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Abstract

Classification and clustering are both important topics in statistical learning. A
natural question herein is whether predefined classes are really different from one an-
other, or whether clusters are really there. Specifically, we may be interested in knowing
whether the two classes defined by some class labels (when they are provided), or the
two clusters tagged by a clustering algorithm (where class labels are not provided), are
from the same underlying distribution. Although both are challenging questions for
the high-dimensional, low-sample size data, there has been some recent development
for both. However, when it is costly to manually place labels on observations, it is
often that only a small portion of the class labels is available. In this article, we pro-
pose a significance analysis approach for such type of data, namely partially labeled
data. Our method makes use of the whole data and tries to test the class difference as
if all the labels were observed. Compared to a testing method that ignores the label
information, our method provides a greater power, meanwhile, maintaining the size, il-
lustrated by a comprehensive simulation study. Theoretical properties of the proposed
method are studied with emphasis on the high-dimensional, low-sample size setting.
Our simulated examples help to understand when and how the information extracted
from the labeled data can be effective. A real data example further illustrates the
usefulness of the proposed method.

KEY WORDS : Classification; Clustering; High-dimensional, low-sample size data; Hypoth-
esis test; Semi-supervised learning.
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1 Introduction

Classification and clustering are both important tools in statistical learning. The availability

of the class labels distinguish these two main domains. In classification, class labels are

provided prior to the analysis, while they are unavailable in the clustering analysis. A

natural statistical question regarding their use is whether classes/clusters are really there.

In a setting where binary class labels are observed, we may be interested in testing whether

the two classes are from the same distribution. Though often neglected, this is an important

step before applying a classification algorithm. In standard statistical textbooks, there are

many significance tests, such as two-sample t-test, one-way ANOVA, Hotelling’s T 2 test,

and MANOVA. Among these, the two-sample t-test and ANOVA are univariate tests. The

Hotelling’s T 2 test and MANOVA are multivariate tests, though both can fail when the

dimension d is much greater than the sample size n.

This problem of testing the difference between two classes becomes even more challeng-

ing for the high-dimensional, low-sample size (HDLSS) data. The Hotelling’s T 2 test is very

powerful when the dimension is smaller than the sample size. It is invariant under linear

transformation. In addition, under the null hypothesis, the distribution of the statistic is

known. However, the Hotelling’s T 2 statistic cannot be computed in the HDLSS setting

because the sample covariance matrix is not invertible. There are efforts attempting to over-

come this issue, including Dempster (1960), Bai and Saranadasa (1996), Srivastava and Du

(2008) and Chen and Qin (2010). These methods use diagonalized versions of the covariance

or inverse covariance matrices in the Hotelling’s T 2 statistic. There are many other treat-

ments, such as Srivastava and Fujikoshi (2006), Schott (2007) and Srivastava (2007), which

calibrate the distribution of some proposed statistic. In addition, the Direction-Projection-

Permutation (DiProPerm) test (Wichers et al., 2007, Wei et al., 2015) has been proved to

be very effective for testing the class difference of the HDLSS data.

Besides the difficulty brought from the high dimensionality, in many real problems, it

is often the case that there are many observations that are left without class labels (the

unlabeled data portion) in a data set. One reason is that it is often difficult or expensive to
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obtain the class label information, while it may be relatively cheap to obtain the covariate

information even for many observations. In such a situation, those aforementioned testing

methods which require label information cannot be applied to the whole data set to test the

class difference. As a consequence, one may have to forfeit the potentially useful information

that resides in the unlabeled data. For instance, many cancer patients are categorized

to certain cancer subtypes by radiologists through an inspection of the medical images.

However, because of the high health care cost, medical images are easier to obtain than the

actual diagnostic. Before a classification algorithm is used to design a data-mining-based

early-screening machine (see, for example, Land et al., 2012, Schaffer et al., 2012), a valuable

question to ask is whether the so-called subtypes, many of which may be ad hoc or based on

experience, are really there.

One possible, but clearly flawed, solution to this problem is to treat all the data as

unlabeled. In the unsupervised context, in the sense that there are no class labels provided

for the analysis, clustering algorithms have been broadly applied in many fields. As to

determine whether clusters are really there, several methods have been developed to assess

the significance of clusters, including McShane et al. (2002), Tibshirani and Walther (2005),

Suzuki and Shimodaira (2006) and Liu et al. (2008). However, these methods are not directly

applicable for partially labeled data, unless one forfeits the potentially useful information

that resides in the class labels which are available in the labeled data portion of the full data

set.

Hence, there seems to be a dilemma in testing partially labeled data: to ignore the un-

labeled data completely (and apply a significance test for the labeled data only), versus, to

ignore the class labels in the labeled data portion (and use a significance test for cluster-

ing). Although each has its own applicability domain, neither looks promising for us. This

motivates us to devise a significance testing method for the HDLSS partially labeled data.

When class labels are partially provided, the unlabeled data are used to better estimate the

sampling distribution. In the meantime, the class labels help to effectively distinguish the

two classes even if their difference is small. Our proposed method is named Significance
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Analysis of HDLSS Partially Labeled Data (SigPal).
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Figure 1: The DiProPerm test is applicable when all class labels are known (top-right panel)
while SigClust does not require any label information (bottom-left panel). The DiProPerm
test correctly concludes that the two classes are indeed from two distributions (with p-
value= 0), whereas the SigClust method fails to find this important difference (p-value=
0.296). When the majority of the data are unlabeled with a small portion of labeled data,
our proposed SigPal approach can give a significant conclusion with p-value= 0.018, which
is close to the DiProPerm result.

To illustrate our main idea, we show a toy example under different settings in Figure 1.

The data in the top-left panel are generated from a Gaussian distribution and the data in the

rest three panels come from a mixture of two Gaussian distributions with a small difference

in the mean, 0.5N(−µ, I2) + 0.5N(µ, I2), where µ = (0.5, 0)′. To ease the presentation,
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the toy example is of two-dimensional, though the message applies to the HDLSS data.

We show two significance analysis methods for the HDLSS data that inspire our approach,

the DiProPerm test of Wichers et al. (2007) and Wei et al. (2015), and the Statistical

Significance of Clustering method (SigClust) of Liu et al. (2008) and Huang et al. (2014).

The DiProPerm test is applicable when all the class labels are known (see the different

colors/marker-types in the top-right panel, where each component of the mixture distribution

corresponds to one class.) In contrast, SigClust does not require any label information

(bottom-left panel). The (empirical) p-value of the DiProPerm test turns out to be 0, which

leads to a correct conclusion that the two classes are indeed from two distributions, whereas

the SigClust method fails to find this important difference (p-value= 0.296). Our proposed

SigPal approach is designed for the case shown in the bottom-right panel. Given some

labeled data, SigPal can give a significant conclusion with p-value= 0.018, which is close to

the DiProPerm result. All these three methods will be introduced or revisited in the next

two sections.

The rest of the article is organized as follows. In Section 2, we review the DiProPerm test

and the SigClust method. Section 3 presents our proposed SigPal method. Some theoretical

results are studied in Section 4 which emphasize the HDLSS setting. A comprehensive

simulation study and real data case study are provided in Section 5. Section 6 gives some

concluding remarks. The appendix is devoted to technical proofs.

2 DiProPerm Test and SigClust Test

In this section, we review two significance analysis methods, DiProPerm and SigClust. Both

methods are specifically designed for testing HDLSS data, although they may be applied to

low-dimensional data as well. DiProPerm is used when all the class labels are fully observed

while SigClust is applicable when the data set has no class label information. The hypotheses

of both methods are slightly different.
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2.1 DiProPerm Test

In practice, permutation tests are often used for the purpose of testing the class difference,

where the null distribution is mimicked by the empirical distribution of the statistic calcu-

lated from many randomly permuted data sets. However, for high-dimensional data, some

distance measure with direct permutation may not work. This is because when d� n, such

distance measure will be mainly driven by the error aggregated over dimensions, rather than

the true mean difference between classes. To address this issue, a three-step procedure called

Direction-Projection-Permutation test (DiProPerm) was proposed in Wichers et al. (2007)

and further studied in Wei et al. (2015) for the two-class setting. DiProPerm was designed

for data with fully observed labels. It tests the null hypothesis of equality of distributions:

H0: the distributions of the two classes are the same, and

H1: the distributions of the two classes are not the same.

Another item of interest is to test the weaker null hypothesis of equality of means:

H0: the distributions of the two classes have equal means, and

H0: the distributions of the two classes have different means.

Algorithm 1. The DiProPerm test comprises three steps.

1. Direction: a direction which is capable of separating the two classes is found, such as

the classification direction from Support Vector Machine (SVM; Vapnik, 1995, Cortes

and Vapnik, 1995), Distance Weighted Discrimination (DWD; Marron et al., 2007), or

their hybrids (Qiao and Zhang, 2015b,a).

2. Projection: all the data vectors are projected to this direction so that a univariate

statistic (such as the two-sample t-statistic or the mean difference) can be calculated.

3. Permutation: all the data are randomly relabeled and the first two steps are repeated

for NPerm times (NPerm may be 1000.) An empirical p-value is calculated to assess the

statistical significance (the proportion of the statistics from the permutation set that

are greater than that from the data).
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In Figure 2, we illustrate how the p-value in DiProPerm is calculated, using the same data

as shown in Figure 1. In the left plot, we perform a DiProPerm test with 1000 permutations.

The test statistics calculated for the permutations are shown as the blue jitter points, while

that for the original data is the green vertical line. Here the mean difference is chosen as

the statistic. The greater the statistic is, the more significantly different the two classes

are. Hence, the empirical p-value is calculated as the proportion of the statistics from the

permutation set that are greater than that from the data, which is 0 in this case.
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Figure 2: Illustration of the calculation of the p-values for DiProPerm (left), SigClust (mid-
dle) and SigPal (right). The test statistics for the permutation/simulation set are shown as
blue jitter points, while those for the original data are shown as the green vertical lines. The
empirical p-value for DiProPerm is the proportion of the statistics from the permutation set
that are greater than that from the data, which is 0 in this case. The empirical p-values for
both SigClust and SigPal are the proportions of the statistics from the simulation set that
are less than that from the data, which are 0.296 and 0.018 respectively.

The main idea of DiProPerm is to measure the difference between two high-dimensional

data subsets by the difference between their 1-dimensional projections onto some appropriate

direction. DiProPerm is a powerful test in many settings and it is a nonparametric procedure

that does not have many assumptions. Note that here class labels are required to find the

projection direction (by a classification method such as SVM or DWD) and to calculate the

test statistic (t-statistic or mean difference).
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2.2 SigClust

SigClust, proposed by Liu et al. (2008) and improved by Huang et al. (2014), is a clustering

evaluation tool for the HDLSS data which aims to answer the question whether clusters are

really there. That is, it has the following hypotheses:

H0: the data are from a single Gaussian distribution, and

H1: the data are not from a single Gaussian distribution.

There is no reference to the notion of class in the hypotheses above. SigClust is based on

the vision of cluster as a subset of the data that can be reasonably modeled as coming from

a single Gaussian distribution (with some covariance matrix). The Gaussian assumption

has been previously used by Sarle and Kuo (1993) and McLachlan and Peel (2004). Huang

et al. (2014) mentioned that this assumption may lead to some important consequences. For

example, it is possible that none of Cauchy, Uniform, or even t distributed data may be

viewed as a single cluster in this sense. While it may seem to be a strong assumption, it is

reasonable in the challenging HDLSS situation because it allows real HDLSS data analysis

with wide use in bioinformatics applications (Chandriani et al., 2009, Verhaak et al., 2010).

Assume that a data set {xi, i = 1, . . . , n} is obtained from an unknown Gaussian distri-

bution with covariance Σ, where xi ∈ Rd is the observed covariates. The idea of SigClust is

to approximate the null distribution of a test statistic by simulating from a single Gaussian

distribution that fits to the data. The p-value in SigClust is taken to be the lower quantile

of the null distribution, defined by the test statistic from the original data. It is similar to

the DiProPerm test except that it performs simulation instead of permutation and it relies

on a multivariate statistic instead of a univariate statistic after projection.

Specifically, the 2-means Cluster Index (CI) is used as the test statistic. It is defined as

the sum of the within-cluster sums of squares about the cluster means, divided by the sum

of squares about the overall mean,

CI =

∑2
k=1

∑
j∈Ck
‖xj − x̄(k)‖2∑n

j=1 ‖xj − x̄‖2
,

where Ck denotes the sample index set of the kth cluster and x̄(k) represents the mean of
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the kth cluster, for k = 1, 2. The smaller the CI, the larger the proportion of the overall

variation that is explained by the clusters. Note that no predefined class labels are needed

when computing the CI, as the cluster assignment Ck is obtained concurrently by a clustering

algorithm.

Here the simulation from the null distribution is a critical part. As CI is location and

rotation invariant, it is enough to work only with a Gaussian null distribution with a mean

at the origin and a diagonal covariance matrix Λ. Hence, an essential part of the SigClust

test is the estimation of the eigenvalues of the covariance matrix Σ.

Algorithm 2. The SigClust procedure is summarized as follows.

1. Initialization: obtain a two-cluster assignment (k = 2) from an application of a

clustering algorithm, such as k-means. The CI is then calculated for the original data

set based on the cluster assignment.

2. Simulation: simulate data from the null distribution: (X1, · · · , Xd) are independent

with Xj ∼ N(0, λ̂j), where (λ̂1, · · · , λ̂d) is an estimate of the eigenvalues (λ1, · · · , λd)

of the covariance matrix Σ. Then calculate the corresponding CI on each simulated

data after performing clustering in the same manner as in the Initialization step.

3. Testing: repeat the Simulation step for NSim times to obtain an empirical distri-

bution of CI based on the null hypothesis (NSim may be 1000). Then calculate the

empirical p-value to assess the statistical significance (the proportion of the CI from

the simulation set that are less than the CI from the original data.)

The middle plot in Figure 2 illustrates how the p-value in SigClust is calculated. Similar

to the DiProPerm case (left plot), the blue jitter plots are the statistics from the simulations,

and the green vertical line is that for the original data. Recall that the smaller the statistic

(chosen as the CI) is, the more significantly different the two clusters are. Hence the empirical

p-value is the proportion of the CI’s from the simulation set that are less than that from the

original data, which is 0.296 in this case.
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The covariance estimation in the Simulation step can be challenging, especially when

the data are HDLSS. Although we only need to estimate the eigenvalues of the covariance

matrix, which greatly reduces the number of parameters to be estimated, this problem is

still not trivial in the HDLSS setting. Liu et al. (2008) used a hard-thresholding approach

for eigenvalue estimation. In particular, they first estimate the background noise level using

a robust variance estimate. Then those estimated eigenvalues smaller than the background

noise level are replaced with the noise level, that is,

λ̂j =

 λ̃j if λ̃j ≥ σ̂2
N

σ̂2
N if λ̃j < σ̂2

N

,

where (λ̃1, · · · , λ̃d) are the eigenvalues of the sample covariance matrix and σ̂2
N is the esti-

mated background noise level.

Huang et al. (2014) later showed that with eigenvalue estimation using hard-thresholding,

SigClust can be seriously anti-conservative if the first eigenvalue is relatively large. They

proposed a less-aggressive soft-thresholding variant which greatly improved the performance

of SigClust. Specifically, they use

λ̂j =

 λ̃j − τ if λ̃j ≥ τ + σ̂2
N

σ̂2
N if λ̃j < τ + σ̂2

N

.

A detailed definition of τ can be found in Huang et al. (2014).

3 Significance Analysis for Partially Labeled Data

In this section, we first state the background and hypotheses of our problem, followed by a

presentation of our proposed method.

3.1 Background and Hypotheses

Consider a binary testing problem for a data set with the labeled data portion {(xi, yi), i =

1, ...nl}, and the unlabeled data portion {xnl+j, j = 1, · · · , nu}. All the xi’s and xnl+j’s
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are d-dimensional covariates and the class label yi ∈ {−1, 1}. The total sample size is

n = nl +nu. Let θ = nl/n be the proportion of the labeled data, and 1− θ is the proportion

of the unlabeled data. We formulate our proposed SigPal procedure as a hypothesis testing

problem with the following hypotheses:

H0: the data come from a single Gaussian distribution, and

H1: the conditional distributions of the two classes are different and hence the data are

not from a single Gaussian distribution.

It is worth comparing our alternative hypothesis with those of the DiProPerm and Sig-

Clust tests. Since not every class label is observed, the notion of the class, as in the alternative

hypothesis of DiProPerm, is moot or murky. Technically, our alternative hypothesis is nei-

ther an intersection nor a union of the previous alternative hypotheses. In the framework

of SigPal, there exists an underlying class label for each observation. We are interested in

the difference in the conditional distributions of the data with respect to this underlying

label. Our goal is to infer the significance of the otherwise fully observed data based on the

partially labeled data with the help of the covariate information of the whole data. Lastly,

the fact that the conditional distributions are different implies that the data are not from a

single Gaussian distribution (but the converse is not true.)

3.2 Proposed Method

With different values of the proportion of the labeled data, θ, we may consider different ways

to address the problem. When θ is close to 1, which means the majority of the data have

label information available, then one may just ignore the small amount of unlabeled data

and perform a DiProPerm test on the labeled data portion only. When θ is very close to

0, which means the majority of the data are unlabeled, then one can simply apply SigClust

regardless of the few class labels. While we may lose some useful information from the data,

such simplifications effectively reduce the complexity of the problem. In this article, we

are more interested in the case when θ is not close to 0 or 1. We propose a Significance

Analysis for Partially Labeled Data (SigPal) which makes use of the extra label information,

10



compared to the SigClust procedure.

Algorithm 3. The SigPal procedure consists of the following three steps.

1. Initialization: obtain the predicted class assignments for the unlabeled data by ap-

plying a semi-supervised classification/clustering method to the full data set. A test

statistic is then calculated for the original data based on both observed and predicted

class labels (our choice is CI in this article).

2. Simulation: simulate data from the null distribution: (X1, · · · , Xd) are independent

with Xj ∼ N(0, λ̂j), where (λ̂1, · · · , λ̂d) is an estimate of the eigenvalues (λ1, · · · , λd)

of the covariance matrix Σ. Randomly place class labels to nl observations in the

simulated set and then calculate the corresponding test statistic after performing semi-

supervised classification/clustering in the same manner as in the Initialization step.

3. Testing: repeat the Simulation step for NSim times to obtain an empirical distribu-

tion of the test statistic based on the null hypothesis. Calculate the empirical p-value

(the proportion of the CI’s from the simulated data that are less than that from the

original data) to assess the statistical significance.

The right plot in Figure 2 shows the p-value calulation for SigPal. Similar to the SigClust,

the empirical p-value is the proportion of the CI’s from the simulation set that are less than

that from the original data, which is 0.018 in this case.

To calculate the statistic in the Initialization step, we need to assign labels for the un-

labeled portion. This is similar to the application of a clustering algorithm in SigClust. Such

label assignment can be done either by modifying a classification method or by modifying a

clustering algorithm.

• While we could simply use a classifier trained from the labeled portion to predict the

class label for the unlabeled portion, a semi-supervised classification method is more

reasonable here since it takes the covariate information in the large number of unlabeled

observations into account. Possible choices of the semi-supervised classification method
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include Semi-Supervised Sparse Linear Discriminant Analysis (S3LDA; Lu and Qiao,

2015), transductive SVM (TSVM; Vapnik, 1998, Chapelle et al., 2006, Wang et al.,

2007), the large-margin based methods (Wang and Shen, 2007, Wang et al., 2009) and

the bootstrap method (Collins and Singer, 1999). S3LDA combines the classical linear

discriminant analysis and a machine learning oriented technique, and takes advantage

of the unlabeled data to boost the classification performance.

• Similarly, though we could just run a clustering algorithm for the whole data set

to assign labels, we would like to borrow the strength in the labeled data portion. A

semi-supervised clustering algorithm, which identifies clusters with constraints imposed

by known labels, would be more appropriate in this case. Possible semi-supervised

clustering algorithms include constrained k-means (COP-KMEANS; Wagstaff et al.,

2001), and others. COP-KMEANS allows a must-link constraint which specifies that

certain instances have to be placed in the same cluster.

Once the class/cluster labels are assigned, a test statistic can be calculated. Options

include the Hotelling’s T 2 statistic, the CI, and some one-dimensional statistics (such as

two-sample t-statistic or mean difference) after projections as in DiProPerm. CI is more

favorable here since it is location and rotation invariant and can be efficiently computed. It

also facilitates the comparison between SigPal and SigClust in our numerical studies. It can

be shown that for certain low-dimensional examples, the CI is equivalent to the two-sample

t-statistic.

Similar to SigClust, we use simulation in lieu of permutation, and make use of the soft-

thresholding method (Huang et al., 2014) for eigenvalue estimation. SigPal randomly labels

some observations in the simulated data. This extra step is essential to mimic the true null

distribution of the test statistic.

As will be shown later, although SigClust has some power when the signal within the

data is relatively large, it is substantially less powerful when the signal is weak. SigPal,

on the other hand, has a great power in both cases. Secondly, when the data come from a

mixture of two Gaussian distributions and the mean difference is large enough, the labeled
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data may not provide additional boost in the power compared to SigClust. In this case, it

may make sense to simply apply SigClust and ignore the label information. As will be seen

in the later sections, the strength of SigPal lies on the usefulness of the labeled data: it is

visibly more powerful than SigClust when the signal is small.

4 Theoretical Property

In this section, we provide some theoretical justification for the SigPal method. We first

derive the relationship between the theoretical version of the CI (TCI) and the eigenvalues

of the covariance. Specifically, we assume that X ∼ N(0,Σ) and consider using S3LDA for

class assignment. The theoretical S3LDA (Lu and Qiao, 2015) coefficient ω̂ is defined as

ω̂ = argmin
‖ω‖=1,b=0

E(X,Y )(Y − (ω′X + b))2 + CEX(1− |ω′X + b|)+,

= argmin
‖ω‖=1

E(X,Y )(Y − ω′X)2 + CEX(1− |ω′X|)+,

where C > 0 is a constant. We consider the case where the effect of the unlabeled data

portion dominates, that is, we let C →∞. The relationship between the theoretical cluster

index (TCI) for SigPal and the eigenvalues of Σ is stated in Theorem 1.

Theorem 1. Suppose that X ∼ N(0,Σ), P(Y = +1) = P(Y = −1) = 1/2 and the propor-

tion of the labeled data is θ. Assume that Σ has an eigen-decomposition Σ = V ′ΛV , where

Λ = diag(λ1, · · · , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd. Let v1 be the first principal component

direction. Then when C →∞, ω̂ = v1, and the corresponding TCI is

TCI = 1 + θ − 2

π
(1− θ)3 λ1∑d

j=1 λj
.

Theorem 1 shows that given θ, the optimal TCI only relies on the largest eigenvalue λ1

and the sum of eigenvalues
∑d

i=1 λi. In practice, the estimations of these two quantities have

a critical impact on the p-values, defined as the proportion of the CI’s from the simulated
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data that are less than that from the original data. In particular, let λ̂i denote the estimate of

λi. Assume that θ = 1/2 (for a mere illustration), then the difference between the true TCI

(the one for the original distribution) and the TCI resulting from a Gaussian distribution

with covariance Λ̂ (the estimated Λ) is proportional to,

E =
λ̂1∑d
i=1 λ̂i

− λ1∑d
i=1 λi

. (1)

For hard-thresholding method, define the potential biases in the estimation of λ1 and
∑d

i=1 λi

as δ1 and ∆ respectively. Then

E =
λ1 + δ1∑d
i=1 λi + ∆

− λ1∑d
i=1 λi

=

∑d
i=1 λiδ1 − λ1∆∑d

i=1 λi(
∑d

i=1 λi + ∆)
.

The hard-thresholding method will tend to be anti-conservative when E < 0, or λ1∆ >

δ1
∑d

i=1 λi, that is, when the first eigenvalue is large relative to the rest (assuming that ∆ is

positive, which is very likely for the hard-thresholding method since the smallest eigenvalues

are replaced by the background noise level.) On the other hand, the soft-thresholding method

is energy preserving in the sense that the sum of the soft eigenvalues is the sum of the sample

eigenvalues, and thus ∆ = 0. It follows that when λ̂1 < λ1, that is, when the the largest

eigenvalue is under-estimated, the soft-thresholding method will be anti-conservative. This

happens when the first eigenvalue is only a little larger than the background noise. A detailed

discussion about the results of hard-thresholding and soft-thresholding methods can be found

in Huang et al. (2014).

We further explore the impact of the estimation of λi on the TCI in SigPal and Sig-

Clust. Let TCISigPal and TCISigClust denote the TCI’s of SigPal and SigClust respectively,

and ˆTCISigPal and ˆTCISigClust the TCI’s from Gaussian distributions based on estimated co-

variance (that is, the simulated data in both SigPal and SigClust). By Theorem 3 of Huang

et al. (2014),

TCISigClust = 1− 2

π

λ1∑d
i=1 λi

.
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Then when θ = 1/2 (again, for an illustration), the differences are

TCISigPal − TCISigClust = 1/2 +
7

4π

λ1∑d
i=1 λi

. (2)

ˆTCISigPal − ˆTCISigClust = 1/2 +
7

4π

λ̂1∑d
i=1 λ̂i

. (3)

A SigPal/SigClust test gains power if TCI � ˆTCI, that is, the TCI for the original data

is less than the TCI from simulated data. When λ̂1∑d
i=1 λ̂i

> λ1∑d
i=1 λi

, ˆTCISigPal − TCISigPal
is greater than ˆTCISigClust − TCISigClust due to (2) and (3). Therefore, SigPal is more

powerful than SigClust when λ̂1∑d
i=1 λ̂i

> λ1∑d
i=1 λi

. Particularly for soft-thresholding method,∑d
i=1 λ̂i =

∑d
i=1 λi because it is energy preserving. When the first eigenvalue is very large

relative to the others, it is easier to be over-estimated, in which case SigPal will be more

powerful.

It is also of interest to look at the change of the difference TCISigPal − TCISigClust with

respect to θ when the eigenvalues are fixed. Assume that λ1∑d
i=1 λi

= 1/2, then we have the

difference

TCISigPal − TCISigClust =
1

π
[θ3 − 3θ2 + (π + 3)θ].

We plot the difference in Figure 3, which shows that the difference is almost linear in θ. It

also shows that when θ = 0, the difference equals 0 too. This is because when the proportion

of the labeled data is 0, then all of the data are unlabeled, in which case the data set is

reduced to the SigClust setting. Hence, TCISigPal = TCISigClust. As θ increases, labeled data

play a more and more important role, and the difference of TCISigPal and TCISigClust increases

almost linearly with respect to θ.

In the next theorem, we study some asymptotic properties of SigPal. Since our main

interest is in the HDLSS data, we choose to consider asymptotics for d → ∞ with n fixed.

Such kind of HDLSS asymptotic properties were previously studied by Hall et al. (2005),

Ahn et al. (2007), Liu et al. (2008), Jung and Marron (2009), Qiao et al. (2010), Jung et al.

(2012), Qiao and Zhang (2015b), among others.

Consider a mixture of two Gaussian distributions, ηN(0,D) + (1 − η)N(µ,D), where

15



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

theta

D
iff

er
en

ce
 in

 T
C

I

Figure 3: The difference TCISigPal − TCISigClust with respect to θ, the proportion of the
labeled data.

η ∈ (0, 1) is the proportion for the mixture, µ = (a1, · · · , ad)′ a constant vector and D is

a diagonal matrix with diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λd. Note that the theoretical

variance for the ith variable of the mixture is λi + η(1 − η)a2i . We assume that λ1 and ai’s

are bounded.

Theorem 2. Suppose that the data come from a mixture of two Gaussian distributions,

ηN(0,D) + (1 − η)N(µ,D), where η ∈ (0, 1), µ = (a1, · · · , ad)′ and D is a diagonal ma-

trix with diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λd. Let n1 and n2 be the sample sizes with

min(n1, n2) > 0 and n1 + n2 = n ≥ 3. Assume that
∑d

j=1 λj = O(dβ) with 0 ≤ β < 1,∑d
j=1 a

2
j = O(d),

∑d
j=1 a

2
jλj = O(dγ) with γ < 2 and maxj(λj + η(1 − η)a2j) ≤ M with

M > 0 a fixed constant. If D is known, then for a fixed n, the corresponding SigPal p-value

converges to 0 in probability as d→∞.

Liu et al. (2008) studied a similar result for SigClust in a special case when a1 = a2 =

· · · = ad = a, where a is a fixed constant. While we add some more assumptions, the theorem

shows the asymptotic property for a more general setting. Theorem 2 shows that if the data

come from a mixture of two Gaussian distributions, then under some assumptions, SigPal
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tends to reject the null hypothesis when n is fixed and d → ∞. This result justifies the

usefulness of SigPal in the HDLSS data setting.

5 Numerical Study

In this section we use simulated and real examples to demonstrate the effectiveness of our

proposed method.

5.1 Simulations

We use the same simulation setting as in Liu et al. (2008) and Huang et al. (2014). Three

types of examples are studied, including three cases under both the null and alternative

hypotheses. The sample size for all examples is n = 40 and dimension d = 300. In the first

case, we consider examples of data under the null hypothesis, that is, having one cluster

generated from a single Gaussian distribution. In each example, we check the type-I error

by studying how often SigPal incorrectly rejects the null hypothesis H0. In the second and

the third cases, we consider data from a collection of mixtures of two Gaussian distributions

with different signal sizes and explore the power of our method in terms of how often it

correctly rejects the null hypothesis. For simplicity, we consider diagonal covariance matrix

D because of the rotation invariance property of CI.

For each simulation, we consider two class assignment methods to be applied in SigPal,

namely, S3LDA and COP-KMEANS. They are applied for both original data and simulated

data before we calculate CI. Under the null hypothesis, theoretically the p-value should

follow the Uniform [0,1] distribution. Then a level α test rejects the null hypothesis with

probability α when D is known. This can be shown by a direct use of the standard probability

integral transformation theorem. To simplify the computation, we fix the tuning parameters

in S3LDA (the goal here is not perfect classification.) We also consider an option which uses

L1-LDA for labeled data only on the simulated data while still using S3LDA on the original

data. Note that this does not affect the size of the test, however, could sacrifice the power.
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v w L1-LDA S3LDA COP-KMEANS SigClust
100 1 0 3 4 0
50 2 1 4 3 0
20 5 0 1 1 0
10 10 0 2 2 0
1 1 0 0 0 0
3 1 0 0 0 0
5 1 0 0 0 0
10 1 0 0 2 0
20 1 0 2 4 0
50 1 1 3 4 0
1 5 0 0 0 0
10 5 0 1 2 0
20 5 0 1 2 0
50 5 0 2 1 0

Table 1: Summary table for the one cluster case over 100 replications based on different
methods under different settings (different pairs of v and w). The numbers of empirical
p-values which are less than 0.05 are reported.

We apply these different versions of SigPal to compare with SigClust in each case. To make

the notation simple, we use L1-LDA to denote SigPal with S3LDA on the original data and

L1-LDA on the simulated data, and use S3LDA and COP-KMEANS to denote SigPal with

corresponding methods on both original and simulated data.

5.1.1 Case 1: One Cluster

Suppose that the data are generated from a single multivariate Gaussian distribution with

covariance D, where D is diagonal with diagonal elements (v, · · · , v︸ ︷︷ ︸
w

, 1, · · · , 1), that is, there

are w v’s and (d−w) 1’s. We randomly select 20 observations to be labeled from all the 40

observations and consider 14 combinations of (v, w) as shown in Table 1. Each simulation is

repeated 100 times.

In Table 1, as expected, all methods maintain the size (fewer than 5% of the p-values are

less than 0.05.) L1-LDA is very conservative for all the 14 settings as it almost never rejects

the null. A possible explanation is that under the null hypothesis, that is, when the data

are generated from a single Gaussian distribution, a semi-supervised classification method
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like S3LDA makes the class difference even smaller than applying L1-LDA on labeled data

only (since the former attempts to incorporate the useless information.) As a consequence,

the CI from the original data (after applying S3-LDA) is often greater than the CI’s from

the simulated data (after applying L1-LDA), and hence the p-value is often very large.

5.1.2 Case 2: Mixture of Two Gaussian Distributions with Signal in One Co-

ordinate Direction

We now consider data generated from a mixture of two Gaussian distributions, 0.5N(−µ,D)+

0.5N(µ,D), where µ = (a, 0, · · · , 0)′ and D = diag(v, · · · , v︸ ︷︷ ︸
w

, 0, · · · , 0) a diagonal matrix.

The sample size is n = 40. From each class, we randomly choose 10 observations which we

keep class labels for. Two types of the covariance matrix are conducted here, v = 100, w = 1

and v = 2, w = 50. The choices of a depend on the values of v and w. Note that when a = 0,

the distribution reduces to a single Gaussian distribution. When a > 0, the population is

a mixture of two Gaussian distributions and the larger the a, the greater the separation

between the two distributions is. When the signal a is large enough, labeled data do not

help on distinguishing the two distributions (they may even make it worse.) Thus one may

ignore the label information and simply apply SigClust. In our study, we focus on the cases

with small signals, in other words, when the mean difference of the two distributions is not

too large. In these cases, labeled data can greatly help to gain extra power in SigPal. The

empirical distributions of p-values are shown in Figure 4 and 5 for the two settings (v = 100,

w = 1 and v = 2, w = 50).

Figure 4 shows the setting v = 2 and w = 50 and Figure 5 shows the spiked model setting

v = 100 and w = 1. Colors are used to represent different values of a. When a = 0, the data

are generated from a single Gaussian distribution. When a > 0, we study the power of the

test using different methods. We consider a = 1, · · · , 5 for the setting v = 2 and w = 50 and

a = 5, 10, 15, 18, 20 for the setting v = 100 and w = 1. We can see in Figure 4 that SigClust

is too conservative when a = 1, 2, 3 and there is almost no power when a = 1, 2. All the

three SigPal methods present more power in these settings.
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Figure 4: Empirical distributions of p-values of a mixture of two Gaussian distributions with
the signal in one direction. Results are based on different methods under the setting v = 2
and w = 50, with the increase of signal a.

For the spiked model setting in Figure 5 where v = 100 and w = 1, SigClust is anti-

conservative, indicated by the fact that the p-value has a higher chance of having a smaller

value (the grey curve is above the 45 degree line.) On the other hand, S3LDA and COP-

KMEANS are more powerful than SigClust. L1-LDA loses some power as it only uses the

labeled data on the simulated data assignments. The comparison on the left two subfigures

(L1-LDA versus S3LDA) also illustrates the effect of using a semi-supervised classification

for label assignment compared to using a classification method. A greater power is retained

as a consequence.
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Figure 5: Empirical distributions of p-values of a mixture of two Gaussian distributions with
the signal in one direction. Results are based on different methods under the setting v = 100
and w = 1, with the increase of signal a.

To make the simulation closer to the reality, we also use the Human Lung Carcinomas

Microarray Dataset to obtain a more realistic covariance structure D. This data set was

previously analyzed in Bhattacharjee et al. (2001). Liu et al. (2008) used this data as a test

bed to demonstrate their proposed SigClust approach. We extract four biological groups in

the data set, 20 pulmonary carcinoid samples (Carcinoid), 13 colon cancer metastasis samples

(Colon), 17 normal lung samples (normal) and 6 small cell carcinoma samples (SmallCell),

with a total of 56 samples. We remove the first three principal components of the data by

reconstructing the covariance matrix using the remaining terms of the eigen-expansion. The
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resulting covariance D is used to generate the original data, and the estimated covariance is

used to generate the simulated data in the Simulation step of SigPal.

In terms of the signal, we consider the signal a on one direction ranging from 1, 2, · · · , 7.

The empirical distributions of p-values are displayed in Figure 6.

Figure 6 shows that all of S3LDA, COP-KMEANS and SigClust are strongly anti-

conservative under the null hypothesis (a = 0), which is not the case in either Figure 4

or Figure 5. The data in Figure 6 is generated from a non-diagonal covariance matrix D

while Figure 4 and 5 use a diagonal covariance D. Since CI is rotation invariant, it suggests

that these methods become anti-conservative due to the estimation of covariance matrix.
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Figure 6: Empirical distributions of p-values of a mixture of two Gaussian distributions,
generated by the covariance matrix from the real data, with the signal in one direction.
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Figure 7: Understanding why our method is anti-conservative for non-diagonal covariance
by comparing with the diagonal case.

To further understand the influence from the estimation of diagonal and non-diagonal

covariances, we compare the distributions of CI under null hypothesis in Figure 7. The left

two plots show the distributions of CI for the data generated from a non-diagonal covariance

matrix (top) and for the data generated from the estimated covariance (bottom). It shows

that the density curves of CI for the simulated data (bottom) for S3LDA, COP-KMEANS

and SigClust (red, blue and green curves) are all shifted to the right compared to the case

with the true distribution (top). The CI for the simulated data (bottom) is more likely to

be greater than the CI for the original data (top), which makes the p-value small more often

and hence the three methods become anti-conservative. This is consistent with the result
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we see in Figure 6.

For the right two plots, we rotate and obtain a diagonal covariance matrix by eigen-

decomposition and plot the empirical distributions of CI for the data generated from the

true diagonal covariance (top) and from its estimation (bottom). The density curves of the

CI for the simulated data (bottom) for S3LDA, COP-KMEANS and SigClust almost remain

in the same position as those using the true covariance; the curve for L1-LDA shifts greatly

to the left. Based on the comparison between the left and the right panels, we confirm our

previous finding that S3LDA, COP-KMEANS and SigClust become anti-conservative when

D is non-diagonal due to the influence from covariance estimation.
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Figure 8: Empirical distributions of p-values of a mixture of two Gaussian distributions,
generated by a diagonal covariance matrix from the real data, with the signal in one direction.
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After conducting eigen-decomposition of the covariance matrix used in Figure 6, we

obtain a diagonal D and use it to generate the data. New results are presented in Figure

8. None of the methods is anti-conservative and all the three versions of SigPal are more

powerful than SigClust when the signal a is relatively small (a = 5, 10). One is recommended

to rotate the data to form a diagonal covariance matrix before applying SigPal.
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Figure 9: Empirical distributions of p-values of a mixture of two Gaussian distributions with
the signal in all directions. Results are based on different methods under the setting v = 2
and w = 50, with the increase of signal a.
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5.1.3 Case 3: Mixture of Two Gaussian Distributions With Signal in All Co-

ordinate Directions

Similarly as in Figure 4, we see in Figure 9 that SigClust is too conservative when a = 0.1

and 0.15. All the three SigPal methods perform more powerfully than SigClust when a is

less than 0.25. For the spiked model in Figure 10 where v = 100 and w = 1, SigClust is

anti-conservative. SigPal is more powerful than SigClust when a ≤ 0.6.

Now we further consider examples with signals in all coordinate directions. We generate
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Figure 10: Empirical distributions of p-values of a mixture of two Gaussian distributions
with the signal in all directions. Results are based on different methods under the setting
v = 100 and w = 1, with the increase of signal a.
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data from a mixture of two Gaussian distributions, 0.5N(−µ,D) + 0.5N(µ,D), where µ =

(a, · · · , a)′ and D = diag(v, · · · , v︸ ︷︷ ︸
w

, 0, · · · , 0) a diagonal matrix. We keep the class labels for

10 observations from each class and still consider two covariance settings, v = 100, w = 1

and v = 2, w = 50. The signal a in each direction is deliberately chosen to be very small,

however, when all directions are combined together, the total signal can be very large. The

empirical distributions of p-values calculated from 100 replications for the two settings are

displayed in Figure 9 and 10.

In summary, Sigpal maintains the size under the null distribution while SigClust is anti-

conservative when the first eigenvalue is very large relative to the others. In all the cases

when the signal between the two distributions is small, SigPal is relatively more powerful

than SigClust due to the help from labeled data. Among the three versions of SigPal we

consider in the simulation study, COP-KMEANS performs the best in most cases. When

the data follows a distribution with non-diagonal covariance matrix, the test could be anti-

conservative. Thus rotation of the data is recommended before SigPal is applied.

5.2 Real Data Application

In this section, we apply our method to the breast cancer data (BRCA) from The Cancer

Genome Atlas Research Network, which has been studied by Fan et al. (2006) and Huang

et al. (2014). The data include four subtypes: LumA, LumB, Her2 and Basal. The sample

size is 348, among which there are 154 LumA, 81 LumB, 42 Her2 and 66 Basal. The number

of genes used in the analysis is 4000 after filtering. For every possible pairwise combination

of subclasses, we randomly select 20 observations from each class to keep the class labels

and the remaining observations are treated as unlabeled. We apply SigClust, SigPal and

DiProPerm to every possible pair of subclasses and report their p-values in Table 2. Here we

only conduct SigPal using COP-KMEANS for class assignment in this real example. Note

that these three methods are using different information. SigClust does not require label

information while DiProPerm is applied to the two labeled classes. Our SigPal method is

designed for partially labeled data.
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Basal.LumA Basal.LumB Basal.Her2 LumA.LumB Her2.LumB Her2.LumA
SigClust 0 0 0.009 0.298 0.537 0.625
SigPal 0 0 0 0.002 0.002 0.013

DiProPerm 0 0 0 0 0 0

Table 2: SigClust, SigPal and DiProPerm p-values for each pair of subtypes for the BRCA
data. With the label information, DiProPerm can always reach significant results for all
pairs. With only partial information, SigPal can reach similar conclusions.

Table 2 shows that for pairs including Basal, the p-values from all three methods are 0

which implies that Basal can be well separated from the rest. For the remaining three pairs,

SigClust reports large p-values, which suggests that there is no strong evidence for them to

be viewed as from two different clusters if no label information is provided. In contrast, the

p-values of these three pairs for DiProPerm are all 0, indicating that each pair of two classes

can be significantly separated. With the help of a small portion of the label information,

SigPal gains much power to distinguish the two classes and produces very close results to

DiProPerm.

To further illustrate the three methods, we use the pair of LumA and LumB as an

example and display the scatter plot of the projections of the data vectors onto the first two
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PC1 & PC2 projection scatter plot for 'LumA' and 'LumB'

Figure 11: PCA projection scatter plot of the two classes, LumA and LumB. Colors indicate
biological subtypes. LumA are displayed in red and LumB in Blue. Points in black are
treated as unlabeled data. Data are analyzed by SigClust, SigPal and DiProPerm respec-
tively in the left, middle and right panels.

28



principle component directions in Figure 11. Colors indicate biological subtypes. LumA are

displayed in red and LumB in Blue. Points in black are treated as unlabeled data. Figure

11 shows that without given the class information (left plot), LumA and LumB seem to be

one subtype so that SigClust give a non-significant result (p-value=0.298). When all the

label information is available (right plot), DiProPerm suggests that these two classes are

significantly different (p-value=0). With 40 labeled observation out of 235 observations in

total, our SigPal method finds the difference between the two classes by extracting useful

information from the small portion of the labeled data (middle plot).

6 Conclusion

In this article, we propose a significance analysis procedure, SigPal, in the HDLSS setting.

This method is designed for a data set where a small amount of labeled data are available with

a large amount of unlabeled data. In contrast to SigClust which does not rely on class label

information, our method makes use of the labeled data to increase the difference in the classes

under the null and alternative hypotheses. Through extensive simulation examples with

partial label information available, we compared the performance of SigPal with SigClust

in different settings. SigPal is relatively more powerful than SigClust, especially when the

signal between the two classes is not large. Among the three versions of SigPal we conduct

in the simulation study, COP-KMEANS performs the best in most cases.

Although CI is rotation invariant, it turns out in the simulation study that under the null

hypothesis when the data comes from a distribution with non-diagonal covariance matrix,

SigPal could be anti-conservative. Hence, rotation of the data is recommended before SigPal

is applied.

SigPal is a general procedure with possibly many variants. The test statistic CI, used

in our numerical study, may be substituted by other quantities, such as the Hotelling’s

T 2 statistic. There is also room for choosing different approaches to assign labels in the

Initialization step of SigPal. An interesting and potential extension of SigPal is to case of

testing multiple classes. A possible solution is to use a multi-class classification method for
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the class assignment.

Appendix. Technical proofs

Proof of Theorem 1

Without loss of generality, assume that Σ = diag(λ1, · · · , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd. We

first show that ω̂ = v1 = (1, 0, · · · , 0)′, which is the direction of the greatest variation of the

data. Recall that ω̂ = argmin‖ω‖=1 E(X,Y )(Y − ω′X)2 + CEX(1 − |ω′X|)+. As C → ∞,

we only need to show that v1 = (1, 0, · · · , 0)′ minimizes the second term

E[(1− |Z|)+]

=P(|Z| ≥ 1)E(0
∣∣|Z| ≥ 1) + P(|Z| < 1)E(1− |Z|

∣∣|Z| < 1)

=0 + P(|Z| < 1)E(1− |Z|
∣∣|Z| < 1),

where Z = ω′X.

Let ω1 = (1, 0, · · · , 0)′ and ω2 = (s1, · · · , sd)′ with
∑d

j=1 s
2
j = 1. Then we have

Var(ω′1X) = ω′1Σω1 = λ1 ≥ Var(ω′2X). Let Z1 = ω′1X and Z2 = ω′2X, then Z1 and

Z2 follow Gaussian distributions with mean 0 and Var(Z1) ≥ Var(Z2). It follows that

1. P(|Z1| < 1) ≤ P(|Z2| < 1);

2. E(|Z1|
∣∣|Z1| < 1) ≥ E(|Z2|

∣∣|Z2| < 1).

Therefore, E[(1− |Z1|)+] ≤ E[(1− |Z2|)+], which implies that ω̂ = (1, 0, · · · , 0)′.

To show the TCI, it is enough to consider the situation with diagonal covariance matrix

due to the rotation invariance of CI. We first compute the theoretical total sum of squares

TSS as

TSS = E‖X‖2 =

∫
‖x‖2φ(x)dx

=

∫ ∞
−∞
· · ·
∫ ∞
−∞
‖x‖2φ(x)dx1 · · · dxd
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=

∫ ∞
−∞
· · ·
∫ ∞
−∞

d∑
j=1

x2j

( d∏
j=1

ϕλj(xj)
)
dx1 · · · dxd

=
d∑
j=1

∫ ∞
−∞

x2jϕλj(xj)dxj =
d∑
j=1

λj,

where φ(x) =
∏d

j=1 ϕλj(xj) =
∏d

j=1
1√
2πλj

e−x
2
j/2λj .

Recall that we assume λ1 ≥ λ2 ≥ · · · ≥ λd and we showed ω̂ = v1 = (1, 0, · · · , 0)′. Here

(1, 0, · · · , 0)′ is the norm vector of the separating hyperplane going through µ = (0, · · · , 0)′.

Let WSS be the theoretical within cluster sum of square and let WSS1 and WSS2 denote

the theoretical sum of squares within class 1 and class 2 respectively. By symmetry the mean

of class 1 µ1 = (µ11, µ12, · · · , µ1d)
′ with µ12 = µ13 = · · · = µ1d = 0. For the first dimension,

note that class 1 contains the original labeled data with mean 0 with probability θ, and the

original unlabeled data assigned to class 1 with mean 2
∫∞
0
x1ϕλ1(x1)dx1 with probability

(1− θ), where θ is the proportion of the labeled data. Thus we have

µ11 = (1− θ) · 2
∫ ∞
0

x1ϕλ1(x1)dx1 + θ · 0 = (1− θ)
√

2λ1
π
.

So µ1 = ((1− θ)
√

2λ1
π
, 0, · · · , 0′). Similarly, µ2 = (−(1− θ)

√
2λ1
π
, 0, · · · , 0)′. Then

WSS1 = (1− θ)
∫ ∞
0

· · ·
∫ ∞
−∞
‖x− µ1‖2φ(x)dx1 · · · dxd

+ θ

∫ ∞
−∞
· · ·
∫ ∞
−∞
‖x− µ1‖2φ(x)dx1 · · · dxd

= (1− θ)
∫ ∞
0

(
x1 − (1− θ)

√
2λ1
π

)2
ϕλ1(x1)dx1 + (1− θ)

d∑
j=2

∫ ∞
0

∫ ∞
−∞
· · ·
∫ ∞
−∞

x2jφ(x)dx1 · · · dxd

+ θ

∫ ∞
−∞

(
x1 − (1− θ)

√
2λ1
π

)2
ϕλ1(x1)dx1 + θ

d∑
j=2

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

x2jφ(x)dx1 · · · dxd

=

[
1

2
(θ + 1) +

1

π
(θ3 − 3θ2 + 3θ − 1)

]
λ1 +

d∑
j=2

1 + θ

2
λj.
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Similarly, WSS2 = WSS1. Thus,

TCI =
WSS1 +WSS2

TSS
= 1 + θ − 2

π
(1− θ)3 λ1∑d

j=1 λj
.

Proof of Theorem 2

The proof is similar to the proof of Theorem 1 in Liu et al. (2008). It is sufficient to show

the following two points:

1. The CI ξ1 of the data from the mixture of two Gaussian distributions, using the sources

of each observation from the two Gaussian distributions as cluster assignments, converges to

0 in probability as d→∞.

2. The CI under the null hypothesis is bounded away from 0 as d→∞.

Point 1 can be shown by introducing a new data set, which is easier to work with, and a

modified corresponding CI, ξ2. In particular, consider iid sample y1, · · · ,yn from N(0,D).

Note that xi
d
= yi + δµ, where δ = 0 if xi comes from N(0,D) and 1 if xi comes from

N(µ,D). xi
d
= yi + δµ implies that ξ1

d
= ξ2. Let C(1) and C(2) denote the sample index sets

of xi with δ = 0 and δ = 1 respectively. By definition, we have

ξ1 =

∑2
k=1

∑
i∈C(k)

‖xi − x̄(k)‖2∑n
i=1 ‖xi − x̄‖2

.

ξ2 can be written using y1, · · · ,yn, a1, · · · , ad and d as

ξ2 =

∑2
k=1

∑
i∈Ck
‖yi − ȳ(k)‖2∑n

i=1 ‖yi − ȳ‖2 + n1n2

n

∑d
j=1 a

2
j + 2n1n2

n

∑d
j=1 aj(ȳ

(1)
j − ȳ

(2)
j )

≤
∑n

i=1 ‖yi − ȳ‖2
n1n2

n

∑d
j=1 a

2
j + 2n1n2

n

∑d
j=1 aj(ȳ

(1)
j − ȳ

(2)
j )

=
d−1

∑d
j=1

∑n
i=1(yij − ȳj)2

n1n2

n

∑d
j=1 a

2
jd
−1 + 2n1n2

n

∑d
j=1 aj(ȳ

(1)
j − ȳ

(2)
j )d−1

, (4)

where C1 and C2 denote the random grouping indices of the sample into two classes of size

n1 and n2, ȳj and ȳ
(k)
j denote the overall sample mean and the sample mean of class k of the

jth variable. Note that
∑n

i=1(yij − ȳj)2 ∼ λjχ
2(n − 1),

∑d
j=1 λj = O(dβ) and β < 1. Thus
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both the mean and variance of the numerator in (4) converge to 0 as d→∞, which implies

that the numerator of (4) converges to 0 in probability.

For the denominator of (4), since
∑d

j=1 a
2
j = O(d), the first term converges to a constant

as d→∞. For the second term, note that
∑d

j=1 aj(ȳ
(1)
j − ȳ

(2)
j ) ∼ N(0,

∑d
j=1 a

2
jλj(

1
n1

+ 1
n2

)).

Because
∑d

j=1 a
2
jλj = O(dγ) with γ < 2, the second term of the denominator of (4) converges

to 0 in probability as d → ∞. Therefore, ξ2 → 0 in probability as d → ∞, which implies

ξ1 → 0 in probability as d→∞.

To show point 2, We first get the Gaussian null distribution of the mixture as N(0,D∗),

where D∗ is diagonal with the jth diagonal element λj + η(1− η)a2j . Here we simply assume

the null distribution with mean 0 since CI is location invariant. Let z1, · · · , zn be a sample

from the Gaussian null distribution. We want to show that the corresponding CI is bounded

away from 0 as d → ∞. To this end, we make use of the HDLSS geometry of Hall et al.

(2005). We first check the three assumptions:

(1) the fourth moments of all entries of z are uniformly bounded, by the assumption that

maxj(λj + η(1− η)a2j) ≤M ;

(2) limd→∞ trace(D∗)/d = σ2, where σ2 is a constant. This is because limd→∞ trace(D∗)/d =

limd→∞
∑d

j=1(λj + η(1− η)a2j)/d = η(1− η)a2 ≡ σ2, where a2 = limd→∞
∑d

j=1 a
2
j/d;

(3) the random vector satisfies the ρ-mixing condition by the independence among the

entries of z.

Then it follows that ‖zi − zl‖2 = 2dσ2 + Op(1), as d → ∞. By the triangle inequality,

we have 2(‖zi − z̄‖2 + ‖zl − z̄‖2) ≥ (‖zi − z̄‖ + ‖zl − z̄‖)2 ≥ ‖zi − zl‖2 and ‖zi − z̄‖ =

1
n

∥∥∥(n − 1)zi −
∑

l 6=i zl

∥∥∥ ≤ 1
n

∑
l 6=i ‖zi − zl‖. Thus, as d → ∞, we can bound the CI under

the null hypothesis as

CI =

∑2
k=1

∑
i∈Ck
‖zi − z̄k‖2∑n

i=1 ‖zi − z̄‖2

≥
1
2
([n1/2] + [n2/2])2dσ2 +Op(1)

(n−1)2
n

2dσ2 +Op(1)

=
n([n1/2] + [n2/2])

2(n− 1)2
+ op(1),
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where [u] denotes the largest integer smaller than u. This shows that under the null hypoth-

esis CI is bounded away from 0 as d→∞.
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