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Abstract

The goal of this article is to select important variables that can distinguish one

class of data from another. A marginal variable selection method ranks the marginal

effects for classification of individual variables, and is a useful and efficient approach for

variable selection. Our focus here is to consider the bivariate effect, in addition to the

marginal effect. In particular, we are interested in those pairs of variables that can lead

to accurate classification predictions when they are viewed jointly. To accomplish this,

we propose a permutation test called Significance test of Joint Effect (SigJEff). In the

absence of joint effect in the data, SigJEff is similar or equivalent to many marginal

methods. However, when joint effects exist, our method can significantly boost the

performance of variable selection. Such joint effects can help to provide additional,

and sometimes dominating, advantage for classification. We illustrate and validate our

approach using both simulated example and a real glioblastoma multiforme data set,

which provide promising results.

Key Words and Phrases: Classification, Marginal screening, Permutation test, Variable se-

lection.
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1 Introduction

In many real data applications, such as bioinformatics and medical image analysis, there are

thousands to hundreds of thousands variables available for modeling (i.e., X ∈ Rd, where

d ≈ 103 to 105). It is often, however, that only a small number of them truly influence

the response variable Y . The aim of variable selection is to identify these variables which

strongly influence the response variable and thus have great predictive power. Variable

selection plays a fundamental role in high-dimensional statistical inference. In this article,

our focus is on variable selection for the binary classification problem where the response

variable Y ∈ {+1,−1}.

Our emphasis in this paper is on genetic applications, where each gene is a variable.

However, the lessons are broadly applicable. Classification based on gene expression data

has been shown useful in cancer research (Golub et al., 1999). Marginal, i.e., gene-by-gene,

methods assess each individual gene separately. Such methods help to identify genes that

are important marginally, and eliminate genes that are almost useless in the marginal sense.

There is a large literature in this direction. An incomplete list includes methods based on

the classical two-sample t-statistic which can be seen in most statistical textbooks, e.g.,

Peck and Devore (2011); the Empirical Bayes approach (Efron et al., 2001); the Significance

Analysis of Microarray (SAM; Tusher et al., 2001); a mixture model approach (Pan et al.,

2003), among others. There are other methods based on some improved marginal statistics,

such as Baldi and Long (2001), Zuber and Strimmer (2009), Wu (2005a,b), etc. Pan (2002)

has compared several of these methods and concluded that the statistics involved are similar,

although they may adopt different assumptions. Recently, Fan and Lv (2008) provides some

theoretical justification for marginal screening in a regression setting. In this article, we take

SAM (Tusher et al., 2001) as a representative example of the marginal methods. In SAM, a

significance test is implemented for each variable individually and a list of statistics (denoted

as ti) for these tests is obtained. A threshold is then calculated for an overall error control

so that all the variables with |ti| greater than the threshold are claimed as being significant.
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Marginal methods are often efficient in computation, and useful in various real application

cases. However, important joint effects among variables may be missed by these marginal

procedures.
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Figure 1: Left panel: 2D scatter plot of the data from the AR(1) simulation example (see
the setting in Section 4.1) based on variable #22 and variable #23. Two-sample t-tests are
conducted for both variables and both tests yield insignificant p-values, annotated in the axis
labels. See also the middle panel, where the density estimations for both classes are plotted
for each variable (the top subplot and the bottom subplot). The two classes demonstrate
no significant difference on either variable. However, when these two variables are viewed
together, a pattern can be seen that the Class ‘1’ samples are around the southwest corner
of the scatter plot while the Class ‘0’ samples are at the northeast. Such a pattern is not
visible when we consider each individual variable only. Right panel: The variable indices of
the first 50 variables that are selected by SigJEff (on the right) and by SAM (on the left)
respectively. This shows the different ranks of variables by the two methods. A variable that
is selected by both methods is annotated by a purple line segment connecting its positions
in both lists. The pair of variables #22 and #23 are not selected by SAM, but selected by
SigJEff due to their joint effect.

In practice, it can be reasonable to assume that many genes interact with each other,

and they work together to drive the variation in a particular phenotype. For the general

application of classification, it is possible to have two variables with weak marginal effects

that work together to yield a strong joint effect for classification. In this case, marginal

screening methods can be insufficient since these Alone-Nonsignificant-Together-Significant

(ANTS) variables may not be selected due to their weak marginal signals, even though the

joint effects can be substantial. For this reason, an approach which incorporates the joint

effect information can potentially select more useful variables.
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In practice, due to the constrained research budget, researchers may not be able to look

into all the potentially important variables. The common practice is to provide a sorted list

of variables, from the most important to the least, for researchers to choose according to

their budget. Marginal methods rank variables based on their marginal effects. Thus, those

ANTS variables may receive a lower priority and is more likely to be missed. We propose to

rank the variables based on a new criterion on the joint effect, instead of the marginal effect

of a variable. Because of the use of this new criterion, ANTS variables in general would

receive a better rank than that by a marginal method. The right panel in Figure 1 shows the

rankings of variables from a simulated dataset (details in Section 4.1), given by SAM and

our proposed procedure, Significance test of Joint Effects (SigJEff). We can clearly see the

common places and differences between these two rankings: some most important variables

are selected by both methods with the highest priorities, while some less SAM-important

variables can receive better ranks when SigJEff is used. In the left panel, we examine some

typical variables, variables #22 and #23 (contained in the shadow box in the right panel),

by drawing the scatter plot of the data set based on them. From the left panel, we can see

that the two variables are truly ANTS variables, namely, alone nonsignificant but together

significant. In particular, two-sample t-tests are conducted for both variables and both tests

yield insignificant p-values. This can be also seen from the middle panel, where the density

estimations for both classes are plotted for each variable. The two classes demonstrate

no significant difference on either variable. However, when these two variables are viewed

together, a pattern can be seen that the Class ‘1’ samples are around the southwest corner

of the scatter plot while the Class ‘0’ samples are at the northeast. Such a pattern is not

visible when we consider each individual variable only. More details of this example will be

analyzed in Section 4.1.

In this article, we conduct the significance analysis for pairwise variable selection in clas-

sification. Here the term pairwise refers to pairs of variables, instead of pairs of observations

or pairs of classes. Our proposed method SigJEff is based on a permutation approach that
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assesses the joint effect of a variable pair. Specifically, we want to assess whether there is

statistically significant difference between two classes based on these two variables only.

The rest of the article is organized as follows. In Section 2, we introduce the SigJEff

procedure. Section 3 is devoted to the computation of our method. Section 4 presents the

numerical properties of our method, including three different simulation settings. A real

data application study is conducted in Section 5. In addition to the marginal method SAM,

we also compare our approaches with those from Least Absolute Shrinkage and Selection

Operator (LASSO; Tibshirani, 1996). Concluding remarks are provided in Section 6.

2 Methodology

The proposed SigJEff procedure is a permutation procedure to assess joint effects between

pairs of variables. In high dimensional problems, permutating all pairs of variables would be

computational costly. Moreover, the resulting statistics of the pairs can be highly correlated,

which makes it difficult to control false discoveries. To overcome these difficulties, in this

paper, we first partition the d variables to bd/2c disjoint pairs, where btc is the largest integer

less than or equal to t. Once the partition is done, we will conduct a permutation test for

each given pair in the partition. Lastly, a p-value is calculated for each pair, and a sorted

list of pairs of variables will be given.

2.1 Variable partition

Let δ = µ̂1−µ̂2 be the sample mean difference between the two classes and Σ̂ the within-class

sample covariance matrix. In general, for a variable set S ⊂ {1, · · · , d}, a vector α ∈ Rd and

a matrix A ∈ Rd×d, let αS and AS,S denote the subvector of α and the principal submatrix

of A corresponding to S respectively.

Let Md×d =
(
m(i,j)

)
be a symmetric matrix whose off-diagonal (i, j)th entry is the Ma-
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halanobis distance between the two classes based on variables i and j, i.e.

mi,j =


δ′(i,j)

(
Σ̂(i,j),(i,j)

)−1
δ(i,j), i < j,

0, i = j,

mj,i, i > j.

Without loss of generality, we assume that the dimension d is an even number. To this

end we conduct a partition of the d variables into (d/2) pairs as follows. We first capture the

pair of variables (i, j) with the greatest mi,j. Then, we delete the ith and jth rows and ith

and jth columns from the M matrix. Among all the remaining d− 2 variables, we then find

the pair (i, j) with the greatest mi,j in the remaining M matrix. This procedure continues

until all the pairs, thus all the variables, are captured. Note that to carry out this partition,

d(d − 1)/2 Mahalanobis distances need to be calculated. However, this is the only time in

the whole procedure for us to calculate all the distances for all d(d− 1)/2 pairs of variables.

The practice of partitioning the variables serves to reduce the computational cost for the

permutation stage of our analysis later.

2.2 Pair selection by permutation

Once we have identified the bd/2c pairs of variables, for each pair, we conduct a permutation

test by randomly relabeling the class labels Y . Let P = {(i, j)} be the partition we obtain

in Section 2.1. For the pth permutation, for each (i, j) ∈ P , the Mahalanobis distance mp
i,j

is calculated for the permuted data. Note that here we do not conduct variable partition for

the permuted data, nor do we calculate the Mahalanobis distances for all pairs. Instead, only

the Mahalanobis distances for the pairs in the give partition P are calculated. In practice

we choose the number of permutations P = 1000.

A p-value will then be calculated. We allow three versions of the p-value in our imple-

mentation.

7



• The empirical p-value is defined as

p(i,j) =
1

P

P∑
p=1

1{mp
i,j>mi,j}.

This is the simplest version and is often used in practice. One potential drawback is

that one may have ties due to the discrete nature of this p-value.

• The Gaussian fit p-value is calculated as

p(i,j) = 1− Φ−1
[{
mi,j − ave(mp

i,j)
}
/std(mp

i,j)
]
,

where Φ−1 is the inverse of the cumulative distribution function of the standard normal

distribution, ave(·) is the sample average and std(·) is the sample standard deviation.

• The robust Gaussian fit p-value is calculated as

p(i,j) = 1− Φ−1
[{
mi,j −median(mp

i,j)
}
/mad(mp

i,j)
]
,

where median(·) is the sample median and mad(·) is the median absolute deviations,

which are the robust counterparts of sample average and sample standard deviation.

If the number of permutations P is large and if the effect is not very strong, these three

versions of p-value will produce similar rankings for the pairs. However, when the joint effect

in the data for certain pairs is very strong while P is not large enough, then it is possible that

the statistic calculated from the original data is greater than all its P counterparts from the

permuted data, in which case the empirical p-value is calculated as zero. In such cases, we

suggest the use of either Gaussian fit version to obtain some approximated and interpretable

assessment of the true p-value.

Lastly, we sort the p-values in an ascending order, set a threshold for the p-values, and

claim significance for all the pairs of variables with p-values less than or equal to the threshold.
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2.3 Algorithm

We summarize the algorithm as follows.

SigJEff Algorithm:

1. Partition:

(a) Calculate mi,j = δ′(i,j)

(
Σ̂(i,j),(i,j)

)−1
δ(i,j) for all 1 ≤ i < j ≤ d.

(b) Let P = ∅.

(c) For s = 1 to bd/2c,

i. Let P ← P ∪ {(i∗, j∗)}, where (i∗, j∗) = argmin
(i,j)

mi,j.

ii. Let mi∗,j′ ← 0, mj∗,j′ ← 0, mi′,i∗ ← 0 and mi′,j∗ ← 0 for all i′ and j′.

2. Permutation:

(a) For p = 1 to P ,

i. Permute the class labels.

ii. Re-calculate δp(i,j) and Σ̂p
(i,j),(i,j).

iii. Calculate mp
i,j = δp′(i,j)

(
Σ̂p

(i,j),(i,j)

)−1
δp(i,j) for each (i, j) ∈ P .

(b) Calculate the p-value p(i,j) for each (i, j) ∈ P .

(c) Sort the list of pairs according to p(i,j) in an increasing order.

3. Selection: Choose the top t pairs which controls the false discovery rate (FDR) or

according to the budget of the researcher.

3 Computational Issues

The SigJEff method considers effects beyond marginal ones. In the SigJEff framework,

there are two main parts which can be computational intensive. One is to compute the

statistics corresponding to all d(d − 1)/2 pairs during the partition stage. The other is the

time for permutation. To compare all the d(d− 1)/2 pairs of variables with their permuted

counterparts, the corresponding computational cost could be (d− 1)/2 times of that of the

more efficient marginal methods. For SigJEff, we significantly reduce the computational cost
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for the permutation stage, by permuting and calculating only the statistics for the (reduced)

bd/2c pairs of variables. Hence at the permutation stage, the computational cost is at the

same order as the marginal method.

At the partition stage, we would have to calculate all d(d− 1)/2 pairs in order to achieve

a partition of the variables. However, when d is very large, say greater than thousands, this

could still cost a lot of time and memory. In this case, we propose to adopt a reasonable

assumption to avoid computing all pairs.

Assumption 1. Within any nonempty subset of the whole d variables that has size d∗ ≤

d, the pair with the highest Mahalanobis distance between classes, is constituted by two

variables whose absolute two-sample t values are ranked at the top d0 among the d∗ variables.

Assumption 1 above implies that for any collection of variables, the best pair within this

collection should be searched among the best d0 variables in the sense of marginal effects.

Note that the assumption holds for all nonempty subset of the d variables, instead of only

the case where d∗ = d. When d0 = 2, then the best pair is also the two best variables with

the highest marginal effects, which means that the ranking of the joint effect coincides with

that of the marginal effect. This is opposite to what motivates this article and not what we

want to assume. However, when d0 is reasonably large (say hundreds), it allows the joint

effect to give a different ranking of variables from the marginal effect ranking. On the other

hand, when d0 � d, there is a huge save in computation since we do not need to search the

best pair by calculating all pairs; instead, we can focus on a subset where the best pair is

more likely to appear.

Making use of Assumption 1, we propose a faster computational strategy, where we

calculate pairs incrementally. In particular, to find a best pair among the remaining variables

each time, we focus on a small group of d0 variables. Such strategy can be summarized as

follows.

Fast computational strategy for partition:
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1. Sort variables in a descending order based on the absolute two-sample t values, and

save them as a waiting list W .

2. Active set A ← {pairs of the top d0 variables from W}; Output list S ← ∅; The top

d0 variables are deleted from W .

3. Calculate statistics for all d0(d0 − 1)/2 pairs in A.

4. Promote the best pair in A to the end of list S. Delete any pair from A whose

component variable is any one of the variables in the best pair that is just promoted.

5. Move the next two variables from W to A. Calculate the new pairs created by the

addition and save the pairwise results in A.

6. Repeat 4–5 until no variable is left in W and all the pairs in A have been promoted to

S.

Figure 2 shows a toy example with d = 10 and d0 = 4. The subset size d∗ in Assumption

1 takes value 10, 8, 6 and 4 in the four steps that we show here. Before the analysis is started,

all the variables are sorted according to the marginal effect. In step 1, our algorithm starts

with the top 4 variables (i.e. 6 pairs corresponding to the black cells in the figure). At step

2, pair {1, 3} (shown as diamonds) are found to be the best pair and variables 1 and 3 are

promoted to the output list. Any pair that contains either variable 1 or variable 3 will no

longer be considered (gray cells in the figure). Variables 5 and 6 substitute variables 1 and

3. Moreover, 5 new pairs ({5, 6} , {5, 2} , {5, 3} , {6, 2} , {6, 3}) joins {2, 4}, the pair that was

not grayed out. At step 2, we still compare only 6 pairs. The procedure is repeated until

each variable has been considered. In the end, we have calculated for only 21(= 6+5+5+5)

pairs. If we do not use Assumption 1 and this fast strategy, we will have to calculate for

45(= 10 choose 2) pairs. Lastly, the first six variables in the output list of the algorithm are

(1,3,2,4,5,8), which is different from the ranking by t test, i.e. (1,2,3,4,5,6). They do not

appear to be substantially different in this very small toy example. However, an instance

with d = 5000 and d0 = 200 can have two apparently very different rankings between our

method and a marginal method. Despite the differences, these two rankings would have
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Figure 2: A toy example where d = 10 and d0 = 4 showing advantage of the new strategy.
In each step, only 6 (4 choose 2) pairs are considered. Overall, only 21 pairs have been
calculated, compared to 45 pairs without Assumption 1.

some close underlying connection, due to Assumption 1.

In the algorithm above, the waiting list W is of length d, which is inevitable, even for a

marginal method. But the active set A is only of length d0(d0 − 1)/2 and the output list S

is only of length bd/2c. This algorithm fully utilizes the advantage created by Assumption

1. The main computational cost is on the memory management: index, search, save and

deletion. The advantage is that at any time we only need memory of size O(d + d20) and

the number of pairs we need to calculate is d0(d0 − 1)/2 + {1 + 2(d0 − 2)} × b(d− d0)/2c =

O(d0 × d), compared to O(d2) pairs to calculate without the strategy. The computational

saving comes from: (1) focusing on a small group in each iteration and (2) deleting those
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variables which are promoted at the early stage.

In the simulation study (Section 4) we have tried the regular SigJEff for smaller di-

mensions (d = 500) and the fast SigJEff discussed in this section for higher dimensions

(d = 5000). For the real data application, we use the fast SigJEff algorithm. We have

chosen d0 = 200 for a reasonable computational time. The larger d0 is, the less restriction

Assumption 1 imposes on our algorithm.

4 Simulations

We consider three different simulation settings, where the covariance structures follow AR(1)

process, Block-diagonal covariance and Independence (diagonal) covariance matrices. The

details of the settings are given in Section 4.1. The methods of comparison and the measures

of performance are explained in Section 4.2. The results are fully elaborated in Section 4.3.

4.1 Settings

Example 1. [AR(1) Process] This example includes d variables and 100 observations (50

from each class), where d = 500 and 5000 respectively. For each observation (sample), we

generate a d-long stationary AR(1) process with marginal standard deviation 1 as the d

variables. The first order AR coefficient (equivalently, the correlation between two adjacent

variables) equals −0.8. We then add mean differences to the first 50 variables, so that

the squared marginal mean differences between the two classes linearly decrease to zero from

variable 1 to variable 50. That is, we add c(
√

50,
√

49, · · · ,
√

1)T to the first 50 dimensions of

each observation from the first class. The constant c > 0 is chosen to make the Mahalanobis

distance between the two population means (a notion of the signal level) to be 2.5.

Example 2. [Block Diagonal Covariance] The dimensions and sample sizes for this ex-

ample are the same as Example 1. Define a 10 × 10 symmetric matrix Σ0 = [σij]i,j=1,··· ,10,

where σii = 1 and σij = 0, except that 4 randomly selected off-diagonal entries in the up-
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per triangular part of Σ0 are assigned to be −0.8. The lower triangular part is updated

accordingly due to symmetry. Then we add δ = |min(λmin(Σ0), 0)| + 0.05 to the diag-

onal entries of Σ0 to make it invertible where λmin(Σ0) is the smallest eigenvalue of Σ0,

and then rescale each entry of Σ0 by dividing them by (1 + δ). Let Σ be a d × d iden-

tity matrix, except that the first 5 diagonal blocks, each of which is 10 × 10, all equal to

Σ0, i.e., Σ = Block-Diag{Σ0,Σ0,Σ0,Σ0,Σ0, Id−50}. Then the data vectors from each class

are generated according to multivariate normal distributions x±,i
iid∼ MVNd(µ±,Σ), where

µ+ = c(
√

50,
√

49, · · · ,
√

1, 0, 0, · · · , 0)T , µ− = 0 and the constant c > 0 is chosen to make

the Mahalanobis distance between the two population means equal 2.5.

Example 3. [Independent Covariance] This example is the same as Example 2 except

that the covariance matrix is Id. Note that in this setting, there is only marginal effect and

no joint effect is included.

4.2 Methods and measures of performance

First, we compare the number of true non-null variables that are selected among the selected

variables from SigJEff, SAM, and LASSO over 100 runs of simulation. The more true non-

null variables, the better the variable selection result is as the fewer true variables is missed.

Second, we compare the average false discover proportion (FDP) of the variable selection

results from the three variable selection procedures, over different numbers of variables se-

lected. FDP is defined as the proportion of the true null variables among all the selected

variables. We would like to have small FDPs.

Besides the previous measures, we also compare the misclassification rates using the

selected variable sets. We apply two standard classifiers, Support Vector Machine (SVM;

Cortes and Vapnik, 1995; Vapnik, 1999) and Linear Discriminant Analysis (LDA; Fisher,

1936) to test data sets based on the selected variable selection sets using SigJEff and SAM.

The test data sets are generated in the same way as the training data sets and of 10 times

larger. For LASSO, as it can be used as a binary classification method, its misclassification
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error rates is reported directly. Cross validations are used for the parameter tuning in SVM.

We use the SVM implementation by R/e1071 and the default setting therein for tuning. We

use glmnet to train LASSO after relabeling the response variables y ← n/n1 for y = +1 and

y ← −n/n2 for y = −1, where n1 and n2 are the sample sizes of the two classes. We use the

empirical version of SigJEff p-value in simulations, as in our simulation settings the effect is

not strong and therefore using the empirical p-value is sufficient.

4.3 Simulation results

4.3.1 AR(1) Process

In Figure 3, we plot the numbers of true non-null among the variables that are selected as

functions of the total number of variables selected (left panel), the FDPs as functions of the

number of variables selected (middle panel) and the misclassification rates for test data set

as functions of FDP, from SigJEff, SAM and LASSO (right panel). The top row is for the

low dimensional example (d = 500) and the bottom row is for the high dimensional example

(d = 5000). The results in the low dimensional example show that SigJEff selects more

true non-null variables than SAM uniformly and than LASSO when the number of variables

selected is fewer than 16. Similarly, SigJEff gives better variable selection quality (lower

FDP) than SAM over the broad, and than LASSO for smaller submodel sizes. However,

note that LASSO gives better FDP only when the submodel size is large, in which case the

FDP value is relatively high (about 40%). For the high dimensional example, the advantage

of SigJEff is even larger and it is better than SAM and LASSO uniformly for the experiments

we studied.

Lastly, given the same FDP, the submodels chosen by SigJEff can give the best classifica-

tion performance. In particular, as we can see in the right panel, the misclassification rates

from the SVM classifier are depicted using solid curves and those from the LDA classifier

are depicted using the dashed curves. The LASSO misclassification rates are shown using

the blue longdashed curve. We can see that the SigJEff-SVM classifier (i.e., SigJEff variable
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Figure 3: AR(1) Process example: The number of true non-null as function of the number of
variables selected, the false discover proportion (FDP) as function of the number of variables
selected and the misclassification rate for test data as function of FDP, from SigJEff, SAM
and LASSO. The top row is for the low dimensional setting and the bottom row is for the
high dimensional setting. The results show that SigJEff selects more true non-null variables
than SAM and LASSO, gives better variable selection quality (lower FDP), and when given
the same FDP, the submodels chosen by SigJEff can give better classification performance. It
also shows that the SigJEff method enjoys greater advantage when the dimension increases.

selection followed by SVM classifier) is better than the SAM-SVM classifier uniformly over

different FDPs; the SigJEff-LDA classifier is better than the SAM-LDA classifier uniformly

over different FDPs. All four classifiers above are better than LASSO in terms of misclas-

sification rate. Again, the advantage of SigJEff in the high dimensional example is more

obvious than that in the low dimensional example.

4.3.2 Block Diagonal covariance

Similar results can be seen in Figure 4, though the margins between SigJEff and the other

two methods become smaller than those in the last example (at least in the low dimensional

example).
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Figure 4: Block Diagonal example: The number of true non-null as function of the number of
variables selected, the false discover proportion (FDP) as function of the number of variables
selected and the misclassification rate for test data as function of FDP, from SigJEff, SAM
and LASSO. The top row is for the low dimensional setting and the bottom row is for the
high dimensional setting. The results show that SigJEff selects more true non-null variables
than SAM and LASSO, gives better variable selection quality (lower FDP), and when given
the same FDP. The submodels chosen by SigJEff can give better classification performance
when FDP is relatively small. The margins between SigJEff and the other two methods are
not as large as those seen in the previous example. As the dimensions increase, the advantage
of SigJEff over its competitors does not seem to be increased.

The numbers of true non-null chosen by all three methods are fairly close, with SigJEff

leading slightly when the submodel sizes are small (the advantage is visually separable as

in the high dimensional example in the bottom row). The LASSO submodels are similar to

SAM for smaller submodel sizes and are similar to the SigJEff submodels when the submodel

sizes increase. The gain of FDP seems to be more substantial. In the middle panel, SAM

and LASSO are very close in FDP, while SigJEff submodels enjoy smaller FDPs. Lastly,

the submodels chosen by SigJEff can give better classification performance when FDP is

relatively small. When FDP is as large as 75% to 90%, the classification performances from

different variable selection methods and classifers are mixing. Note that when the variable
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Figure 5: Independent example: The number of true non-null as function of the number of
variables selected, the false discover proportion (FDP) as function of the number of variables
selected and the misclassification rate for test data as function of FDP, from SigJEff, SAM
and LASSO. The top row is for the low dimensional setting and the bottom row is for the
high dimensional setting. The results show that the variable selection and classification
performance for SigJEff and SAM are almost identical. The variable selection performance
of LASSO is just a little worse than them.

selection quality is so low, one may not care about the classification performance as much.

For small FDP, the SigJEff method is clearly better than SAM, which is better than LASSO.

Note that the best classification performance of LASSO is attained when the FDP is about

80%. Overall, the best classification performance is attained by the two SigJEff related

classifiers.

4.3.3 Independent covariance

The Independent covariance example is meant to be an example where SigJEff and SAM

should perform similarly because there is no true additional joint effects besides marginal

effects due to the independence setting. The simulation results validate the conjecture. In

Figure 5, we can see that the variable selection quality of SAM and SigJEff are almost
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Figure 6: The estimated false discovery rate and the 10-fold cross validation error (by SVM)
based on variable sets selected by SigJEff and SAM respectively. The estimated SigJEff
FDR is always zero. Note this can be due to the different ways of FDR estimation. More
informative (and reliable) is the classification performance shown in the right panel. SigJEff
dominates SAM in terms of classification when the SVM classifier is used.

identical, while the LASSO variable selection is worse by a very narrow margin.

In terms of classification, again, SigJEff and SAM perform almost identically. The per-

formance of LASSO is not as good, which is probably due to the fact that LASSO is not

tailored for classification.

The results from this example suggest that, in practice, even if there was no joint effect,

using SigJEff would not give results that are worse than using marginal methods.

4.4 Remarks

In the left and middle panels of each figure, we use error bars to depict the standard error

of the estimated mean number of true non-null and mean FDP.

In the right panel, for better visualization and presentation, nonparametric smoothing is

applied to fit the conditional mean of the ‘misclassification rate’ as a function of ‘FDP’. See

geom smooth function in the R/ggplot2 package for details. The standard error is shown as

the shadow using the default setting of the smoothing function.

The purpose of this set of simulation study is to understand the performance of SigJEff,
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SAM and LASSO over a broad range of submodel sizes (i.e., the number of variables selected

varies). In the simulations, we do not apply a threshold to choose the best submodel size,

because

1. The choice of the submodel size depends on the budget and the capacity of the re-

searcher;

2. Studying the performance for a particular choice of the submodel size would only give

us a comparison from one single aspect, while what we have done here is to try to look

at the whole picture and to understand the methods under investigation for different

submodel sizes.

We would like to point out that although one can apply SVM or LDA to the variable set

selected by LASSO and evaluate the classification performance, our focus is to first select

variables and then apply classification procedures, such as SVM or LDA.

Lastly, the simulation study was run in parallel in a cluster of about 300 computers

whose average speed is 18800 MIPS and average memory is 1.78 GB. In the high dimensional

examples, the average CPU time for each run of the SAM procedure is 0.215, 0.214 and 0.165

seconds respectively for the three settings, compared to 251.23, 205.59 and 157.46 seconds

for the SigJEff procedure. Although the computational time for SigJEff is much longer than

that for SAM, it is quite efficient overall. Furthermore, we believe that there is still room

for improvement such as through parallelization.

5 Real data application

Recurrent genomic abnormalities were cataloged by the Cancer Genome Atlas Research

Network in the glioblastoma multiforme (GBM) data sets. Verhaak et al. (2010) classified

GBM into four subtypes: Proneural, Neural, Classical and Mesenchymal. We focus on the

Proneural subtype in this article. It is found that point mutations in the gene IDH1 appeared

in the Proneural data set. For the purpose of classification, we define two classes based on
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the status of IDH1, being with and without mutations. The sample size is 37 (with 11

mutations, and 26 no-mutation). This data set has 11338 genes.

The sample size of the data is really small, compared to the dimensions. Moreover, it

turns out that the signal in this data set is so strong that hundreds of genes are significant.

In order to conduct our study and compare the performance of SigJEff and SAM as means

of significance analysis, we first screen the variables from the bottom by deleting all those

variables whose marginal overall standard deviations are less than or equal to 0.5. Here the

threshold 0.5 is an ad hoc choice. However, it helps to throw away non-informative variables.

Note that this is an unsupervised screening which does not employ any class information.

After the pre-screening step, the data set remains with 4280 dimensions.

We apply SigJEff and SAM to the dimension-reduced data set. In SigJEff, we use the

robust Gaussian fit version of the p-value because we expect to have some genes with very

strong effect. As shown in Figure 6, we first estimate the false discover rate (FDR) of SigJEff

and SAM for different submodel sizes and compare the cross validation error of SVM based

on the submodels given by the SigJEff and the SAM procedures. The estimated SigJEff

FDR is always zero. Note this can be due to the different ways of FDR estimation. Here, we

are not claiming that the SigJEff can control FDR better than SAM, although this seems to

be a reasonable conjecture from the simulations in the previous section. More informative

(and reliable) conclusion can be drawn from the classification performance shown in the

right panel of Figure 6. SigJEff dominates SAM in terms of SVM classification over different

submodel sizes.

The good performance of SigJEff in this real data application motivates us to carefully

check the genes that are selected by each method. In the left panel of Figure 7, we list,

from top to bottom, the gene indices of the first 50 genes that are selected by SigJEff (on

the right) and by SAM (on the left) respectively. Common genes selected by both methods

are connected by a purple line segment. This plot shows the different rankings of variables

selected by SigJEff and SAM. The most important SAM genes, #3224 and #599, are viewed
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important by SigJEff as well. However, there are some SigJEff-important genes that are not

recognized by SAM, for example, #1516, #1006, and so on. We now take a deeper look at

the gene pair, #3169 and #2828. The latter is not SAM-important at all, while the former

is among the 50 most SAM-important genes, but barely makes the top 30 list. When they

are paired together, they are more important and obtain a better rank by SigJEff. In the

right panel of Figure 7, we show the scatter plot of the data based on these two variables.

The two-sample t-test p-value of gene #3169 is 0.003, which explains why it makes the top

50 list of SAM-important genes. Note that gene #2828 only has 0.828 t-test p-value, which

is the reason that SAM does not select it. However, when these two variables join together,

it appears from the scatter plot that the Class ‘1’ samples are around the southeast corner

of the plot while the Class ‘0’ samples are at the northwest. It is the joint effect like this

that drives the improvement of the classification performance when we use SigJEff to select

variables.

Remark: In Figure 6, we have estimated the FDR of the variable selection set of SigJEff.

Our FDR estimation follows the standard procedure and is parallel to the method employed

by SAM. The details can be found in the appendix.

6 Discussion

In this article, we propose a simple and useful procedure to perform pairwise variable selection

via assessing joint effects useful for classification. We use a permutation procedure to select

pairs of variables. Although this procedure is not as fast as the marginal methods such

as SAM or Sure Independent Screening (Fan and Lv, 2008), it is relatively efficient and

more importantly, it can help to understand different aspects of the data which the marginal

methods do not cover. Our numerical study shows that one may not lose much by using

pairwise variable selection even when there is no true joint effect, because variables that are

marginally significant are usually pairwise significant as well.
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Figure 7: Left panel: The gene indices of the first 50 genes for the real data set in Section 5
that are selected by SigJEff (on the right) and by SAM (on the left) respectively. Shows the
different ranks of variables by the two methods. Right panel: the scatter plot of the samples
from the two classes based on gene #3169 and gene #2828. The latter is not SAM important
at all (large t test p-value), while the former is among the top 50 most SAM-important, but
barely makes the top 30. When viewing these two variables together, a pattern can be seen
that the Class ‘1’ samples are around the southeast corner of the plot while the Class ‘0’
samples are at the northwest. Such a pattern is not visible for each individual variable.

For ultra-dimensional data, there are a few strategies that may be taken to speed up the

computing. First, one may keep those variables that are extremely strong first and leave

them out of the SigJEff procedure, since these variables will likely be picked up by SigJEff

anyway. SigJEff would work better for those variables in the gray zone where variables are

moderately strong, but not strong enough to be called by a marginal method. One can

also delete those variables that seem to be non-informative, such as those with very small

variation. In this article, we have also considered an assumption which regulates the SigJEff

partition step, and can help to speed up significantly on computation and memory.

Our method may be extended to more than two variables, by assessing the Mahalanobis

distances between the two classes on more than two variables. The corresponding computa-

tion cost will be higher and furthermore, the procedure and the corresponding interpretation

becomes much more involved. Thus it does sound appealing, we have not extend our research

toward that end yet.
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Although our focus is on classification, SigJEff can be extended to accommodate the

regression setting. In that case, one needs to define a proper criterion for the variable

partition and a statistic which measures the correlation between the variable set and the

response variable. Further investigation is needed.

It is worth noting that selecting the pairwise joint effect for classification is not the same

as selecting the interaction effect. For the latter, see Bien et al. (2012) and the references

therein. In particular, in the context of classification, selecting interaction focuses on the

nonlinearity of the discrimination function and the classification boundary. On the other

hand, our SigJEff test implicitly assumes linear boundary due to the use of the Mahalanobis

distance as the statistic, although one could apply nonlinear classification methods to the

resulting variables selected by SigJEff.

Note that since we rank d/2 disjoint pairs, correlation is not a big issue for the FDR

procedure. However, even with the simplification, correlation between pairs may still exist.

Thus, a better multiple comparison adjustment procedure such as Fan et al. (2012) can be

helpful.

Finally, we would like to point out that there is a large literature in recent years on

the use of sparsity for variable selection, such as LASSO, SCAD (Fan and Li, 2001), DS

(Candes and Tao, 2007) etc. Our proposed SigJEff is not intended to replace such sparse

penalized methods, instead, we suggest to use SigJEff for prescreening and then apply one of

these variable selection methods post the SigJEff procedure, much in the same spirit as SIS-

SCAD, SIS-DS, etc. as proposed in Fan and Lv (2008). We expect a combination of SigJEff

screening with sparse penalized methods after screening can lead to accurate prediction and

selection.

The software of SigJEff can be found on the corresponding author’s website: http:

//www.math.binghamton.edu/qiao.
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Appendix

Estimation procedure of FDR for SigJEff.

1. For each cutoff value c > 0, compute the total number of significant pairs from the

original data, i.e., # {mi,j > c : (i, j) ∈ P} , and the median number of pairs called

significant, by computing the median number of mp
i,j values among each of the P sets

of bd/2c pairs of variables, that fall above c. Similarly for the 90th percentile of pairs

called significant.

2. Estimate π0, the proportion of true null pairs in the data set as follows:

(a) Compute q50, the median of all the permuted statistics, mp
i,j. Note that there are

P × bd/2c such values.

(b) Compute π̂0 = # {mi,j < q50} /(0.5 bd/2c), where mi,j is the statistic from the

original data set and there are bd/2c such values.

(c) Truncate π̂0 at 1: π̂0 ← min(π̂0, 1).

3. The median and 90th percentile of the number of pairs called significant from Step 1

are multiplied by π̂0 to obtain estimations of the median and 90th percentile of the

number of falsely called pairs.

4. The SigJEff FDR is computed as [the median (or 90th percentile) of the number of

falsely called pairs] divided by [the number of pairs called significant in the original

data].
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