Name (Print): _____

Problem 1 Let A be a 3×4 matrix and T be the linear transformation with standard matrix A. Determine whether the following statements are True or False:

- 1. Let $b \in \mathbb{R}^3$. Then b is in the range of T if and only if the equation Ax = b has at least one solution.
- 2. _____ The equation $Ax = \mathbb{O}$ has infinitely many solutions as A has more columns than rows.
- 3. T is a one to one function as the columns of A are linearly dependent.
- 4. If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are vectors in \mathbb{R}^4 and the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.
- 5. _____ A map $S : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if and only if

$$S(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1S(\mathbf{v}_1) + c_2S(\mathbf{v}_2)$$

for all vectors $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n$ and scalars c_1, c_2 .

Problem 2 Let T be a linear transformation with standard matrix

$$A = \begin{pmatrix} -1 & 2 & 1 & 0 & 3\\ 0 & 2 & -4 & 6 & 2\\ 0 & 0 & 0 & 2 & -2 \end{pmatrix},$$

that is, T(x) = Ax. Answer the following questions:

- 1. Determine the domain and codomain of T.
- 2. Do the columns of A span \mathbb{R}^3 ? Is T onto?
- 3. Find all vectors x such that $T(x) = \mathbb{O}$. Write the answers in parametric vector form. Is T one to one?