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Abstract 

Predicting the recurrence of non-small cell lung cancer remains a clinical challenge. The current best practice employs heuristic 

decisions based on the TNM classification scheme that many believe can be improved upon. Much research has recently been 

devoted to searching for gene signatures derived from gene expression microarrays for this challenge, but a consensus signature 

is still elusive. We present an approach to first create a benchmark for recurrence prediction based only upon gender, age and 

TNM features that uses several learning classifier induction methods and combines them into an ensemble using a recent 

extension of the general regression neural network. Using this approach on a pooled sample of 422 patients from two previously 

published studies (Shedden and Raponi), we demonstrate error rates in the low 20% for both false positives and negatives. Future 

work will focus on discovering if gene signatures can be discovered that can improve this performance. 
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1. Background 

Lung cancer is the leading cause of death in cancer patients worldwide. In 2011, the American Cancer Society 

predicted that 156,940 people would fall victim to the disease, accounting for 27% of all cancer deaths [1]. Of the 

221,130 estimated cases that would be diagnosed in 2011, 85% would have late stage tumors (II, III, IV) that have 

begun to advance. Due primarily to this late stage diagnosis, the 5-year survival rate of lung cancer patients is 16%. 

For these patients, treatment often includes surgical resection of tumors if possible, post-operative radiation, and 

adjuvant chemotherapy. The 5-year survival rate for early stage (I) non-small cell lung cancer (NSCLC) patients is 

53% [1] and treatment at this stage often only includes surgical resection [2]. However, 35%-50% of these patients 

will suffer a relapse of the disease within 5 years of surgery [5]. As a result, many doctors resort to administering 

post-operative chemotherapy, which in most cases improves survival, but this approach is controversial, expensive, 

and may not be necessary for all patients. Doctors currently lack a validated and clinically accepted method to 

predict which patients are at a high risk of recurring cancer [4]. Those patients that are at a high risk of recurrence 

might benefit from post-operative adjuvant chemotherapy, whereas those patients that are at a low risk can be spared 

the side effects of chemotherapy [5]. Much research is currently focused on discovering gene expression signatures 

that seek to improve our ability to identify patients at high risk of recurrence [6].  The work reported in this paper is 
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a first step in this direction by determining how well methods based on statistical learning theory can do when given 

only simple demographic and TNM (Tumor, Node, Metastasis) features in a data set that combines information from 

two publically available investigations of non-small cell lung cancer [3, 5]. With this as a benchmark, future work 

will investigate to what extent gene expression information can further improve recurrence prediction. 

2.  Methods 

2.1 Data Set 

 

The data set consisted of 422 patients drawn from two publically available NSCLC studies: Raponi et al. [3] 

(n=130) and Shedden et al. [5] (n=292). Work is on-going to compile and pool the microarray data from these 

studies with the aim of searching for robust gene signatures, but herein we explore only demographic and TNM 

(Tumor, lymph Node, Metastases) features. The features comprised gender, age, tumor stage (IA, IB, IIA, IIB, IIIA, 

IIIB), cancer type (adenocarcinoma, squamous cell), tumor size (grade 0-4), lymph node involvement (grade 0-3), 

metastasis (y/n), and stage grouping (codes 0-3). The outcome measure to be predicted was good prognosis 

(recurrence or death > 36 months) or poor prognosis (≤ 36 months). All categorical variables were mapped linearly 

to the range [0,1], while age was mapped using the tanh (hyperbolic tangent) function setting the minimum age in 

the data to 0.1 and the maximum to 0.9. 

 

We broke the data set into five folds stratified so that each fold contained roughly equal proportions of both 

cancer cell types and prognosis categories. Each classifier induction method (see below) was applied to each set of 

four folds and tested on the fifth. The resulting predictions on the left-out fold were concatenated and compared to 

the ground truth prognosis to compute an AUC (area under the ROC: receiver operator characteristic curve) and 

errors. Finally, we use the Generalized Regression Neural Networks (GRNN) “oracle” to combine the three 

classifiers into an ensemble. 

 

2.2 Linear Regression 

 

We used the R system (version 2.13.0), linear regression of the independent variables against “prognosis”.  

 

2.3 Support Vector Machine (SVM) 

 

The support vector machine (SVM) that was used was the libsvm learner in Orange [7,8]. A simple grid search 

was done to find the best performing parameters and the kernel that was used in the SVM was the radial basis 

function with a gamma value of 0.00010. This value gave well performing SVMs for all five folds. 

2.4 Probabilistic Neural Network (PNN) 

The PNN is a classifier that makes very effective use of the shapes of population distributions.  Given a sample/ 

case/control that has previously not been classified, the PNN determines the probability that the point belongs to a 

particular class based on populations of points whose class identity is known a priori.  The PNN makes this 

determination in two steps.  

It uses the multivariate Parzen density estimator to estimate (a constant multiple of) the density function of each 

population at the known point.  Then it computes the Bayesian posterior probability of membership in each 

population and assigns the unknown to the class having the highest posterior probability.  In particular, suppose we 

have a training set composed of n cases.  Each case i (i=1, …, n) consists of: 

xi,j  j=1, …, p 

 

These predictor variables determine the relative efficacy of the prediction models.  The observed values of the 

predictor variables for the unknown case are: 

xj  j=1, …, p 
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These are the values of the observed gate variables.  The weighted Euclidean distance function is often employed: 
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The (unnormalized) density function is then given by Parzen's formula: 

  (2) 

 

The above procedure is repeated for each of the K classes, giving the unnormalized density gk(x) for k=1, …, K.  The 

Bayesian probability that the unknown case was drawn from class k is as follows: 
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From the above formulation, the PNN has three interesting properties.  First, under reasonable assumptions, and as 

the training set size increases, the PNN is an asymptotically optimal classifier.  Second, the PNN is fully nonlinear.  

It does not impose constraints of linearity on the model (as does ordinary discriminate analysis), nor does it require 

linear separability like many other classifiers.  Finally, the PNN has the ability to compute Bayesian probabilities 

(including the use of priors if desired), which is a great advantage in many practical applications. 

 

2.5 GRNN Ensemble Formulation Summary  

 

The objective is to design an ensemble processor that uses the gate variables to intelligently combine the outputs of 

the competing models [9]. A background and history of ensemble processing may be found in Land et al. [10]. Once 

the expected error of each prediction model is estimated, these expected errors are used to compute the weights for 

each model. When an unknown case is processed, the gate variables are used by the GRNN to decide which models 

are likely to be best for this particular case. These models are weighted more heavily than the likely inferior models. 

In particular, one has a training set composed of n cases. Each case i (i =1, …, n) consists of p gate variables: xi,j 

where j =1, …, p. These gate variables determine in some way the relative efficacy of the prediction models. The m 

competing prediction models provide outputs qi,k for each case i where k =1, …, m. The desired output (the target 

value) for case i is yi. 

 

For the gate variables and model outputs of a trial case that is to be evaluated, just one subscript is used : xj where j 

=1, …, p, are the values of the observed gate variables, and qk where k=1, …, m, are the computed outputs from the 

m competing prediction models for this new case. 

 

Define the weighted Euclidean distance (as determined by the gate variables) between training case, i, and the trial 

case. Then the GRNN oracle’s predicted squared error for model k may be shown to be:  

                                                 (4) 

 

It is desired that the final prediction be a linear combination of the outputs of the competing models:  
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                                                                                            (5) 

Here wk are the weights for the outputs. If the models have the (desirable) property that their predictions are 

unbiased, then the following condition is imposed: 

                                                                                             (6) 

The linear combination of unbiased estimators having minimum mean-squared error uses weights proportional to 

the reciprocal of each estimator’s variance. If the predicted squared error is used in place of the variance, the 

following formula is derived for the weights: 

 

                                                                               (7) 

 

The GRNN ensemble processor is trained (i.e., the p sigma weights in the weighted Euclidean distance in (1) are 

optimized) in the leave-one-out validation manner. Differential evolution [11] was used to optimize the sigma 

weights over the set of training cases. 

3. Results  

Table 1 shows the correlations among the predictions made by each classifier among the 422 cases. The modest 

correlations with the ground truth (prognosis class) and the generally modest correlations among the classifier 

predictions, suggest that the GRNN oracle might be able to learn an ensemble classifier that would do better than 

any of the three alone. 

 

Table 1. Correlations among classifier predictions and the ground truth 

 

 Regression SVM PNN prognosis 

Regression 1    

SVM 0.911 1   

PNN 0.700 0.701 1  

Prognosis 0.607 0.564 0.488  1 

 

Table 2 shows the AUC (area under the ROC curve) and error counts for false positives (FP) and false negatives 

(FN) using a threshold of 0.5 (i.e. any prediction above 0.5 is called a positive, below a negative classification). The 

ensemble’s error rates (Table 2) coincide with the SVM’s because the SVM tends to create a substantial gap 

between the positive and negative classes, and so is least sensitive among the chosen classifiers to the choice of 

threshold. Perhaps curiously, the SVM also yielded the worst AUC. 

 

Table 2.  Results from 5-fold cross validation of individual classifier and the ensemble 

 

Classifier AUC test CV errors FP 

Test set 

CV errors FN 

Test set 

CV total errors 

Regression 0.830  50/177 28.2%   39/245 15.9%   89/422 21.1% 

SVM 0.783  38/177 21.5%   55/245 22.4%   93/422 22.0% 

PNN 0.822  22/177 12.4% 116/245 47.3% 138/422 32.7% 

GRNN 0.847  38/177 21.5%   55/245 22.4%   93/422 22.0% 
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The ROC curves are shown in Figure 1. From these and Table 2, we see that the GRNN ensemble makes a 

modest improvement on the individual classifiers. All tend to converge near the middle point. Above this threshold 

(i.e. preferring sensitivity to specificity), the linear regression classifier performs best among the individuals, and 

below (i.e. preferring specificity to sensitivity), the PNN performs best, while the ensemble provides the best across 

the board. 

  
Fig. 1. Oracle and PNN, SVM, regression ROC Curves 
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4. Conclusions 

This work provides a benchmark for predicting lung cancer recurrence within three years using only gender, age 

and TNM codes that are readily available in today’s clinical practice. Using leave-one-out cross validation, the 

GRNN ensemble classifier seems capable of error rates in the low 20% range for both false positives and false 

negatives. The data comprised 422 patients for whom gene expression microarray data are also avalable so the 

possibility of improved precision by adding gene signatures can be exploered. The 36-month threshold for 

recurrence was chosen because the cohorts were well balanced. We also plan to examine 60 months, as this may be 

a more clinically meaningful thershold. 

 

Work is still ongoing to prepare the microarray data for analysis: correcting for possible center effects 

(distributions of microarray values being different for the different research centers), and coarse feature reduction 

using significance analysis for microarays (SAM). Once the full data set is assembled, we plan to explore for gene 

signatures based upon microarray measurements that can be combined with these clinical measures to make further 

increases in the accuracy of recurrence prediction. Of course, any potentially useful findings will need independent 

verification in larger cohorts. 
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