x) 1 1
2

3
2

x [0, 1
3 ) [ 1

3 ,
2
3 ) [ 2

3 , 1]

p1(x)
27
40

18
47

9
33

p2(x)
9
40

27
47

18
33

p3(x)
4
40

2
47

6
33

By some simple calculation, the Bayes decision rule under
the classic criteria becomes

φB(x) =




1 when 0 ≤ x <
1

3

2 when
1

3
≤ x <

2

3

2 when
2

3
≤ x ≤ 1.

Therefore, class 3 is ignored with an empty classification set.
Using the mean within-group error criterion, we have

p1

π1
:
p2

π2
:
p3

π3
(x) =




3 : 1 : 2 when 0 ≤ x <
1

3

2 : 3 : 1 when
1

3
≤ x <

2

3

2 : 1 : 3 when
2

3
≤ x ≤ 1.

Thus we classify x into class 3 when x ∈ [2/3, 1]. Notice that
1/π1 : 1/π2 : 1/π3 = 1 : 1 : 4.5. Consequently class 3 has a bigger
weight due to its small proportion.

Consider a smaller weight for class 3. Let w1 :w2 :w3 =
1 : 1 : 4, then,

p1w1 : p2w2 : p3w3(x) =




27 : 9 : 16 when 0 ≤ x <
1

3

18 : 27 : 8 when
1

3
≤ x <

2

3

9 : 18 : 24 when
2

3
≤ x ≤ 1.

Notice that φ(x) = argmaxlwlpl (x) coincides with ψ(x) =
argmaxlpl(x)/πl. Thus the weight vector {(w1, w2,
w3) |w1 :w2 :w3 = 1 : 1 : 4} and the weight vector {(w1,
w2, w3) |w1 :w2 :w3 = 1 : 1 : 4.5} are equivalent. One can
show that the equivalent weight set of (1/π1 : 1/π2 : 1/π3) is
{(w1, w2, w3) |w1 :w2 :w3 = 1 : 1 :α}, where 3 ≤ α ≤ 6.75.

This example has a set of weight vectors equivalent to the
weight (1/π1, 1/π2, . . . , 1/πk) in the sense that these weights
correspond to the same Bayes rule. This implies that instead
of estimating πj , it may be better to search optimal weights
adaptively. In Section 4, we discuss an adaptive weighting al-
gorithm, which applies a certain classification procedure it-
eratively on the data sample and updates the weights ac-
cordingly. The new weight wnew evolves from the weight
wold obtained from the previous iteration, and the updat-
ing rule depends on both the within group error rate êj
and the estimated proportion π̂j of each class, i.e., wnew,j =
wold,jW (êj , π̂j). The iteration stops when the within group
error cannot be improved further, i.e., the within group error
rates are sufficiently close to the rates in the previous step.

4. Algorithm
We propose the following algorithm to achieve adaptive learn-
ing:

Adaptive weighting algorithm:

Step 1: (Initialization) Fit a classifier using a certain classifi-
cation procedure on the training dataset using the weight
vector {w(1)

j , j = 1, . . . , k} = {1, 1, . . . , 1} with the corre-
sponding within group error rates for the training dataset
{e(1)

j , j = 1, . . . , k}.
For iteration s = 2 . . . , with given {e(s−1)

j , j = 1, . . . , k}
and {w(s−1)

j , j = 1, . . . , k} from iteration s − 1,

Step 2: (Weight updating) Set w
(s)
j = w

(s−1)
j W (e

(s−1)
j , π̂j); j =

1, . . . , k, and standardize the weights so they sum up
to one. Then fit a weighted classifier with corresponding
within group error rates for the training dataset {e(s)

j , j =
1, . . . , k}.

Step 3: (Stopping rule) Stop the iteration if
∑

j
(e

(s)
j −

e
(s−1)
j )2 ≤ ε for some prespecified ε > 0 or s reaches the

prespecified maximum number of iterations. Otherwise, let
s = s + 1 and go to Step 2.

Here the updating rule W (êj , π̂j) is critical. We propose to
use W (êj , π̂j) = (1/π̂j)

max(êj ,δ), a modified version of that for
the one-step fixed weight in Section 3.1, where δ ∈ (0, 1) is a
filter parameter, which lower bounds the within group error.
We use δ = 0.1 in the numerical studies. The use of δ is to
prevent potential significance decrease of the weight for class j
when êj becomes very small or equals to 0. Otherwise, a small
weight on the minority class may lead to bad performance on
that class again in the next step and result in a dead loop.

As a remark, we note that for the adaptive proce-
dure, we modify the weights by a small amount depend-
ing on the within group errors {ê1, ê2, . . . , êk}. To decide
whether we should stop the iteration, we compare the cur-
rent within group errors to those in the previous itera-
tion. In the case that misclassification costs are unequal
as mentioned in Section 2.4, we can replace {ê1, ê2, . . . , êk}
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by their generalization using the unequal cost information,
{
∑k

j=1 C1jm1j/n1,
∑k

j=1 C2jm2j/n2, . . . ,
∑k

j=1 Ckjmkj/nk},
where mij denotes the number of misclassifications from class
i to class j for i 	= j and mii = 0 for i = 1, . . . , k.

5. Weighted Multicategory Support Vector Machine
The SVM (Boser, Guyon, and Vapnik, 1992; Cortes and Vap-
nik, 1995) is a large margin based classification method. In
a separable scenario with two classes, the SVM aims to find
a hyperplane in the input space Rd, which perfectly sepa-
rates these two classes for the training set, such that the sep-
aration distance between the two classes is maximized. In a
nonseparable case where a separating hyperplane does not ex-
ist, the SVM finds a hyperplane with good separation as well
as small violation of the perfect separation constraints. See
Burges (1998) for a good tutorial on the SVM.

It is now known that the SVM can be fit into a regular-
ization framework in the form of Loss + Penalty. The loss
function used in the SVM is the hinge loss function (Wahba,
1998). One can replace the hinge loss function or the penalty
term to get different classifiers. For example, ψ-learning (Shen
et al., 2003) and robust truncated-hinge-loss SVM (Wu and
Liu, 2007) use bounded nonconvex loss functions to achieve
robustness of the resulting classifiers. Multicategory exten-
sions of the SVM and ψ-learning can be found in Lee, Lin,
and Wahba (2004) and Liu and Shen (2006), respectively. Zhu
et al. (2004) and Zhang (2006) proposed the L1 SVM and the
COSSO SVM, respectively, to achieve simultaneous variable
selection and classification.

Under the regularization framework, the SVM aims to find
a function f(x) = h(x) + b, where h ∈ HK , a reproducing
kernel Hilbert space (RKHS), and b is an intercept, so that it
minimizes:

1

n

n∑
i=1

[1 − yif(xi)]+ + λ‖h‖2
HK

, (2)

where [·]+ = max(·, 0), and ‖h‖2
HK

denotes the norm of the
function h defined in the RKHS with the reproducing kernel
function K(·, ·). Here yi ∈ {1, −1} represents the binary class
label and the first component in (2) measures the goodness
of fit on the training data using the hinge loss function.

Denote vi = (−1/(k − 1),−1/(k − 1), . . . , 1, . . . ,−1/(k −
1)), where the jth entry is 1 when observation i belongs to
class j. The multicategory SVM proposed by Lee et al. (2004)
finds f(x) = (f1(x), f2(x), . . . , fk(x)) ∈ Πk

1 (1 +HK), with the

sum-to-zero constraint
∑k

j=1 fj(x) = 0, which minimizes:

1

n

n∑
i=1

∑
1≤l≤k,l	=yi

[fl(xi) − vil]+ +
1

2
λ

k∑
j=1

‖hj‖2
HK

, (3)

where vil is the lth coordinate of vi. Once f(x) is obtained,
the corresponding classification rule is φ(x) = arg maxjf j(x).
Lee et al. (2004) showed that the minimizer of this multi-

category hinge loss, E[
∑k

l=1 I(Y 	= l)[fl(X) − Vl]+], under the
sum-to-zero constraint is f ∗

j(x) = 1 if j = argmaxl=1, ... , k pl(x)
and −1/(k − 1) otherwise. Thus the corresponding decision
rule is same as the Bayes rule under the classic classification
criterion.

Naturally, one can modify the multicategory hinge loss
function to derive the weighted SVM. In particular, given the
weight (w1, . . . ,wk), the weighted SVM solves

min
f

1

n

n∑
i=1

∑
1≤l≤k,l	=yi

wyi [fl(xi) − vil]+ +
1

2
λ

k∑
j=1

‖hj‖2
HK

= min
f

1

n

n∑
i=1

k∑
l=1

wyi δ̄yil[fl(xi) − vil]+ +
1

2
λ

k∑
j=1

‖hj‖2
HK

.

(4)

Using a direct generalization of Lemma 3 in Lee et al. (2004),

we can show that the minimizer of E[
∑k

l=1 wY δ̄Y,l[fl(X) +

1/(k − 1)]+] is f ∗
j(x) = 1 if j = argminl

∑k

j=1 wj δ̄jlpj(x), and
−1/(k − 1) otherwise. Thus the corresponding decision rule
φ(x) = argmaxjf

∗
j(x) is the same as the Bayes rule of a

weighted learning with weights (w1, . . . ,wk). In particular, if
we choose (w1, . . . ,wk) to be (1/π1, 1/π2, . . . , 1/πk), then the
theoretical decision rule is the same as the Bayes rule under
the mean within group error criterion.

Once the weight vector (w1, . . . ,wk) is given, we can calcu-
late the weighted SVM (4) as a quadratic programming prob-
lem. Consequently, we can implement the adaptive learning
algorithm given in Section 4 using the weighted SVM.

6. Numerical Study
In this section, we illustrate the performance of learning with
one-step fixed weights and adaptive weighted learning under
classic, mean within group error, and mean square within
group error criteria. We use the multicategory SVM procedure
discussed in Section 5 for demonstration on both simulated
and real datasets.

6.1 Simulation
Consider a simple three-class two-dimensional example. First
we randomly generate yi with three types of proportions: π1 :
π2 :π3 = 1 : 2 : 2, 1 : 4 : 4, and 1 : 8 : 8. Then for a given y we
simulate x with X ∼ N 2((1, 0)T , 0.6I2), N 2((0, 1)T , I2), and
N 2((0, −1)T , I2) for y = 1, 2, 3, respectively. Clearly, class
1 is the minority class, whose expected proportions are 1/5,
1/9, and 1/17 for three different cases.

Figure 2 displays a typical training dataset with
π1 :π2 :π3 = 1 : 8 : 8. To demonstrate the effect of different
weights, we increase the weight of class 1 and display how
the decision boundary changes when the weight for class 1
increases from 1 : 1 : 1 to 6 : 1 : 1. From Figure 2, we can see
that the classification set of class 1 gets bigger as we in-
crease its weight. Consequently, the classification accuracy for
class 1 becomes better as well. This demonstrates the effect
of weighted learning for unbalanced datasets.

To further examine the classification accuracy, we simu-
late the training, tuning, and test sets of sizes 100, 100, and
10,000. We use the training set to build classifiers and use
the tuning set to select tuning parameters. The test set is
used to evaluate accuracy of the final classifier. We repeat
the procedure 100 times to compare three different crite-
ria (classic criterion, mean within group error criterion, and
mean square within group error criterion) as the tuning crite-
rion, and four different weighting procedures (equal weights,
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Figure 2. Plots of one typical training dataset with proportions of the three classes being 1 : 8 : 8. The top left and right
panels display the Bayes boundaries under the classic and the mean within group error criteria, respectively. The bottom row
displays the corresponding classification boundaries using weights 1 : 1 : 1 and 6 : 1 : 1. Note that the classification set for class
1 becomes bigger with the increased weight. This figure appears in color in the electronic version of this article.

one-step fixed weights using π̂j , one-step fixed weights us-
ing W (ej , π), and adaptive weighting scheme). The within
group error rates as well as two types of Bayes errors us-
ing W (êj , π̂) = (1/π̂)max(êj ,δ), associated with the Bayes rules
given in Proposition 1), are reported in Table 1 for the case
of π1 :π2 :π3 = 1 : 4 : 4. The final weights chosen for different
methods are reported in Table 2. The cases of π1 :π2 :π3 =
1 : 2 : 2 and 1 : 8 : 8 are not reported to save space.

From the results, we have several observations: First of all,
in each case, and under each classification criterion, the adap-
tive weighted learning method yields better overall classifica-
tion accuracy than one-step weighted learning procedures. As
the data become more and more unbalanced with proportions
changing from 1 : 2 : 2 to 1 : 8 : 8, the adaptive weighted learn-
ing is more powerful compared to other methods. Secondly,
the two types of one-step fixed learning procedures appear
to perform similarly in terms of classification performance.
Thirdly, the misclassification rates for the equal weights are
close to the misclassification rate for the classic Bayes’ clas-
sifier (Bayes’ I). This matches our theoretical results in Sec-

tion 2. Lastly, we observe that the mean within group error
criterion and the mean square within group error criterion
help to remove some of the unbalanced data effects compared
to the classic classification criterion. Overall, we can conclude
that our weighted learning procedures as well as the new cri-
teria help to solve the unbalanced data effects.

To further investigate the effect of different weight-
updating functions, we also study the two alternative choices:
(a) W (ê

(s−1)
j , π̂j) = (1/π̂j)

I(s=2)max(êj , δ); (b) W (êj , π̂j) =
max(êj , δ)/π̂j . Compared to the suggested updating function
W (êj , π̂j) = (1/π̂j)

max(êj ,δ) in Section 4, the updating func-
tions in (a) and (b) are proportional to max(êj , δ). In addition,
the choice (a) is proportional to 1/π̂j for the second step with
s = 2 whereas choice (b) is proportional to 1/π̂j for any s ≥
2. Thus, in contrast to W (êj , π̂j) = (1/π̂j)

max(êj ,δ), choices (a)
and (b) update the weights more aggressively using êj and π̂j .
The results are provided in the Web Appendix. Our numerical
experience suggests that a good choice of W (êj , π̂j) such as
(1/π̂j)

max(êj ,δ) should gradually increase the weights of classes
with small π̂j ’s and big êj ’s. A weight function that increases
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Table 1
Results of the weighted SVMs on the simulated data with proportions 1 : 4 : 4,

W (êj , π̂j) = (1/π̂j)
max(êj ,δ), and n = 100

CLSC MWGE MSWGE

Equal weights 0.61 0.25 0.27 0.57 0.27 0.28 0.56 0.27 0.28
(0.14 0.06 0.07) (0.13 0.05 0.07) (0.14 0.05 0.06)

OSW by π̂j 0.49 0.31 0.32 0.38 0.32 0.32 0.41 0.31 0.32
(0.14 0.06 0.08) (0.13 0.06 0.08) (0.12 0.06 0.07)

OSW by W (êj , π̂j) 0.49 0.28 0.28 0.46 0.29 0.29 0.45 0.28 0.29
(0.12 0.06 0.07) (0.12 0.06 0.07) (0.12 0.05 0.06)

Adaptive weights 0.43 0.31 0.32 0.39 0.31 0.30 0.40 0.31 0.31
(0.12 0.06 0.07) (0.14 0.05 0.07) (0.12 0.05 0.07)

Bayes’ I 0.59 0.19 0.19 0.59 0.19 0.19 0.59 0.19 0.19
(0.01 0.01 0.01) (0.01 0.01 0.01) (0.01 0.01 0.01)

Bayes’ II 0.18 0.29 0.29 0.18 0.29 0.29 0.18 0.29 0.29
(0.01 0.01 0.01) (0.01 0.01 0.01) (0.01 0.01 0.01)

The first four rows show the within group error rates of three different classes under three classification criteria,
using four different types of weights. The last two rows give the Bayes error rates corresponding to the Bayes rules
given in Proposition 1. The numbers in the parentheses are the standard deviations for the corresponding within
group errors. CLSC, classic criterion; MWGE, mean within group error criterion; MSWGE, mean square within
group error criterion; and OSW, one-step fixed weights.

Table 2
Results of average final chosen weights for weighted SVMs

using W (êj , π̂j) = (1/π̂j)
max(êj ,δ), on the simulated data with

proportions 1 : 4 : 4 and n = 100

CLSC MWGE MSWGE

Equal weights 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
OSW by π̂j 0.67 0.15 0.18 0.67 0.15 0.18 0.67 0.15 0.18
OSW by W (êj , π̂j) 0.48 0.26 0.26 0.44 0.28 0.28 0.44 0.28 0.28
Adaptive weights 0.58 0.21 0.21 0.52 0.24 0.24 0.52 0.24 0.24

CLSC, classic criterion; MWGE, mean within group error criterion;
MSWGE, mean square within group error criterion; and OSW,
one-step fixed weights.

the weights for minority classes too aggressively may lead to
suboptimal classification performance. Our suggested weight
function in Sections 3 and 4 indeed gives the best performance
in our simulation studies.

As a remark, we note that although the weighted learn-
ing helps to improve the classification accuracy of class 1, the
corresponding test error of class 1 is still much larger than
that of the Bayes rule under the within group error rate cri-
terion (Bayes’ II). This is because of the small sample size
of class 1 with n = 100 and consequently the information of
class 1 contained in the training sample is quite limited. As
n increases, the performance improves accordingly as shown
in the results with n = 200 and 300 (reported in the Web
Appendix).

6.2 Application to the Thyroid Data
In this section, we apply different weighted multicategory
SVMs on the thyroid database obtained from the UCI Ma-
chine Learning website http://www.ics.uci.edu/∼mlearn/.
The goal here is to determine whether a patient referred to
the clinic is hypothyroid. Three classes are subnormal func-
tioning (class 1), hyperfunction (class 2), and normal (not

hypothyroid) (class 3). The database includes 7200 observa-
tions. This is an unbalanced dataset because around 92% of
the patients are normal (class 3). Thus, classes 1 and 2 are
minority classes. There are 21 variables, among which 15 are
binary and 6 are continuous.

For illustration, we randomly select 200 observations for
training and another 200 observations for tuning. Both
datasets have the same class proportion, 5 : 10 : 185, as the
whole dataset. The remaining observations are used for
testing.

The SVM results based on 50 replications are reported in
Table 3. We can see that the test errors for classes 1 and 2
using the equal weights are substantially higher than class 3
due to the unbalanced proportion of the data. Our weighted
learning procedures perform better in discriminating class 2
and at the same time, the accuracy of class 3 is sacrificed. The
adaptive procedure works better than the fixed weight proce-
dures because it gives much better classification accuracy for
class 2 with a bigger weight (the final weights are reported in
the Web Appendix). The error rate of class 3 has increased
due to its low weight.

Interestingly, the weighted learning does not improve the
accuracy of class 1 as much as that of class 2. To explore
this issue further, we project the data on the first two prin-
cipal component analysis (PCA) directions (Figure 3). From
the projection plot 3, we can easily see that class 1 and class
3 are farther apart with class 2 in the middle. As a result,
decreasing the weight for class 3 will help the accuracy of
class 2 much more than that of class 1. A further examina-
tion on the training errors (in the Web Appendix) shows that
the training error for class 1 is already very small without
any weight adjustment. Moreover, different weights are used
for learning on the training data. Consequently, increasing
the weight for class 1 cannot further improve its accuracy
much.
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Table 3
Results of the weighted SVMs on the thyroid example with W (êj , π̂j) = (1/π̂j)

max(êj ,δ)

CLSC MWGE MSWGE

Equal weights 0.630 0.913 0.016 0.623 0.914 0.017 0.644 0.906 0.018
(0.175 0.056 0.010) (0.173 0.056 0.010) (0.169 0.051 0.010)

OSW by π̂j 0.705 0.709 0.030 0.643 0.675 0.087 0.623 0.650 0.151
(0.135 0.083 0.013) (0.164 0.094 0.093) (0.150 0.100 0.096)

OSW by W (êj , π̂j) 0.844 0.862 0.021 0.803 0.771 0.050 0.795 0.779 0.048
(0.133 0.105 0.016) (0.112 0.100 0.037) (0.112 0.097 0.033)

Adaptive weights 0.618 0.477 0.397 0.662 0.556 0.291 0.667 0.573 0.273
(0.153 0.187 0.204) (0.157 0.165 0.175) (0.156 0.156 0.161)

This table shows the within group error rates of three different classes based on the test dataset, under three
classification criteria, using four different types of weights. CLSC, classic criterion; MWGE, mean within group
error criterion; MSWGE, mean square within group error criterion; and OSW, one-step fixed weights.
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Figure 3. The PCA projection plot of one typical training data of the thyroid example. Note that class 1 and class 3 are
farther apart compared to class 2.

7. Discussion
In this article, we have discussed classification of unbalanced
datasets. We have shown that when the overall classification
error rate is used as the classification criterion, the minority
classes with relatively small class proportions tend to be ig-
nored during the classification process. To overcome the prob-
lem, we have made two contributions: our first contribution
is the proposal of two alternative classification criteria to in-
crease the influence of minority classes so that they cannot be
easily ignored; for the second contribution, we introduce sev-
eral weighted learning procedures to get reasonable classifiers
even if the datasets are unbalanced. Our numerical examples
demonstrate the effectiveness of the new procedures.

The choice of the weight-updating function W(·, ·) is an im-
portant factor for the weighted learning procedures. Although

the current recommendation works for numerical examples, it
will be interesting to explore theoretical properties of various
W(·, ·)’s.

8. Supplementary Materials
The Web Appendix referenced in Section 6 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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