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Abstract

Ordinal data are often seen in real applications. Regular multicategory classification

methods are not designed for this data type and a more proper treatment is needed.

We consider a framework of ordinal classification which pools the results from binary

classifiers together. An inherent difficulty of this framework is that the class prediction

can be ambiguous due to boundary crossing. To fix this issue, we propose a non-

crossing ordinal classification method which materializes the framework by imposing

noncrossing constraints. An asymptotic study of the proposed method is conducted.

We show by simulated and data examples that the proposed method can improve the

classification performance for ordinal data without the ambiguity caused by boundary

crossings.

Key Words and Phrases: classification; mixed integer programming; multivariate anal-

ysis; statistical computing; support vector machine.
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1 Introduction

Data with ordinal class labels are very common in reality and they are collected from many

scientific areas and social practices, such as disease diagnosis and prognosis, national secu-

rity threat detection, and quality control. For example, the development of tumor can be

classified to Stage I, Stage II, Stage III, etc.; the U.S. homeland security advisory system

has five categories, Green, Blue, Yellow, Orange and Red, ordered from the least to the most

severe threats; the quality of a randomly sampled product can be categorized to excellent,

good, fair and bad. The goal of ordinal classification is to classify a data point to one of

these ordinal categories, y ∈ Y , based on the covariates x ∈ S ⊂ Rd. Here we consider the

case Y = {1, 2, . . . , K}. The actual labels are of no importance, so long as the order can be

recognized.

Note that ordinal data are a special case of the more general multicategory data. Ignoring

the order information, one may classify ordinal data in the same way as one would do

multicategory data, by applying a multicategory classification method. There is a large body

of literature for the latter. This includes those which combine multiple binary classifiers,

such as the One-Versus-One and One-Versus-Rest paradigms (see for example Duda et al.,

2001), and those which estimate multiple classification boundaries simultaneously, such as

Weston and Watkins (1999), Crammer and Singer (2002), Lee et al. (2004), and Huang

et al. (2013). While using multicategory classification method for ordinal data sometimes

works, such treatment can be suboptimal, because the classes are treated equally without

their connections and relative superiority being considered. Moreover, a counterexample

in Section 2 reveals that it is desirable to use an approach which fully utilizes the ordinal

information available.

Suppose there are K classes in total. A simple but very useful strategy for ordinal

classification is to sequentially conduct binary classifications between the combined meta-

class Ck ≡ {1, . . . , k} and meta-class Ck ≡ {k + 1, . . . , K}, for 1 ≤ k ≤ K − 1, and then pool

the classification results from these (K − 1) steps to reach a final prediction (see Frank and
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Hall, 2001). In binary classification, usually a discriminant function f is estimated, and data

point x is classified to the positive class if f(x) > 0, or to the negative class otherwise. The

classification boundary is defined by {x : f(x) = 0}. As there are (K − 1) binary classifiers

in this strategy, there are (K − 1) classification boundaries. This approach assumes that

each class is sandwiched by two adjacent classification boundaries.

An inherent difficulty of this approach is that since these boundaries are trained sepa-

rately, it is possible that they may cross with each other. Consequently, how to make a final

conclusion becomes ambiguous for some data points.

In this article, we propose a flexible margin-based classification method for ordinal data.

The direction we pursue is to construct the (K−1) boundaries simultaneously. Our method

is equipped with extra noncrossing constraints to fix the crossing issue, hence is named

Noncrossing Ordinal Classification (NORDIC). Similar noncrossing constraints were studied

and used in the quantile regression context (for example, Bondell et al., 2010, Liu and

Wu, 2011). Compared to the vanilla idea of training (K − 1) binary classifiers separately,

simultaneous learning can borrow the strength from different classes, which leads to better

classification accuracy and improved robustness to mislabeled data. Moreover, compared

to many existing methods, our method is more flexible, since it does not assume that the

boundaries are parallel.

Among the existing related work in classifying ordinal data, Herbrich et al. (2000) tried

to find the classification boundaries by maximizing the margin in the space of pairs of

data vectors; Frank and Hall (2001) was among the first to consider the idea of pooling

binary classifiers; Shashua and Levin (2003) generalized the support vector formulation for

ordinal regression and proposed to optimize multiple thresholds to define parallel separating

hyperplanes; Chu and Keerthi (2005) improved the work of Shashua and Levin (2003) and

guaranteed that the thresholds were properly ordered; Chu and Ghahramani (2005) used

a probabilistic kernel approach based on Gaussian processes; Cardoso and da Costa (2007)

replicated the data and cast the ordinal classification problem to a single binary classification
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problem. Many of these approaches, although ensuring noncrossing, have posed a fairly

strong assumption that the (K − 1) boundaries are parallel to each other (either in the

original sample space or in the kernel feature space), which may be lack of flexibility and be

unrealistic in many cases.

The rest of the article is organized as follows. In Section 2, we compare the multicategory

classification with the ordinal one, and review a simple framework for the ordinal classifica-

tion. We introduce the main idea of the NORDIC method and the computation algorithm in

Section 3. A more precise version of NORDIC, which makes use of a less popular optimiza-

tion algorithm, is introduced in Section 4. The theoretical properties are studied in Section

5. Several simulated examples are used to compare NORDIC with other methods in Section

6. A real data example is studied in Section 7. Concluding remarks are made in Section 8.

2 Ordinal Classification

In this section, we first demonstrate, using a real example that, in some cases, it is better not

to ignore the ordinal information by treating ordinal data as regular multicategory data. We

then introduce a framework of ordinal classification via binary classifiers. Lastly we compare

the principles of multicategory and ordinal classifications.

2.1 An Example in U.S. Presidential Election

In a multicategory classifier with K classes, usually K discriminant functions gk(x), k =

1, . . . , K, are estimated and the class prediction for x is argmaxk∈{1,...,K} gk(x). Let ηk(x)

denote the conditional probability for the kth class, ηk(x) = P(Y = k|X = x). In

this case, any multicategory classifier would aim to mimic the Bayes classification rule,

φBayesMC (x) ≡ argmaxk∈{1,...,K} ηk(x), which has the smallest conditional classification risk,

P(φ(X) 6= Y |X = x), among all possible rules.

For the ordinal data, one can opt to ignore the ordinal information and classify them using
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a multicategory classifier. However, a counterexample suggests that this may not always be

a wise strategy. Consider the presidential election in the United State. Any voter can be

viewed as being from a red state (a state which is most conservative and predominantly vote

for the Republican Party), a blue state (a state which is least conservative and predominantly

vote for the Democratic Party) and a purple state (also known as a swing state, where both

parties receive strong support). In 2012, the states of North Carolina, Florida, Ohio, and

Virginia were the swing states. There are many more blue and red states in the U.S. than

swing states (and a much larger population in the former two types of states than that in

the latter). Suppose each voter is associated with a covariate vector x ∈ S and the color

of her home state is the class label. The statistical task here is to classify her to one of the

three types of states, Y = {red, purple, blue}.

Recall that the Bayes rule in multicategory classification classifies x to the class with

the greatest ηk(x). It is more likely for a multicategory classifier to classify a voter to

a blue state or a red state, since both tend to have larger ηk(x). To see this, note that

ηk(x) = πkdk(x)/{
∑

`∈Y π`d`(x)}, where dk(x) is the density of the covariate X given that

she is from the kth class and πk is the unconditional class probability for the kth class.

Clearly, both πred and πblue are much greater than πpurple, leading to that their ηk(x)’s

tend to be larger as well. The bottom line is, it seems to be unfair that the chance that

a voter from the purple state is correctly identified is compromised simply because there is

a smaller population in purple states. Ironically, in a U.S. presidential election, the swing

states are the most important battleground, because it is the swing states that break the

even in a presidential campaign.

In this example, the imbalanced class prior probabilities appear to be the proximate

cause that leads to the aforementioned issue. The underlying root cause, however, is that

the ordinal data nature herein has been ignored. A classification method which makes use of

the ordinal information is more appropriate in this case. We describe a simple strategy for

this example here which leads to the more formal methodology in the next subsection: for a
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randomly selected voter, we first consider classifying her to a blue state, versus a purple or

red state. If she is classified to the latter, then she tends to be relatively more conservative

(than blue states voters). We then classify her to a blue or purple state, against a red state. If

she is classified to the former, then she is relatively less conservative (than red state voters).

The results of the two comparisons can lead to the final conclusion that she is classified to

a purple state.

2.2 Ordinal Classification via Binary Classifiers

In general, consider an ordinal classification problem with K classes. Furthermore, con-

sider (K − 1) binary classifiers, where the kth classification boundary separates the com-

bined set {i : yi ∈ Ck} from the combined set
{
i : yi ∈ Ck

}
where Ck ≡ {1, . . . , k} and

Ck ≡ {k + 1, . . . , K − 1}. For the kth binary classification, we code the former the neg-

ative class and the latter the positive class by constructing a dummy class label y(k) ≡ −1

if y ≤ k and +1 if y > k. The kth binary classifier is associated with a discriminant func-

tion fk(x) so that the classification rule is sign{fk(x)}. Let Zk(x) denote the prediction

set of observation x with respect to the kth subproblem, defined as Ck if fk(x) < 0, or Ck

otherwise. The final prediction for x, aggregating all the results from the (K − 1) binary

classifiers above, will be the intersection of Zk(x), i.e.,
⋂

1≤k≤K−1 Zk(x).

BC I BC II BC III
Class 1 7 3 3

Class 2 3 3 3

Class 3 3 7 3

Class 4 3 7 7

Table 1: An illustrative table showing the predictions of the three binary classifiers for an obser-
vation in a four-class example. Aggregating the results of the three binary classifiers, we can reach
the final prediction that the observation is classified to the second class. BC is short for “Binary
Classifier”.

In a four-class toy example, Table 1 tabulates the prediction of the three binary classifiers

for some observation x. The first binary classifier compares Class 1 and the meta-class
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{2, 3, 4}. The prediction is that the observation is from {2, 3, 4}. Similarly, the second

binary classifier compares {1, 2} and {3, 4} and the prediction is {1, 2}. Lastly, the third

binary classifier classifies the observation x to {1, 2, 3}. Clearly, Class 2 is favored by all

three binary classifiers and it is the final prediction for x. This framework for reaching an

ordinal classification prediction by pooling binary classifiers was first noted by Frank and

Hall (2001).

2.3 Principle of Ordinal Classification

We are now ready to compare the principles of multicategory classification and ordinal

classification. A cartoon in Figure 1 can tellingly demonstrate the distinction between these

principles. In a data set with K = 4, there are two example data points (shown in the top

and the bottom rows respectively). For each data point, the length of each block denotes the

conditional class probability ηk(x). The sum of all four conditional probabilities is 1. The

principle in multicategory classification chooses Class 1 in the top example and Class 4 in

the bottom example, as they correspond to the greatest ηk(x) in both cases. In contrast, in

ordinal classification, the desired prediction would be Class 2 and Class 3 respectively. For

example, for the top example, the data point is more likely from Class {1, 2} than from Class

{3, 4}, and more likely from Class {2, 3, 4} than from Class {1}. Hence Class 2 is the most

plausible choice for this data point. Similarly, the data point in the bottom is most likely

from Class 3. In particular, they both correspond to Class k such that
∑k−1

`=1 η`(x) < 1/2

and
∑k

`=1 η`(x) > 1/2 for each x. In the cartoon, a vertical line corresponding to 0.5 cuts

1 2 3 4

1 2 3 4
0.5

Figure 1: In the top panel, the multicategory classification principle chooses Class 1 while the
ordinal classification principle chooses Class 2. In the bottom panel, the multicategory classification
principle chooses Class 4 while the ordinal classification principle chooses Class 3.
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the blocks for the desired predictions.

A useful notion here is that the principle of multicategory classification is to select the

‘mode’ of the class labels, based on ηk(x), while that of the ordinal classification is to select

the ‘median’.

3 Noncrossing Ordinal Classification

Conducting ordinal classification via binary classifiers is very easy to implement as long as one

has access to an efficient binary classifier. There are many options, such as Support Vector

Machine (SVM; Cortes and Vapnik, 1995, Vapnik, 1998, Cristianini and Shawe-Taylor, 2000),

Distance Weighted Discrimination (DWD; Marron et al., 2007, Qiao et al., 2010), hybrids

of the two (Qiao and Zhang, 2015b,a), ψ-learner (Shen et al., 2003), Large-Margin Unified

Machines (Liu et al., 2011) and so on.

However, because the (K−1) classification boundaries are trained separately, it is possible

that they cross with each other. Figure 2 is a cartoon which shows the possible crossing

between classification boundaries. Here there are four classes (annotated as 1, 2, 3 and

4) and three estimated classification boundaries (I, II and III). The second and the third

estimated boundaries cross with each other. Consequently, the red star point cannot be

classified properly. In particular, it will be classified by classifier I to {2, 3, 4}, by classifier

II to {1, 2} and by classifier I to {4}. The intersection of all three prediction sets is empty.

Although one may argue that this point might be Class 2 or Class 4, no definite answer can

be given, and there is an ambiguity as to how to classify this red star point.

Hence, it is desired that the estimated classification boundaries do not cross with each

other. Let fk(x) be the discriminant function for the kth binary classification. Recall

that its boundary are defined by {x : fk(x) = 0}. For these boundaries to be noncrossing,

mathematically, it is equivalent that for all x ∈ S not on any boundary, where S is a subset

of Rd, there exists k ∈ {1, 2, . . . , K − 1}, such that f`(x) > 0 for all ` < k and f`(x) < 0 for
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I II III

1 2
3

4

Figure 2: A cartoon showing the possible crossing between estimated classification boundaries.
Four classes of data (annotated as 1, 2, 3 and 4) with three estimated classification boundaries (I,
II and III). Their true noncrossing boundaries are implied by their locations and are not shown.
The second and the third estimated boundaries cross with each other. Consequently, the red star
point cannot be classified properly.

all ` ≥ k. Let S(x, k) ≡ sign{fk(x)}. Then the condition above is the same as that S(x, k)

is a monotonically decreasing function with respect to k for any fixed x ∈ S,

S(x, 1) ≥ S(x, 2) ≥ · · · ≥ S(x, K − 1). (1)

3.1 Direct NORDIC

The noncrossing condition (1) can be fairly difficult to implement. We consider a sufficient

condition first in this subsection. In this article, we use SVM as the basic binary classifier.

For a Mercer kernel function K(·, ·), the Representer Theorem (Kimeldorf and Wahba, 1971)

allows the kth classification function to be represented by fk(x) =
∑n

j=1 ωk,jK(xj,x) + bk.

Note that if we add the constraints that

ωk,i ≥ ωk+1,i and bk ≥ bk+1 for k = 1, . . . , K − 2,

then as long as the kernel function is always nonnegative with K(·, ·) ≥ 0 (which is true

for many kernel functions such as the Gaussian radial basis function kernel), we will have

fk(x) ≥ fk+1(x), and hence S(x, k) ≥ S(x, k + 1) for any x ∈ S.

Hence we consider a direct approach to NORDIC, called NORDIC-0, by solving the
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following joint optimization problem with the extra noncrossing constraints (3)–(4):

min
ωk,j ,bk

K−1∑
k=1

[ n∑
i=1

(
1− y(k)i fk(x)

)
+

+
λ

2
ωTk·Kωk·

]
, (2)

where fk(x) =
∑n

j=1 ωk,jK(xj,xi) + bk, the coefficient vector for the kth function is ωk,· ≡

(ωk,1, . . . , ωk,n)T , and K is an n by n matrix whose (i, j)th entry is Ki,j = K(xi,xj), subject

to

bk ≥ bk+1, for k = 1, . . . , K − 2, (3)

ωk,i ≥ ωk+1,i, for i = 1, . . . n, k = 1, . . . , K − 2. (4)

Here ωTk·Kωk· is the regularization term for the kth discriminant function.

The term inside the square bracket of (2) is the objective function of kernel SVM cor-

responding to the kth classifier. We try to minimize the sum of these (K − 1) objective

functions with the extra noncrossing constraints (3)–(4).

3.2 Indirect NORDIC

The constraints (3)–(4) for NORDIC-0 are sufficient conditions for noncrossing boundaries.

However, such condition may be too strong. A weaker, but almost sufficient set of conditions

would be inequality (3) along with the inequality that Kωk· ≥Kω(k+1)·, for k = 1, . . . , K−

2. Note that they ensure that fk(xi) ≥ fk+1(xi) for all the data xi in the training data set.

Thus when the training data is rich enough to cover the base of S, then they are almost

sufficient conditions for noncrossing. This approach is an indirect approach to noncrossing

through the training data points, which is called NORDIC-1 in this article. A bonus of this

set of constraints compared to (3)–(4) is that one does not need to take the inverse of K

later in the implementation, which we will explain in the next subsection.

Let yk· = (y
(k)
1 , . . . y

(k)
n )T be the dummy class label vector of the n observations for the kth

classifier, and e = (1, . . . 1)T . For neatness, we let Y k· denote the diagonal matrix with yk·

as its diagonal elements, i.e., Y k· ≡ diag(yk·). By replacing the Hinge loss {1− y(k)i fk(xi)}+

in (2) by a slack variable ξk,i ≥ 0, and incorporating the new constraints, we can write the
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optimization problem for NORDIC-1 as,

min
ωk·,bk,ξk·

K−1∑
k=1

(
1

2
ωTk·Kωk· + CeTξk·

)
, (5)

subject to

e− Y k·(Kωk· + bke) ≤ ξk·, for k = 1, . . . , K − 1, (6)

ξk· ≥ 0, for k = 1, . . . , K − 1, (7)

bk ≥ bk+1, for k = 1, . . . , K − 2, (8)

Kωk· ≥Kω(k+1)·, for k = 1, . . . , K − 2. (9)

3.3 Implementations of NORDIC

We start off by deriving the Wolfe duality of the optimization problem for NORDIC-1. The

implementation of NORDIC-0 will come clearer later as a variant of that of NORDIC-

1. We introduce nonnegative Lagrange multipliers αk· = (αk,1, . . . αk,n)T ∈ Rn
+, ζk· =

(ζk,1, . . . ζk,n)T ∈ Rn
+, γk ∈ R+ and ϕk· = (ϕk,1, . . . ϕk,n)T ∈ Rn

+ for the constraints (6),

(7), (8) and (9) respectively. The Lagrangian for the primal problem (5)–(9) is,

L =
K−1∑
k=1

[(
1

2
ωTk·Kωk· + CeTξk·

)
+αTk·{e− Y k·(Kωk· + bke)− ξk·}

− ζTk·ξk· − γk(bk − bk+1)1{k 6=K−1}

−ϕTk·(Kωk· −Kω(k+1)·)1{k 6=K−1}

]
.

It can be rearranged, so that in the square bracket, the subscripts for the primal variables

are with the same index k, as follows,

L =
K−1∑
k=1

[(
1

2
ωTk·Kωk· + CeTξk·

)
(10)

+αTk·{e− Y k·(Kωk· + bke)− ξk·}

− ζTk·ξk· − bk
(
γk1{k 6=K−1} − γk−11{k 6=1}

)
− ωTk·K

(
ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

) ]
.
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The Karush-Kuhn-Tucker (KKT) conditions for the primal problem require the following:

0 =
∂L
∂ωk·

= Kωk· −KY k·αk· (11)

−K
(
ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

)
,

0 =
∂L
∂bk

= −yTk·αk· (12)

−
(
γk1{k 6=K−1} − γk−11{k 6=1}

)
,

0 =
∂L
∂ξk·

= Ce−αk· − ζk·. (13)

Once the KKT conditions (12) and (13) are inserted to (10), the items that are associated

with bk and ξk· will be eliminated. Moreover, from (11), we have

Kωk· = K
{
Y k·αk· +

(
ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

)}
,

which leads to

ωk· = Y k·αk· +
(
ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

)
when K is full rank. Let

R =
[

diag {Y k·}1≤k≤K−1 | I
(n)
n(K−1)

− I
(−n)
n(K−1) | 0n(K−1)×(K−2)

]
and θ = (α;ϕ;γ), where for a m × n matrix A, A(s) denotes a (m + s) × n matrix whose

upper m rows are A and the bottom s rows are all 0, and A(−s) denotes a (m+s)×n matrix

whose bottom m rows are A and the top s rows are all 0. Summarizing all these conditions,

we can see that the optimality of the primal problem is given by the dual problem,

max
θk≡(αk·;ϕk·;γk)

− 1

2
θT
{
RT (IK−1 ⊗K)R

}
θ + eTα,

subject to − yTk·αk· −
(
γk1{k 6=K−1} − γk−11{k 6=1}

)
= 0,

0 ≤ αk· ≤ Ce, ϕk· ≥ 0, γk ≥ 0,

where ⊗ is the Kronecker product.

The dual problem above is nothing but a quadratic programming (QP) problem about

αk·,ϕk·, γk with equality and bound-inequality constraints, which can be solved by many
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third-party off-the-shelf QP subroutines. More efficient implementations, such as Platt’s

SMO (Platt, 1999), are possible, but is not explored here as it is beyond the scope of this

paper.

The optimal primal variables ω are calculated from the optimal dual variables using

the relation ωk· = Y k·αk· +
(
ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

)
. By the KKT complementary

conditions, the bias term bk for the kth classifier can be found from any xi in the training

data with 0 ≤ αk,i ≤ C, due to the relations that 1 − y
(k)
i {
∑n

j=1 ωkjK(xj,xi) + bk} = 0.

Alternatively, one can fix the ω’s in the primal (5) as known and minimize (5)–(9) with

respect to bk and ξk·. This would lead to a linear programming problem.

The implementation for NORDIC-0 is similar, except that the Lagrangian is

L0 =
K−1∑
k=1

[(
1

2
ωTk·Kωk· + CeTξk·

)
+αTk·{e− Y k·(Kωk· + bke)− ξk·}

− ζTk·ξk· − γk(bk − bk+1)1{k 6=K−1}

−ϕTk·(ωk· − ω(k+1)·)1{k 6=K−1}

]
.

The only difference of the Lagrangian of NORDIC-0 from that of NORDIC-1 is underlined.

Consequently, the KKT conditions are almost the same, except that,

0 =
∂L0

∂ωk·
= Kωk· −KY k·αk·

−
(
ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

)
.

This leads to ωk· at the optimality being

ωk· = Y k·αk· +K
−1 (ϕk·1{k 6=K−1} −ϕ(k−1)·1{k 6=1}

)
,

assuming that K is invertible. The rest of the implementation is identical to that in

NORDIC-0, except that we let

R =
[

diag {Y k·}1≤k≤K−1 | {IK−1 ⊗K
−1}(n)

−{IK−1 ⊗K−1}(−n) | 0n(K−1)×(K−2)
]

and θ = (α;ϕ;γ).
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4 Exact NORDIC via Integer Programming

Recall that the necessary and sufficient condition for noncrossing (1) is that the sign of

fk(x), S(x, k), is a monotonically decreasing function with respect to k for any fixed x ∈ S,

S(x, 1) ≥ S(x, 2) ≥ · · · ≥ S(x, K − 1). The constraints for NORDIC-0 and NORDIC-1

that we have discussed in the last section is sufficient to ensure that f1(x) ≥ f2(x) ≥ · · · ≥

fK−1(x), which ultimately ensures noncrossing. However, they are not the weakest sufficient

conditions we can impose. As a matter of fact, the discriminative functions fk themselves

need not to be monotonically decreasing with respect to k in order for noncrossing. In this

section, we explore an idea which aims for exact noncrossing by posing conditions on the

sign of the discriminative functions.

For each x ∈ S, there are one out of two alternative situations with regard to the

prediction result from a discriminant function fk: either fk(x) < 0 or fk(x) ≥ 0. According

to the noncrossing condition (1), the former implies that fk+1(x) < 0 (recall that the sign is

monotonically decreasing in k). Thus, the noncrossing condition (1) is logically equivalent

to the condition that at least one of the following two constraints is satisfied,

(i) fk(x) ≥ 0, and (ii) fk+1(x) ≤ 0;

i.e., (i) and (ii) cannot be both false. Specifically, if (i) is not true, i.e., if fk(x) < 0, then

(ii) is true. This leads to the noncrossing condition.

Such logical implication can be modeled by the following Logical Constraints which in-

volve binary integer variables z1k, z2k ∈ {0, 1},

−fk(x)−M1z1k ≤ 0,

fk+1(x)−M2z2k ≤ 0,

z1k + z2k ≤ 1,

where M1 and M2 are two large numbers due to technicality. In particular, z1k + z2k ≤ 1

implies that at least one between z1k and z2k has to be zero, hence (considering the first

two constraints) either −fk(x) ≤ 0 or fk+1(x) ≤ 0, or both are true; this is the noncrossing
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condition discussed above. Note that if both z1k and z2k were 1, then the first two constraints

became −fk(x) ≤ M1 and fk+1(x) ≤ M2, which would essentially impose no constraint on

fk(x) and fk+1(x) so that the undesired case that fk(x) < 0 and fk+1(x) > 0 may occur. See

Bradley et al. (1977) for an introduction to integer programming. We can use this technique

to model the noncrossing constraints. In particular, we seek to

min
ωk,j ,bk

K−1∑
k=1

[
n∑
i=1

(
1− y(k)i fk(x)

)
+

+ λ‖ωk·‖1

]
, (14)

subject to

− fk(xi)−M1z1ik ≤ 0, (15)

fk+1(xi)−M2z2ik ≤ 0, (16)

z1ik + z2ik ≤ 1, (17)

z1ik, z2ik ∈ {0, 1} , (18)

for i = 1, 2, . . . , n and k = 1, . . . , K − 2. This method is referred to as NORDIC-2 in this

article. Here the constrains (15)–(18) are almost sufficient and (exactly) necessary conditions

to noncrossing. It is again not exactly sufficient because we impose the constraints to all

the training data vectors, instead of all x ∈ S, similar to the case of NORDIC-1. However,

again, if the data vectors in the training data are rich enough, noncrossing across the board

can be expected. These conditions are weaker than those in NORDIC-0 and NORDIC-1

because they ensure the monotonicity of the sign of fk, rather than the value of fk itself.

Note that the objective function of NORDIC-2 is a little different from those of NORDIC-

0 and NORDIC-1, especially in the use of the L1 norm penalty. We choose not to use the

more common L2 penalty, which leads to a quadratic objective function in SVM, because

it is rather difficult to solve a mixed integer programing problem with quadratic objective

function. In fact, we are not aware of an efficient off-the-shelf computing freeware which

solves such a problem. In order to show the usefulness of the new noncrossing constraints,

which is the main point of this article, we choose to use the L1 penalty for computational

simplicity.
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It is worth noting that so long as there is an efficient mixed integer programming package

which is capable of dealing with quadratic objective functions, an extension will be very

natural and readily available.

Indeed, integer programming can solve such nonstandard problem which traditional opti-

mization methods such as QP or linear programming cannot. However, integer programming

can been overlooked by statisticians for a long time (probably due to the high computational

cost and few statistical problem that this method applies). To the author’s best knowledge,

this article is one of only a few work in the statistical literature which employs the integer

programming technique. See Liu and Wu (2006) for another instance which uses mixed

integer programming to solve a statistical problem.

5 Theoretical Properties

In this section, we study two aspects of the theoretical properties of NORDIC. The first

subsection is about the Bayes rule and Fisher consistency of the loss function in ordinal

classification. The second one pertains to the asymptotic normality of the NORDIC solution.

5.1 Bayes rules and Fisher Consistency

For binary classification, a classifier with loss V1(yf(x)) : R 7→ R+ is Fisher consistent if the

minimizer of E[V1(Y f(X))|X = x] has the same sign as P(Y = 1|X = x)− 1/2. The latter

is the Bayes rule for binary classification. Intuitively, Fisher consistency requires that the

classifier yields the Bayes decision rule asymptotically. See Lin (2004) for Fisher consistency

of binary large margin classifiers.

In multicategory classification, a classifier with loss function V2(y,f(x)) : R×RK 7→ R+,

where f(x) : S 7→ RK is the K discriminant functions, is Fisher consistent if the minimizer of

E[V2(Y, f(X))|X = x], g∗(x) = (g∗1(x), . . . , g∗K(x))T , satisfies that argmaxk∈{1,...,K} g
∗
k(x) =

argmaxk∈{1,...,K} ηk(x). Here, argmaxk∈{1,...,K} ηk(x) is the Bayes classification rule for mul-
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ticategory classification. See, for example, Liu (2007) for some discussions on Fisher consis-

tency for multicategory SVM classifiers.

Below we formally define the Bayes rule and Fisher consistency for ordinal classification.

The Bayes rule for ordinal classification is φBayesOC (x) = k where k is such that
∑k−1

`=1 η`(x) <

1/2 and
∑k

`=1 η`(x) > 1/2. This rule guarantees that each component binary classification

in ordinal classification yields the Bayes rule in the binary sense.

Definition 1. (Generalized Fisher consistency for ordinal classification) An ordinal classi-

fication method with loss function V3(·, ·) is Generalized Fisher consistent if for any x, the

minimizer f ∗(x) = (f ∗1 (x), . . . , f ∗K−1(x))T of

E

[
K−1∑
k=1

V3(Y
(k), fk(X))

]
satisfies that sign(f ∗k (x)) = sign(1/2 −

∑k
`=1 η`(x)) for k = 1, . . . , K − 1. Here Y (k) is the

dummy class label for Class Y in the kth binary classification subproblem.

Generalized Fisher consistency means that the (K−1) discriminant functions f ∗1 (x), . . . , f ∗K−1(x)

jointly trained under the loss function V3, is essentially the same as the Bayes rule φBayesOC (x),

as n→∞. Note that φBayesOC (x) has the smallest risk with respect to the aggregated 0-1 loss

for the (K − 1) binary subproblems. Hence it is also the one which has the smallest risk

under the so-called distance loss, defined as L(φ, y) = |φ− y| (see Qiao, 2015).

Because of the use of the Hinge loss function for SVM (which is Fisher consistent in the

binary sense), our NORDIC method is Generalized Fisher consistent for ordinal classification.

The proof is omitted.

5.2 Asymptotic Normality of Linear NORDIC

When the kernel function K(x1,x2) = xT1 x2, that is, the linear kernel, we can have the

following linear NORDIC classifier, with the objective function,
K−1∑
k=1

[
n∑
i=1

(
1− y(k)i

(
xTi ωk· + bk

))
+

+
λ

2
ωTk·ωk·

]
, (19)
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and one of the two following sets of constraints that correspond to NORDIC-1 and NORDIC-

2 respectively,

xTi ωk· + bk ≥ xTi ωk+1,· + bk+1,

and

−
(
xTi ωk· + bk

)
−M1z1k ≤ 0,(

xTi ωk+1,· + bk+1

)
−M2z2k ≤ 0,

z1k + z2k ≤ 1,

z1k, z2k ∈ {0, 1} ,

for i = 1, 2, . . . , n and k = 1, . . . , K − 2.

Because linear kernel could be negative, the NORDIC-0 method cannot be directly ex-

tended to the linear kernel case. We can use the technique in Liu and Wu (2011) to create

a new kernel that satisfies the nonnegativity assumption essential for NORDIC-0. In this

subsection, we prove the asymptotic normality of linear NORDIC.

Koo et al. (2008) has provided a Bahadur representation of the linear SVM and proved its

asymptotic normality under some conditions. In particular, they have shown that (ω̃, b̃)T −

(ω0, b0)T = Op(n
−1/2), where (ω̃, b̃) are the solution to the SVM classifier and (ω0, b0) are

the minimizer of the expected loss function.

Theorem 1 below shows that the limiting distribution of the constrained NORDIC so-

lution has the same limiting distribution to the unconstrained binary SVM classifiers. To

prove this result, we need all the regularity conditions in Koo et al. (2008).

Theorem 1. For 1 ≤ k ≤ K − 1, let (ω̂k·, b̂k) and (ω̃k·, b̃k) be the constrained and un-

constrained solutions, respectively, to the kth binary linear SVM problem in (19). As-

sume that the regularity conditions in Koo et al. (2008) are satisfied for k. Then for any

u ∈ R(d+1)(K−1), ∣∣∣∣∣P [n1/2
{

(ω̂k·, b̂k)
T − (ω0

k·, b
0
k)
T
}
≤ u

]
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− P
[
n1/2

{
(ω̃k·, b̃k)

T − (ω0
k·, b

0
k)
T
}
≤ u

] ∣∣∣∣∣→ 0,

so that the constrained solution has the same limiting distribution as the classical uncon-

strained solution.

Based on Theorem 1, inference for the constrained NORDIC can be obtained by applying

the known asymptotic results for binary linear SVM, through the unconstrained NORDIC

solutions. For example, we can show the asymptotic normality of the coefficients to the SVM

components in linear NORDIC in the same way as those in Koo et al. (2008).

6 Numerical Results

We compare NORDIC-0, NORDIC-1, NORDIC-2, the vanilla ordinal classification method

that uses (K − 1) separately trained (Frank and Hall, 2001) using binary SVM classifiers

(BSVM), the data replication method by Cardoso and da Costa (2007) (DR) and the par-

allel discriminant hyperplane method by Chu and Keerthi (2005) (CK). We use our own

experimental codes in the R environment to implement these methods. The Gaussian radial

basis function kernel is used for all classifiers. The kernel parameter is tuned among the

10%, 50% and 90% quantiles of the pairwise distances between training vectors. The tuning

parameters are tuned from a grid of possible values ranging from 2−4, 2−3, . . . , 24.

6.1 Nonlinear Three-class Examples

We consider a data setting with three classes and d variables: X1, X2, . . . , Xd, where

• X1 = X̃1 + σN(0, 1) and X̃1 ∼ Uniform(−3, 3),

• X2 = X̃2 + σN(0, 1) and X̃2 ∼ Uniform(−6, 6),

• and X3, . . . , Xd ∼ N(0, 1).
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Here, X̃1 and X̃2 truly determine the class labels (see below) but only their contaminated

counterparts X1 and X2 are observed. In particular, let

f1 = −2X̃1 + 0.2X̃2
1 − 0.1X̃2

2 + 0.2,

f2 = −0.4X̃2
1 + 0.2X̃2

2 − 0.4,

f3 = 2X̃1 + 0.2X̃2
1 − 0.1X̃2

2 + 0.2.

We assign each observation to class k with probability proportional to exp(fk) for k = 1, 2, 3.

We generate 100 data points in the training set, 100 in the tuning set and 10000 in the test set.

The standard deviation of the measurement error, σ, ranges from 0.5, 1 to 1.5. When d = 5

and σ = 0 (no perturbation), this is the same example as the nonlinear example in Zhang

et al. (2008). However, we perturb the data and increase the dimension (d = 10, 20, . . . , 50)

to make the problem more challenging.

Note that this example was initially designed by Zhang et al. (2008) as a regular mul-

ticategory classification, instead of an ordinal classification one. Figure 3 shows a sample
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Figure 3: Nonlinear three-class examples: A scatter plot showing the first two dimensions of a
realization with no additional error added. The Bayes rule is also shown.
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Figure 4: Nonlinear three-class examples: The top row shows the error rate for different methods
(in different line types) with 3 noise levels (the left, middle and right panels) and 5 different dimen-
sions (shown on the horizontal axis of each subfigure). The bottom row shows the computational
time. In general, a NORDIC method is better than a non-NORDIC method for this example.

realization of the data without perturbation at the first two dimensions. In a general sense,

Class 2 can be viewed as in the middle of Class 1 and Class 3. We pretend that the class

labels are of an ordinal nature and compare different ordinal classification methods.

Figure 4 summarizes the results over 100 simulations. The NORDIC-0 and NORDIC-

1 are the better classifiers in terms of classification performance when the dimensions are

small. For higher dimensions, the NORDIC-2 method is better than the other methods. The

DR method is the most computational costly and the CK method is the most efficient one.

The reason that NORDIC works here is probably due to the perturbation that is added to

this data set. A NORDIC method, with the help of the noncrossing constraints, can borrow

strength from different classes and become more robust to perturbation.
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Figure 5: Donut examples: A scatter plot showing the first two dimensions of a realization, with
no perturbation added. The natural boundaries between classes are also shown.

6.2 Donut Examples

We now consider a more challenging setting, which is tailered toward the ordinal data. We

first generate data points from a 2-dimensional plate with radius 4 uniformly, and label them

as from Class 1, except for those which are within a circle centered at (1.9, 0)T with radius 2,

which are labeled as Class 2, and those which are within a circle centered at (
√

3+0.1, 0)T with

radius
√

3, which are labeled as Class 3. The observations for the additional (d−2) dimensions

are all 0. We then perturb all the data points by adding independent d-dimensional Gaussian

distributed random vector from Nd(0, σI). We let σ = 0.2, 0.4 and 0.6 and let d range from

10 to 75. Figure 5 shows one realization of the data on the first two dimensions without the

perturbation and the natural boundaries between the classes. This generalizes the classic

donut examples in nonlinear classification.

Note that Class 2 is sandwiched by Class 1 and Class 3 from both outside and inside,

and the high density region for Class 2 is very thin due to the construction. Hence, it

is perceivable that a Class 2 observation is very difficult to be correctly classified. The

noncrossing constraints here may be of some help because the boundary between Classes 1

and 2 may boost the estimation of the boundary between Classes 2 and 3, and vice versa.
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The simulation results are reported in Figure 6. The first row shows the test error over

100 simulations. It appears that many times the DR method is the best. However, recall

that in this data set the three classes are highly imbalanced in terms of their sample size. On

average, there are only 6.25% Class 2 points and 18.75% Class 3 points. A more reasonable

measure to look into here is some weighted error rate that incorporates the different costs of

misclassification. Here we report the weighted error with the configuration that:

• each misclassified point from Class 1 costs 1;

• each misclassified point from Class 2 to either Class 1 or Class 3 costs 2;

• each misclassified point from Class 3 to Class 2 costs 1, and from Class 3 to Class 1

costs 3.

Such assignment of the cost reflects the protection for Class 2, and the additional penalization

for misclassifying across two boundaries (the cost for misclassifying from Class 3 to Class 1

is the sum of the costs for misclassifying from 3 to 2 and from 2 to 1.)

The second row of Figure 6 reports the weighted error rate. It is obvious that expect for
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Figure 6: HD donut examples: The top row shows the error rate for different methods (in different
line types) over 12 experiments with 3 noise levels (the left, middle and right panels) and 5 different
dimensions (shown on the horizontal axis of each subfigure). The bottom row shows the weighted
error rate. The NORDIC-2 is the best classifiers in terms of classification performance.
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NORDIC-2, which is the best in this case, all other methods are more or less the same in

terms of the weighted error. Interestingly, the NORDIC-0 and NORDIC-1 methods do not

perform as well as their sibling NORDIC-2. They perform comparably to the other methods

(they may have a very small advantage over CK and DR methods when the perturbation is

small, for example, when σ = 0.2 and 0.4.) Recall that NORDIC-0 and NORDIC-1 imposes

stronger constraints which aim for the monotonicity of the discriminant function fk(x) itself,

as opposed to its sign. In contrast, the constraint from NORDIC-2 is much lighter, which

may have left enough “degrees of freedom” to optimize the generalization performance.

One may argue that the choice of the costs in the weighted error may be arbitrary. In

this case, it may be helpful to look into the confusion matrix to see the cause of the different

performance. Figure 7 depicts the 3× 3 confusion matrices for the case with contamination

σ = 0.4 for different methods and different dimensions. For the (k, `)th plot in the array,

the reported value is the proportion of observations from Class ` that are classified to Class

7496.2 obs. from C1 626.5 obs. from C2 1877.3 obs. from C3
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Figure 7: Confusion matrices for the examples with σ = 0.4 for different methods and dimensions.
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k (`, k = 1, 2, 3). Note that the aggregation of the three plots in the same column equals to

1. A good classifier is expected to have high rates in the diagonal plots and low rates in the

off-diagonal plots. There are, on average, 7496.2 observations from Class 1, and almost all

the methods classify them correctly. Class 2 (with only 626.5 observations) is clearly a very

difficult class. Even our NORDIC-2 has a poor classification accuracy of 25%. That said,

NORDIC-2 shows more advantages for higher dimensional cases. For Class 3, NORDIC-2

shows improved accuracy, especially with much fewer misclassifications into Class 1 (shown

in the upper-left plot).

The computational time results are similar to what we have seen for the last example

and are not reported here.

7 Real Application

We use the scale balance data set from the UCI Machine Learning Repository (Lichman,

2013) to test the usefulness of the NORDIC method. This data set, studied in Siegler (1976),

was generated to model psychological experimental results. Each example is classified as

having the balance scale tip to the right, tip to the left, or be balanced. The four attributes

are the left weight, the left distance, the right weight, and the right distance. The correct

way to find the class is the greater of (left-distance * left-weight) and (right-distance * right-

weight). If they are equal, it is balanced. There are 625 instances in the data, with 288 tip

to the left (L), 49 balanced (B), and 288 tip to the right (R).

There is a clear order between the three classes (L, B and R,) and hence ordinal classifica-

tion methods are appropriate. We randomly select n points from the data set for training, n

for tuning, and the remaining (625−2n) are for testing. The proportions of the three classes

are preserved when the partitioning is conducted. The random experiment is repeated for

100 times. We consider four cases, where n = 52, 79, 125 and 208 respectively.

A naive coding of 1, 2 and 3 for these three classes followed by a regression method will
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prove to be suboptimal. In particular, in addition to the ordinal classification methods, we

also compare with support vector regression (SVR Smola and Schölkopf, 2004, implemented

by svm() in the R package e1071) with Gaussian radial basis function kernel. SVR is applied

to the data with {1,2,3} coding, and the predicted class is obtained by cut-off values 1.5 and

2.5 for the predicted numerical outcome.

Figure 8 shows the weighted error rates of different methods over 100 random splitting

of the data set and 4 different sample sizes. Here we let a misclassified point from Class 3

to Class 1, or from Class 1 to Class 3, to bear a cost of 2; other types of misclassification

cost only 1. All three NORDIC methods are among the best, with NORDIC-2 having a

significant advantage. The other two NORDIC methods are comparable to the DR method

especially for small sample cases. The SVR is the worst classifier in this experiment.

Figure 9 shows the confusion matrices. It can be seen that the poor performance of the

SVR method is probably because it classifies much more instances to Class B, and this may

be due to the arbitrary choice of the cut-off values 1.5 and 2.5. However, one may have no

better way to choose the cut-offs except through another layer of tuning parameter selection.
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On the other hand, NORDIC-2 stands out as the best classifier due to its best performance

on Class B among the other methods (except for SVR.) Note that for Classes L and R, all

methods (except for SVR) perform more or less the same.

8 Concluding Remarks

In this article, three versions of NORDIC classifiers are proposed to make use of the order

information in classifying ordinal data. All three classifiers train (K − 1) binary SVM

classifiers simultaneously with extra constrains to ensure noncrossing among classification

boundaries. The NORDIC-0 and NORDIC-1 methods focus on a sufficient condition for

noncrossing and are solved by QP. The NORDIC-2 method aims for the exact condition for

noncrossing but has to be solved by the integer programming algorithm.

Let us turn our attention back to the formulation for NORDIC-0, (2)–(4). With-
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Figure 9: Confusion matrices for the scale balance data set.
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out the additional constraints (3) and (4), the NORDIC-0 method is the combination of

(K − 1) independently trained SVM classifiers (with the common tuning parameter). It

is known that for a single binary SVM classifier, the discriminant function is given by

f(x) =
∑n

j=1 ωjK(xj,x) + b. The coefficients ωi = αiyi is calculated by maximizing the

following dual problem of SVM,

LSVM =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj),

subject to
∑
i

αiyi = 0, and 0 ≤ αi ≤ C. (20)

See, for example, Burges (1998) for a tutorial. The maximization problem above is the dual

problem of SVM, while our NORDIC-0 method was based on the primal problem of SVM.

One may wonder if a dual-based NORDIC is possible. Indeed, a variant of NORDIC

can be viewed as to maximize the sum of (K − 1) such objective functions as in (20), with

extra noncrossing constraints that ωk· ≥ ω(k+1)·, that is αk,iy
(k)
i ≥ αk+1,iy

(k+1)
i . Note that

the constraints are the same as in NORDIC-0 but the objective function is based on the dual

objective function. However, one can show that this formulation ultimately reduces to the

method proposed by Chu and Keerthi (2005), namely, all the (K − 1) classifiers share the

same ω vector. Hence the CK method can be viewed as a special case in the NORDIC family.

Note that in our NORDIC-0 proposal, we focus on the primal formulation. As a consequence,

the resulting boundaries are not parallel to each other, leading to more flexibility.

The usefulness and efficiency of the proposed methods are supported by the comparison

with the competitors. Promising results are obtained from simulated and data examples.

Fisher consistency of the NORDIC method and asymptotic normality of the linear NORDIC

method further validate the proposed methods.

There is a natural connection between ordinal classification and ordered logistic regres-

sion. Both methods fully utilize the ordinal class information. Their difference can be viewed

as analogous to the difference between binary SVM and (binary) logistic regression, or that

between multicategory SVM and multinomial logistic regression. It is interesting to explore
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the benefit of using machine learning techniques including NORDIC, over the modeling ap-

proaches such as ordered logistic regression. See Lee and Wang (2015) for such a comparison

in the binary case.

We have provided three distinct formulations. They may perform differently on different

types of data sets, both in terms of the generalization error and the computational time;

the derivation of these optimization problems may give insights into which kernels can more

easily admit truly non-crossing boundaries. It is an interesting future research direction to

identify specific kernels for which we can provide truly non-crossing boundaries.

Appendix

Proof to Theorem 1

Let Ẑn and Z̃n denote n1/2
{

(ω̂k·, b̂k)
T − (ω0

k·, b
0
k)
T
}

and n1/2
{

(ω̃k·, b̃k)
T − (ω0

k·, b
0
k)
T
}

, re-

spectively. Then ∣∣∣P(Ẑn ≤ u
)
− P

(
Z̃n ≤ u

)∣∣∣
=
∣∣∣P(Ẑn ≤ u | Ẑn 6= Z̃n

)
− P

(
Z̃n ≤ u | Ẑn 6= Z̃n

)∣∣∣
× P

(
Ẑn 6= Z̃n

)
Since the first term in the product is bounded by 2, it suffices to show that P

(
Ẑn 6= Z̃n

)
→ 0.

The event, Ẑn 6= Z̃n, is equivalent to the event that the unconstrained binary linear SVM

classifiers have boundaries crossing from each other, that is,

n1/2
{

sign
(
xT ω̃k· + b̃k

)
− sign

(
xT ω̃(k+1)· + b̃k+1

)}
< 0

for some x ∈ S. This is only possible when xT ω̃k· + b̃k < 0 and xT ω̃(k+1)· + b̃k+1 > 0. We

consider their difference

n1/2
{(
xT ω̃k· + b̃k

)
−
(
xT ω̃(k+1)· + b̃k+1

)}
.
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This difference can be written as

n1/2
{(
xT ω̃k· + b̃k

)
−
(
xTω0

k· + b0k
)}

− n1/2
{(
xT ω̃(k+1)· + b̃k

)
−
(
xTω0

(k+1)· + b0k+1

)}
+ n1/2

{(
xTω0

k· + b0k
)
−
(
xTω0

(k+1)· + b0k+1

)}
Under the regularity conditions, and due to the results in Koo et al. (2008), the first two

terms above are Op(1). Thus, n1/2
{(
xTω0

k· + b0k
)
−
(
xTω0

(k+1)· + b0k+1

)}
≤ −C < 0. This

contradicts the fact that sign
(
xTω0

k· + b0k
)
≥ sign

(
xTω0

(k+1)· + b0k+1

)
due to the assumption

that the conditional density for each class is positive. Thus P
(
Ẑn 6= Z̃n

)
→ 0 which

completes the proof.
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