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Abstract 

PLS initially creates uncorrelated latent variables which are linear combinations of the original input vectors Xi,
where weights are used to determine linear combinations, which are proportional to the covariance. Secondly, a least 
squares regression is then performed on the subset of extracted latent variables that lead to a lower and biased 
variance on transformed data. This process, leads to a lower variance estimate of the regression coefficients when 
compared to the Ordinary Least Squares regression approach. Classical Principal Component Analysis (PCA), linear 
PLS and kernel ridge regression (KRR) techniques are well known shrinkage estimators designed to deal with multi- 
collinearity, which can be a serious problem. That is, multi-collinearity can dramatically influence the effectiveness 
of a regression model by changing the values and signs of estimated regression coefficients given different but 
similar data samples, thereby leading to a regression model which represents training data reasonably well, but 
generalizes poorly to validation and test data. We explain how to address these problems, which is followed by 
performing a PLS hypotheses driven preliminary research study and sensitivities analysis by not doing a 
combinatorial analysis as PLS will eliminate the unnecessary variables using a microarray colon cancer data set. 
Research studies as well as preliminary results are described in the results section.
© 2010 Published by Elsevier B.V. 
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1. INTRODUCTION 

One of the most popular current topics in bioinformatics is gene selection from microarray data because this 
problem involves both statistical processing as well as biological concepts. The statistical problems are daunting 
because of the large number of represented genes relative to the number of samples; this provides a prime 
opportunity to significantly overfit the data when model building. Biology is a significant component because 
identifying significant genes representative of a given clinical endpoint is a critical step toward understanding the 
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biological process. Several consequences result because of the statistical overfitting problem, some of which are: 
(1.)Very large area under the Receiver Operating Characteristic (ROC) curve, Az (or AUC) values, can be achieved 
on training (and validation) data, but the results provided by these trained complex adaptive systems (CAS) 
frequently fail to generalize to other data sets nor do these CAS system designs necessarily operate on similar data 
sets with larger representative samples. Also, different CAS solutions may produce different gene sets from the 
same set microarray data set. Consequently, any CAS should first attempt to achieve some sort of repeatability, and 
(2.) Secondly, because of the overfitting problem described above, each proposed feature (or gene) reduction CAS 
generally is based on a unique theoretical analysis, which means that how these separate CAS are connected is not 
understood. Consequently, this difficulty results in the same problem stated above: different algorithms will 
generate different prognostic gene sets using the same microarray data. This means that developing an underlying 
theory for feature selection (to reduce gene dimensionality) would help to understand these algorithms as well as 
classify which of these are the “most” valid for gene selection. Song [1] presents a BAHSIC algorithm which 
claims to address this unifying algorithm principle proposal. BAHSIC defines a class of backward (BA) 
elimination feature selection algorithms that use kernels and the Hilbert-Schmidt Independence Criterion (HSIC) 
[2]. Song [1] demonstrates that the BAHSIC algorithm encompasses the following well-known feature selection 
algorithms: (1) Pearson’s correlation coefficient [van’t Veer, ; 3,4], (2) Ein-Dor, ; 5], (3) t-test [Tusher, 

, ; 6], (4) signal-to-noise ratio [Golub, , 7], (5) Centroid [Bedo, , 8 and Hastie, , ;9], (6) Shrunken 
Certroid [Tibshirani, , 10,11], and finally, (7) ridge regression [Li and Yang, 12]. These collective results 
suggest the Evolutionary Programming derived Support Vector Machine (EP-SVM) [Land, W, 13, 14] with a 
choice of similarity, sum and product kernels might be a good wrapper / classification candidate for gene selection. 
This paper adapts a method, summarized in the methods section, originally developed for the social sciences and 
subsequently adapted to chemometrics, called Partial Least Squares (PLS) to this “feature-rich /case-poor” 
environment, as subsequently described, by theoretically attempting to eliminate those features which do not 
contribute to the “best” chromosome marker for colon cancer.

2. DATA BASE DESCRIPTION AND COURSE FEATURE REDUCTION DESCRIPTION 

For this study, DNA microarray data was collected from 104 Colon cancer patients who were treated at Moffitt 
Cancer Center & Research center. All tissue samples were collected during surgical resection (tumor is completely 
removed) by an IRB approved protocol and each sample was arrayed on the Affymetrix HG-U133+ GeneChip, 
that included 54,675 probes. Furthermore, each sample was classified as good or poor prognosis based on the time 
the patient was monitored and their status (dead or alive) at last contact. If the patient was monitored for less than 
36 months and their status at last contact was dead, then they were classified as poor prognosis. All other scenarios 
resulted in good prognosis. The 36-month cut-off is a standard clinical measurement for prognosis. All Duke 
Stages (A through D) are represented in this cohort. 
A major difficulty in analyzing microarray data is that they have many more features (genes) than cases (patients), 
which leads to the problem of overfitting (i.e.“feature-rich / case- poor”). Many patterns can be found that appear 
to accurately distinguish the clinical classes, but these patterns often fail on new cases. By choosing to focus on 
gene sets we increase the risk of overfitting by opening the door to exploiting chance variances in the data.  
The set of 54,675 probes (or features) were reduced to 271, using a t-test, variance pruning and adding biological 
relevant genes. The t-test selected features that accurately distinguished between good and poor prognosis by 
comparison of the distribution means, whereby the features were reduced to 5,157 using a p-value cut-off of 0.05. 
(Note: A high variance of the expression for the probe must exist between the two cases). Then variance pruning 
reduced the feature set further to 203, using a variance cut-off of 0.45. Finally, 68 known biologically relevant 
genes were added to the final feature set based on their importance in the prognosis of colorectal cancer. However, 
with this reduced feature set, over-fitting is still a major issue because the ratio of features to cases is close to 3 to 1
and the number of possible biomarker sets is 1081. PLS is an excellent solution candidate to appliy at this point 
because of its ability to address overfitting problems of this type. 

3. METHODS 

This section contains a brief, heuristic overview of Partial Least Squares (PLS). PLS is an extension of least squares 
regression (LR). In LR, the response variable y is predicted from  coordinates and  observations, denoted by 

T, where each . PLS finds “new variables” through the construction of specific 
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combinations of the original coordinates. These “latent variables” explain both the y response as well as the 
covariate space and are denoted by the following expressions: 

X
y

where: 
tS = latent variables (or conjugate vector directions;  by 1 column vectors). Generally most of the 
variability is characterized by  latent variables with a maximum of =5 required for most problems. 
ps and qs=weights (ps are 1 by  row vectors, qs are scalar). 

=small errors in the remaining parts not explained by the latent variables 
For this microarray data set, we began with 271 features and reduced this set to a minimum of 1 latent variable and a 
maximum of 5 latent variables (see  section). Therefore, the principle advantage of PLS for a problem of this 
type is its ability to handle a very large number of features: a fundamental problem of a feature-rich/case-poor 
data set. PLS then performs a least-squares fit (LSF) onto these latent variables, where this LSF is a linear 
combination that is highly correlated with the desired y response while, at the same time, accounting for the feature 
space variability. 
Secondly, what are some of the advantages of PLS? 

PLS algorithms are very resistant to over-fitting, they are fast and reasonably easy to implement when 
compared to least squares regression. 
For most problems with few data points and high dimensionality, least squares fails, where PLS excels. 
PLS may be considered a better principal component analysis (PCA). 
PLS regression maps the original data into a lower-dimensional space using a W projection matrix and 
computes a least squares solution in this space. 
The first key difference from PCA is that PLS computes an orthogonal factorization of the  input vector 
and response  (note: y can also be a vector) response in the process of computing the projection matrix W 
The second key difference from PCA is that the least squares model for kernalized PLS (K-PLS) is based 
on approximation of the input and response data, not the original data (Note: k-PLS is simply the PLS 
process kernalized). 
PLS and PCA use different math models to compute the final regression coefficients. Specifically, the 
difference between PCA and PLS is that a new set of basis vectors (similar to the eigenvectors of XTX in 
PCA) is NOT a set of succession of orthogonal directions that explain the largest variance in data, but 
rather are a set of CONJUGATE GRADIENT VECTORS in the correlation matrices which span a Krylov 
space. 
What makes PLS especially interesting for biomedical applications and data mining applications is its 
extension using kernels, similar to support vector machines. 

Finally, a summary to the PLS paradigm as implemented in the paper follows: 

Algorithm 1:

For , where M = number of latent variables, : 
Compute direction of maximum variance 
Project  onto 
Normalize t    
Deflate     
Deflate     
Normalize  after deflation   

Finally, compute the regression coefficients using latent variables:   
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where:  is the mth column vector of  is the mth column vector of are the input matrix and 
response vector that are being deflated, and  are the linear regression coefficients. A geometric representation of 
part of the algorithm (deflation) is depicted in Figure 2. 

4. Results 

To demonstrate the efficacy of using PLS to overcome the problem of over-fitting, and determine if PLS can be used 
to determine which features in the data set are important to predicting the patient prognosis, the goal of our 
experiments were twofold: 1) Use PLS to find genes indicative of a good/poor prognosis, and 2) Use PLS to build a 
classifier that will overcome the over-fitting problem and consistently predict good/poor prognosis from the data.  
By hypothesis

 Since PLS is a constructive process that finds the direction of maximum variance between X and y (before 
the variability explained by that latent variable ‘deflation’ occurs), the  (at a maximum) weight vectors 
should explain most of the variability, and hence, have the largest norm. In fact, we found that  the first weight 
vector to be most important, as expected. Specifically, Figure 1 depicts the norm of the first 10 weight vectors, 
averaged over 500 trials. 
Furthermore, the more important a gene is for making a correct classification, the larger the contribution of that 
feature will be to the first weight vector w1. To determine if PLS could be used to rank the significance of genes in 
the original data set, we conducted numerous independent trials, splitting the original dataset randomly in half, using 
half to develop the PLS model (see Algorithm 1), and half as a validation set. After each PLS model was 
constructed, each feature was given a score, with the largest vector component receiving a score of 30, the next 
largest a score of 29, and so on, with all but the largest 30 receiving a score of zero. After all trials were complete, 
the scores for each feature were summed, and normalized (Figure 4). Table 1shows the index and name of the 30 
most important genes based on this method. 
In determining the probes that are more influential than the others, a cut-off of thirty probes was chosen based on 
our previous work on dataset (Mathur , 2010 and 2011). For this research, a genetic algorithm-support 
vector machine (GA-SVM) hybrid was applied as a . The total length of probe 
subsets considered by Mathur  was shown to be thirty, which provided the GA with sufficient information to 
adequately adapt the probe subset length by the subset size operator (Schaffer et al, 2005) in the CHC GA 
(Eschelman, 1991). From the finding in this work we have adapted the same maximum length of the probes that we 
will consider more influential compared to the others.  
To support the hypothesis that PLS can be used to find stable biomarkers, we compared the ‘important’ genes 
found using PLS to those found using the GA-SVM method. Several genes were common. For example, genes 
MMP12, IGH, PRKAA1, GDAP1, ROBO2, LOC38983, ZNF207, UGGT2, and DLEU2 were also identified by 
Mathur  (2011) as being important indicators of prognosis. The biological significance of these genes is 
currently being investigated further. 
To address the second goal, we again ran numerous trials, evenly dividing the data into training and validation sets, 
using the training data to construct the PLS classifier, and the validation set to measure the generalization 
capabilities of the classifier. The well-known metric used to measure the fitness of the PLS classifier was the Az
value. We found that using 3 latent variables could achieve an Az value of around 0.71 for the validation set, 
indicating fairly good generalization (see Figure 3). 
Finally, we removed all but the 30 best genes from the data set, and repeated the experiment. We found that the 
validation Az peaked at one latent variable, and was about 10% higher (around 0.77) than the models using all 271 
features (see Figure 4). 

Furthermore, since the average validation Az values increased when only the 30 most important genes were used as 
predictors further supports the first goal.  
Future work will concentrate on using the non-linear ‘kernalized’ version of PLS to determine if better classifiers 
can be constructed from non-linear PLS regression models.
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Figure 1 – Average Norm of Weight Vectors from 500 Independent 
Trials. 

Figure 2 – Geometric Explanation of ‘Deflation’

Figure 3 – ROC Az Average as a Function of the Number of Latent 
Variables Used to Construct the Linear Regression Model (Training: 
Red Circle; Validation: Blue, Square). 

Figure 4 – ROC Az Average as a Function of the Number of Latent 
Variables Used to Construct the Linear Regression Model Using 
Only the Top 30 Genes (Training: Red Circle; Validation: Blue, 
Square).

Probe 
Index 

Gene 
Name 

4 MMP12 
26 IGH 
27 IGH 
44 PRKAA1 
57 ADAMTS5 
61 N4BP2L2 
62 HNRNPA1 
69 PCDHB10 

Probe 
Index 

Gene 
Name 

87 GDAP1 
88 N/K 
91 ROBO2 
93 DOCK11 
96 LOC727820 

100 N/K 
102 LOC389831 
104 N/K 

Probe 
Index 

Gene 
Name 

107 ZNF207 
108 RBM15 
110 JMJD1C 
122 ZNF207 
127 ZCCHC7 
153 UGGT2 
159 N/K 
163 N/K 

Probe 
Index 

Gene 
Name 

166 CBFA2T 
167 C11orf80 
197 N/K 
198 DLEU2 
232 CXCR6 
252 FLT1 

Table 1 – Thirty Most Influential Genes Based on the Norm of the First Weight Vector

What is Deflation?
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Projection onto L

Subtract projection on L to deflate
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5. Conclusions 

This research effort provided the following preliminary conclusions:  

To support the hypothesis that PLS can be used to find stable biomarkers, we compared the ‘important’ 
genes found using PLS to those found using the GA-SVM method. Several genes were common. For 
example, genes MMP12, IGH, PRKAA1, GDAP1, ROBO2, LOC38983, ZNF207, UGGT2, and DLEU2 
were also identified by Mathur  (2011) as being important indicators of prognosis. The biological 
significance of these genes is currently being investigated further. 
We found that the validation Az peaked at one latent variable, and was about 10% higher (around 0.77) than 
the models using all 271 features (see Figure 4).

 Furthermore, since the average validation Az values increased when only 
the 30 most important genes were used as predictors further supports the first goal.  
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