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Abstract
In this paper, we introduce a sufficient dimension reduc-
tion (SDR) algorithm based on distance-weighted dis-
crimination (DWD). Our methods is shown to be robust
on the dimension p of the predictors in our problem,
and it also utilizes some new computational results in
the DWD literature to propose a computationally faster
algorithm than previous classification-based algorithms
in the SDR literature. In addition to the theoretical
results of similar methods we prove the consistency
of our estimate for divergent number of p. Finally, we
demonstrate the advantages of our algorithm using sim-
ulated and real datasets.
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1 INTRODUCTION

Sufficient dimension reduction (SDR) is a class of feature extraction techniques introduced in
regression settings with high-dimensional predictors. Let X be a p-dimensional predictor vector
and Y be a response variable (which is assumed univariate for the time being). In linear SDR our
effort is to reduce the dimension of the predictors, X , without losing information of the condi-
tional distribution Y |X . In other words we are trying to find a p× d (d < p) matrix 𝜷 such that the
following conditional independence model holds:

Y ⫫ X|𝜷TX. (1)
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The space spanned by the columns of 𝜷 is called a Dimension Reduction Subspace (DRS). The
intersection of all possible DRS’s, if it is itself a DRS, is called the Central Dimension Reduction
Subspace (CDRS) or the Central Space (CS) and is denoted with Y |X. Conditions of existence
of the CS are mild (see Yin, Li, & Cook, 2008) therefore we assume it exists throughout this
paper. Some literature on SDR includes and is not limited to Sliced Inverse Regression (SIR) by
Li (1991), Sliced Average Variance Estimation (SAVE) by Cook and Weisberg (1991), principal
Hessian directions (pHd) by Li (1992), Contour Regression by Li, Zha, and Chiaromonte (2005)
and Directional Regression by Li and Wang (2007) among others.

In recent years, there is an interest in nonlinear SDR, where we extract linear or nonlin-
ear functions of the predictors. That is, we work under the nonlinear conditional independence
model:

Y ⫫ X|𝜙(X), (2)

where 𝜙 ∶ Rp → Rd denotes linear or nonlinear functions of the predictors. Some examples
include the work by Wu (2008) and by Yeh, Huang, and Lee (2009) which introduced Kernel SIR,
the work by Fukumizu, Bach, and Jordan (2009) which used kernel regression and the work by Li,
Artemiou, and Li (2011) who used Support Vector Machine (SVM) algorithms to achieve linear
and nonlinear dimension reduction under a unified framework. The idea of using SVM and dif-
ferent algorithms have since been expanded in a number of directions. Artemiou and Dong (2016)
used LqSVM which ensures the uniqueness of the solution, Zhou and Zhu (2016) used a mini-
max variation for sparse SDR, Shin and Artemiou (2017) replaced the hinge loss with a logistic
loss to achieve the desired result, Shin, Wu, Zhang, and Liu (2017) used weighted SVM approach
for binary responses and Artemiou and Shu (2014) and Smallman and Artemiou (2017) focused
on removing the bias due to imbalance.

One of the most interesting variations of SVM was proposed by Marron, Todd, and Ahn (2007)
and is known as Distance-Weighted Discrimination (DWD). The interest of DWD lies on the fact
that it works much better than SVM as the dimension of the predictors X increases. This is due to
the fact that SVM suffers from data piling when the dimension of the predictor space is large. Data
piling occurs in high-dimensional low sample size (HDLSS) settings and it describes the tendency
of the data in each class to project to a single point on a discriminant direction. In the upper plot
of Figure 1, we can see that for p= 100, SVM and DWD project the data in a similar manner.
However, the lower plot in Figure 1 shows that when p= 500, SVM (black points) projects almost
all the points to 1 for one class and to −1 for the other class while DWD spreads the data in each
class on a wider range of values. In a classification setting, data piling makes generalization of the
classification results difficult.

In this paper we will investigate whether DWD has similar advantages over SVM in the SDR
framework, as the ones it has in the classification framework. We will create a similar method
as the one in Li et al. (2011) with the difference that the objective function of DWD will replace
the objective function of SVM. We call our method Principal DWD following a similar pattern to
Li et al. (2011) calling their method Principal SVM (principal support vector machines (PSVM)).
Interestingly, results show that actually DWD works better than SVM for low-dimensional
problems and as the dimension increases PSVM gets closer to the performance of principal
distance weighted discrimination (PDWD). Thus, data piling seems to help in the dimension
reduction framework in the regression setting. This observation may be explained due to the fact
that in the regression setting we are more interested in a hyperplane alignment than reducing
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F I G U R E 1 Density of
projections for n= 1,000. Top panel:
p= 500; bottom panel: p= 1,000. The
datasets consists of the projection of
points after discretizing the response
in two slices under the model
Y = X1 + 𝜖 [Color figure can be
viewed at wileyonlinelibrary.com]

misclassification error. Therefore, data piling may help “stabilize” the alignment of the
hyperplane on the correct direction for PSVM.

The paper is constructed as follows. In Section 2 we discuss DWD and we introduce Principal
DWD and in Section 3 we discuss its asymptotic properties. In Section 4 we present nonlinear
feature extraction and in Section 5 our numerical studies. We close with a discussion section.

2 PRINCIPAL DWD

In this section we develop the idea of using DWD for SDR. We discuss first DWD as it was pre-
sented by Marron et al. (2007) and then we demonstrate how it can be incorporated into the
SDR framework, giving some theoretical results, a sample estimation algorithm and a method for
determining the dimension of the central subspace.

2.1 Review of DWD

Let (X i,Y i), i= 1, … , n be an iid sample of (X ,Y ). Denote X = n−1 ∑n
i=1 Xi and 𝚺= var(X). Now

suppose Y is a binary random variable, which takes values ±1. DWD is defined by the following
optimisation problem:

minimize
n∑

i=1

1
ri
+ 𝜆

n

n∑
i=1
𝜉i among (r,𝝍 , t, 𝝃) ∈ R

p × R × R
n,

subject to ri = Yi[𝝍T(Xi − X) − t] + 𝜉i ≥ 0, 𝜉i ≥ 0, i = 1, … ,n, ||𝝍|| ≤ 1, (3)

where r is a vector of all ri’s and 𝝃 is the vector of all 𝜉i’s. Here 𝜆 > 0 is a tuning parameter
also called the cost (or misclassification penalty) and 𝝃 is a penalization vector where 𝜉i = 0 for
correctly classified points and 𝜉i > 0 for misclassified points.

The above optimization problem can be written slightly differently using the following vector
form (for details, see Qiao & Zhang, 2015):

𝝍T𝝍 +
n∑

i=1

[[
Yi[𝝍T(Xi − X) − t] +

(
1√
𝜆
− Yi[𝝍T(Xi − X) − t]

)+]−1

http://wileyonlinelibrary.com
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+ 𝜆

(
1√
𝜆
− Yi[𝝍T(Xi − X) − t]

)+]
, (4)

where the first term comes from the constraint ||𝝍|| ≤ 1 and the rest from replacing 𝜉i with the
hinge loss

(
1√
𝜆
− Yi[𝝍T(Xi − X) − t]

)+
. In the dimension reduction framework we are interested

to work with the population version of the above objective function. The population version is
the following:

𝝍T𝝍 + E
[[

Y [𝝍T(X − E[X]) − t] +

(
1√
𝜆
− Y [𝝍T(X − E[X]) − t]

)+]−1

+ 𝜆

(
1√
𝜆
− Y [𝝍T(X − E[X]) − t]

)+]
. (5)

There were a number of extensions of the DWD algorithm. Some include the weighted
DWD approach by Qiao, Zhang, Liu, Todd, and Marron (2010) and the sparse DWD approach
by Wang and Zou (2016). Marron et al. (2007) as well as the extensions discussed above used
cone programming to solve the optimization problem in (3) (or the respective one for each
extension). More recently, Wang and Zou (2018) proposed the generalized DWD algorithm
which allow for faster computational algorithm. In this paper, we utilize their idea and
thus our estimation algorithm is much faster than previous methodology in the SVM-based
SDR framework. Another computationally fast algorithm appeared in Lam, Marron, Sun, and
Toh (2018).

2.2 DWD for SDR

One of the tricks that many classic algorithms are using for SDR is the idea of slicing/discretizing
the response which in most regression settings is a continuous random variable (e.g., Li, 1991; Li
et al., 2011). When the response is discrete this step is ignored as each discrete value is considered
a slice. To unify the notation though and following the idea of Li et al. (2011) we define ΩY to be
the support of Y and A1 and A2 to be disjoint subsets of ΩY (not necessarily exhaustive subsets).
Then one can define

Ỹ = I(Y ∈ A1) − I(Y ∈ A2). (6)

Replacing this into the population objective function of DWD we get the following objective
function in the SDR framework:

L(𝝍 , t) = 𝝍T𝜮𝝍 + E
⎡⎢⎢⎣
[

Ỹ [𝝍T(X − E[X]) − t] +

(
1√
𝜆
− Ỹ [𝝍T(X − E[X]) − t]

)+]−1⎤⎥⎥⎦
+ E

[
𝜆

(
1√
𝜆
− Ỹ [𝝍T(X − E[X]) − t]

)+]
. (7)



RANDALL, et al. 5

Following Li et al. (2011) we note that we have also inserted 𝚺 into the first term to ensure
the resulting DWD estimate is unbiased and to provide the unified framework for nonlinear SDR.
Assuming E(X)= 0 without loss of generality, and by setting u = Ỹ [𝝍TX − t] we can simplify the
above objective function to:

𝝍T𝜮𝝍 + E
⎡⎢⎢⎣
[

u +

(
1√
𝜆
− u

)+]−1

+ 𝜆

(
1√
𝜆
− u

)+⎤⎥⎥⎦ . (8)

The following Lemma is used to prove the convexity of the objective function. This lemma
will be crucial in proving the theorem which shows that the normal vector 𝝍 of the optimal
hyperplane, developed by the PDWD, is indeed in the CS.

Lemma 1. If f (u) =
[

u +
(

1√
𝜆
− u

)+
]−1

+ 𝜆
(

1√
𝜆
− u

)+
, then f is convex for all 𝜆 > 0.

Proof. To prove convexity we need to show

f (𝛼u1 + (1 − 𝛼)u2) ≤ 𝛼f (u1) + (1 − 𝛼)f (u2),

for all u ∈ R and 𝛼 ∈ [0, 1]. Firstly we can rewrite f as

f (u) =
⎧⎪⎨⎪⎩

1
u

u ≥
1√
𝜆

2
√
𝜆 − 𝜆u u < 1√

𝜆

.

For u ≥
1√
𝜆

we have 2
√
𝜆 − 𝜆u ≤

1
u

and for u1 ≤u2 we have f (u1)≥ f (u2) since f is a decreasing
function. We need to consider three cases:

(i) When u1 <
1√
𝜆

, u2 <
1√
𝜆

. Here we have 𝛼u1 + (1 − 𝛼)u2 <
1√
𝜆

and hence

f (𝛼u1 + (1 − 𝛼)u2) = 2
√
𝜆 − 𝜆(𝛼u1 + (1 − 𝛼)u2)

= 𝛼(2
√
𝜆 − 𝜆u1) + (1 − 𝛼)(2

√
𝜆 − 𝜆u2)

= 𝛼f (u1) + (1 − 𝛼)f (u2).

(ii) When u1 <
1√
𝜆

, u2 ≥
1√
𝜆

. Since the gradient of f is equal when approaching from the left

and right of 1√
𝜆

we can assume without loss of generality that 𝛼u1 + (1 − 𝛼)u2 <
1√
𝜆

and so

f (𝛼u1 + (1 − 𝛼)u2) = 2
√
𝜆 − 𝜆(𝛼u1 + (1 − 𝛼)u2)

= 𝛼(2
√
𝜆 − 𝜆u1) + (1 − 𝛼)(2

√
𝜆 − 𝜆u2)

≤ 𝛼(2
√
𝜆 − 𝜆u1) +

(1 − 𝛼)
u2

= 𝛼f (u1) + (1 − 𝛼)f (u2).
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(iii) When u1 ≥
1√
𝜆

, u2 ≥
1√
𝜆

which gives 𝛼u1 + (1 − 𝛼)u2 ≥
1√
𝜆

. In this case we can simply prove

that the second derivative of f (u) = 1
u

only gives positive values as follows

f ′′(u) = 2
u3 > 0 since 𝜆 > 0.

Hence we have

f (𝛼u1 + (1 − 𝛼)u2) ≤ 𝛼f (u1) + (1 − 𝛼)f (u2),

for all u ∈ R, and therefore f is convex. ▪

Having verified the convexity of the objective function then one can prove the following
theorem which demonstrates that the normal vector of the hyperplane is in Y |X. This follows
directly from the proof in Li et al. (2011) due to the fact that the hinge loss in SVM is replaced with
another convex function and as Li et al. (2011) claim their proof holds for every convex function.

Theorem 1. If E(X|𝜷TX) is a linear function of 𝜷TX, where 𝜷 is defined as in (1) and if (𝝍∗, t∗)
minimizes the objective function (13) among all (𝝍 , t) ∈ Rp × R, then 𝝍∗ ∈ Y |X.

Proof. It is important to note that under the conditions of the theorem we can write the
conditional expectation

E[X|𝜷TX] = PT
𝜷
(𝚺)X,

where P𝜷(𝚺) is the projection matrix 𝜷(𝜷T𝜮𝜷)−1𝜷T𝚺.
Our objective function takes the form

L(𝝍 , t) = 𝝍T𝜮𝝍 + E
⎡⎢⎢⎣
[

u +

(
1√
𝜆
− u

)+]−1

+ 𝜆

(
1√
𝜆
− u

)+⎤⎥⎥⎦ .
Beginning with the first term we have

𝝍T𝜮𝝍 = var[𝝍TX]
= var[E[𝝍TX|𝜷TX]] + E[var[𝝍TX|𝜷TX]]
≥ var[E[𝝍TX|𝜷TX]]
= var[𝝍TPT

𝜷
X]

= (P𝜷(𝚺)𝝍)T𝚺(P𝜷(𝚺)𝝍).

Hence

𝝍T𝜮𝝍 ≥ (P𝜷𝝍)T𝚺(P𝜷𝝍). (9)

Now lets look at the second term. Again we can write

E
⎡⎢⎢⎣
[

u +

(
1√
𝜆
− u

)+]−1

+ 𝜆

(
1√
𝜆
− u

)+⎤⎥⎥⎦
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= E
⎡⎢⎢⎣E

⎡⎢⎢⎣
[

u +

(
1√
𝜆
− u

)+]−1

+ 𝜆

(
1√
𝜆
− u

)+|||||Ỹ , 𝜷TX
⎤⎥⎥⎦
⎤⎥⎥⎦ ,

so if we define the function f such that f (a) =
[

a + (1∕
√
𝜆 − a)+

]−1
+ 𝜆(1∕

√
𝜆 − a)+ then this

gives

E
⎡⎢⎢⎣
[

u +

(
1√
𝜆
− u

)+]−1

+ 𝜆

(
1√
𝜆
− u

)+|||||Ỹ , 𝜷TX
⎤⎥⎥⎦ = E[f (u)|Ỹ , 𝜷TX].

Since f is a convex function, we can use Jensen’s inequality as follows:

E[f (u)|Ỹ , 𝜷TX] ≥

[
E[u|Ỹ , 𝜷TX] +

(
1√
𝜆
− E[u|Ỹ , 𝜷TX]

)+]−1

+ 𝜆

(
1√
𝜆
− E[u|Ỹ , 𝜷TX]

)+

=

[
Ỹ (E[𝝍TX|𝜷TX] − t) +

(
1√
𝜆
− Ỹ (E[𝝍TX|𝜷TX] − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (E[𝝍TX|𝜷TX] − t)

)+

=

[
Ỹ (𝝍TPT

𝜷
(𝚺)X − t) +

(
1√
𝜆
− Ỹ (𝝍TPT

𝜷
(𝚺)X − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (𝝍TPT

𝜷
(𝚺)X − t)

)+

.

Thus combining this with (9) we get

L(𝝍 , t) ≥ L(P𝜷(𝚺)𝝍 , t). (10)

If 𝝍 does not belong to Y |X, then var[𝝍TX|𝜷TX] > 0 and the inequality in (9) becomes strict.
Hence the inequality in (10) is strict. Therefore, such 𝝍 cannot be the minimizer of L(𝝍 , t). ▪

2.3 Sample estimation algorithm

Having established the theoretical properties of the minimizer of the objective function in PDWD
we now look into the sample estimation algorithm of our method. Before giving the algorithm
though we look at available packages in solving the optimization problem of DWD. As the avail-
able packages solve the objective function of DWD which does not include 𝚺 in the first term,
we demonstrate below that by standardizing the data the objective function of PDWD becomes
equivalent to the objective function of DWD and therefore available packages can be used.
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As was mentioned above the objective function of DWD is

𝝍T𝝍 + En

⎡⎢⎢⎣
[

Ỹ (𝝍TX − t) +

(
1√
𝜆
− Ỹ (𝝍TX − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (𝝍TX − t)

)+⎤⎥⎥⎦ , (11)

and the one for PDWD is

𝝍T𝚺T𝝍 + En

⎡⎢⎢⎣
[

Ỹ (𝝍TX − t) +

(
1√
𝜆
− Ỹ (𝝍TX − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (𝝍TX − t)

)+⎤⎥⎥⎦ . (12)

Now if we let 𝜻 = 𝚺1∕2𝝍 and Z = 𝚺−1∕2(X − X), and substitute these into (12) we have

𝜻
T
𝜻 + En

⎡⎢⎢⎣
[

Ỹ (𝜻TZ − t) +

(
1√
𝜆
− Ỹ (𝜻TZ − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (𝜻TZ − t)

)+⎤⎥⎥⎦ , (13)

which we can see is of the same form as (11). Hence, as we stated above we can see that stan-
dardizing X modifies the PDWD in a desired way. We emphasize here that this fact allows us to
use existing algorithms for DWD in the literature to estimate the PDWD solution. Hence, in our
algorithm below we require the standardization of the data.

To solve (13) Wang and Zou (2018) proposed an algorithm to iteratively calculate the hyper-
plane. This is a fast algorithm that calculates the hyperplane until convergence. To calculate the
solution in iteration (m+ 1) the following formula is used:(

t(m+1)

𝜻 (m+1)

)
=

(
t(m)

𝜻 (m)

)
− n

4
P−1(𝜆)

(
1Tz

ZTz + 2𝜆𝜻 (m)

)
,

where z = (z1, … , zn)T ,

zi =
⎧⎪⎨⎪⎩
− ỹi

n
, ỹi(𝜻TZ − t) ≤ 1

2

− 1
n(ỹi(𝜻T Z−t))2

(
1
2

)2
, ỹi(𝜻TZ − t) > 1

2

.

Finally,

P−1(𝜆) =

(
n 1TZ

ZT1 ZTZ + n𝜆
2

Ip

)−1

.

This iterative process replaces the quadratic programming process which was used in PSVM
and therefore the PDWD algorithm becomes computationally much faster. For more details the
interested reader is referred to Wang and Zou (2018).

We will define two methods for generating Ỹ , which were first proposed in Li et al. (2011).
These are named left versus right (LVR) which is more appropriate when the response is continu-
ous or discrete with a sense of ordering between the values and one versus another (OVA) which



RANDALL, et al. 9

is more appropriate when the response is categorical with no sense of ordering between the val-
ues. When using LVR you choose Ỹ r

i = I(Yi > qr) − I(Yi ≤ qr) for i= 1, … , n and r = 1, … , h− 1
where h is the number of slices. OVA follows a similar method but we choose Ỹ rs

i = I(qs−1 < Yi ≤

qs) − I(qr−1 < Yi ≤ qr) where r, s= 1, … , h with r ≠ s.
The estimation procedure is as follows:

1. Compute the sample mean X and sample variance matrix 𝚺̂.
2. We find the minimizer using the algorithm in Wang and Zou (2018). In more detail: (LVR) Let

qr, r = 1, … h− 1, be h− 1 dividing points and let

Ỹ r
i = I(Yi > qr) − I(Yi ≤ qr),

for i= 1, … , n. Then using DWD, let (𝝍̂ r, t̂r) be the minimizers of

𝝍T𝚺̂𝝍 + E
⎡⎢⎢⎣
[

Ỹ r(𝝍TX − t) +

(
1√
𝜆
− Ỹ r(𝝍TX − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ r(𝝍TX − t)

)+⎤⎥⎥⎦ .
(OVA) Apply DWD to each pair of slices from the h slices. More specifically, let q0 =

min {Y1, … ,Yh} and qh = max {Y1, … ,Yh}. Then for each (r, s) such that 1≤ r < s≤ h, let

Ỹ rs
i = I(qs−1 < Yi ≤ qs) − I(qr−1 < Yi ≤ qr).

Let (𝝍̂ rs, t̂rs) be the minimizers of

𝝍T𝚺̂𝝍 + E
⎡⎢⎢⎣
[

Ỹ rs(𝝍TX − t) +

(
1√
𝜆
− Ỹ rs(𝝍TX − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ rs(𝝍TX − t)

)+⎤⎥⎥⎦ .
3. Let v̂1, … , v̂d be the d leading eigenvectors of one of the matrices

M̂n =
h−1∑
r=1
𝝍̂ r𝝍̂

T
r or M̂n =

h−1∑
r=1

h∑
s=r+1

𝝍̂ rs𝝍̂ rsT . (14)

We can now estimate SY |X using the subspace spanned by v̂ = (v̂1, … , v̂d).

2.4 Order determination

Now we turn our attention to the estimation of the dimension d. Developing an effective method
for determining the dimension is vital when developing methods for SDR and plays an important
role in the performance of such method. For PSVM, Li et al. (2011) opted to use method based on
a cross-validated bayesian information criterion. We propose to use a relatively new approach to
order determination developed by Luo and Li (2016) which is called the ladle estimate.

The ladle estimator is a combination of the scree plot method and the Ye-Weiss plot developed
by Ye and Weiss (2003). Let M̂ be defined as one of the matrices in (14) and let 𝜆̂i define the ith
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eigenvalue of M̂. Now since M̂ is a consistent estimator of M and M has rank d we can establish
that 𝜆̂d+1 will be much smaller than 𝜆̂d. Using this the following function is defined

𝜙n ∶ {0, … , p − 1} → R, 𝜙n(k) =
𝜆̂k+1

1 +
∑p−1

i=0 𝜆̂i+1
. (15)

The eigenvalues have been shifted so that 𝜙n takes a small values at k= d rather than at
k= d+ 1.

Next we turn our attention to the Ye–Weiss plot. Let F be the distribution of (X ,Y )
and let Fn be the empirical distribution based on S= (X1,Y 1), … ,(Xn,Y n). Conditioning
on S, let (X∗

1,n,Y∗
1,n), … , (X∗

n,n,Y∗
n,n) be and iid bootstrap sample from Fn. Now define

{𝜆̂1, … , 𝜆̂p, v̂1, … , v̂p} and {𝜆∗1, … , 𝜆∗p, v∗1, … , v∗p} be the eigenvalues and eigenvectors of M̂ and
M* respectively. For each k < p, let

B̂k = (v̂1, … , v̂k) B∗
k = (v∗1, … , v∗k),

and define the function

f 0
n ∶ {0, … , p − 1} → R, f 0

n (k) =
⎧⎪⎨⎪⎩

0 k = 0

n−1
n∑

i=1
1 − | det (BT

k B∗
k,i)| k = 1, … , p − 1

, (16)

where B∗
k,i denotes the ith bootstrap sample. From Ye and Weiss (2003), it can be established that

the function f 0
n (k) gives a measure of the variability of the bootstrap estimates around the full

sample estimate B̂k. The range of f 0
n is [0,1], where 0 indicates each B∗

k,i spans the same column
space as B̂k and 1 occurs when B∗

k,i spans a space orthogonal to B̂k. So if we define the function

fn ∶ {0, … , p − 1} → R fn(k) =
f 0
n (k)

1 +
∑p−1

i=0 f 0
n (i)

, (17)

Ye and Weiss (2003) determined that f n is small for k= d and larger for k > d.
Lastly, the ladle estimator of the rank d is defined to be

d̂ = arg min
k

{gn(k) ∶ k ∈ (gn)}, (18)

where gn(k) = 𝜙n(k) + fn(k).
Consider the regression model

Y = X1

0.5 + (X2 + 1)2 + 𝜎𝜖. (19)

Choosing n= 100 and p= 10, Figure 2 shows the ladle plot for model (19). As we can see, the
ladle plot correctly estimates d to be 2. We have tried this simulation many times with approx-
imately 98% accuracy. More detailed simulations will be discussed in our numerical studies
section.
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F I G U R E 2 Ladle plot of model (19)
with n= 100 and p= 10

3 ASYMPTOTIC ANALYSIS OF PDWD

In this section we discuss the asymptotic properties of the PDWD. We find the Hessian matrix
and the influence function before proving consistency. We demonstrate the consistency when p is
fixed, as well as when p is not fixed and tends to infinity, although we still require it to be less than
n. To make the proofs easier to read we use the following notation. Let 𝜽 = (𝝍T , t)T , Z = (XT , Ỹ )T ,
X∗ = (XT ,−1)T and 𝚺∗ = diag(𝚺, 0), then u = 𝜽TX∗Ỹ and thus

𝝍T𝜮𝝍 +

[
u +

(
1√
𝜆
− u

)+]−1

+ 𝜆

(
1√
𝜆
− u

)+

= 𝜽T𝚺∗𝜽

+

[
𝜽TX∗Ỹ +

(
1√
𝜆
− 𝜽TX∗Ỹ

)+]−1

+ 𝜆

(
1√
𝜆
− 𝜽TX∗Ỹ

)+

.

We denote this function by m(𝜽,Z). Let ΩZ be the support of Z and let h ∶ Θ × ΩZ → R+ be a
function of (𝜽,Z). Let D𝜽 denote the (p+ 1)-dimensional column vector of differential operators
(𝜕∕𝜕𝜃1, … , 𝜕∕𝜕𝜃p+1)T .

Before we consider the gradient of the DWD objective function, we prove that the function f
is differentiable at all points.

Lemma 2. The function f, as defined in Lemma 1, is differentiable at all points.

Proof. We need to prove that the gradient of f as we approach 1√
𝜆

from below is equal to the
gradient as we approach from the above. We have

f ′(a) = −

[
a +

(
1√
𝜆
− a

)+]−2

=
⎧⎪⎨⎪⎩
−a−2 a ≥

1√
𝜆

−𝜆 a < 1√
𝜆

.

Hence lima↓ 1√
𝜆

f ′(a) = −𝜆 = lima↑ 1√
𝜆

f ′(a). Therefore f is differentiable everywhere. ▪
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The next theorem gives the gradient of the DWD objective function E[m(𝜽,Z)]. The proof
follows straight from Lemma 2 and is therefore omitted. Let D2

𝜽
denote the operator D𝜽DT

𝜽
. Thus,

D2
𝜽
m(𝜽,Z) is the (p+ 1)× (p+ 1) matrix whose (i, j)th entry is 𝜕2m∕𝜕𝜽i𝜕𝜽j.

Theorem 2. The gradient of E(m(𝜽, z)) takes the form

D𝜽E[m(𝜽, z)] = 2𝚺∗𝜽 − E
⎡⎢⎢⎣X∗Ỹ

[
𝜽TX∗Ỹ +

(
1√
𝜆
− 𝜽TX∗Ỹ

)+]−2⎤⎥⎥⎦ . (20)

The next step is to find the Hessian matrix. Before doing so, we state some helpful results.
First we use the following notation. Let n(𝜽, z) = D𝜽m(𝜽, z) and for each 𝜽 ∈ Θ, N𝜽(n) be the set
of x for which a function n(z,⋅) is not differentiable at 𝜽. That is,

N𝜽(n) = {z ∶ D𝜽n(⋅, z) is not differentiable at 𝜽}.

Lemma 3. Suppose that n ∶ Θ × ΩZ → R satisfies the following conditions

1. (almost surely differentiable) for each 𝜽 ∈ Θ, P[Z ∈ N𝜽(n)] = 0;
2. (Lipschitz condition) there is an integrable function c(z), independent of 𝜽, such that for any
𝜽1,𝜽2 ∈ Θ,

|n(𝜽2, z) − n(𝜽1, z)| ≤ c(z)||𝜽2 − 𝜽1||.
Then D𝜽[n(𝜽,Z)] is integrable, E[D𝜽n(𝜽,Z)] is differentiable and

D𝜽E[n(𝜽,Z)] = E[D𝜽n(𝜽,Z)]. (21)

Lemma 4. For c > 0 we have the following identity

|||| (a + (c − a)+)2 − (b + (c − b)+)2

(a + (c − a)+)2(b + (c − b)+)2

|||| ≤ 2
c3 |b − a|.

Now we have the necessary results which will be helpful in finding the Hessian matrix as the
following theorem states.

Theorem 3. Suppose, for each ỹ = −1, 1, the distribution of X|Ỹ = ỹ is dominated by the Lebesgue
measure and E[||X||2] <∞. Then

D𝜽E[n(𝜽,Z)] = 2𝚺∗ + E

[
X∗X∗T I

(
𝜽TX∗Ỹ <

1√
𝜆

)
[𝜽TX∗Ỹ ]−3

]
. (22)

Proof. Let H(𝝍 , a) denote the hyperplane {x ∶ 𝝍Tx = a}. We first need to verify the two
assumptions in Lemma 3. In our case,

P[(X, Ỹ ) ∈ N𝜽(n)] =
∑

ỹ∈{−1,1}
P(Ỹ = ỹ)P

[
X ∈ H

(
𝝍 , t +

ỹ√
𝜆

)|||||Ỹ = ỹ

]
.
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Since the Lebesgue measure of H
(
𝝍 , t + ỹ√

𝜆

)
is 0 for ỹ ∈ {−1, 1}, so by assumption 1 of the

theorem, the above probability is 0. Thus condition 1 of Lemma 3 is satisfied.

Let n1(𝜽, z) = 𝚺∗𝜽 and n2(𝜽, z) = −x∗ỹ
[
𝜽Tx∗ỹ +

(
1√
𝜆
− 𝜽Tx∗ỹ

)+
]−2

. Then n(𝜽, z) =

2n1(𝜽, z) + n2(𝜽, z). Since n1 is nonrandom and differentiable, it obviously satisfies
E[D𝜽n1(𝜽, z)] = D𝜽E[n1(𝜽, z)]. To verify that n2 is Lipschitz, let 𝜽1,𝜽2 ∈ Rp+1. Then

||n2(𝜽2, z) − n2(𝜽1, z)|| = ‖‖‖‖‖‖‖x∗ỹ

[
𝜽T

2 x∗ỹ +

(
1√
𝜆
− 𝜽T

2 x∗ỹ

)+]−2

− x∗ỹ

[
𝜽T

1 x∗ỹ +

(
1√
𝜆
− 𝜽T

1 x∗ỹ

)+]−2‖‖‖‖‖‖‖
≤ ||x∗||

‖‖‖‖‖‖‖‖‖‖

(
𝜽T

1 x∗ỹ +
(

1√
𝜆
− 𝜽T

1 x∗ỹ
)+

)2

−
(
𝜽T

2 x∗ỹ +
(

1√
𝜆
− 𝜽T

2 x∗ỹ
)+

)2

(
𝜽T

1 x∗ỹ +
(

1
√
𝜆 − 𝜽T

1 x∗ỹ
)+)2(

𝜽T
2 x∗ỹ +

(
1
√
𝜆 − 𝜽T

2 x∗ỹ
)+)2

‖‖‖‖‖‖‖‖‖‖
.

From Lemma 4 we get:||n2(𝜽2, z) − n2(𝜽1, z)|| ≤ 2𝜆3∕2||x∗||||𝜽T
1 x∗ − 𝜽T

2 x∗||
≤ 2𝜆3∕2(1 + ||x||2)||𝜽T

1 − 𝜽T
2 ||.

Since E[||X||2] <∞,

E[1 + ||X||2] = 1 + E[||X||2] < ∞.

This verifies condition 2 of Lemma 3.
Finally, by direct calculations we find that, for z ∉ N𝜽(n),

D𝝍 [n(𝜽, z)] = 2𝚺 + 2x∗xTI

(
ỹ(𝝍Tx − t) ≥ 1√

𝜆

)
[ỹ(𝝍Tx − t)]−3

Dt[n(𝜽, z)] = −2x∗I

(
ỹ(𝝍Tx − t) ≥ 1√

𝜆

)
[ỹ(𝝍Tx − t)]−3.

Hence

D𝜽[n(𝜽, z)] = 2𝚺∗ + 2x∗x∗T I

(
𝜽Tx∗ỹ ≥

1√
𝜆

)
[𝜽Tx∗ỹ]−3.

The theorem follows now from Lemma 3. ▪

The following theorem proves the consistency of our estimator. A similar result in the SVM
literature can be found in Jiang, Zhang, and Cai (2008).

Theorem 4. Let 𝜽0 = (𝝍T
0 , t0)T be the minimizer of E[m(𝜽,Z)]. Suppose, for each ỹ = −1, 1, the

distribution of X|Ỹ = ỹ is dominated by the Lebesgue measure and E[||X||2] <∞. Then

||𝜽̂ − 𝜽0||2 = −n−1H−1
n∑

i=1
Bi(z) + op(n−1∕2), (23)
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where Bi(z) = 2𝚺∗𝜽0 − x∗
i ỹi

[
𝜽T

0 x∗
i ỹi +

(
1√
𝜆
− 𝜽T

0 x∗
i ỹi

)∗]−2
and H is the Hessian matrix defined

previously.

Proof. Let a = (𝝍a
T , ta)T and now we write

m(z,𝜽0 + a) − m(z,𝜽0) = (𝜽0 + a)T𝚺∗(𝜽0 + a) − 𝜽T
0𝚺

∗𝜽

+

[
(𝜽0 + a)Tx∗ỹ +

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+]−1

−

[
𝜽T

0 x∗ỹ +

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+]−1

+ 𝜆

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+

− 𝜆

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+

= aT𝚺∗a + 2aT𝚺∗𝜽 +

[
(𝜽0 + a)Tx∗ỹ +

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+]−1

−

[
𝜽T

0 x∗ỹ +

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+]−1

+ 𝜆

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+

− 𝜆

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+

= aTD𝜽0 m(z,𝜽0) + R(z,a),

where

R(z,a) = aT𝚺∗a +

[
(𝜽0 + a)Tx∗ỹ +

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+]−1

−

[
𝜽T

0 x∗ỹ +

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+]−1

+ 𝜆

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+

− 𝜆

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+

− aTx∗ỹ

[
𝜽T

0 x∗ỹ +

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+]−2

,

DaR(z,a) = 2𝚺∗a − x∗ỹ

[
(𝜽0 + a)Tx∗ỹ +

(
1√
𝜆
− (𝜽0 + a)Tx∗ỹ

)+]−2

+ x∗ỹ

[
𝜽T

0 x∗ỹ +

(
1√
𝜆
− 𝜽T

0 x∗ỹ

)+]−2

,
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and

Da[DaR(z,a)] = 2𝚺∗ + 2xxTI

(
(𝜽0 + a)Tx∗ỹ ≥

1√
𝜆

)
[(𝜽0 + a)Tx∗ỹ]−3,

This gives, R(z, 0)= 0, DaR(z, 0)= 0 and E[Da[DaR(z,a)]] = H. By definition we also have
E[D𝜽0 m(z,𝜽0)] = 0. Hence

E[m(z,𝜽0 + a) − m(z,𝜽0)] = E[R(z,a)] = aTHa
2

+ o(||a||2), (24)

and since H is the Hessian of a convex function we can establish that it is symmetric and positive
definite.

Now let s = (𝝍 s
T , ts)T and An(s) =

∑n
i=1{m(zi,𝜽0 + n−1∕2s) − m(zi,𝜽0)}. We can see that An(s)

is convex with respect to s and is therefore minimized by
√

n(𝜽̂ − 𝜽0). Now we can write

An(s) =
n∑

i=1
{n−1∕2sTB(zi) + R(zi,n−1∕2s) − E[R(zi,n−1∕2s)]} + nE[R(z,n−1∕2s)]

= n−1∕2
n∑

i=1
sTB(zi) +

1
2

sTHs + rn,0(s) + rn,1(s),

where rn,0(s)= o(||s||2)→ 0 for fixed s and rn,1(s) =
∑n

i=1 R(zi,n−1∕2s) − E[R(zi,n−1∕2s)] → 0 in
probability since it has mean zero and variance o(||s||2).

Since H is positive definite, and the covariance matrix var[X] is finite, it follows from the basic
corollary of Hjort and Pollard (1993) that (23) holds. ▪

Let 𝜽0r = (𝝍T
0r, t0r)T be the minimizer of E[m(𝜽,Zr)] and 𝜽̂r = (𝝍̂T

r , tr)T be the minimizer of
En[m(𝜽,Zr)]. Let Hr be the Hessian matrix of E[m(𝜽,Zr)] and let Fr be the first p rows of H−1

r . By
the last theorem we have

𝝍̂ r = 𝝍0r − n−1Fr

n∑
i=1

B̃i(z) + op(n−1∕2), (25)

where B̃i(z) = 2𝜮𝝍0 − xiỹi

[
𝜽T

0rx∗
iỹi +

(
1√
𝜆
− 𝜽T

0rx∗
iỹi

)+
]−2

. Now let

M̂n =
h−1∑
r=1
𝝍 r𝝍

T
r and M0 =

h−1∑
r=1
𝝍0r𝝍

T
0r. (26)

Then it can be shown that

M̂n = M0 +
h−1∑
r=1

{𝝍T
0rD(𝜽0r, z) + DT(𝜽0r, z)𝝍0r + D(𝜽0r, z)DT(𝜽0r, z)}, (27)

where D(𝜽0r, z) = −n−1Fr
∑n

i=1 B̃i(z) + op(n−1∕2).
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Having shown consistency when p is fixed, we now turn into demonstrating consistency when
both n and p tend to infinity We show that as long as p < n we get a consistent estimator even
when p diverges.

Theorem 5. Let 𝜽0 = (𝝍T
0 , t0)T be the minimizer of

⋅
E[(𝜽,Z)]. Suppose for each ỹ = −1, 1, the distri-

bution of X|Ỹ = ỹ is dominated by the Lebesgue measure and E⋅[||X||2] <∞. Then 𝜽̂ is a consistent
estimate of 𝜽0 as long as p < n as p and n tend to infinity.

Proof. To begin, we first state the following identity:

||𝜽̂ − 𝜽0||2 ≤
√

pmax
i

|[𝜽̂ − 𝜽0]i|. (28)

Using this and (23) we can write

||𝜽̂ − 𝜽0||2 ≤
√

pmax
i

||||||n−1H−1
i

n∑
j=1

Bj(z)
|||||| + op(

√
p∕n). (29)

We know the first term on the right tends to 0 as n→∞, by the consistency of sample mean.
Therefore, 𝜽̂ is a consistent estimator of 𝜽0 if op(

√
p∕n) → 0 as n→∞. Hence we require p to

remain less than n. ▪

4 NONLINEAR PDWD

In this section we turn our attention to the extension of this method to the nonlinear case. Let
 be a Hilbert space of functions of X with inner product ⟨⋅, ⋅⟩ . Similar to the linear case, the
objective function, Λ(𝜓, t) ∶  × R → R+, takes the form

Λ(𝜓, t) = var(𝜓(X)) + E
[[

Ỹ (𝜓(X) − E[𝜓(X)] − t) +

(
1√
𝜆
− Ỹ (𝜓(X) − E[𝜓(X)] − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (𝜓(X) − E[𝜓(X)] − t)

)+]
, (30)

where Ỹ is defined as in (6). Now define ⟨f1,Σf2⟩ = cov[f1(X), f2(X)], for any f1, f2 ∈ , where
Σ ∶  →  is the covariance operator. Therefore (30) can be rewritten as

Λ(𝜓, t) = ⟨𝜓,Σ𝜓⟩ + E
⎡⎢⎢⎣
[

Ỹ (𝜓(X) − E[𝜓(X)] − t) +

(
1√
𝜆
− Ỹ (𝜓(X) − E[𝜓(X)] − t)

)+]−1

+𝜆

(
1√
𝜆
− Ỹ (𝜓(X) − E[𝜓(X)] − t)

)+]
. (31)

Lemma 5. Suppose the mapping  → L2(PX), f → f is continuous. Then for each fixed t in R, the
function 𝜓 → Λ(𝜓, t) is continuous with respect to the L2(PX )-norm.

Proof. Let 𝜓1 and 𝜓2 be two members of L2(PX ). Then

|Λ(𝜓2, t) − Λ(𝜓1, t)| ≤ |||||var[𝜓2(X)] − var[𝜓1(X)]|
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+ E|[Ỹ (𝜓2(X) − t) +

(
1√
𝜆
− Ỹ (𝜓2(X) − t)

)+]−1

−

[
Ỹ (𝜓1(X) − t) +

(
1√
𝜆
− Ỹ (𝜓1(X) − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (𝜓2(X) − t)

)+

− 𝜆

(
1√
𝜆
− Ỹ (𝜓1(X) − t)

)+|||||.
We start by considering the first term on the right-hand side. This gives

|var[𝜓2(X)] − var[𝜓1(X)]| = |var[𝜓2(X) − 𝜓1(X) + 𝜓1(X)] − var[𝜓1(X)]|
= |var[𝜓2(X) − 𝜓1(X)] + 2cov[𝜓2(X) − 𝜓1(X), 𝜓1(X)]|
≤ |var[𝜓2(X) − 𝜓1(X)]| + 2|var[𝜓2(X) − 𝜓1(X)]var[𝜓1(X)]|1∕2

≤ ||𝜓2 − 𝜓1||2
L2PX

+ 2||𝜓2 − 𝜓1||L2PX ||𝜓1||L2PX .

Before we consider the remaining terms of the above equation, we first note, for a, b ∈ R and
c > 0 we have

|[b + (c − b)+]−1 − [a + (c − a)+]−1 + c−2(c − b)+ − c−2(c − a)+| ≤ c−2|a − b|.
Therefore, last terms become

|Λ(𝜓2, t) − Λ(𝜓1, t)| ≤ ||𝜓2 − 𝜓1||2
L2PX

+ 2||𝜓2 − 𝜓1||L2PX ||𝜓1||L2PX

+ 𝜆E|Ỹ (𝜓2(X) − t) − Ỹ (𝜓1(X) − t)|
= ||𝜓2 − 𝜓1||2

L2PX
+ 2||𝜓2 − 𝜓1||L2PX ||𝜓1||L2PX + 𝜆E|𝜓2(X) − 𝜓1(X)|

≤ ||𝜓2 − 𝜓1||2
L2PX

+ 2||𝜓2 − 𝜓1||L2PX ||𝜓1||L2PX + 𝜆||𝜓2 − 𝜓1||L2PX

= ||𝜓2 − 𝜓1||L2PX(||𝜓2 − 𝜓1||L2PX + 2||𝜓1||L2PX + 𝜆).

Therefore |Λ(𝜓2, t) − Λ(𝜓1, t)| → 0 as ||𝜓2 − 𝜓1|| → 0. ▪

Following the definition in Li et al. (2011) we say that a function 𝜓 ∈  is unbiased for non-
linear SDR if it has a version that is measurable 𝜓{X}. Using this then we prove the following
theorem which proves that the minimizer of the objective function (31) estimates the CS.

Theorem 6. Suppose the mapping  → L2(PX), f → f is continuous and

1.  is a dense subset of L2(PX );
2. Y ⫫ X|𝜙(X)

If (𝜓∗, t∗) minimizes (31) among all (𝜓, t) ∈  × R, then 𝜓∗(X) is unbiased.

Proof. Similar to Theorem 1, we have

E
[[

Ỹ (𝜓(X) − E[𝜓(X)] − t) +

(
1√
𝜆
− Ỹ (𝜓(X) − E[𝜓(X)] − t)

)+]−1
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+ 𝜆

(
1√
𝜆
− Ỹ (𝜓(X) − E[𝜓(X)] − t)

)+]

≥

[
Ỹ (E[𝜓(X) − E[𝜓(X)]|𝜙(X)] − t) +

(
1√
𝜆
− ỸE[𝜓(X) − E[𝜓(X)]|𝜙(X)] − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ (E[𝜓(X) − E[𝜓(X)]|𝜙(X)] − t)

)+

,

and

var[𝜓(X)] ≥ var[E[𝜓(X)|𝜙(X)]],
where the second equation becomes strict if E[var[𝜓(X)|𝜙(X)]] > 0. The equality
E[var[𝜓(X)|𝜙(X)]] = 0 is equivalent to there being a version of 𝜓 that is measurable with respect
to 𝜎𝜙(X).

Hence if there is no version of 𝜓 that is measurable with respect to 𝜎{X}, then

Λ(𝜓, t) > Λ((𝜓), t),

where(𝜓) denotes the function E[𝜓(X) − E[𝜓(X)]|𝜙(X)]. Since ⊂ L2(PX),𝜓 belongs to L2(PX ),
for any 𝜖 > 0, there is a 𝜓1 ∈  such that

||𝜓1 − (𝜓)||L2(PX) < 𝜖.

By Lemma 5, we can choose 𝜖 to be sufficiently small so that Λ(𝜓, t) > Λ(𝜓1, t), which means
𝜓 cannot be 𝜓∗. ▪

4.1 Estimation algorithm

Let  be a linear space of functions from ΩX to R spanned by n = {𝜓1, … , 𝜓n}. These functions
are chosen, such that, En[𝜙i(X)] = 0. Let

𝚿 =
⎛⎜⎜⎜⎝
𝜓1(X1) … 𝜓1(Xn)

⋮ ⋱ ⋮

𝜓n(X1) … 𝜓n(Xn)

⎞⎟⎟⎟⎠ .
Hence the sample version of (31) becomes

Λ̂(c) = cT𝚿T𝜳c + 1
n

n∑
i=1

⎡⎢⎢⎣
[

Ỹ i(𝚿T
i c − t) +

(
1√
𝜆
− Ỹ i(𝚿T

i c − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ i(𝚿T

i c − t)

)+⎤⎥⎥⎦ ,
(32)
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where c ∈ Rn and 𝚿i the ith column of 𝚿. This problem differs from the kernel objective func-
tion, given in Wang and Zou (2018), where 𝚿T𝚿 is replaced by the kernel matrix Kn = {𝜅(i, j) ∶
i, j = 1, … ,n} for some positive definite bivariate mapping 𝜅 ∶ ΩX × ΩX → R. For the func-
tion class , the reproducing kernel Hilbert space is based on the mapping 𝜅. Many choices
of 𝜅 exist, some of the more popular choices are the radial basis kernel, the polynomial ker-
nel and many more. To be more exact Wang and Zou (2018) proposed the use of the following
equation iteratively until convergence for solving their objective function in the classification
framework: (

t(m+1)

c(m+1)

)
=

(
t(m)

c(m)

)
− n

4
P−1(𝜆)

(
1Tz

KT
n z + 2𝜆Knc(m)

)
,

where z = (z1, … , zn)T ,

zi =
⎧⎪⎨⎪⎩
− ỹi

n
, ỹi(t + Kc(m)) ≤ 1

2

− 1
(nỹi(t+Kc(m))2

(
1
2

)2
, ỹi(t + Kc(m)) > 1

2

.

Finally,

P−1(𝜆) =

(
n 1TKn

KT
n 1 KT

n Kn + n𝜆
2

Kn

)−1

.

This of course was to address the classification problem that DWD is proposed for. Since we
are interested for dimension reduction, our objective function is different and takes the form (32).
By replacing Kn with 𝚿T𝚿 we have the formulas for the dimension reduction framework to be:(

t(m+1)

c(m+1)

)
=

(
t(m)

c(m)

)
−

nq
4

P−1(𝜆)

(
1Tz

𝚿T𝚿z + 2𝜆𝚿T𝚿c(m)

)
,

where z = (z1, … , zn)T ,

zi =
⎧⎪⎨⎪⎩
− ỹi

n
, ỹi(t +𝚿T𝚿c(m)) ≤ 1

2

− 1
(nỹi(t+𝚿T𝚿c(m))2

(
1
2

)2
, ỹi(t +𝚿T𝚿c(m)) > 1

2

.

Finally,

P−1(𝜆) =

(
n 1T𝚿T𝚿

𝚿T𝚿1 𝚿T𝚿𝚿T𝚿 + n𝜆
2
𝚿T𝚿

)−1

.

As we can see the solution now does not depend on Kn but rather on 𝚿T𝚿. Now, let Qn =
In − Jn/n, where In is the n×n identity matrix and Jn is an n×n matrix with entries 1. The
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following Proposition was used in Li et al. (2011) to show that the eigenfucntions of the operator
Σn can be instead estimated by using the eigenvectors of QnKnQn.

Proposition 1. Let 𝝎 = (𝜔1, … , 𝜔n),𝜓𝝎 =
∑
𝜔i[𝜅(x,Xi) − En[𝜅(x,X)]]. The following statements

are equivalent:

1. 𝝎 is an eigenvector of the matrix QnKnQn with eigenvalue 𝜆.
2. 𝜓w is an eigenfunction of the operator 𝚺n with eigenvalue 𝜆∕n.

If 𝜆 ≠ 0, then either statement implies (𝜓𝝎(X1), … , 𝜓𝝎(Xn)) = 𝜆𝝎T .
As we mentioned above in the derivations for our problem we need 𝚿T𝚿, where one can

estimate it using the above proposition as 𝚿 = W = (𝝎1, … ,𝝎n). Since 𝝎i is an eigenvector of
QnKnQn, 𝚿T𝚿 becomes the identity matrix. Therefore the objective function in (32) becomes
independent of X . For this reason we propose a slight modification that does not affect our
theoretical results and we replace 𝚿 in (32) with 𝚿̃ = K1∕2

n W to reintroduce the dependence of
the problem and its solution on X . Therefore the objective function we try to solve is:

∼

Λ̂(c) = cT𝚿̃T𝚿̃c + 1
n

n∑
i=1

[[
Ỹ i(𝚿̃

T
i c − t) +

(
1√
𝜆
− Ỹ i(𝚿̃

T
i c − t)

)+]−1

+ 𝜆

(
1√
𝜆
− Ỹ i(𝚿̃

T
i c − t)

)+]
. (33)

Notice that, with this modification in DWD, we achieve two things in comparison with the
PSVM algorithm. One is that we remove one tuning parameter by not having to estimate k (less
than n) basis functions 𝝍(X), that is our 𝚿 matrix is an n×n matrix and not a k×n matrix. The
second is the ability to estimate directly the sufficient predictors therefore removing one step in
the algorithm.

Therefore, the kernel PDWD estimation algorithm is as follows:

1. (Optional) Marginally standardize X1, … , Xn. This step can be omitted if the components of
X i have similar variances.

2. Choose a kernel 𝜅 and create the kernel matrix K. Find the eigenvectors 𝝎1, … , 𝜔n of
QnKnQn.Calculate 𝚿̃ = K1∕2

n W.
3. Divide the sample according to LVR or OVA. For each set of slices compute c1, … , ch̃ by solving

(33) using the kernel DWD algorithm with K replaced with 𝚿̃T𝚿̃. For LVR h̃ = h − 1 and for
OVA h̃ =

(
h
2

)
.

4. The sufficient predictors are equivalent to the first d eigenvectors v1, … , vd of the matrix∑h̃
i=1 cicT

i .

5 NUMERICAL STUDIES

In this section we demonstrate the advantages of PDWD over PSVM through a simulation study
and through a real data experiment.
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5.1 Simulation studies

We use the following three synthetic models:

Model I: Y = X1 + X2 + 𝜎𝜖;

Model II: Y = X1
0.5+(X2+1)2

+ 𝜎𝜖;

Model III: Y = X1(X1 + X2 + 1) + 𝜎𝜖;

where X ∼N(0, Ip), 𝜖 ∼ N(0, 1) and 𝜎 = 0.2. We choose n= 100 and h= 20 unless stated oth-
erwise. Although all models use only two predictors we add noise to the data by introducing
appropriate number of predictors such that p takes the values p= 20, 30, 50, 100. Also, notice that
for the first model the effective dimension d= 1 and for the other two models, d= 2.

We will use the distance method defined in Li et al. (2005) to estimate the performance of the
algorithms. Let 𝜷 ∈ Rp×d denote the basis of the central space and let 𝜷̂ be its estimator. Then we
estimate the performance of 𝜷̂ as with the following distance measure

dist(𝜷, 𝜷̂) = ||P𝜷 − P𝜷̂ ||,
where PA = A(ATA)−1AT , that is the projection matrix, and ||⋅|| is the Frobenius norm.

We compare our method with PSVM and the results are shown in Table 1. The results show
that PDWD and PSVM have similar performance for values of p close to n or close to 0 but
for values in between PDWD has a clear advantage. In the classification literature (see Marron
et al., 2007) it was shown that DWD clearly outperforms SVM for larger p due to the SVM suffer-
ing from data piling. The fact that here the two methods are equivalent as p tends to n we believe
is due to the different nature of the problem. Remember that while in classification the perfor-
mance of the classifier is measured on the percentage of correctly classified points, which will
be hindered by data piling, here we are interested for dimension reduction through hyperplane
alignment. It seems that in the dimension reduction framework data piling actually “hinders”
the performance of both PSVM and PDWD by causing them to overfit the data and that’s why the
performance of the two algorithms is becoming equivalent as p gets closer to n.

5.2 Computational time

As was mentioned earlier using a newly developed algorithm for DWD by Wang and Zou (2018)
there is a computational advantage as the computation of Principal DWD is much less than the
one for PSVM. We emphasize here that when Li et al. (2011) proposed PSVM they identified that
the fact that PSVM needs quadratic programming leads to higher computational cost and that
was probably the only disadvantage of PSVM over earlier methods which were based on inverse
moments. As Figure 3 indicates there is a huge difference in time as n increases (and p is constant)
while the difference stays relatively the same as p increases (and n is constant).

5.3 Order determination

We consider the three models we discussed before. As was mentioned earlier, Model I has effec-
tive dimension 1 and Models II and III have effective dimension 2. We run 1,000 simulation
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T A B L E 1 Comparison of estimation performance between
PDWD and Principal supporting vector machine (PSVM). The
table reports the mean performance of 100 iterations (SEs in
parenthesis) for the two methods

Model p PSVM PDWD
I 20 0.20 (0.040) 0.17 (0.047)

30 0.29 (0.053) 0.24 (0.046)

50 0.45 (0.078) 0.38 (0.071)

100 1.33 (0.082) 1.31 (0.092)

II 20 0.99 (0.199) 0.95 (0.184)

30 1.35 (0.092) 1.17 (0.133)

50 1.54 (0.138) 1.45 (0.090)

100 1.95 (0.034) 1.95 (0.035)

III 20 1.43 (0.281) 1.29 (0.219)

30 1.64 (0.142) 1.47 (0.156)

50 1.87 (0.073) 1.72 (0.114)

100 1.97 (0.022) 1.97 (0.022)

F I G U R E 3 Left panel: time of two algorithms as n increases (p= 100); right panel: time of two algorithms
as p increases (n= 1,000) [Color figure can be viewed at wileyonlinelibrary.com]

experiments with n= 300, 𝜎 = 0.2 and H = 20. Table 2 shows the proportion of correct esti-
mates as p increases. This is a very promising result as it demonstrates that the performance
of the algorithm does not suffer a lot when the dimension is increased, instead we can see
that as p increase the number of correct estimates for Models II and III decreases slightly but
remains high.

http://wileyonlinelibrary.com
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T A B L E 2 Proportion of correct
estimations of d in 1,000 simulations using the
ladle estimator for the two models

p

Model 10 30 50
I 1.000 1.000 1.000

II 0.999 0.982 0.969

III 0.999 0.983 0.971

T A B L E 3 Comparison of estimation performance
between KPSVM and KPDWD. The table reports the
mean performance of 100 iterations (standard errors in
parenthesis) for the two methods

Model p KPSVM KPDWD
III 10 0.91 (0.020) 0.97 (0.009)

20 0.86 (0.026) 0.97 (0.011)

30 0.82 (0.039) 0.96 (0.008)

IV 10 0.90 (0.027) 0.92 (0.023)

20 0.82 (0.034) 0.93 (0.017)

30 0.76 (0.037) 0.93 (0.016)

5.4 Kernel PDWD

We consider models III and )

Model IV: Y = (X2
1 + X2

2 )
1∕2 log((X2

1 + X2
2 )

1∕2) + 𝜎𝜖,

where X ∼N(0, Ip), 𝜖 ∼ N(0, 1). In this section we compare kernel PDWD (KPDWD) with kernel
PSVM (KPSVM). In the same format as in the nonlinear comparisons in Li et al. (2011) we will
use the absolute value of Spearman’s correlation to measure the closeness of the predictors to the
true predictors.

We choose n= 100, 𝜆 = 1, p= 10, 20, 30, and h= 20. For Spearman’s correlation, the num-
bers are between 0 and 1, where larger numbers indicate a higher performance. Using
the Gaussian kernel basis, Table 3 shows that kernel PDWD outperforms kernel PSVM
for both models. It is also clear that the performance of kernel PDWD remains good as
p increases.

5.5 Real dataset: Concrete slump test

We now turn our attention to real data analysis. Our aim is to assess the effect of introducing
random variables to the data. Consider the Concrete slump data analyzed in Yeh (1998). We have
evaluated the response variable Compressive Strength. There are seven predictor variables called
cement, slag, fly ash, water, superplasticizer (SP), coarse aggregate, and fine aggregate. The data
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T A B L E 4 Distances as extra predictors are added in the dataset. Each
column adds a different number of predictors and we report the distance of
the estimated Central Space (CS) from the “oracle” CS, that is, the one
when only the original predictors are used

3 10 30 50 90
PDWD 0.007 0.039 0.101 0.111 0.195

PSVM 0.16 0.293 0.349 0.369 0.373

Compared 0.274 0.027 0.064 0.047 0.151

Abbreviation: PSVM, principle support vector machine.

consists of 103 samples and we fix 𝜆 = 0.1 and H = 20. We first run the two methods and we
calculate

𝜷̂
T
PDWD = (0.01,−0.001, 0.009,−0.024, 0.048,−0.005,−0.003),

𝜷̂
T
PSVM = (0.013, 0.002, 0.01,−0.02, 0.033,−0.003,−0.001),

which span the CS estimated by each method. Then we add extra predictors in the dataset, which
are randomly distributed from a standard Normal distribution, and calculate the new 𝜷’s that
span the Central Space using the two methods. We calculate the distance of the new vector from
the original one, that is the one that was calculated based on the original predictors. Table 4
shows the distances between the estimator and the original estimator for each of the two meth-
ods, PDWD and PSVM, and for different number of added predictors (3, 10, 30, 50, 90). We can
see that the estimator of the PDWD moves a lot less than the PSVM predictor. The third line
of results in Table 4 which is labeled “Compared” shows the distance between the estimated
PDWD and PSVM directions. It is clear that the two directions start far away for p= 3 and they get
closer (meaning they are estimating similar directions) as p increases. Then it breaks down again
when p= 90.

6 DISCUSSION

In this paper we propose a different classification-based algorithm for SDR. The newly proposed
algorithm is based on DWD proposed by Marron et al. (2007). The main advantages of the new
method are, first its performance is not affected by extra noninformative predictors in our dataset
and second is computationally faster than previously proposed SVM-based algorithms. The the-
oretical properties of the new method are studied in detail. We are able to prove that asymptotic
theory holds for fixed p and for diverging p as long as p < n.

While DWD was proposed in the classification framework to address the problem of data pil-
ing that SVM is suffering from in very high dimensions, we can see in this paper that the same
cannot be said for the SDR framework the PDWD and PSVM were proposed for. Instead we can
see that PDWD outperforms PSVM for low-dimensional problems while the estimation of the two
algorithms comes closer as the dimension of the problem increases. Also, the advantage in com-
putational cost using PDWD as the number of observations increases it can be crucial in an era
where massive datasets are becoming increasingly popular.
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