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Abstract

Inferring the heterogeneous treatment effect is a fundamental problem in the sciences and
commercial applications. In this paper, we focus on estimating Conditional Average Treat-
ment Effect (CATE), that is, the difference in the conditional mean outcome between treat-
ments given covariates. Traditionally, Q-Learning based approaches rely on the estimation
of conditional mean outcome given treatment and covariates. However, they are subject to
misspecification of the main effect model. Recently, simple and flexible one-step methods
to directly learn (D-Learning) the CATE without model specifications have been proposed.
However, these methods are not robust against misspecification of the propensity score model.
We propose a new framework for CATE estimation, robust direct learning (RD-Learning),
leading to doubly robust estimators of the treatment effect. The consistency for our CATE
estimator is guaranteed if either the main effect model or the propensity score model is cor-
rectly specified. The framework can be used in both the binary and the multi-arm settings
and is general enough to allow different function spaces and incorporate different generic
learning algorithms. As a by-product, we develop a competitive statistical inference tool for
the treatment effect, assuming the propensity score is known. We provide theoretical insights
to the proposed method using risk bounds under both linear and non-linear settings. The
effectiveness of our proposed method is demonstrated by simulation studies and a real data
example about an AIDS Clinical Trials study.
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1 Introduction

Inferring the heterogeneous treatment effect is a fundamental problem in the sciences and com-

mercial applications. Examples include studies on the effect of certain advertising or marketing

efforts on consumer behavior (Bottou et al., 2013), research on the effectiveness of public policies

(Turney and Wildeman, 2015), and “A/B tests” in the context of tech companies for product de-

velopment (Taddy et al., 2016). In particular, it can be useful in personalized medicine: based on

many biomarkers, how can we determine which patients can potentially benefit from a treatment

(Royston and Sauerbrei, 2008)?

Under the potential outcome framework (Rubin, 1974; Imbens and Rubin, 2015), we are inter-

ested in the comparison between the observed outcome and the counterfactual outcome we would

have observed under a different regime or treatment. Assuming that there are two treatment arms

({+1,−1}), we want to estimate the difference in the conditional mean outcome between the

two treatments, given the individual’s pre-treatment covariates. This problem is typically known

as Conditional Average Treatment Effect (CATE) estimation. CATE is closely associated with

the optimal individualized treatment rule (ITR). The latter maximizes the mean of a (clinical)

outcome in a population of interest.

Traditional approaches to developing optimal ITRs, such as the Q-Learning (“Q” denoting

“quality”) (Watkins and Dayan, 1992; Qian and Murphy, 2011; Moodie et al., 2014), models the

conditional mean outcome given the treatment and covariates for each treatment separately, and

then takes their difference to estimate the CATE. Note the conditional mean outcome includes

the main effect of the treatment and the contrast between the two treatment arms. Q-Learning

often requires correct specifications for both the main effect and the contrast, even though only

the contrast part really matters with respect to the CATE and ITR estimation. In this case, the

main effect is a nuisance parameter, whose specification may affect the estimation of treatment

contrast. More robust approaches than Q-Learning have been proposed (Lu et al., 2013) under

the A-Learning framework (“A” denoting “advantage”) for optimal dynamic treatment regimes

(Murphy, 2003; Robins, 2004). These approaches are robust against the misspecification of the

main effect model (Schulte et al., 2014).

Recently, there is a growing literature on using machine learning for CATE or ITR estimation,

including regression trees (Athey and Imbens, 2016; Su et al., 2009), random forests (Wager and
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Athey, 2018), boosting (Powers et al., 2018), neural nets (Johansson et al., 2016), Bayesian machine

learning (Chipman et al., 2010; Hill, 2011; Taddy et al., 2016; Hahn et al., 2020), and combinations

of the above (Künzel et al., 2019). Besides those under the Q-Learning framework, many of

these methods can be categorized to modified outcome methods and modified covariate methods,

following the categorization of Knaus et al. (2020). Modified outcome methods were proposed in

the Ph.D. thesis of James Signorovitch, Harvard University (Signorovitch, 2007) in the randomized

experimental setting. In the observational data setting, the inverse probability weighted (IPW)

estimator can be used to modify the outcome. Similar modified outcome approaches have been

proposed which allows directly using off-the-shelf machine learning algorithms for CATE or ITR

estimation (Beygelzimer and Langford, 2009; Dud́ık et al., 2011; Weisberg and Pontes, 2015).

A drawback of the IPW estimator is that its performance hinges upon accurate estimation of

the propensity score. The doubly robust (DR) augmented inverse probability weighted (AIPW)

approach (Robins et al., 1994; Bang and Robins, 2005) was formulated by Zhang et al. (2012). It

requires an estimation of the treatment propensity score and the conditional mean outcome given

treatment and covariates. The double robustness of this method is well studied: as long as the

model for either the conditional mean outcomes or the propensity score is correctly specified, the

estimator is consistent. See more work on double robustness in Kang and Schafer (2007); Cao

et al. (2009); Zhang et al. (2013); Zhao et al. (2014); Fan et al. (2016); Zhao et al. (2019). Many

of these methods focus on estimating optimal ITRs instead of CATE.

The modified covariate method was introduced by Tian et al. (2014) for the experimental setting

and was later generalized to the observational setting by Chen et al. (2017). Qi and Liu (2018)

proposed a variant of the modified covariate method for estimating the optimal ITR. Modified

covariate methods do not require to specify any model of the main effect or the conditional mean

outcome function and they directly estimate the CATE. We refer to them as the D-Learning (“D”

for “direct”). While D-Learning models the treatment effect directly, it relies on an accurate

estimate of the propensity score in the observational setting. Tian et al. (2014) and Chen et al.

(2017) both described the possibility to increase the efficiency of their estimators. This efficiency

augmentation variant replaces the outcome by the residual of the outcome less the conditional mean

outcome function. Though such efficiency augmentation has been shown to work well in certain

scenarios, a double robustness property has not yet been discovered among modified covariate
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methods. We are not aware of any further theoretical analyses of the statistical properties of this

approach.

The first contribution of this paper is a modified-covariate (D-Learning) method with a double

robustness property for CATE estimation. Compared to the aforementioned efficiency augmenta-

tion using the conditional mean outcome function, we find that one should replace the outcome by

the residual with respect to the main effect function to achieve the double robustness. Different

from the double robustness in the AIPW estimator literature (which protects against misspecifi-

cation of the treatment-specific conditional mean outcomes and the propensity score), our method

is robust with respect to the main effect and the propensity score. More precisely speaking,

the consistency for our CATE estimation is guaranteed if either the main effect model or the

propensity score model is correctly specified. Our method does not require the estimation of the

treatment-specific conditional mean outcome.

The second goal of this paper is to generalize our method to the multi-arm case. Qi and Liu

(2018); Qi et al. (2019) discussed the D-Learning in the multi-arm case, but their method mainly

focused on ITR estimation (instead of CATE) and did not have a robustness property. Thirdly,

we provide a theoretical analysis of the convergence rate for the prediction error of our CATE

estimation. Moreover, we consider a special setting with known propensity scores, in which case,

we propose an efficient estimator for the main effect and an unbiased estimator for the treatment

effect, and derive the asymptotic normality which affords statistical inference.

A related result to our work can be found in Nie and Wager (2017) and Shi et al. (2016), which

we refer to as the R-Learning, and offer an optimization problem in the form of A-Learning (“R”

refers to Robinson’s transformation in Robinson (1988), “residual”, and “robust”). They modify

both the outcome and the covariates, and offer some robustness protection. However, neither

enjoys the double robustness property. Our method can be viewed as the robustified version of

the D-Learning; hence, we call it the RD-Learning.

The rest of the paper is organized as follows. In Section 2, we introduce some notations and

background. We present the proposed RD-Learning method in Section 3. Statistical inference in

the known propensity score setting can be found in Section 4. In Section 5, we design simulation

studies to validate the proposed method, followed by a real data example on AIDS clinical trial

in Section 6. Section 7 concludes the paper.
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2 Notations and Background

First consider a two-arm randomized trial. A patient, with pre-treatment covariate X ∈ X ⊆ Rp,

is randomly assigned to treatment A ∈ A = {1,−1}. Let Y ∗(j) ∈ R be the potential outcome the

patient would receive by receiving treatment j ∈ A. The observed clinical outcome is denoted by

Y = Y ∗(A). Let pj(x) = P(A = j |X = x). Assumption 1 is a typical regularity assumption.

Assumption 1. For any j ∈ A, Y ∗(j) ⊥ A |X and pj(x) ≥ c for some c ∈ (0, 1).

Let P be the distribution of the triplet (X, A, Y ). The goal is to estimate the Conditional

Average Treatment Effect (CATE), defined as

E(Y ∗(1)− Y ∗(−1) |X = x),

based on a training sample {(xi, ai, yi)}ni=1 randomly drawn from P .

It is typical to consider the following model,

Y = m(X) + Aδ(X) + ε, where E(ε) = 0, Var(ε) = σ2 <∞. (1)

Denote the conditional mean outcome as µj(x) , E(Y ∗(j) | X = x) = E(Y | X = x, A = j). It

can be easily verified that the main effect m(x) = (µ1(x) + µ−1(x))/2, and the treatment effect

δ(x) = (µ1(x) − µ−1(x))/2. Thus, to estimate CATE is equivalent to to estimate δ(x). In this

article, we refer to δ(x) as the treatment effect.

One way to estimate δ(x) is to conduct regression modeling for µj(x), j ∈ {1,−1}. This

approach is known as Q-Learning (Murphy, 2005; Qian and Murphy, 2011), where µj(x) is referred

to as the “Q function”. For example, one may consider linear regression models for µj(x) which

imply linear modeling for both m(x) and δ(x), such as m(x) = xTα and δ(x) = xTβ with

x = (1,xT )T ∈ Rp+1. The coefficients are estimated by solving the following optimization problem,

min
α,β∈Rp+1

1

n

n∑
i=1

(yi − xTi α− aixTi β)2.

This approach may be vulnerable to model mis-specification ofm(x) and δ(x). A partial solution is

to consider a broader model space (e.g. non-parametric models) to avoid model mis-specification.

Tian et al. (2014) proposed a new method to estimate δ(x) without specifying the model

for m(x) under the completely randomized trail setting, i.e., p1(x) = 1/2. By observing that

E(AY | X = x) = δ(x), we may use a linear function xTβ to model E(AY | X = x) directly.
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Chen et al. (2017) considered a more general framework to accommodate other proportion p1(x)

than 1/2, as well as observational studies. Specifically, for linear modeling, the treatment effect

δ(x) is estimated by xβ̂ where

β̂ = argmin
β∈Rp+1

1

n

n∑
i=1

1

pai(xi)
(aiyi − xTi β)2 = argmin

β∈Rp+1

1

n

n∑
i=1

1

pai(xi)
(yi − aixTi β)2. (2)

This estimator has been proved to be consistent under Assumption 1. Unlike Q-Learning, in which

the estimator to δ(x) is based on the estimators for µj(x)’s, this approach directly estimates the

treatment effect δ(x). Hence, it is named Direct Learning or D-Learning (Qi and Liu, 2018).

Non-linear or sparse modeling is also possible in this framework.

One advantage of D-Learning over Q-learning is that it avoids mis-specification of the main

effect m(x). However, existing consistency results for D-Learning assume that the propensity

score pj(x) is known or at least correctly specified, which may not be satisfied in observational

studies. Moreover, as will be shown later, the D-Learning estimator also suffers a larger variance

compared to other methods.

The AIPW estimator is a well-studied approach that can address the misspecification issue

of the propensity score. It was first proposed to estimate the (unconditional) average treatment

effect, ∆ , E(Y ∗(1)− Y ∗(0)) using ∆̂ , ψ̂1 − ψ̂−1, where

ψ̂j =
1

n

n∑
i=1

yi1[ai = j]

p̂j(xi)
− 1[ai = j]− p̂j(xi)

p̂j(xi)
µ̂j(xi) j ∈ {1,−1},

where p̂j(x) is an estimator for pj(x) and µ̂j(x) is an estimator for µj(x). The AIPW estimator has

a double robustness property in that ∆̂ is consistent if either pj(x) or µj(x) is correctly specified

for each j. The main product of this paper is a D-Learning method for CATE estimation with a

similar doubly robust property.

3 RD-Learning

We first introduce our proposed Robust Direct Learning (RD-Learning) approach for the binary

case, then generalize it to the multi-arm case. This is followed by the theoretical study of the

proposed method.
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3.1 RD-Learning in the Binary Case

Given a training sample {xi, ai, yi}ni=1, the RD-Learning method is based on an estimator for the

propensity score p1(x), denoted by p̂1(x), and an estimator for the main effect m(x), denoted by

m̂(x). They can be any existing estimators commonly used in the literature. If we consider linear

modeling for the treatment effect, i.e., δ(x) = xβ, then RD-Learning estimator for β is obtained

by solving

β̂ = argmin
β∈Rp+1

1

n

n∑
i=1

1

p̂ai(xi)
(yi − m̂(xi)− aixTi β)2, (3)

where xi , (1,xTi )T , and the treatment effect is estimated by δ̂(x) = xT β̂.

Comparing (3) with (2), the RD-Learning is an augmented version of D-Learning by replacing

the outcome yi in (2) with the residual yi − m̂(x). In the literature, similar procedures in which

the outcome is replaced by a certain residual have been proposed to improve the efficiency of the

estimation. For example, R-Learning methods (Shi et al., 2016; Nie and Wager, 2017) replaced the

outcome yi in the A-Learning framework (Murphy, 2003; Robins, 2004) by the residual yi− Φ̂(xi),

where Φ̂(x) is an estimator for the conditional mean outcome function Φ(x) , E(Y |X = x). In

the ITR literature, residual weighted learning (Zhou et al., 2017, RWL) replaced the outcome yi

in the outcome weighted learning (Zhao et al., 2012, OWL) by residual yi− m̂(xi) with respect to

the main effect estimator m̂(xi). In general, these procedures reduce the variance of the estimator.

Moreover, it has been shown that in these works (Shi et al., 2016; Nie and Wager, 2017; Zhou

et al., 2017), the CATE estimators are still consistent even when Φ̂(x) or m̂(x) is mis-specified,

so long as the propensity score p1(x) is known or can be consistently estimated. In other words,

they are robust against misspecification for Φ(x) or m(x).

Although residual based approaches have been studied in the aforementioned work, it has not

been thoroughly studied for modified-covariate (D-Learning) methods. Specifically, while it is

commonly recognized that replacing the outcome by the residual can improve efficiency (Tian

et al., 2014), it was unclear which residual should be used. In RD-Learning (3), we propose to use

the residual with respect to the main effect instead of the conditional mean outcome m(x). As

will be shown below, the proposed RD-Learning estimator is not only robust to misspecification

for m(x), but also has an “double robustness” property similar to that of the AIPW estimator

(Zhang et al., 2012). This is described in the following theorem.
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Theorem 1. Suppose model (1) holds. Let p̃1(x) be a working model for the propensity score

p1(x) with 0 < p̃1(x) < 1 and m̃(x) be a working model for the main effect m(x). Assume that

Assumption 1 holds. Then we have

δ ∈ argmin
f∈{X→R}

E
[

1

p̃A(X)
(Y − m̃(X)− Af(X))2

]
if either p̃1(x) = p1(x) or m̃(x) = m(x) for x ∈ X almost surely.

Theorem 1 also holds when, the functions p̃1(x) and m̃(x) are replaced by the limiting functions

of estimators p̂(x) and m̂(x). This suggests that the empirical version of the minimizer above δ̂(x)

(whose definitions are given in (3) and in Section 3.2) will be consistent with δ(x) if either p̂1(x)

or m̂(x) is consistent. Compared to the aforementioned robustness procedures, this estimator is

robust again two types of model mis-specification, with respect to both p1(x) and m(x). We call

this property “double robustness”.

To compare RD-Learning and D-Learning, we compute the bias and the variance of the es-

timators from these two methods. Denote X = (x1, . . . ,xn)T , y = (y1, . . . , yn)T , and m(X) =

(m(x1), . . . ,m(xn))T . Let A = diag(ai), and Pa = diag(p̂ai(xi)), from (3) we derive

β̂ = (XTP−1a X)−1XTAP−1a (y − m̂(X)). (4)

Let r(X) = m(X)− m̂(X) be the difference between the true main effect and its estimator. It can

be shown that

E(β̂ | X,A) = β + (XTP−1a X)−1XTAP−1a r(X), (5)

Var(β̂ | X,A) = σ2(XTP−1a X)−1XTP−2a X(XTP−1a X)−1, and

Var(β̂ | X) = Var
(

(XTP−1a X)−1XTAP−1a r(X) | X
)

+ E
(

Var(β̂ | X,A) | X
)
. (6)

Note that D-Learning can be viewed as a special case of RD-Learning, where m̂(xi) = 0 for all i,

in which case r(xi) = m(xi). Firstly, from (5) we observe that the estimator by RD-Learning has

a smaller bias if |r(xi)| < |m(xi)| holds. In the extreme that m̂(x) = m(x) which means that

r(x) = 0, the RD-Learning estimator β̂ is an unbiased estimator. Secondly, from (6) we notice

that RD-Learning also has a smaller variance. This is because in general the variability of the

residual term r(X) is smaller than that of m(X), which results in a smaller value in the first term

of (6). The smallest variance is achieved when r(x) = 0 (perfect estimation of m(x).)

For high dimensional data, RD-Learning can be generalized by using a sparsity penalty. For
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example, we may solve a LASSO problem,

min
β∈Rp

β0∈R

1

n

n∑
i=1

1

p̂ai(xi)

(
yi − m̂(xi)− ai(xTi β + β0)

)2
+ λ‖β‖1 (7)

with the tuning parameter λ > 0. To adopt a richer model space, we could also consider a non-

linear function form for δ(x). For example, we may solve a kernel ridge regression problem as

follows.

min
β∈Rn

β0∈R

1

n

n∑
i=1

1

p̂ai(xi)

(
yi − m̂(xi)− ai(KT

i β + β0)
)2

+ λβTKβ,

where Ki is the ith column of the gram matrix K = (K(xi,xj))n×n, with K(·, ·) a kernel function.

Other non-linear regression models such as generalized additive model and gradient boosting can

be applied in the RD-Learning framework.

Figure 1 compares Q-Learning, D-Learning, and RD-Learning using two toy examples. In

each example, the Subpopulation Treatment Effect Pattern Plots (STEPP), a typical visualiza-

tion method for exploring the heterogeneity of treatment effects (Bonetti and Gelber, 2000, 2004),

shows the relationship between the estimated CATEs and predictor x1. Case I has a non-linear

main effect and a linear treatment effect, where µj(x) = 2 cos(x1 + π/4) + (3− j)x1/2− tanh(x1)

for j ∈ {1,−1} and p1(x) = 0.2 + 0.61[x1 < 0]. For Q-Learning, we use kernel ridge regression to

estimate µj(·); for D-Learning, we use LASSO as in Qi and Liu (2018) to estimate the treatment

effect δ(·); in RD-Learning, we use kernel ridge regression to estimate m(·) and the LASSO esti-

mator (7) to estimate δ(·). Both the main effect and the treatment effect in Case II have a linear

form, with µj(x) = (3− j)x1/2 + x2 for j ∈ {1,−1} and p1(x) = 1/2. We use LASSO to estimate

µj(·), m(·), and δ(·) in all three methods. Note that the true CATE is µ1(x) − µ−1(x) = −x1
in both cases. From Figure 1, it is clear that RD-Learning is a robust method. In particular,

compared to Q-Learning, RD-Learning reduces bias in estimating CATE when the main effect

tends to be mis-specified (Case I). Compared to D-Learning, RD-Learning reduces variance in

both examples.
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Figure 1: Subpopulation Treatment Effect Pattern Plots (STEPP) by different methods on two simulated

data with X ⊆ R20. Blue regions are 95% confidence region based on 200 replications, and the black line

is the true CATE. In both cases RD-Learning has a good performance.

3.2 RD-Learning in Multi-arm Case

In this section, we generalize RD-Learning to the case when there are more than two treatment

arms. Let A ∈ A = {1, . . . , k} be the treatment assignment. We assume the model to be

Y = m(X) + δA(X) + ε, where
k∑
j=1

δj(x) = 0, E(ε) = 0, Var(ε|X) = σ2(X) <∞. (8)

As in the binary case, m(·) is the main effect. {δj(·)}kj=1 are the treatment effects, where each of

them measures the difference between the expected outcome of treatment j and the main effect,

i.e., δj(x) = µj(x) − m(x). The sum-to-zero constraint guarantees the model is identifiable.

We also allow heteroskedasticity in the white noise term ε to make the model more general. To

estimate the treatment effect δj(x), we consider the following angle-based approach.

Angle-based approach (Zhang and Liu, 2014) is a method used in multicategory classification
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problem and recently it has been introduced to solve a multicategory ITR problem (Zhang et al.,

2018; Qi et al., 2019). In the angle-based framework, we represent k arms by k vertices of a

(k − 1)-dimensional simplex, denoted by W1, . . . ,Wk:

Wj =

(k − 1)−1/21k−1, j = 1

−(1 + k1/2)(k − 1)−3/21k−1 + [k/(k − 1)]1/2 ej−1, 2 ≤ j ≤ k,

where 1k−1 is a (k − 1)-dimensional vector with all elements equal to 1 and ej−1 ∈ Rk−1 is a

vector with the (j − 1)th element 1 and 0 elsewhere. It is easy to check that ‖Wj‖ = 1 and the

angle ∠(Wi,Wj) is the same for all i 6= j. The angle-based approach uses a (k − 1)-dimensional

vector-valued function f(x) = (f1(x), . . . , fk−1(x))T as the decision function. In an ITR problem,

by computing the angles between f(x) and these vertices Wjs, the optimal treatment for patient

with covariates x is chosen to be argminj∈A∠(Wj,f(x)).

Note that for any f(x) ∈ Rk−1, the sum-to-zero constraint is satisfied for the inner prod-

ucts implicitly,
∑k

j=1〈Wj,f(x)〉 = 0. On the other hand, for treatment effects {δj(x)}kj=1 with∑k
j=1 δj(x) = 0, there is a unique f(x) ∈ Rk−1 such that 〈Wj,f(x)〉 = δj(x) for j ∈ A. This

motivates us to estimate the treatment effect δj(x) by 〈Wj,f(x)〉 in the angle-based framework.

Theorem 2. Suppose model (8) holds. Let p̃j(x) > 0 be a working model for pj(x) and m̃(x) be

a working model for m(x). Define

f ∗ ∈ argmin
f∈{X→Rk−1}

E
[

1

p̃A(X)
(Y − m̃(X)− 〈WA,f(X)〉)2

]
.

Under Assumption 1, if either p̃j(x) = pj(x) or m̃(x) = m(x) holds for x ∈ X almost surely and

all j ∈ A, then δj(x) = 〈Wj,f
∗(x)〉 except on a set of measure zero.

By Theorem 2, we propose the angle-based RD-Learning 1 by solving

min
f∈F

1

n

n∑
i=1

1

p̂ai(xi)
(yi − m̂(xi)− 〈Wai ,f(xi)〉)2, (9)

where F is a function space. For example, we may let F to be the linear space, i.e.F = {f =

(f1, . . . , fk−1)
T ; fj(x) = xTβj, j = 1, . . . , k − 1}; or, we may consider F in a Reproducing Ker-

nel Hilbert Space (RKHS) with kernel function K(·, ·), i.e.F = {f = (f1, . . . , fk−1)
T ; fj(x) =∑n

i=1K(xi,x)βij + β0j, j = 1, . . . , k− 1}. An L1 or L2 norm constraint can be also added to f to

1Angle-based D-Learning has been studied in Qi et al. (2019) with a different formulation.
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prevent overfitting. Denote the solution of (9) by f̂ . Then the estimator for jth treatment effect

is given by

δ̂j(x) = 〈Wj, f̂(x)〉. (10)

Note that the binary RD-Learning introduced in Section 3.1 is a special case of the angle-based

RD-Learning. Note that when k = 2, we have W1 = 1 and W2 = −1. So 〈Wa, f(x)〉 = f(x) for

a = 1 and 〈Wa, f(x)〉 = −f(x) for a = 2 thus (9) reduces to (3) for the linear function space.

3.3 Theoretical Analysis of RD-Learning

In this section, we study the theoretical property of δ̂j(x) defined in (10) by solving (9). Note

that it suffices to consider angle-based RD-Learning since binary RD-Learning is a special case of

angle-based RD-Learning. Denote δ̂ = (δ̂1, . . . , δ̂k)
T . The goal of our theoretical study is to obtain

the convergence rate for the prediction error (PE) of δ̂, defined by

PE(δ̂) = E
k∑
j=1

(
δ̂j(X)− δj(X)

)2
,

where the expectation is with respect to X. Note that since δ̂ depends on the training data,

PE(δ̂) is a random quantity. We consider linear models and non-linear models separately.

Before we present the main results, we make two additional assumptions for the two estimators

p̂j(x) and m̂(x).

Assumption 2. Given estimator p̂j, we have ‖p̂−1j (x)− p−1j (x)‖∞ ≤ rp with constant rp > 0.

Assumption 3. Given estimator m̂, we have ‖m̂(x)−m(x)‖∞ ≤ rm and |Y − m̂(X)| ≤ Cm with

rm > 0 and Cm > 0.

Assumptions 2 and 3 state that the estimation error for p̂−1j (x) and m̂(x) are bounded with

rp and rm characterizing the accuracy for both estimators. Recall that p̃j(x) and m̃(x) are the

limiting functions of p̂j(x) and m̂(x) in Theorem 2. The case of p̃j(x) = pj(x) corresponds to

rp � rm; the case of m̃(x) = m(x) corresponds to rm � rp.
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3.3.1 Linear Function Space

We consider a linear function space F with a bounded L1 norm:

F = F(p, s) , {f = (f1, . . . , fk−1)
T ; fj(x) = xTβj + β0j, j = 1, . . . , k − 1,

k−1∑
j=1

‖βj‖1 ≤ s}.

Without loss of generality, we bound each covariate in [−1, 1] for simplicity. The result still holds

if we bound each covariate in [−B,B] for any large number B > 0.

Assumption 4. X ∈ X = [−1, 1]p.

Theorem 3. Denote pn as the dimension of the data which may depend on sample size n. Let

F = F(pn, sn) and τn = (n−1 log pn)1/2 → 0 as n→∞. Under Assumptions 1 to 4, we have

PE(δ̂) ≤ O
(
max

{
(Cm + sn)2τn log τ−1n ,min{r1, r2}, dn

})
,

almost surely, given estimators p̂j(·) and m̂(·), where r1 = (Cm + sn)2rp, r2 = (1 + rp)r
2
m, and

dn = inff∈F(pn,sn) ‖f − f ∗‖22.

Remark 1. Theorem 3 claims that the order of PE(δ̂) is determined by three terms. The first

term is the estimation error similar to the excess risk in the classification literature. As n→∞,

the term will vanish for fixed sn, while for fixed n and pn, it increases as sn →∞ indicating a more

complicated function space. The second term is determined by the accuracy of the two preliminary

estimators p̂j(·) and m̂(·). Specifically, r1 describes the error from p̂j(x) while r2 describes the

error from m̂(x). This term is small as long as either rp or rm is small, corresponding to the case

when p̂j(x) or m̂(x) is accurate. Hence, this term reflects the “double robustness” property of the

proposed estimator. The third term dn is the approximation error of the function space F(pn, sn),

and it will decrease as sn increases in general. The choice of sn represents a trade-off between the

three terms.

Remark 2. By Theorem 3, RD-Learning improves D-Learning in the following two aspects.

Firstly, the second term in the upper bound of PE(δ̂) offers an additional way to decrease the

error. Note that D-Learning is a special case of RD-Learning with m̂ ≡ 0, which means r2 is

a large number. Therefore, for D-Learning to work well, r1 must be small. On the other hand,

RD-Learning offers a good CATE as long as either r1 or r2 is small. Secondly, the estimator of

RD-Learning has a smaller variance than that of D-Learning. This is because by replacing yi in
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D-Learning with yi − m̂(xi), the upper bound Cm for |Y − m̂(X)| in Assumption 3 also becomes

smaller in general, which further reduces the first term in PE(δ̂). This explains the narrower

confidence bands of RD-Learning in Figure 1.

Theorem 3 is a general statement for the convergence rate of PE(δ̂). It neither makes assump-

tions on the magnitude of rp and rm which have impacts on the second term, nor assumes the

true treatment effect falls in a particular function space F which influences the third term. If we

assume one of rp and rm is zero, the second term can be ignored. For example, in clinical trial

pj(x) is known so p̂j(x) = pj(x) and rp = 0. If we further assume δj(x) to be a linear function that

only depends on finite many covariates for each j, the third term can be also eliminated. Since in

that case, there exists a finite p∗ and s∗ such that the true population minimizer f ∗ belongs to the

F(pn, sn) as long as the function space we consider is large enough so that pn ≥ p∗ and sn ≥ s∗.

In this case, the third term dn = 0 for sufficient large n. The result is given in Corollary 1.

Corollary 1. Let F = F(pn, sn) and τn = (n−1 log pn)1/2 → 0 as n → ∞. Suppose the true

treatment effect δj(·) depends on finite many covariates for each j ∈ A. Under Assumptions 1 to

4, if either rp = 0 or rm = 0 holds, then we have

PE(δ̂) ≤ O(τn log τ−1n ),

almost surely.

From Corollary 1, we first observe that the convergence of PE(δ̂) requires that pn increases with

the order at most exp(n). Secondly, since O(log x) < O(xt) for all t > 0, PE(δ̂) ≤ O(τ 1−tn ) for any

small positive t. This implies that the upper bound of PE(δ̂) is almost O(τn) = O
(
(n−1 log pn)1/2

)
.

Furthermore, when pn is a fixed number, i.e., pn = O(1), the rate is almost O(n−1/2). These results

are coincident with most of the classical LASSO theory.

3.3.2 Reproducing Kernel Hilbert Space

We consider F to be a Reproducing Kernel Hilbert Space (RKHS) to demonstrate the results for

non-linear learning. The “kernel trick” has been successfully used in many other methods like

penalized regression and Support Vector Machine (SVM). There is a vast literature on RKHS.

One can refer to Scholkopf and Smola (2001), Steinwart and Scovel (2007), Hofmann et al. (2008),

Trevor et al. (2009) for more details.
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Let HK be a RKHS with kernel function K(·, ·). By the Mercer’s theorem, K has an eigen-

expansion K(x,x′) =
∑∞

i=1 γiφi(x)φi(x
′) with γi ≥ 0 and

∑∞
i=1 γ

2
i <∞. Any function in HK can

be written as f(x) =
∑∞

i=1 ciφi(x) under the constraint that ‖f‖2HK
=
∑∞

i=1 c
2
i /γi < ∞. Define

the function space F as

F = F(s) , {f = (f1, . . . , fk−1)
T ; fj = f ′j + bj, j = 1, . . . , k − 1,

k−1∑
j=1

‖f ′j‖2HK
≤ s2}.

Note that as in the linear case, the penalty term does not include the intercept term bj. Rewrite

the solution to (9) under such F as f̂ = f̂ ′ + b̂ where f̂ ′ = (f̂ ′1, . . . , f̂
′
k)
T with f ′j ∈ HK . By the

representer theorem (Wahba, 1990), f̂ ′j can be represented by

f̂ ′j(x) =
n∑
i=1

K(xi,x)β̂ij,

and the penalty term is written as ‖f̂ ′j‖2HK
=
∑n

i=1

∑n
l=1K(xi,xl)β̂ijβ̂lj.

When developing RKHS theory, the following assumption is usually made.

Assumption 5. The RKHS HK is separable and supxK(x,x) = B <∞.

The separability of the RKHS is commonly assumed in many papers concerning RKHS. A

bounded kernel ensures that the rate of PE(δ̂) does not explode. It naturally holds for some

popular kernels like Gaussian radial basis kernel, where B = 1. In general, it requires that X can

be covered by a compact set.

Theorem 4. Let F = F(sn). Under Assumptions 1, 2, 3, and 5, we have

PE(δ̂) ≤ O
(
max

{
(Cm +Bsn)2n−1/2 log n,min{r1, r2}, dn

})
,

almost surely, given estimators p̂j(·) and m̂(·), where r1 = (Cm + Bsn)2rp, r2 = (1 + rp)r
2
m, and

dn = inff∈F(sn) ‖f − f ∗‖22.

Remark 3. Similar to Theorem 3, there is a trade-off between the estimation error, the approx-

imation error, and the error from p̂j and m̂ for kernel learning. sn is the tuning parameter to

balance these three terms. The result also shows that compared to D-Learning, RD-Learning still

enjoys a better convergence rate through a smaller rm and Cm.

Theorem 4 can be simplified in some special cases. Firstly, the second term can be ignored when

rp or rm is negligible (for example, in clinical trails). Secondly, by assuming the approximation
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error dn ≤ O(s−qn ) for some q > 0, which is standard in the literature on RKHS (Smale and Zhou,

2003), we have a neat convergence rate by appropriately choosing sn, shown in Corollary 2.

Corollary 2. Let F = F(sn). Suppose dn = inff∈F(sn) ‖f − f ∗‖22 ≤ O(s−qn ) for some q > 0.

Under Assumption 1, 2, 3, and 5, if either rp = 0 or rm = 0 holds, then by choosing sn =

O
(

(n1/2 log−1 n)
1

q+2

)
, we have

PE(δ̂) ≤ O
(
n−

q
2q+5

)
,

almost surely.

According to Corollary 2, the convergence rate of PE(δ̂) approaches toO
(
n−1/2

)
for sufficiently

large q, corresponding to the case that f ∗ can be well approximated by a function in F(sn). This

result is consistent with most of the learning theories under the kernel setting.

4 Statistical Inference with Known Propensity Score

In this section, we consider the case when the propensity score pj(x) is known for each j ∈ A.

A typical example is clinical trials, where the treatments are assigned to patients randomly with

a fixed probability given x. In this case, we propose a consistent estimator for the main effect

m(x), which, according to the theories in Section 3.3, helps to reduce the variance of the treatment

effect estimator δ̂j(x). A more fundamental contribution we make in this setting is an unbiased

estimator for the treatment effect δj(x) which is allowed by the known propensity score. We also

derive its asymptotic normality which is useful for constructing confidence intervals.

4.1 A Direct Method in Estimating the Main Effect

The RD-Learning framework we proposed in Section 3 is a two-step procedure. While the discus-

sion so far focuses on the second step, i.e., estimating the treatment effect δj(x), we notice that

the first step, i.e., estimating the main effect m(x), is also important (note that there is no need

to estimate pj(x) in this case since we assume the propensity score is known). The theoretical

studies in Section 3.3 show that an accurate m̂(x) reduces the variance of δ̂j(x). Moreover, the

estimation of the main effect has its own value. For example, in biomedical studies, it can help

researchers to identify prognostic biomarkers (Kosorok and Laber, 2019).
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A common method to estimate the main effect is Q-Learning. One first estimates each µj(x)

for j ∈ A separately, and then estimates m(x) by taking their average. However, this main effect

estimator may be inconsistent if µj(x) is mis-specified for some j. In addition, since the estimation

of each µj(x) depends on only a portion of the data, i.e., {(xi, ai, yi); ai = j}, the estimator may

suffer a large variance when there are very few observations in some treatment arms.

We propose to estimate the main effect using all the data points at the same time using weighted

least square. This estimator is motivated by the important observation that under model (8),

E
[

1

pA(x)
(Y − g(x))2

∣∣∣X = x

]
= E

[
k∑
j=1

(Y ∗(j)− g(x))2
∣∣∣X = x

]
=

k∑
j=1

(µj(x)−g(x))2+kσ2(x),

and the fact that m(x) = k−1
∑k

j=1 µj(x) = argming(x)∈R
∑k

j=1(µj(x)− g(x))2.

Based on these observations, we propose to estimate the main effect using

m̂ = argmin
g∈G

n∑
i=1

1

pai(xi)
(yi − g(xi))

2, (11)

where G is an appropriate function space. Theorem 5 below implies that this estimator is consistent

if m ∈ G.

Theorem 5. Suppose the model (8) holds. Under Assumption 1,

m ∈ argmin
g∈{X→R}

E
[

1

pA(X)
(Y − g(X))2

]
.

Compared to the Q-Learning based method, the proposed method uses all the data to fit a

single estimator. Besides, this estimated adopts the form of weighted least square, which can be

easily generalized to and solved by many existing regression methods, such as LASSO, (kernel)

ridge regression, generalized additive model, gradient boosting, and so on.

4.2 Unbiased Treatment Effect Estimator

In this section we focus on statistical inference of treatment effects by RD-Learning, under the

special case that p̂j(x) in the RD-Learning estimator is replaced the known propensity score pj(x)

for each j ∈ A.

We start from the binary case under model (1). By assuming δ(x) = xTβ, the estimator β̂ by

RD-Learning is given by (4). However, we have to point out that this estimator is biased unless
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p1(xi) = 1/2 or m̂(xi) = m(xi) for each i. In fact, according to (5), the bias term can be explicitly

written as

bias(β̂) = E
(
β̂
)
− β = E

(
(XTP−1a X)−1XTAP−1a r(X)

)
.

Remark 4. To see why β̂ is biased, consider a simple case where n = 3, X = 13, and p1(x) = p1 ,

2/3. Suppose we have an estimator m̂(x) with the residual term r(x) = m(x)−m̂(x) = 1. It can be

checked that bias(β̂) = E
(
(
∑3

i=1 p
−1
Ai

)−1
∑3

i=1Ai/pAi

)
, where the expectation is taken with respect

to {Ai}. Note that there are 8 possible assignments for {Ai}: (1, 1, 1), (1, 1,−1), . . . , (−1,−1,−1),

with probabilities (2/3)3, (2/3)2(1/3), . . . , (1/3)3. So by computing this expectation explicitly, we

have bias
(
β̂
)

= 17/135 6= 0 in this toy example.

To remove the bias completely, we modify (4) as

β̃ =
1

2
(XTX)−1XTAP−1a (y − m̂(X)). (12)

The original RD-Learning estimator (4) was based the following normal equation of (3),

XTP−1a Xβ = XTAP−1a (y − m̂(X)). (13)

Since we assume pai(xi) is known, we can verify that the expectation of the left hand side of (13)

with respect to A for any β is

E
(
XTP−1a Xβ | X

)
= 2XTXβ.

Then by replacing the left hand side of (13) by its expectation, we derive the modified estimator

(12). One can check that the bias of the modified estimator is 0.

In the multi-arm case (8), we use the angle-based approach to estimate a (k − 1)-dimensional

decision function f(x) = (xTβ1, . . . ,x
Tβk−1)

T first and then use 〈Wj,f(x)〉 to estimate δj(x).

Specifically, we solve

{β̂1, . . . , β̂k−1} ∈ argmin
{βj}

1

n

n∑
i=1

1

pai(xi)
(yi − m̂(xi)− 〈Wai ,f(xi)〉)2 .

Denote B̂(p+1)×(k−1) as (β̂1, . . . , β̂k−1). By using the similar trick as described above for the binary

case, we modify B̂ to be an unbiased B̃. The modified estimator for the treatment effect is then

δ̃j(x) = 〈Wj,x
T B̃〉 = xT γ̂j where γ̂j , B̃Wj. We can verify that

γ̂j = (XTX)−1XTdiag

(
1[ai = j]− 1

k

)
P−1a (y − m̂(X)). (14)
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Theorem 6. Let {(xi, ai, yi)}ni=1 be a random sample with pj(xi) > 0 for all i and j. Assume

the model (8) holds with the true treatment effect δj(x) = xTγj and columns of X are linear

independent. Given an estimator for the main effect m̂(x) < ∞, denote γ = (γT1 , . . . ,γ
T
k )T and

its estimator γ̂ = (γ̂T1 , . . . , γ̂
T
k )T with γ̂j defined in (14). Then we have

E(γ̂) = γ.

Furthermore, let r(xi) = m(xi)− m̂(xi). Suppose xi, r(xi), p−1j (xi), and σ2(xi) are uniformly

bounded. Denote Pk×k(x) = diag (pj(x)), δ(x) = (δ1(x), . . . , δk(x))T , and C(k) = I−k−1J, where

J is a k × k matrix with all elements equal to 1. If

V = lim
n→∞

n−1XTX,

M = lim
n→∞

n−1
n∑
i=1

(
C(k)diag

(
(r(xi) + δj(xi))

2
)

P−1(xi)C(k)− δ(xi)δ(xi)
T
)
⊗
(
xix

T
i

)
,

Σ = lim
n→∞

n−1
n∑
i=1

(
C(k)σ2(xi)P

−1(xi)C(k)
)
⊗
(
xix

T
i

)
are finite and positive definite, then

√
n(γ̂ − γ)

D−→ N
(
0,
(
J⊗V−1

) (
M + Σ

) (
J⊗V−1

))
.

Theorem 6 implies γ̂j is an unbiased estimator of γj, and it is
√
n-consistent. Moreover, its

variance is determined by two matrices M and Σ, where M depends on the estimator m̂(·), and

Σ on the variance of ε. Note that in D-Learning, r(xi) in M becomes m(xi), which is larger

than r(xi) in RD-Learning. This also explains why RD-Learning has a smaller variance than

D-Learning.

Theorem 6 can be used for constructing the confidence interval for γ (or the treatment effect δj).

However, the variance of γ̂ involves two unknown terms δ(xi)δ(xi)
T and (r(xi)+δj(xi))

2+σ2(xi).

We may replace them by their consistent estimators, as in the heteroskedasticity literature (White

et al., 1980). Specifically, δj(x) in the first term can be estimated by δ̂j(xi) = xTi γ̂j. For the

second term, note that

E
[
(Y − m̂(x)− δA(x) + δj(x))2 |X = x

]
= E

[
(r(x) + δj(x) + ε)2 |X = x

]
= (r(x) + δj(x))2 + σ2(x).

This implies that we may estimate (r(xi) + δj(xi))
2 + σ2(xi) by (yi − m̂(xi)− δ̂ai(xi) + δ̂j(xi))

2.
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5 Simulation Studies

We compare the proposed method with four other popular methods in estimating the treatment

effect. They are Q-Learning (Qian and Murphy, 2011), Robust Learning (Shi et al., 2016; Nie and

Wager, 2017, R-Learning), causal forests (Wager and Athey, 2018) and D-Learning (Chen et al.,

2017; Qi and Liu, 2018). Note that except Q-Learning and D-Learning, all other methods are two-

step procedures, where the first step involves estimating either m(x) or E(Y |X = x). We fix the

number of covariates to be 100, where X1, X2 and X3 are i.i.d. from N(0, 3), and X4, . . . , X100

are i.i.d. from Uniform(0, 1). For each simulation setting, we let the number of observations to

be n = 50, 100, 150, and 200. The prediction error of δ̂1 is reported based on a testing set of size

400.

Case I: It is a two-arm design, with

µ1(x) = 2 cos(x1 + π/4) + x1 − tanh(x2) and

µ−1(x) = 2 cos(x1 + π/4) + 2x1 − tanh(x2).

The treatment assignment depends on x. Specifically, p1(x) = 0.2 + 0.61[x1 < 0]. Since µ1(·),

µ−1(·) and the main effect are non-linear functions of x, we consider kernel functions in Q-Learning,

and in the first step of causal forests, R-Learning, and RD-Learning. On the other hand, because

the treatment effect is linear, we use linear models with an L1 penalty in D-Learning as well as in

the second step of R-Learning and RD-Learning.2

Case II: This is an example to test the robustness of the proposed method against mis-

specification of the main effect. In this case, we have

µ1(x) = tanh(x1)− 4/(1 + exp(x2 − x1)) + 3 and

µ−1(x) = tanh(x1) + 4/(1 + exp(x2 − x1)).

It is a randomized design with p1(x) = 1/5. Both the main effect and the treatment effect are non-

linear. Hence we are supposed to use non-linear function spaces for all the methods. However,

to test the robustness of the proposed RD-Learning method, we use linear models with an L1

penalty to estimate the main effect in the first step and kernel ridge regression in the second step.

For comparison purposes, we adopt the same function spaces (linear and kernel) in all the other

2By default, the second step of causal forest uses a non-linear regression tree.
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two-step procedures, and use kernel ridge regression in the one-step Q-Learning and D-Learning.

Case III: This is an example to test the robustness of the proposed method against mis-

specification of the propensity score. In this example,

µ1(x) = x1 − x2 + x3 and µ−1(x) = 2x1 − x2.

The propensity score is defined as p1(x) = 2/(2 + exp(x1)). In this case, we use linear models

with an L1 penalty in all methods and both steps. To test the robustness of RD-Learning, we

deliberately use a wrong propensity score p̂1(x) = 1/2 instead. For comparison, we let p̂1(x) = 1/2

in the other methods.

Case IV: This is a three-arm design, with

µ1(x) = (x21 + x22 + x23)/3 + x1 − x2,

µ2(x) = (x21 + x22 + x23)/3 + x2 − x3, and

µ3(x) = (x21 + x22 + x23)/3 + x3 − x1.

The propensity score depends on x. Specifically,

(p1(x), p2(x), p3(x)) =


(1/2, 1/4, 1/4), for x1 ≥ x2 and x1 ≥ x3

(1/4, 1/2, 1/4), for x2 > x1 and x2 ≥ x3

(1/4, 1/4, 1/2), for x3 > x2 and x3 > x1.

This setting is similar to Case I in the sense that it has a non-linear main effect and a linear

treatment effect. We use the same function space as in Case I. We do not report the results

by causal forests and R-Learning because currently these two methods cannot be applied to the

multi-arm case directly.

Estimation of the treatment effect

From Figure 2, we first observe that the proposed RD-Learning method has the smallest

prediction error in most scenarios. Secondly, Q-Learning and D-Learning typically have a larger

standard error than the two-step procedures. This is consistent with the well known intuition (see

also Theorem 3 and 4) that by replacing yi with yi − m̂(xi), the variance of estimators can be

reduced. Thirdly, we see that RD-Learning is indeed “doubly robust” against mis-specification of

the main effect (in Case II) and the propensity score (in Case III). For the discussion below, we

only focus on the three best methods, namely, R-Learning, Q-Learning, and RD-Learning. Recall
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that Case II is an example where we deliberately use a wrong function space for the main effect.

Since R-Learning is robust against this kind of mis-specification, it has a better performance than

Q-Learning. However, in Case III where we deliberately use a wrong propensity score, R-Learning

has a much worse performance than Q-Learning since it relies on a correctly-specified p̂j(·). But

RD-Learning is as good as, and in many cases, much better than any of these two in both settings.
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Figure 2: The average prediction error of δ̂1 based on 200 replications with standard error by different

methods. In all cases RD-Learning has the best performance.

Estimation of the main effect
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In addition to the treatment effect, we also report the estimator for the main effect using the

proposed direct method in Section 4.1 and the Q-Learning method that estimates each µj and

takes the average. Figure 3 shows the result based on the same simulation data in Case I and

Case IV. We observe that by using all the data at the same time and using propensity score as

the weight, the proposed method has a better performance compared to the Q-Learning method.
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Figure 3: Boxplots for the prediction error of m̂ based on 200 replications in Case I (left) and Case IV

(right). The proposed method has a smaller error than Q-Learning in estimating the main effect.

Confidence Interval for the Coefficients

Finally, we compute the unbiased estimator defined by (14) using the data in Case I and

Case IV and construct the confidence interval for the coefficient of an important covariate x1.

The relation between the nominal confidence level and the empirical coverage rate, defined as the

proportion of the confidence intervals that cover the true parameter, is shown in Figure 4. Most of

the empirical coverage rates are close to the nominal confidence levels, supporting the asymptotic

distribution derived in Theorem 6. In the worse case scenario, for nominal level 95%, the resulting

confidence interval missed it by 1.5% (in Case IV).
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Figure 4: Nominal confidence levels ranging from 90.1% to 99.9% and the empirical coverage rate based

on 200 replications in Case I (left) and Case IV (right) with sample size n = 200. The 45◦ straight line

represents the ideal situation.

6 Real Data Analysis

In this section we apply RD-Learning on a real dataset from the AIDS Clinical Trials Group

Study 175 (Hammer et al., 1996, ACTG175). The dataset includes 2,139 HIV-1 infected subjects.

They were randomly assigned with equal probabilities to one of the four treatments: zidovudine

(ZDV) only, ZDV with didanosine (ddI), ZDV with zalcitabine (ddC), and ddI only. The endpoint

(outcome) we consider is the change of the CD4 cell count (per cubic millimeter) at 20± 5 weeks

from the baseline. Note that a decrease in the number of CD4 cell count usually implies a

progression to AIDS. In other words, a larger value indicates a better outcome.

To apply the proposed RD-Learning method, we first estimate the main effect using the direct

estimator proposed in Section 4.1 based on the 18 variables that were measured prior to the

initiation of the study. Specifically, we use the generalized additive model (GAM) to solve the

weighted least square problem (11). The best GAM model is selected through stepwise AIC.

For the second step in which the treatment effect is estimated, we follow the analysis of Fan

et al. (2017) and Qi et al. (2019) and consider only 12 variables measured at baseline as the

covariates for each subject. Five of 12 covariates are continuous: age (years), weight (kilogram),

23



Karnofsky score (on a scale of 0-100), CD4 cell counts (per cubic millimeter), and CD8 cell counts

(per cubic millimeter). The rest seven are binary: hemophilia (0=no, 1=yes), homosexual activity

(0=no, 1=yes), history of intravenous drug use (0=no, 1=yes), race (0=white, 1=non-white),

gender (0=female, 1=male), antiretroviral history (0=naive, 1=experienced), and symptomatic

indicator (0=asymptomatic, 1=symptomatic).
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Figure 5: 5-fold cross validation scores of V (d̂) based on 400 replications by different methods for

ACTG175 data. RD-Learning has the highest empirical value on average.

We compare the performance of RD-Learning with Q-Learning and D-Learning through 5-fold

cross validation. However, since it is a real data set in which the true treatment effect is not

observed, the prediction error cannot be calculated. Instead of evaluating the prediction error,

we first derive the estimated optimal ITR of each method by d̂(xi) = argmaxj δ̂j(xi). Then we

calculate the empirical expected outcome under the obtained ITR d̂, defined as

V (d̂) =

∑n
i=1

(
yi1
[
ai = d̂(xi)

]
/pai(xi)

)
∑n

i=1

(
1

[
ai = d̂(xi)

]
/pai(xi)

)
(Murphy et al., 2001; Zhao et al., 2012). Note that in this application V (d̂) measures the average

increase in CD4 cell counts (per cubic millimeter) by taking the recommended treatment. Larger

value V (d̂) is preferred. Finally, we replicate the procedure for 400 times and the boxplot of V (d̂)
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is shown in Figure 5.

From Figure 5, we observe that RD-Learning yields the largest value, and V (d̂) of D-Learning is

slightly higher than that of Q-Learning. This implies that patients would benefit more by following

the recommended treatment that is based on the treatment effect estimated by RD-Learning.

To identify important biomarkers, we estimate the coefficients of the 12 covariates by (14) and

compute their standard errors. The significant level of each variable using Q-Learning, D-Learning,

and RD-Learning is marked in Table 1.3

Table 1: Significant coefficients of each treatment effect for ACTG175 Data. Each column stands for a

treatment arm, and each row corresponds to a covariate. Significant coefficients and levels identified by

each method are marked.

ZDV ZDV+ddI ZDV+ddC ddI

Age Q***, D**, RD*** Q**, D*, RD**

Weight

Hemophilia

Homosexual Q*, D*, RD* Q*, D, RD*

Drug use Q D, RD

Karnofsky D**, RD RD

Race Q*, D*, RD*

Gender

Antiretroviral

Symptomatic

CD4 Baseline Q**, D***, RD* Q**, D*, RD**

CD8 Baseline

* “Q”, “D”, and “RD” stand for Q-Learning, D-Learning, and RD-Learning, respectively.

* Significant code example: “Q” for p-value < 0.1 using Q-Learning. Similarly, “Q*” for

p-value < 0.05, “Q**” for p-value < 0.01, and “Q***” for p-value < 0.001.

From Table 1, we observe that these three methods give similar results in general. The different

patterns of those significant coefficients across different treatment effects suggest that heterogeneity

3Q-Learning is a linear regression based method with standard significance score. Since D-Learning can be

viewed as a special case of RD-Learning, we derive the significance level using our method in Section 4.2.
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does exist in these four treatment arms. For example, if we project the data on two important

biomarkers “age” and “CD4 baseline” and mark each point according to its optimal treatment

assignment estimated by RD-Learning, we can visualize how the treatment effects depend on these

two biomarkers. In Figure 6, we first notice that the treatment ZDV is inferior to the other three

treatments. This result is consistent with previous findings (Hammer et al., 1996; Fan et al., 2017;

Qi et al., 2019). Furthermore, for the majority of the patients, ZDV with ddI is the best treatment.

ZDV with ddC is most effective on young patients (age < 25), and ddI alone is better than the

others for patients who have more CD4 cells (CD4 counts > 500 per cubic millimeter) at baseline.
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Figure 6: ACTG175 data projected on “age” and “CD4 baseline”, with the best treatment based on the

estimated treatment effect by the RD-Learning marked by different colors and symbols.

7 Conclusion

In this work, we propose a doubly robust method RD-Learning to estimate CATE under two-

arm and multi-arm settings. The estimated CATE is consistent if either the model for the main

effect or the model for the propensity score is correctly specified. The proposed framework is

flexible enough that it can incorporate with existing base procedures such as LASSO, kernel ridge
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regression, generalized additive model, and so on. We also propose a direct estimation approach for

the main effect and provide statistical inference tools for the treatment effects when the propensity

scores are known.

There are a few possible future research directions based on this work. Firstly, by modifying

the quadratic loss function, the framework can be extended to other types of outcome, such as

binary outcome and survival outcome. Secondly, one may want to improve our two-step procedure

to a one-step method based on (9), i.e., estimating pj(x), m(x), and δj(x) simultaneously. Such

CATE estimator would still enjoy a doubly-robust property while the convergence rate of PE(δ̂)

may be different from the proposed method in the current paper. Thirdly, statistical inference

based on RD-Learning can be investigated, so that in addition to doubly robust estimators, we may

also have doubly robust confident regions. Finally the method can applied to dynamic treatment

regime (Murphy, 2003; Robins, 2004) by considering a multi-stage optimization problem, so that

a sequence of treatment effects and the optimal treatment rules can be estimated robustly in a

multi-stage clinical trial.
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